CN114485216B - 辐射翅片式换热器及自由活塞斯特林发电机 - Google Patents
辐射翅片式换热器及自由活塞斯特林发电机 Download PDFInfo
- Publication number
- CN114485216B CN114485216B CN202210023380.5A CN202210023380A CN114485216B CN 114485216 B CN114485216 B CN 114485216B CN 202210023380 A CN202210023380 A CN 202210023380A CN 114485216 B CN114485216 B CN 114485216B
- Authority
- CN
- China
- Prior art keywords
- heat exchange
- fluid
- exchange device
- heat exchanger
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
- F28D7/082—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
- F02G1/053—Component parts or details
- F02G1/055—Heaters or coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/26—Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本发明提供一种辐射翅片式换热器及自由活塞斯特林发电机,包括对置承压壳热头、换热装置、若干凹槽、若干插套、若干组气体流道和气体汇流通道。插套与凹槽一一对应且插入凹槽中。每组气体流道位于相邻两凹槽之间,各气体流道均与气体汇流通道连通。换热装置与对置承压壳热头直接相连,消除了二者之间的接触热阻。气体流道与换热装置轴向平行,可利用外部载热流体传热过程中产生的轴向温差,提高效率。插套两侧均有气体流道,由于距离较近,大大提高气体工质与载热流体的换热效率,大幅降低换热器内部气体工质与外部载热流体温差。多组气体流道还可增加气体侧换热面积,进一步提升换热器换热效果,可以满足自由活塞斯特林发电机的高效热耦合需求。
Description
技术领域
本发明涉及高温换热器技术领域,尤其涉及一种辐射翅片式换热器及自由活塞斯特林发电机。
背景技术
高温换热器是自由活塞斯特林发电机的核心部件之一,用于将外界高温热源的热量高效传递给发电机内部的高压气体工质,常见的加热方式有高温载热流体加热等。
首先,高温换热器应具有较大的换热面积,可为自由活塞斯特林发电机的热功转换提供足够的换热能力。其次,高温换热器应满足在足够的换热面积的情况下,具有较小的流动阻力。此外,高温换热器轴向长度和换热面的布置方式还应该满足一定的声学条件。以上特点都对大功率高温换热器满足大功率下发电机的热耦合需求,提出了严苛的设计和制造要求。
目前,大功率自由活塞斯特林发电机中,交变流动高温换热器主要采用传统的翅片式换热结构和管壳式换热结构。
但是,对于高温应用场合,现有的翅片式换热器由于热阻过大,换热效果较差,无法满足十千瓦级及以上大功率发电机的应用需求。而现有的管壳式换热器,加工工艺复杂,制造成本过高,可靠性较低,制约了其在大功率自由活塞斯特林发电机中的应用。因而,现有的换热器结构无法满足大功率发电机的热耦合需求,限制了大功率换热器的高功率密度传热能力,从而限制了大功率自由活塞斯特林发电机的进一步应用。
发明内容
本发明的目的在于提供一种辐射翅片式换热器及自由活塞斯特林发电机,用以解决现有技术中所存在的缺陷,具有匹配高效、高功率密度传热的能力,可以满足大功率自由活塞斯特林发电机的热耦合需求。
本发明提供一种辐射翅片式换热器,包括:
对置承压壳热头;
换热装置,与所述对置承压壳热头的内侧壁相连接,所述换热装置环绕所述对置承压壳热头的周向设置;
若干凹槽,环绕所述换热装置的周向间隔分布,各个所述凹槽沿所述换热装置的径向设置;
若干插套,与所述凹槽一一对应设置,所述插套插入所述凹槽中,所述插套内设有用于供载热流体流过的流体流道,所述流体流道设有第一流体入口和第一流体出口;
若干组气体流道,每组包括多个沿所述换热装置的径向分布的气体流道,各个所述气体流道沿所述换热装置的轴向设置,每组所述气体流道位于相邻两个所述凹槽之间;
气体汇流通道,用于供换热后的气体工质流出所述换热装置,各个所述气体流道均与所述气体汇流通道相连通。
根据本发明提供的辐射翅片式换热器,还包括:
包套,套装在所述对置承压壳热头外且与所述换热装置的位置相对,所述包套设有与所述第一流体入口一一对应的若干第二流体入口以及与所述第一流体出口一一对应的若干第二流体出口;
流体入口联管,环绕所述换热装置的周向设置,所述流体入口联管与所述包套相连接,各个所述第二流体入口均与所述流体入口联管相连通;
流体出口联管,环绕所述换热装置的周向设置,所述流体出口联管与所述包套相连接,各个所述第二流体出口均与所述流体出口联管相连通。
根据本发明提供的辐射翅片式换热器,还包括填充在所述插套与所述凹槽之间形成的空腔中的液态金属导热层。
根据本发明提供的辐射翅片式换热器,所述插套内设有多个隔板,各个所述隔板沿所述插套的高度方向依次交错分布。
根据本发明提供的辐射翅片式换热器,所述换热装置和所述对置承压壳热头为一体式结构。
根据本发明提供的辐射翅片式换热器,所述气体汇流通道设置为多个,各个所述气体汇流通道均沿所述换热装置的径向设置,且各个所述气体汇流通道环绕所述换热装置的周向间隔分布。
根据本发明提供的辐射翅片式换热器,所述插套呈扇形结构,且所述凹槽的形状与所述插套的形状相一致。
根据本发明提供的辐射翅片式换热器,若干所述凹槽设置为两组,两组所述凹槽沿所述换热装置的轴向间隔对称分布。
根据本发明提供的辐射翅片式换热器,沿所述换热装置的轴向,相邻两个所述插套相对的一侧设置有所述第一流体入口。
本发明还提供一种自由活塞斯特林发电机,包括高温换热器,所述高温换热器设置为如上述任一项所述的辐射翅片式换热器。
本发明提供的辐射翅片式换热器,包括:对置承压壳热头;换热装置,与对置承压壳热头的内侧壁相连接,换热装置环绕对置承压壳热头的周向设置;若干凹槽,环绕换热装置的周向间隔分布,各个凹槽沿换热装置的径向设置;若干插套,与凹槽一一对应设置,插套插入凹槽中,插套内设有用于供载热流体流过的流体流道,流体流道设有第一流体入口和第一流体出口;若干组气体流道,每组包括多个沿换热装置的径向分布的气体流道,各个气体流道沿换热装置的轴向设置,每组气体流道位于相邻两个凹槽之间;气体汇流通道,用于供换热后的气体工质流出换热装置,各个气体流道均与气体汇流通道相连通。如此设置,换热装置与对置承压壳热头直接相连,缩短传热途径,消除二者之间的接触热阻。气体工质从气体流道流入,从气体汇流通道流出。气体流道与换热装置轴向平行,可利用外部载热流体传热过程中产生的轴向温差,提高效率。且在插套两侧均布置有气体流道,由于二者之间距离较近,可大大提高气体工质与载热流体的换热效率,大幅降低换热器内部气体工质与外部载热流体温差,降低了换热功耗。同时多组气体流道还可增加气体侧的换热面积,进一步提升换热器的换热效果。其整体结构简单,便于加工制造,降低生产成本,提高设备应用可靠性,且具有高功率换热强度,可以满足大功率自由活塞斯特林发电机的高效热耦合需求。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的辐射翅片式换热器的主视图;
图2是图1中A-A剖视图;
图3是本发明提供的辐射翅片式换热器的半剖立体结构示意图;
图4是图2中B处局部示意图;
图5是图3中C处局部示意图;
图6是本发明提供的辐射翅片式换热器的俯视图;
图7是本发明提供的气体流道的局部示意图;
图8是图7中D处局部示意图;
图9是本发明提供的对置承压壳热头的结构示意图;
图10是本发明提供的包套的结构示意图;
图11是本发明提供的插套的结构示意图;
图12是本发明提供的插套的剖视图;
附图标记:
1:对置承压壳热头; 2:换热装置; 3:凹槽;
4:插套; 5:流体流道; 6:第一流体入口;
7:第一流体出口; 8:气体流道; 9:气体汇流通道;
10:包套; 11:第二流体入口; 12:第二流体出口;
13:流体入口联管; 14:流体出口联管; 15:隔板。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合图1至图12描述本发明的辐射翅片式换热器。
如图1至图3所示,本发明实施例提供了一种辐射翅片式换热器,包括对置承压壳热头1,换热装置2,若干凹槽3,若干插套4,若干组气体流道,以及气体汇流通道9。具体来说,如图1所示,对置承压壳热头1采用一体式结构,一般具有上下两个对称设置的热头端部。如图2所示,换热装置2与对置承压壳热头1的内侧壁相连接。如图6所示,换热装置2环绕对置承压壳热头1的周向设置。如图9所示,若干凹槽3环绕换热装置2的周向均匀间隔分布,并且各个凹槽3沿换热装置2的径向设置,这样凹槽3在热头内部起到翅片式换热器的作用,使得换热器翅片呈辐射状分布。插套4与凹槽3一一对应设置,插套4插入凹槽3中。如图11所示,各个插套4内设有用于供载热流体流过的流体流道5,流体流道5设有第一流体入口6和第一流体出口7。如图6和图7所示,每组气体流道包括多个沿换热装置2的径向分布的气体流道8,若干组气体流道沿换热装置2的周向均匀间隔分布。每组气体流道位于相邻两个凹槽3之间,即每组气体流道位于插套4两侧,各个气体流道8沿换热装置2的轴向设置,使得气体工质与载热流体充分进行热交换。具体地,如图8所示,在每组气体流道中,各个气体流道8沿换热装置2的径向依次交错分布,可使各个气体流道8布置更加紧凑,增加气体流道8数量,增大气体换热面积。如图3所示,气体汇流通道9用于供换热后的气体工质流出换热装置2,各个气体流道8均与气体汇流通道9相连通。需要说明的是,以如图2所示的辐射翅片式换热器的摆放位置来说,图中上下方向即为所指上下方位以及换热装置2的轴向。
如此设置,换热装置2与对置承压壳热头1直接相连,缩短传热途径,消除二者之间的接触热阻。气体工质从各气体流道8流入,从气体汇流通道9流出。各气体流道8与换热装置2轴向平行,可利用外部载热流体传热过程中产生的轴向温差,提高效率。且在插套4两侧均布置有若干气体流道8,由于二者之间的距离较近,可大大提高气体工质与载热流体的换热效率,大幅降低换热器内部气体工质与外部载热流体温差,降低了换热功耗。同时若干组气体流道还可增加气体侧的换热面积,进一步提升换热器的换热效果。该换热器整体结构简单,便于加工制造,降低生产成本,提高设备应用可靠性,且具有高功率换热强度,可以满足大功率自由活塞斯特林发电机的高效热耦合需求。
本发明实施例中,辐射翅片式换热器还包括包套10,流体入口联管13,以及流体出口联管14。具体地,如图3所示,包套10套装在对置承压壳热头1外,并且与换热装置2的位置相对。如图10所示,包套10设有与第一流体入口6一一对应的若干第二流体入口11以及与第一流体出口7一一对应的若干第二流体出口12。如图3所示,流体入口联管13和流体出口联管14均环绕换热装置2的周向设置,各个第二流体入口11均与流体入口联管13相连通,各个第二流体出口12均与流体出口联管14相连通。如图4所示,流体入口联管13和流体出口联管14均与包套10相连接。
这样设置,载热流体从流体入口联管13进行分流,流向各个第二流体入口11、第一流体入口6,进入插套4中的流体通道5,使得流体流动更加均匀。然后与轴向流动的气体工质进行换热后,从各个第一流体出口7、第二流体出口12流出,进入流体出口联管14,进行集中回流,最终流出换热器。从而将传统的管壳式内部空间耦合转换为周向的外部耦合,大大扩展了与外热源耦合的适应性,保证载热流体与气体工质充分换热,提高换热效果。
而且,由于大功率高热流密度的换热器常采用液态金属锂作为载热流体来传递热量,对置承压壳热头1一般采用镍基高温合金材料,但是,液态金属锂对镍基高温合金材料具有相容性。因此,为了提升高温热头的可靠性,本实施例增加了包套10,将对置承压壳热头1进行包覆,例如包套10采用与液态金属锂相容的铌锆合金材料。这样如图4和图5所示,包套10与流体入口联管13和流体出口联管14共同构成了流体侧的流通回路,载热流体不与换热器直接接触,有效解决了液态金属载热流体和高温镍基合金热头的相容性问题。
需要说明的是,于本发明实施例中,为了减小空气热阻对换热效果的影响,辐射翅片式换热器还包括填充在插套4与凹槽3之间形成的空腔中的液态金属导热层,以消除接触热阻,保证具有良好的热传导性能,提高换热效率。具体地,液态金属导热层可采用与铌锆合金和镍基合金相容的液态金属,例如为液态金属钠。在将插套4与凹槽3焊接连接前,在二者的间隙中填充液态金属钠,从而保证具有高导热率的同时,还能提高换热器的可靠性。
进一步地,本发明实施例中,如图12所示,插套4内设有多个隔板15,各个隔板15沿插套4的高度方向依次交错分布。这样设置,流体通道5呈蛇形分布,载热流体可在插套4内进行往复折叠流动,使得流体侧与气体侧充分进行换热,强化换热效果。需要说明的是,以如图12所示的插套4的摆放位置来说,图中上下方向即为插套4的高度方向。
本发明实施例中,换热装置2和对置承压壳热头1为一体式结构。这样对置承压壳热头1和换热装置2一体加工成型,结构设计合理,热源适应性好,热头周向温度更加均匀,外界流体的轴向流动也更加均匀,流体侧和壳侧的换热效果得到增强,降低了高热流密度下高温换热器的结构复杂度,提升了换热器的可靠性和稳定性。
本发明实施例中,气体汇流通道9设置为多个。具体地,如图3所示,各个气体汇流通道9均沿换热装置2的径向设置,且各个气体汇流通道9环绕换热装置2的周向均匀间隔分布。这样多个气体汇流通道9呈辐射状分布,方便每组气体流道与气体汇流通道9连通,以便换热后的气体工质快速流出。
于本发明实施例中,插套4呈扇形结构,且凹槽3的形状与插套4的形状相一致。这样设计,各插套4之间的间隙均匀设置,使得换热器周向换热均匀,而且凹槽3与插套4形状相同,二者可紧密配合,有利于进行热交换。
如图9所示,若干凹槽3设置为两组,两组凹槽沿换热装置2的轴向间隔对称分布。这样热头两端可同时进行换热,便于对置减振。需要说明的是,以如图9所示的对置承压壳热头1的摆放位置来说,图中上下方向即为换热装置2的轴向。
进一步地,沿换热装置2的轴向,相邻两个插套4相对的一侧设置有第一流体入口6。具体地,如图9所示,在换热装置2中布置有上下两组凹槽,每个凹槽3中插入一个插套4。在上下相对的两个插套4中,相邻的一侧均为第一流体入口6,则另一侧为第一流体出口7。对应地,如图10所示,从中间向上下两端,包套10对称设置有第二流体入口11和第二流体出口12。这样便于设置流体入口联管13,如图3所示,流体入口联管13同时与上下两组流体入口连通,流体入口联管13的上下两侧对应设置流体出口联管14。该换热器整体结构紧凑,布局合理。
结合上述各实施例,对本发明的辐射翅片式换热器进行具体的说明。本发明实施例提供了一种辐射翅片式换热器,包括一体式的对置承压壳热头1,换热装置2,若干凹槽3,若干插套4,若干组气体流道,若干气体汇流通道9,包套10,流体入口联管13,以及流体出口联管14等。如图1所示,该换热器形成一种一体成型的紧凑式辐射翅片式换热器,具有匹配高效、高功率密度传热的能力,可以实现随着功率的增大,气侧和流体流动侧换热效果大幅增加的特性,并满足大功率下发电机的热源耦合需求。相较于现有的换热器,首先,该换热器通过合理设置传热途径,将对置承压壳热头1与换热装置2一体成型,热源适应性好,热头周向温度更加均匀,外界流体的轴向流动也更加均匀,流体侧和壳侧的换热效果得到增强,降低了高热流密度下高温换热器的结构复杂度,提升了换热器的可靠性和稳定性。
其次,对置承压壳热头1留有凹槽3,并将扇形的插套4插入凹槽3中,外面包覆有铌锆合金材质的包套10。包套10与流体入口联管13和流体出口联管14共同构成了流体侧的回路,将传统的管壳式内部空间耦合转换为周向的外部耦合,大大扩展了与外热源耦合的适应性。同时,对于液态金属载热流体作为热源的情况,结合外置包套10,使得载热流体不与换热器直接接触,解决了高温锂与高温镍基合金热头的相容性问题,提升了高温热头的可靠性。进一步地,为了减小空气热阻,提高热传导率,插套4和凹槽3的间隙中填充有与铌锆合金和镍基合金相容的液态金属钠。
再次,该换热器对流道结构进行了改善。高温流体经流体入口联管13流入对置一体式辐射翅片式换热器,从流体出口联管14流出换热器。惰性气体工质从换热器端部上的气体流道8流入,从气体汇流通道9流出。如图3所示,各气体流道8与换热装置2轴向平行,且在插套4两侧均布置有若干气体流道8,由于其距离较近,可大大提高气体工质与载热流体的换热效率,大幅降低换热器内部气体工质与外部载热流体温差,降低了气侧和外侧流体侧的流动阻力,降低了换热功耗,提升了换热器的流动性和换热均匀性。同时若干组微型气体流道还可增加气体侧的换热面积,提升换热器的换热效果。为了进一步强化换热效果,充分进行换热,插套4内的流体通道5呈蛇形分布,使得高温流体在插套4内进行往复折叠流动。此外,该换热器还可结合异形集成式热管,以解决发电机紧凑式热头外热源耦合接口高效外延的问题。从而为十千瓦级~百千瓦级及以上大功率自由活塞斯特林发电机提供一种热源适应性好、结构与工艺相对简单、高可靠且高效的具有高功率换热强度的高温换热器结构,以实现大功率自由活塞斯特林发电机的进一步应用。
下面对本发明提供的自由活塞斯特林发电机进行描述,下文描述的自由活塞斯特林发电机与上文描述的辐射翅片式换热器可相互对应参照。
本发明实施例还提供了一种自由活塞斯特林发电机,包括高温换热器,该高温换热器设置为如上述各实施例中的辐射翅片式换热器。如此设置,换热装置2与对置承压壳热头1直接相连,缩短传热途径,消除二者之间的接触热阻。气体工质从气体流道8流入,从气体汇流通道9流出。气体流道8与换热装置2轴向平行,可利用外部载热流体传热过程中产生的轴向温差,提高效率。且在插套4两侧均布置有若干气体流道8,由于二者之间的距离较近,可大大提高气体工质与载热流体的换热效率,大幅降低换热器内部气体工质与外部载热流体温差,降低了换热功耗。同时若干组气体流道还可增加气体侧的换热面积,进一步提升换热器的换热效果。该换热器整体结构简单,便于加工制造,降低生产成本,提高设备应用可靠性,且具有高功率换热强度,可以满足大功率自由活塞斯特林发电机的高效热耦合需求。该有益效果的推导过程和上述辐射翅片式换热器的有益效果的推导过程大致类似,故在此不再赘述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (9)
1.一种辐射翅片式换热器,其特征在于,包括:
对置承压壳热头;
换热装置,与所述对置承压壳热头的内侧壁相连接,所述换热装置环绕所述对置承压壳热头的周向设置;
若干凹槽,环绕所述换热装置的周向间隔分布,各个所述凹槽沿所述换热装置的径向设置;
若干插套,与所述凹槽一一对应设置,所述插套插入所述凹槽中,所述插套内设有用于供载热流体流过的流体流道,所述流体流道设有第一流体入口和第一流体出口;
若干组气体流道,每组包括多个沿所述换热装置的径向分布的气体流道,各个所述气体流道沿所述换热装置的轴向设置,每组所述气体流道位于相邻两个所述凹槽之间;
气体汇流通道,用于供换热后的气体工质流出所述换热装置,各个所述气体流道均与所述气体汇流通道相连通;
包套,套装在所述对置承压壳热头外且与所述换热装置的位置相对,所述包套设有与所述第一流体入口一一对应的若干第二流体入口以及与所述第一流体出口一一对应的若干第二流体出口;
流体入口联管,环绕所述换热装置的周向设置,所述流体入口联管与所述包套相连接,各个所述第二流体入口均与所述流体入口联管相连通;
流体出口联管,环绕所述换热装置的周向设置,所述流体出口联管与所述包套相连接,各个所述第二流体出口均与所述流体出口联管相连通。
2.根据权利要求1所述的辐射翅片式换热器,其特征在于,还包括填充在所述插套与所述凹槽之间形成的空腔中的液态金属导热层。
3.根据权利要求1所述的辐射翅片式换热器,其特征在于,所述插套内设有多个隔板,各个所述隔板沿所述插套的高度方向依次交错分布。
4.根据权利要求1所述的辐射翅片式换热器,其特征在于,所述换热装置和所述对置承压壳热头为一体式结构。
5.根据权利要求1所述的辐射翅片式换热器,其特征在于,所述气体汇流通道设置为多个,各个所述气体汇流通道均沿所述换热装置的径向设置,且各个所述气体汇流通道环绕所述换热装置的周向间隔分布。
6.根据权利要求1所述的辐射翅片式换热器,其特征在于,所述插套呈扇形结构,且所述凹槽的形状与所述插套的形状相一致。
7.根据权利要求1所述的辐射翅片式换热器,其特征在于,若干所述凹槽设置为两组,两组所述凹槽沿所述换热装置的轴向间隔对称分布。
8.根据权利要求7所述的辐射翅片式换热器,其特征在于,沿所述换热装置的轴向,相邻两个所述插套相对的一侧设置有所述第一流体入口。
9.一种自由活塞斯特林发电机,包括高温换热器,其特征在于,所述高温换热器设置为如权利要求1-8任一项所述的辐射翅片式换热器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210023380.5A CN114485216B (zh) | 2022-01-10 | 2022-01-10 | 辐射翅片式换热器及自由活塞斯特林发电机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210023380.5A CN114485216B (zh) | 2022-01-10 | 2022-01-10 | 辐射翅片式换热器及自由活塞斯特林发电机 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114485216A CN114485216A (zh) | 2022-05-13 |
CN114485216B true CN114485216B (zh) | 2023-06-23 |
Family
ID=81509452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210023380.5A Active CN114485216B (zh) | 2022-01-10 | 2022-01-10 | 辐射翅片式换热器及自由活塞斯特林发电机 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114485216B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1410738A (zh) * | 2001-09-29 | 2003-04-16 | 汉拏空调株式会社 | 热交换器 |
CN113865403A (zh) * | 2020-06-30 | 2021-12-31 | 中国科学院理化技术研究所 | 翅片换热器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1587613A2 (en) * | 2003-01-22 | 2005-10-26 | Vast Power Systems, Inc. | Reactor |
JP3771233B2 (ja) * | 2003-10-08 | 2006-04-26 | 株式会社日立製作所 | 液冷ジャケット |
DE102007031912A1 (de) * | 2006-07-11 | 2008-02-07 | Denso Corp., Kariya | Abgaswärmetauscher |
-
2022
- 2022-01-10 CN CN202210023380.5A patent/CN114485216B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1410738A (zh) * | 2001-09-29 | 2003-04-16 | 汉拏空调株式会社 | 热交换器 |
CN113865403A (zh) * | 2020-06-30 | 2021-12-31 | 中国科学院理化技术研究所 | 翅片换热器 |
Also Published As
Publication number | Publication date |
---|---|
CN114485216A (zh) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114623705B (zh) | 一种基于gd型杂化极小曲面扰动结构的换热器 | |
CN108801010B (zh) | 一种大换热面积的环路热管蒸汽发生器 | |
CN104595056B (zh) | 一种自由活塞式斯特林机冷端热交换器 | |
CN105756804B (zh) | 一种用于自由活塞斯特林发动机的热端换热器 | |
CN114485216B (zh) | 辐射翅片式换热器及自由活塞斯特林发电机 | |
CN109256880B (zh) | 直线电机动子和直线电机 | |
US20120012289A1 (en) | Annular Axial Flow Ribbed Heat Exchanger | |
CN217655950U (zh) | 一种电芯、电池模组及车辆 | |
CN214313326U (zh) | 一种液冷结构及电池模组 | |
CN114709509A (zh) | 一种适用于电池包、电池组的微通道冷却装置 | |
CN112012846A (zh) | 一种自由活塞斯特林发动机 | |
CN118746210A (zh) | 基于优化三周期极小曲面的高效相变储能换热器 | |
WO2025055558A1 (zh) | 液冷系统及应用其的电池箱 | |
CN106225523B (zh) | 一种交变流动换热器 | |
CN207664195U (zh) | 换热片及电池包 | |
CN110530177A (zh) | 一种三介质换热器 | |
CN117928287A (zh) | 基于Schwartz Diamond型杆状三周期极小曲面优化结构的换热器 | |
CN216977616U (zh) | 交变流动换热器及热功转换系统 | |
CN210892797U (zh) | 一种u形管式热交换器管箱结构 | |
CN212658119U (zh) | 回热式热机的换热器及回热式热机 | |
CN208579662U (zh) | 一种用于声能自由活塞式机器的内置水冷换热器 | |
CN116436340B (zh) | 温差发电装置及核电源 | |
CN219435959U (zh) | 具有冷却管道的电池包 | |
CN206739932U (zh) | 一种微通道换热器 | |
CN212339639U (zh) | 换热器及热水设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |