CN114480323B - Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins - Google Patents
Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins Download PDFInfo
- Publication number
- CN114480323B CN114480323B CN202011251664.7A CN202011251664A CN114480323B CN 114480323 B CN114480323 B CN 114480323B CN 202011251664 A CN202011251664 A CN 202011251664A CN 114480323 B CN114480323 B CN 114480323B
- Authority
- CN
- China
- Prior art keywords
- ala
- glycosyltransferase
- leu
- val
- asugt73e1
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P33/00—Preparation of steroids
- C12P33/20—Preparation of steroids containing heterocyclic rings
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明涉及皂苷代谢途径,具体涉及燕麦糖基转移酶AsUGT73E1及其在甾体皂苷合成中的应用。本发明提供的糖基转移酶,是如下a1或a2所述的蛋白质:a1.氨基酸序列如SEQ ID NO:1所示的蛋白质;a2.将SEQ ID NO:1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加而形成的具有糖基转移酶活性的蛋白质。所述糖基转移酶能够以延龄草苷或偏诺皂苷元‑3‑O‑葡糖苷为底物,引入鼠李糖基,生成重楼皂苷V或重楼皂苷Ⅵ。The present invention relates to saponin metabolism pathways, specifically to oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins. The glycosyltransferase provided by the present invention is a protein as described in a1 or a2 as follows: a1. A protein whose amino acid sequence is shown in SEQ ID NO: 1; a2. The amino acid sequence shown in SEQ ID NO: 1 is passed through one or A protein with glycosyltransferase activity formed by the substitution and/or deletion and/or addition of several amino acid residues. The glycosyltransferase can use trillium or metanosogenin-3-O-glucoside as a substrate, introduce rhamnosyl group, and generate chrysanthemum saponin V or chrysanthemum saponin VI.
Description
技术领域Technical field
本发明涉及皂苷代谢途径,具体涉及燕麦糖基转移酶AsUGT73E1及其在甾体皂苷合成中的应用。The present invention relates to saponin metabolism pathways, specifically to oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins.
背景技术Background technique
重楼是百合科重楼属植物的泛称,可作为云南白药、宫血宁和热毒清等中成药的主要原料,具有极高的药用和经济价值。甾体皂苷是重楼植物的主要化学成分,目前已分离鉴定出 160余种,主要包括重楼皂苷(polyphyllin)Ⅰ、Ⅱ、Ⅲ、Ⅴ(薯蓣皂苷类)和Ⅵ、Ⅶ(偏诺皂苷类),药理活性广泛。抗肿瘤是重楼皂苷的主要作用,重楼皂苷Ⅰ通过抑制人胃癌HGC-27 细胞中PDK1/Akt/mTOR信号通路并下调细胞周期蛋白B1,诱导自噬和细胞周期停滞(Heet al.2019)。重楼皂苷Ⅵ在非小细胞肺癌中通过ROS触发的mTOR信号通路诱导细胞凋亡和自噬(Teng et al.2019)。重楼皂苷Ⅶ能够促进线粒体产生ROS并激活MAPK和PTEN/p53 途径,共同诱导HepG2人肝癌细胞凋亡(Zhang et al.2016)。重楼皂苷Ⅶ在抗菌消炎方面也颇有成效,能显著抑制枝状枝孢菌、念珠菌和痤疮丙酸杆菌的生长,可作为合成药物的有效替代品(Deng et al.2008;Qin et al.2012)。薯蓣皂苷元(diosgenin)能增强高脂血症小鼠的脂蛋白脂肪酶、肝脂酶、超氧化物歧化酶、谷胱甘肽过氧化酶与一氧化氮合酶的活性,改善脂质分布,起到降血脂的效果(Gong et al.2010)。重楼皂苷Ⅲ具有优异的驱虫活性,可以杀死寄生在金鱼鳃部的指环虫(EC50=18.06mg l-1),且对金鱼低毒(Wang et al.2010)。在新冠肺炎研究中发现,皂苷类分子具有潜在的抗新冠病毒活性。通过对接筛选,推测重楼皂苷Ⅰ可与2019-nCoV主要蛋白酶(M protease)结合,阻止病毒复制(Yan et al.2020)。Chonglou is the general name for plants of the genus Chonglou in the Liliaceae family. It can be used as the main raw material of Chinese patent medicines such as Yunnan Baiyao, Gongxuening and Reduqing, and has extremely high medicinal and economic value. Steroidal saponins are the main chemical components of Chonglou plants. Currently, more than 160 species have been isolated and identified, mainly including Chonglou saponins (polyphyllin) Ⅰ, Ⅱ, Ⅲ, Ⅴ (diosgenate saponins) and Ⅵ and Ⅶ (bianosaponins). ), has a wide range of pharmacological activities. Anti-tumor is the main effect of Chonglou saponin. Chonglou saponin I induces autophagy and cell cycle arrest by inhibiting the PDK1/Akt/mTOR signaling pathway and downregulating cyclin B1 in human gastric cancer HGC-27 cells (Heet al. 2019) . Chonglousaponin VI induces apoptosis and autophagy through the ROS-triggered mTOR signaling pathway in non-small cell lung cancer (Teng et al. 2019). Chonglousaponin VII can promote mitochondrial production of ROS and activate the MAPK and PTEN/p53 pathways, jointly inducing apoptosis in HepG2 human liver cancer cells (Zhang et al. 2016). Chonglou saponin VII is also very effective in antibacterial and anti-inflammatory, and can significantly inhibit the growth of Cladosporium cladosporum, Candida and Propionibacterium acnes, and can be used as an effective substitute for synthetic drugs (Deng et al. 2008; Qin et al. .2012). Diosgenin can enhance the activities of lipoprotein lipase, hepatic lipase, superoxide dismutase, glutathione peroxidase and nitric oxide synthase in mice with hyperlipidemia, and improve lipid distribution. , which has the effect of lowering blood lipids (Gong et al. 2010). Chonglou saponin III has excellent anthelmintic activity and can kill anthromycin parasites on the gills of goldfish (EC 50 = 18.06 mg l -1 ), and is low-toxic to goldfish (Wang et al. 2010). In research on COVID-19, it has been found that saponin molecules have potential anti-COVID-19 activity. Through docking screening, it is speculated that Chonglousaponin I can bind to the 2019-nCoV main protease (M protease) to prevent virus replication (Yan et al. 2020).
现阶段对于重楼皂苷的研究主要集中在医药和临床,导致对其代谢途径,尤其是下游生物合成过程的了解还十分欠缺。2,3-氧化鲨烯(2,3-oxidosqualene)是甾醇和三萜合成的共同前体,在2,3-氧化鲨烯环化酶(2,3-Oxidosqualene cyclases,OSCs)的催化下生成甾醇类或三萜类骨架。多数五环三萜合酶能够催化2,3-氧化鲨烯形成“chair-chair-chair”构象的达玛烷型阳离子,随后经过进一步重排产生α-amyrin、β-amyrin和羽扇豆醇(lupeol)等五环三萜(Xue et al.2018)。环阿屯醇合酶(cycloartenol synthase)催化2,3-氧化鲨烯形成“chair-boat-chair”构象的前固醇阳离子,继而转化成环阿屯醇,并经一系列反应合成胆固醇。植物中胆固醇的含量虽然普遍较低,但却是植物甾醇(phytosterol)的重要组成部分,亦是甾体皂苷的直接前体(Cárdenas et al.2015)。甾体皂苷元合成需要胆固醇侧链的羟化,主要由细胞色素P450酶(cytochrome P450 monooxygenase,CYP)参与修饰。例如,在七叶一枝花(Paris polyphylla) 中发现CYP90Bs通过基因复制进化出固醇多羟化酶活性,PpCYP90G4能催化胆固醇C16和 C22位羟化伴随E环闭合。16,22(S)-二羟基胆固醇在PpCYP94D108等酶作用下C26位进一步羟化形成薯蓣皂苷元(Christ etal.2019),而偏诺皂苷元(pennogenin)C17位P450酶仍待解析。最后,薯蓣皂苷元或偏诺皂苷元在糖基转移酶(UDP-glucosyltransferase,UGT)的作用下发生糖基化,形成具有多种生物活性的重楼皂苷。目前,有关甾体皂苷元糖基化修饰的研究鲜有报道。At this stage, research on Chonglou saponins is mainly focused on medicine and clinical practice, resulting in a lack of understanding of its metabolic pathways, especially the downstream biosynthetic processes. 2,3-oxidosqualene is a common precursor for the synthesis of sterols and triterpenes, and is produced under the catalysis of 2,3-Oxidosqualene cyclases (OSCs). Sterol or triterpenoid skeleton. Most pentacyclic triterpene synthases can catalyze 2,3-oxysqualene to form a dammarane cation in the "chair-chair-chair" conformation, which is then further rearranged to produce α-amyrin, β-amyrin and lupeol. (lupeol) and other pentacyclic triterpenes (Xue et al. 2018). Cyclartenol synthase catalyzes 2,3-oxysqualene to form a prosterol cation in the "chair-boat-chair" conformation, which is then converted into cycloartenol and synthesizes cholesterol through a series of reactions. Although the content of cholesterol in plants is generally low, it is an important component of phytosterols and the direct precursor of steroidal saponins (Cárdenas et al. 2015). The synthesis of steroidal sapogenins requires the hydroxylation of the cholesterol side chain, which is mainly modified by cytochrome P450 monooxygenase (CYP). For example, it was found in Paris polyphylla that CYP90Bs evolved sterol polyhydroxylase activity through gene duplication, and PpCYP90G4 can catalyze the hydroxylation of cholesterol C16 and C22 with E-ring closure. 16,22(S)-dihydroxycholesterol is further hydroxylated at the C26 position under the action of enzymes such as PpCYP94D108 to form diosgenin (Christ et al. 2019), while the P450 enzyme at the C17 position of pennogenin remains to be analyzed. Finally, diosgenin or metanosogenin undergoes glycosylation under the action of glycosyltransferase (UDP-glucosyltransferase, UGT) to form diosgenin with a variety of biological activities. At present, there are few reports on the glycosylation modification of steroidal sapogenins.
重楼皂苷基本来源于植物提取,然而由于过度开发导致了重楼资源的枯竭。利用合成生物学构建异源生物合成途径,逐渐成为获取天然活性成分的有效方式。然而重楼属植物基因组庞大,皂苷种类众多,难以通过基因共表达网络对重楼皂苷代谢途径进行解析。燕麦(Avena sativa L.)是禾本科植物中唯一富含皂苷的植物(Vincken et al.2007),可以合成两类不同的皂苷。一类是在根和根尖中合成的三萜皂苷—燕麦苷(avencins),另一类是甾体皂苷—燕麦皂苷(avenacosides),在叶片和谷粒中积累。燕麦是一年生草本植物,生长周期短,长日照条件下3~4个月可以完成一个生长周期,可作为研究甾体皂苷合成途径的理想模式材料。随着三萜皂苷avencins代谢基因簇的发现,经过多年研究已较完整的解析了燕麦三萜皂苷的合成途径(Louveau et al.2018;Orme et al.2019)。Chonglou saponins are basically extracted from plants. However, over-exploitation has led to the depletion of Chonglou resources. The use of synthetic biology to construct heterologous biosynthetic pathways has gradually become an effective way to obtain natural active ingredients. However, the genome of Chrysanthemum plants is huge and there are many types of saponins, making it difficult to analyze the metabolic pathways of Chrysanthemum saponins through gene co-expression networks. Oats (Avena sativa L.) is the only plant rich in saponins among the grasses (Vincken et al. 2007) and can synthesize two different types of saponins. One type is avencins, a triterpenoid saponin synthesized in roots and root tips, and the other is avenacosides, a steroidal saponin that accumulates in leaves and grains. Oat is an annual herb with a short growth cycle. It can complete a growth cycle in 3 to 4 months under long daylight conditions. It can be used as an ideal model material for studying the synthesis pathway of steroidal saponins. With the discovery of the triterpene saponin avencins metabolic gene cluster, the synthesis pathway of oat triterpene saponins has been relatively completely analyzed after years of research (Louveau et al. 2018; Orme et al. 2019).
发明内容Contents of the invention
为解析重楼皂苷代谢途径,实现重楼皂苷的人工合成,我们以燕麦为模式材料,获得了两个燕麦糖基转移酶,分别命名为AsUGT73E5和AsUGT73E1。为验证糖基转移酶功能,我们设计了糖基转移酶基因AsUGT73E5、AsUGT73E1编码区的PCR引物AsUGT73E5-ORF-F/R、AsUGT73E1-ORF-F/R。以反转录后的燕麦幼苗cDNA为模板进行PCR扩增,获得了 AsUGT73E5和AsUGT73E1基因。AsUGT73E1基因的开放阅读框含有1473个碱基,其核苷酸序列如SEQ IDNO:2所示,编码的氨基酸序列如SEQ ID NO:1所示。AsUGT73E5基因的开放阅读框含有1548个碱基,其核苷酸序列如SEQ ID NO:4所示,编码的氨基酸序列如SEQ ID NO:3所示。In order to analyze the metabolic pathway of Chonglou saponin and realize the artificial synthesis of Chonglou saponin, we used oat as a model material and obtained two oat glycosyltransferases, named AsUGT73E5 and AsUGT73E1 respectively. To verify the function of glycosyltransferase, we designed PCR primers AsUGT73E5-ORF-F/R and AsUGT73E1-ORF-F/R for the coding regions of glycosyltransferase genes AsUGT73E5 and AsUGT73E1. The reverse-transcribed oat seedling cDNA was used as a template for PCR amplification, and the AsUGT73E5 and AsUGT73E1 genes were obtained. The open reading frame of the AsUGT73E1 gene contains 1473 bases, its nucleotide sequence is shown in SEQ ID NO:2, and its encoded amino acid sequence is shown in SEQ ID NO:1. The open reading frame of the AsUGT73E5 gene contains 1548 bases, its nucleotide sequence is shown in SEQ ID NO:4, and its encoded amino acid sequence is shown in SEQ ID NO:3.
然后,我们进行了蛋白表达和纯化。利用同源重组将基因AsUGT73E5、AsUGT73E1的开放阅读框(ORF)克隆至原核表达载体pGEX-6p-1中,转化表达感受态Rosetta(DE3)。在Amp抗性的LB液体培养基中培养至OD600=0.6,加入IPTG低温诱导过夜。菌体超声破碎后,通过Glutathione Beads纯化上清中的蛋白,收集各组分进行SDS-PAGE分析(图2)。与未经诱导的对照样品相比,重组蛋白在80KDa附近均出现了明显条带。AsUGT73E5和 AsUGT73E1蛋白分别包含515和490个氨基酸,与GST标签融合后的分子量分别为82.21KDa 和79.79KDa。Then, we performed protein expression and purification. The open reading frames (ORFs) of genes AsUGT73E5 and AsUGT73E1 were cloned into the prokaryotic expression vector pGEX-6p-1 using homologous recombination, and then transformed into expression-competent Rosetta (DE3). Cultivate in Amp-resistant LB liquid medium until OD600=0.6, add IPTG for low-temperature induction overnight. After the bacterial cells were disrupted by sonication, the proteins in the supernatant were purified using Glutathione Beads, and each component was collected for SDS-PAGE analysis (Figure 2). Compared with the uninduced control sample, the recombinant protein showed obvious bands near 80KDa. AsUGT73E5 and AsUGT73E1 proteins contain 515 and 490 amino acids respectively, and their molecular weights after fusion with the GST tag are 82.21KDa and 79.79KDa respectively.
接下来,我们分别采用薯蓣皂苷元、偏诺皂苷元和纽阿替皂苷元对糖基转移酶AsUGT73E5和AsUGT73E1进行了功能验证,结果如下:Next, we used diosgenin, metanosagenin and nuaartigenin to functionally verify the glycosyltransferases AsUGT73E5 and AsUGT73E1 respectively. The results are as follows:
将AsUGT73E5蛋白与薯蓣皂苷元、UDP-Glc反应的产物进行HPLC检测(图3),与空载的反应相比,AsUGT73E5的产物在22.3min出现了新峰(product 1),与延龄草苷(trillin)标准品出峰时间相同。回收样品,加入AsUGT73E1蛋白和UDP-Rha继续反应,在20.7min 出现了新产物峰(product 2),时间与重楼皂苷V标准品相符。TOF正离子扫描模式检测见图4,product 1和product 2的分子量大小分别为577.38(M+H+)和723.43(M+H+),与延龄草苷(576.3)和重楼皂苷V(722.4)的分子量一致,表明薯蓣皂苷元经过AsUGT73E5和 AsUGT73E1的连续催化后生成了重楼皂苷V。The reaction product of AsUGT73E5 protein with diosgenin and UDP-Glc was detected by HPLC (Figure 3). Compared with the unloaded reaction, the product of AsUGT73E5 showed a new peak (product 1) at 22.3 minutes, which was similar to trillium. (trillin) standards peak at the same time. The sample was recovered, AsUGT73E1 protein and UDP-Rha were added to continue the reaction. A new product peak (product 2) appeared at 20.7 minutes, and the time was consistent with the Chonglousaponin V standard. The TOF positive ion scanning mode detection is shown in Figure 4. The molecular weights of product 1 and product 2 are 577.38 (M+H+) and 723.43 (M+H+) respectively, which are similar to trillium (576.3) and chrysanthemum saponin V (722.4). The molecular weights of diosgenin are consistent, indicating that diosgenin is catalyzed by AsUGT73E5 and AsUGT73E1 to generate diosgenin V.
将AsUGT73E5蛋白与偏诺皂苷元、UDP-Glc反应的产物进行HPLC检测后(图5),与空载的反应相比,AsUGT73E5的产物在18.8min出现了新峰(product 3)。回收样品,加入AsUGT73E1蛋白和UDP-Rha继续反应,在17.1min出现了新产物峰(product 4),时间与重楼皂苷Ⅵ标准品相符。TOF正离子扫描模式检测见图6,product 3和product 4的分子量大小分别为593.37(M+H+)和739.43(M+H+),与偏诺皂苷元-3-O-葡糖苷(592.3)和重楼皂苷Ⅵ(738.4)的分子量一致,表明偏诺皂苷元经过AsUGT73E5和AsUGT73E1的连续催化后生成了重楼皂苷Ⅵ。After HPLC detection of the reaction product of AsUGT73E5 protein with metanogenin and UDP-Glc (Figure 5), compared with the unloaded reaction, the product of AsUGT73E5 showed a new peak (product 3) at 18.8 minutes. The sample was recovered, AsUGT73E1 protein and UDP-Rha were added to continue the reaction. A new product peak (product 4) appeared at 17.1 minutes, and the time was consistent with the Chonglousaponin VI standard. TOF positive ion scanning mode detection is shown in Figure 6. The molecular weights of product 3 and product 4 are 593.37 (M+H+) and 739.43 (M+H+) respectively, which are similar to those of metanosogenin-3-O-glucoside (592.3) and The molecular weight of chrysanthemum saponin VI (738.4) is consistent, indicating that the metanosaponin is continuously catalyzed by AsUGT73E5 and AsUGT73E1 to generate chrysanthemum saponin VI.
将AsUGT73E5蛋白与纽阿替皂苷元、UDP-Glc反应的产物进行HPLC检测后(图8),与空载的反应相比,AsUGT73E5的产物在16.7min出现了新峰(product 5)。回收样品,加入AsUGT73E1蛋白和UDP-Rha继续反应,在15.6min出现了第二个产物峰(product 6)。 TOF正离子扫描模式检测见图9,product 5和product 6的分子量大小分别为593.37(M+H+) 和739.43(M+H+),表明纽阿替皂苷元经过AsUGT73E5和AsUGT73E1的连续催化后生成了相应的糖基化产物。After HPLC detection of the reaction product of AsUGT73E5 protein with neuaartinin and UDP-Glc (Figure 8), compared with the unloaded reaction, a new peak of AsUGT73E5 product appeared at 16.7 minutes (product 5). The sample was recovered, AsUGT73E1 protein and UDP-Rha were added to continue the reaction, and the second product peak (product 6) appeared at 15.6 minutes. The TOF positive ion scanning mode detection is shown in Figure 9. The molecular weights of product 5 and product 6 are 593.37 (M+H + ) and 739.43 (M+H + ) respectively, indicating that neuaartinogen has been continuously catalyzed by AsUGT73E5 and AsUGT73E1. The corresponding glycosylation products are generated.
基于上述研究,本发明提供一种糖基转移酶,是如下a1或a2所述的蛋白质:Based on the above research, the present invention provides a glycosyltransferase, which is a protein as described in a1 or a2 below:
a1.氨基酸序列如SEQ ID NO:1所示的蛋白质;a1. The protein whose amino acid sequence is shown in SEQ ID NO:1;
a2.将SEQ ID NO:1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/ 或添加而形成的具有糖基转移酶活性的蛋白质。a2. A protein with glycosyltransferase activity formed by substituting and/or deleting and/or adding one or several amino acid residues to the amino acid sequence shown in SEQ ID NO:1.
编码所述糖基转移酶的基因也属于本发明的保护范围。The gene encoding the glycosyltransferase also belongs to the protection scope of the present invention.
在本发明的一些实施例中,所述基因的核苷酸序列如SEQ ID NO:2所示。In some embodiments of the invention, the nucleotide sequence of the gene is shown in SEQ ID NO: 2.
含有所述基因的表达盒、载体或重组菌也属于本发明的保护范围。Expression cassettes, vectors or recombinant bacteria containing the genes also belong to the protection scope of the present invention.
在一些实施例中,所述载体是克隆载体,包含所述糖基转移酶的编码基因以及质粒复制所需的元件,例如,插入了所述编码基因的pClone007 Blunt Simple Vector。在另一些实施例中,所述载体是表达载体,包含所述糖基转移酶的编码基因和能够使蛋白成功表达的元件,例如,插入了所述编码基因的pGEX-6p-1载体。In some embodiments, the vector is a cloning vector, comprising a gene encoding the glycosyltransferase and elements required for plasmid replication, for example, pClone007 Blunt Simple Vector with the encoding gene inserted. In other embodiments, the vector is an expression vector, comprising a gene encoding the glycosyltransferase and elements capable of successfully expressing the protein, for example, a pGEX-6p-1 vector in which the encoding gene is inserted.
在一些实施例中,所述重组菌是含有克隆载体的重组菌,例如E.coli DH5α,通过培养重组菌使所述糖基转移酶的编码基因得到复制。在另一些实施例中,所述重组菌是含有表达载体的重组菌,在适当的条件下培养该重组菌,例如,加入适量的IPTG,16℃诱导所述糖基转移酶的表达。In some embodiments, the recombinant bacterium is a recombinant bacterium containing a cloning vector, such as E. coli DH5α, and the gene encoding the glycosyltransferase is replicated by culturing the recombinant bacterium. In other embodiments, the recombinant bacterium is a recombinant bacterium containing an expression vector, and the recombinant bacterium is cultured under appropriate conditions, for example, adding an appropriate amount of IPTG and inducing the expression of the glycosyltransferase at 16°C.
本发明还提供所述糖基转移酶的制备方法,包括如下步骤:构建所述糖基转移酶的编码基因的表达载体,将表达载体导入表达宿主菌中,获得重组菌,培养重组菌并诱导蛋白表达,收集菌体,提取和纯化蛋白。The present invention also provides a method for preparing the glycosyltransferase, which includes the following steps: constructing an expression vector for the encoding gene of the glycosyltransferase, introducing the expression vector into an expression host bacterium, obtaining recombinant bacteria, cultivating the recombinant bacteria and inducing Protein expression, collecting bacterial cells, extracting and purifying proteins.
所述糖基转移酶在糖基转移反应中的用途也属于本发明的保护范围。The use of the glycosyltransferase in glycosyl transfer reactions also falls within the protection scope of the present invention.
所述糖基转移酶在甾体皂苷合成中的用途也属于本发明的保护范围。所述甾体皂苷合成包括体外合成和体内合成,例如,在微生物(例如酵母)或植物体内合成甾体皂苷。The use of the glycosyltransferase in the synthesis of steroidal saponins also falls within the protection scope of the present invention. The synthesis of steroidal saponins includes in vitro synthesis and in vivo synthesis, for example, steroidal saponins are synthesized in microorganisms (such as yeast) or plants.
在本发明的一些实施例中,所述甾体皂苷合成中,以延龄草苷或偏诺皂苷元-3-O-葡糖苷为底物,在所述糖基转移酶的作用下引入鼠李糖基,生成重楼皂苷V或重楼皂苷Ⅵ。In some embodiments of the present invention, during the synthesis of the steroidal saponins, trillium or metanosogenin-3-O-glucoside is used as a substrate, and is introduced into mice under the action of the glycosyltransferase. Liposyl, generates Chonglousaponin V or Chonglousaponin VI.
本发明还提供一种合成重楼皂苷V的方法,包括如下步骤:利用所述糖基转移酶与延龄草苷、UDP-Rha反应,生成重楼皂苷V。The present invention also provides a method for synthesizing saponin V, which includes the following steps: utilizing the glycosyltransferase to react with trillium and UDP-Rha to generate saponin V.
本发明还提供一种合成重楼皂苷Ⅵ的方法,包括如下步骤:利用所述糖基转移酶与偏诺皂苷元-3-O-葡糖苷、UDP-Rha反应,生成重楼皂苷Ⅵ。The present invention also provides a method for synthesizing saponin VI, which includes the following steps: utilizing the glycosyltransferase to react with metanosapogenin-3-O-glucoside and UDP-Rha to generate saponin VI.
本发明提供的糖基转移酶将有助于我们探究植物甾体皂苷的合成途径,同时也为大量获得重楼皂苷或其他皂苷提供了基因资源。The glycosyltransferase provided by the present invention will help us explore the synthesis pathway of plant steroidal saponins, and at the same time, it also provides genetic resources for obtaining a large amount of Chonglou saponin or other saponins.
附图说明Description of the drawings
图1.AsUGT73E5、AsUGT73E1基因扩增产物电泳图。M为DL 2000;1为AsUGT73E5 基因条带;2为AsUGT73E1基因条带。Figure 1. Electropherogram of AsUGT73E5 and AsUGT73E1 gene amplification products. M is DL 2000; 1 is AsUGT73E5 gene band; 2 is AsUGT73E1 gene band.
图2.AsUGT73E5、AsUGT73E1蛋白原核表达SDS-PAGE电泳图。M:Page-ruler蛋白分子标记;1:未诱导;2:IPTG诱导后全细胞蛋白;3:IPTG诱导后细胞上清;4:IPTG诱导后细胞沉淀;5:上清GST柱纯化;6:纯化蛋白超滤浓缩。Figure 2. SDS-PAGE electrophoresis diagram of prokaryotic expression of AsUGT73E5 and AsUGT73E1 proteins. M: Page-ruler protein molecular marker; 1: not induced; 2: whole cell protein after IPTG induction; 3: cell supernatant after IPTG induction; 4: cell pellet after IPTG induction; 5: supernatant GST column purification; 6: Purified proteins are concentrated by ultrafiltration.
图3.AsUGT73E5、AsUGT73E1与薯蓣皂苷元反应的糖基化产物的色谱图。横坐标为保留时间(min),纵坐标为电信号(mAU)。pGEX-空载:含有pGEX-6P-1空载体的细胞经蛋白诱导表达后提取和纯化的蛋白,作为空白对照;pGEX-AsUGT73E5:含有pGEX-AsUGT73E5 载体的细胞经蛋白诱导表达后提取和纯化的AsUGT73E5蛋白;含有pGEX-AsUGT73E1载体的细胞经蛋白诱导表达后提取和纯化的AsUGT73E1蛋白。Figure 3. Chromatogram of the glycosylation products of the reaction between AsUGT73E5, AsUGT73E1 and diosgenin. The abscissa is the retention time (min), and the ordinate is the electrical signal (mAU). pGEX-empty: The protein extracted and purified from the cells containing the pGEX-6P-1 empty vector after protein induction and expression, as a blank control; pGEX-AsUGT73E5: The protein extracted and purified from the cells containing the pGEX-AsUGT73E5 vector after protein induction and expression. AsUGT73E5 protein; AsUGT73E1 protein extracted and purified after protein induction and expression in cells containing pGEX-AsUGT73E1 vector.
图4.AsUGT73E5、AsUGT73E1与薯蓣皂苷元反应的糖基化产物的质谱分析。横坐标为质荷比,纵坐标为离子强度。Figure 4. Mass spectrometry analysis of the glycosylation products of the reaction between AsUGT73E5, AsUGT73E1 and diosgenin. The abscissa is the mass-to-charge ratio, and the ordinate is the ionic strength.
图5.AsUGT73E5、AsUGT73E1与偏诺皂苷元反应的糖基化产物的色谱图。横坐标为保留时间(min),纵坐标为电信号(mAU)。pGEX-空载:含有pGEX-6P-1空载体的细胞经蛋白诱导表达后提取和纯化的蛋白,作为空白对照;pGEX-AsUGT73E5:含有pGEX-AsUGT73E5 载体的细胞经蛋白诱导表达后提取和纯化的AsUGT73E5蛋白;含有pGEX-AsUGT73E1载体的细胞经蛋白诱导表达后提取和纯化的AsUGT73E1蛋白。Figure 5. Chromatogram of the glycosylation products of the reaction between AsUGT73E5, AsUGT73E1 and metanosaponogenin. The abscissa is the retention time (min), and the ordinate is the electrical signal (mAU). pGEX-empty: The protein extracted and purified from the cells containing the pGEX-6P-1 empty vector after protein induction and expression, as a blank control; pGEX-AsUGT73E5: The protein extracted and purified from the cells containing the pGEX-AsUGT73E5 vector after protein induction and expression. AsUGT73E5 protein; AsUGT73E1 protein extracted and purified after protein induction and expression in cells containing pGEX-AsUGT73E1 vector.
图6.AsUGT73E5、AsUGT73E1与偏诺皂苷元反应的糖基化产物的质谱分析。横坐标为质荷比,纵坐标为离子强度。Figure 6. Mass spectrometry analysis of the glycosylation products of the reaction between AsUGT73E5, AsUGT73E1 and metanosaponogenin. The abscissa is the mass-to-charge ratio, and the ordinate is the ionic strength.
图7.AsUGT73E5和AsUGT73E1催化甾体皂苷元糖基化的过程。Figure 7. AsUGT73E5 and AsUGT73E1 catalyze the glycosylation process of steroidal sapogenins.
图8.AsUGT73E5、AsUGT73E1与纽阿替皂苷元反应的糖基化产物的色谱图。横坐标为保留时间(min),纵坐标为电信号(mAU)。pGEX-空载:含有pGEX-6P-1空载体的细胞经蛋白诱导表达后提取和纯化的蛋白,作为空白对照;pGEX-AsUGT73E5:含有 pGEX-AsUGT73E5载体的细胞经蛋白诱导表达后提取和纯化的AsUGT73E5蛋白;含有pGEX-AsUGT73E1载体的细胞经蛋白诱导表达后提取和纯化的AsUGT73E1蛋白。Figure 8. Chromatogram of the glycosylation products of the reaction between AsUGT73E5, AsUGT73E1 and nuaartidin. The abscissa is the retention time (min), and the ordinate is the electrical signal (mAU). pGEX-empty: The protein extracted and purified from the cells containing the pGEX-6P-1 empty vector after protein induction and expression, as a blank control; pGEX-AsUGT73E5: The protein extracted and purified from the cells containing the pGEX-AsUGT73E5 vector after protein induction and expression. AsUGT73E5 protein; AsUGT73E1 protein extracted and purified after protein induction and expression in cells containing pGEX-AsUGT73E1 vector.
图9.AsUGT73E5、AsUGT73E1与纽阿替皂苷元反应的糖基化产物的质谱分析。横坐标为质荷比,纵坐标为离子强度。Figure 9. Mass spectrometry analysis of the glycosylation products of the reaction between AsUGT73E5, AsUGT73E1 and nuaartinogen. The abscissa is the mass-to-charge ratio, and the ordinate is the ionic strength.
具体实施方式Detailed ways
下面结合实施例进一步描述本发明,需要理解的是,下述实施例仅作为对本发明的解释和说明,不以任何方式限制本发明的范围。The present invention will be further described below in conjunction with the examples. It should be understood that the following examples are only used to explain and illustrate the present invention and do not limit the scope of the present invention in any way.
实验材料:Experimental Materials:
以下实验使用的植物材料为二倍体燕麦(Avena strigosa,S75),已知品种,记载在非专利文献Papadopoulou et al.1999中。上述生物材料本实验室亦有保存,申请人声明可自申请日起二十年内向公众发放用于验证实验。The plant material used in the following experiments was diploid oat (Avena strigosa, S75), a known species, which was recorded in the non-patent document Papadopoulou et al. 1999. The above biological materials are also preserved in this laboratory, and the applicant declares that they can be released to the public for verification experiments within twenty years from the date of application.
大肠杆菌(Escherichia coli)DH5α和Rosetta(DE3)购于上海唯地生物技术有限公司。克隆载体pClone007 Blunt Simple Vector购于北京擎科新业生物技术有限公司。原核表达载体 pGEX-6P-1为实验室保存,该载体亦可商购获得。Escherichia coli DH5α and Rosetta (DE3) were purchased from Shanghai Weidi Biotechnology Co., Ltd. The cloning vector pClone007 Blunt Simple Vector was purchased from Beijing Qingke Xinye Biotechnology Co., Ltd. The prokaryotic expression vector pGEX-6P-1 is preserved in the laboratory and is also commercially available.
PCR引物:PCR primers:
主要试剂:Main reagents:
薯蓣皂苷元:CAS号:512-04-9,分子式:C27H42O3,英文名称diosgenin,购买自成都普瑞法科技开发有限公司,货号BP0504。Diosgenin: CAS number: 512-04-9, molecular formula: C 27 H 42 O 3 , English name diosgenin, purchased from Chengdu Prefa Technology Development Co., Ltd., product number BP0504.
偏诺皂苷元:CAS号:507-89-1,分子式:C27H42O4,英文名称pennogenin。实验中使用的偏诺皂苷元通过重楼皂苷VI酶解分离纯化获得,酶解分离纯化方法参考Li,W.,Wang,Z.,Gu,J.,Chen,L.,Hou,W.,Jin,Y.P.,&Wang,Y.P.(2015).Bioconversion of ginsenosideRd to ginsenoside M1 by snailase hydrolysis and its enhancement effect oninsulin secretion in vitro.Die Pharmazie,70:340–346.中记载的方法。偏诺皂苷元亦可商购获得。Pennogenin: CAS number: 507-89-1, molecular formula: C 27 H 42 O 4 , English name pennogenin. The metanogenin used in the experiment was obtained by enzymatic separation and purification of Chonglou saponin VI. For the enzymatic separation and purification method, please refer to Li, W., Wang, Z., Gu, J., Chen, L., Hou, W., The method described in Jin, YP, & Wang, YP (2015). Bioconversion of ginsenosideRd to ginsenoside M1 by snailase hydrolysis and its enhancement effect oninsulin secretion in vitro. Die Pharmazie, 70:340–346. Metanogenin is also commercially available.
纽阿替皂苷元:CAS号:6811-35-4,分子式:C27H42O4,英文名称nuatigenin。实验中使用的纽阿替皂苷元通过燕麦皂苷(avenacosides)提取物酶解分离纯化获得,燕麦皂苷(avenacosides)的提取方法参考Yang,J.L.,Wang,P.,Wu,W.B.,Zhao,Y.T.,Idehen,E.,&Sang,S.M.(2016).Steroidal saponins in oat bran.Journal of Agricultural&FoodChemistry, 64(7):1549-1556.,酶解分离纯化方法参考Li,W.,Wang,Z.,Gu,J.,Chen,L.,Hou,W.,Jin,Y.P.,&Wang,Y.P.(2015).Bioconversion of ginsenoside Rd toginsenoside M1 by snailase hydrolysis and its enhancement effect on insulinsecretion in vitro.Die Pharmazie,70:340–346.。Nuatigenin: CAS number: 6811-35-4, molecular formula: C 27 H 42 O 4 , English name nuatigenin. The neoartigenin used in the experiment was obtained by enzymatic separation and purification of avenacosides extract. For the extraction method of avenacosides, please refer to Yang, JL, Wang, P., Wu, WB, Zhao, YT, Idehen. ,E.,&Sang,SM(2016).Steroidal saponins in oat bran.Journal of Agricultural&FoodChemistry, 64(7):1549-1556., For enzymatic separation and purification methods, please refer to Li,W.,Wang,Z.,Gu,J .,Chen,L.,Hou,W.,Jin,YP,&Wang,YP(2015).Bioconversion of ginsenoside Rd toginsenoside M1 by snailase hydrolysis and its enhancement effect on insulin secretion in vitro.Die Pharmazie,70:340–346. .
UDP-Glucose(UDP-Glc):CAS号:28053-08-9,分子式:C15H22N2Na2O17P2,购买自北京酷来博科技有限公司,货号CU11611-500mg。UDP-Glucose (UDP-Glc): CAS number: 28053-08-9, molecular formula: C 15 H 22 N 2 Na 2 O 17 P 2 , purchased from Beijing Coolab Technology Co., Ltd., product number CU11611-500mg.
UDP-Rhamnose(UDP-Rha):CAS号:1526988-33-9,分子式:C15H22N2Na2O16P2,英文名称UDP 5'-diphospho-a-L-rhamnose,购买自苏州汉酶生物技术有限公司。UDP-Rhamnose (UDP-Rha): CAS number: 1526988-33-9, molecular formula: C 15 H 22 N 2 Na 2 O 16 P 2 , English name UDP 5'-diphospho-aL-rhamnose, purchased from Suzhou Hanzyme Biotechnology Co., Ltd.
延龄草苷:CAS号:14144-06-0,分子式:C33H52O8,购买自成都普瑞法科技开发有限公司,货号BP1124。Trillium: CAS number: 14144-06-0, molecular formula: C 33 H 52 O 8 , purchased from Chengdu Prefa Technology Development Co., Ltd., product number BP1124.
重楼皂苷V:CAS号:19057-67-1,分子式:C39H62O12,购买自成都普瑞法科技开发有限公司,货号BP1151。Chonglou saponin V: CAS number: 19057-67-1, molecular formula: C 39 H 62 O 12 , purchased from Chengdu Prefa Technology Development Co., Ltd., product number BP1151.
重楼皂苷Ⅵ:CAS号:55916-51-3,分子式:C39H62O13,购买自成都普瑞法科技开发有限公司,货号BP1131。Chonglou saponin VI: CAS number: 55916-51-3, molecular formula: C 39 H 62 O 13 , purchased from Chengdu Prefa Technology Development Co., Ltd., product number BP1131.
色谱甲醇:购买自美国默克,货号1.06007.4008。Chromatographic methanol: purchased from Merck, USA, product number 1.06007.4008.
若未特别说明,以下实施例中使用的试剂均为本领域常规试剂,可商购获得或按照本领域常规方法配制而得;使用的实验方法和条件均为本领域常规的实验方法和条件,可参考相关实验手册、公知文献或厂商说明书。除非另有定义,本文使用的所有技术和科学术语具有与本发明所属领域普通技术人员通常理解的含义相同的含义。Unless otherwise specified, the reagents used in the following examples are all conventional reagents in the field, and can be purchased commercially or prepared according to conventional methods in the field; the experimental methods and conditions used are all conventional experimental methods and conditions in the field. Please refer to relevant experimental manuals, publicly known literature or manufacturer's instructions. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
实施例1.糖基转移酶基因AsUGT73E5和AsUGT73E1的发现、克隆与表达Example 1. Discovery, cloning and expression of glycosyltransferase genes AsUGT73E5 and AsUGT73E1
1.基因发现1. Gene discovery
我们以燕麦为模式材料,发现了两个糖基转移酶基因,将其命名为AsUGT73E5和AsUGT73E1。AsUGT73E1基因的开放阅读框(ORF)含有1473个碱基,其核苷酸序列如SEQ IDNO:2所示,编码氨基酸序列如SEQ ID NO:1所示的糖基转移酶。AsUGT73E5基因的开放阅读框(ORF)含有1548个碱基,其核苷酸序列如SEQ ID NO:4所示,编码氨基酸序列如SEQ IDNO:3所示的糖基转移酶。通过转录组与目标代谢物关联分析(Pearson correlation),我们发现在燕麦10种组织中这两个糖基转移酶的表达与胆固醇合成高度协同,因此很可能参与了甾体皂苷的合成。为了验证这两个糖基转移酶在甾体皂苷合成中的功能,我们进行了基因克隆与表达。Using oat as a model material, we discovered two glycosyltransferase genes and named them AsUGT73E5 and AsUGT73E1. The open reading frame (ORF) of the AsUGT73E1 gene contains 1473 bases, its nucleotide sequence is shown in SEQ ID NO: 2, and it encodes a glycosyltransferase whose amino acid sequence is shown in SEQ ID NO: 1. The open reading frame (ORF) of the AsUGT73E5 gene contains 1548 bases, its nucleotide sequence is shown in SEQ ID NO: 4, and it encodes a glycosyltransferase whose amino acid sequence is shown in SEQ ID NO: 3. Through transcriptome and target metabolite correlation analysis (Pearson correlation), we found that the expression of these two glycosyltransferases in 10 oat tissues is highly coordinated with cholesterol synthesis, and therefore is likely to be involved in the synthesis of steroidal saponins. In order to verify the functions of these two glycosyltransferases in the synthesis of steroidal saponins, we performed gene cloning and expression.
2.基因克隆2. Gene cloning
2.1燕麦幼苗总RNA的提取2.1 Extraction of total RNA from oat seedlings
RNA的提取采用天根生物公司的RNAprep Pure Plant Kit(货号:DP441),按照试剂盒使用说明书进行操作,步骤如下:RNA was extracted using the RNAprep Pure Plant Kit (Cat. No.: DP441) from Tiangen Biotechnology Company. Follow the instructions for use with the kit. The steps are as follows:
(1)50-100mg燕麦叶片在液氮中迅速研磨成粉末,加入450μL RL(使用前加入β-巯基乙醇),涡旋剧烈震荡混匀;(1) 50-100mg oat leaves are quickly ground into powder in liquid nitrogen, add 450μL RL (add β-mercaptoethanol before use), vortex vigorously and mix;
(2)将溶液转移至过滤柱CS上,12,000rpm离心2-5min,吸取收集管中的上清至RNase-Free的离心管中;(2) Transfer the solution to the filter column CS, centrifuge at 12,000 rpm for 2-5 minutes, and transfer the supernatant in the collection tube to an RNase-free centrifuge tube;
(3)加入0.5倍上清体积的无水乙醇混匀,得到的溶液和沉淀一起转入吸附柱CR3中, 12,000rpm离心30-60sec,倒掉废液,吸附柱CR3放回收集管中;(3) Add 0.5 times the volume of supernatant absolute ethanol and mix evenly. Transfer the resulting solution and precipitate to the adsorption column CR3, centrifuge at 12,000 rpm for 30-60 seconds, discard the waste liquid, and put the adsorption column CR3 back into the collection tube;
(4)吸附柱CR3中加入350μL去蛋白液RW1,12,000rpm离心30-60sec,倒掉废液,吸附柱CR3放回收集管中;(4) Add 350 μL of protein-removing solution RW1 to the adsorption column CR3, centrifuge at 12,000 rpm for 30-60 seconds, discard the waste liquid, and put the adsorption column CR3 back into the collection tube;
(5)DNase I工作液的配制:取10μL DNase I储存液放入新的RNase-Free离心管中,加入70μL RDD缓冲液,轻柔混匀;(5) Preparation of DNase I working solution: Put 10 μL of DNase I storage solution into a new RNase-Free centrifuge tube, add 70 μL of RDD buffer, and mix gently;
(6)向吸附柱CR3中央加入80μL的DNase I工作液,室温放置15min;(6) Add 80 μL of DNase I working solution to the center of the adsorption column CR3 and leave it at room temperature for 15 minutes;
(7)向吸附柱CR3中加入350μL去蛋白液RW1,12,000rpm离心30-60sec,倒掉废液,吸附柱CR3放回收集管中;(7) Add 350 μL of protein-removing solution RW1 to the adsorption column CR3, centrifuge at 12,000 rpm for 30-60 seconds, discard the waste liquid, and put the adsorption column CR3 back into the collection tube;
(8)向吸附柱CR3中加入500μL漂洗液RW(使用前加入乙醇),室温静置2min,12,000rpm离心30-60sec,倒掉收集管中的废液,将吸附柱CR3放回收集管中,重复一次;(8) Add 500 μL of rinse solution RW to the adsorption column CR3 (add ethanol before use), let it stand at room temperature for 2 minutes, centrifuge at 12,000 rpm for 30-60 seconds, pour out the waste liquid in the collection tube, and put the adsorption column CR3 back into the collection tube. ,repeat;
(9)12,000rpm离心2min,倒掉废液,吸附柱CR3置于室温放置数分钟,彻底晾干残余的漂洗液;(9) Centrifuge at 12,000 rpm for 2 minutes, discard the waste liquid, place the adsorption column CR3 at room temperature for a few minutes, and dry the remaining rinse liquid thoroughly;
(10)将吸附柱CR3放入一个新的RNase-Free离心管中,向吸附膜的中间部位悬空滴加30-100μL RNase-Free ddH2O,室温放置2min,12,000rpm离心2min,得到RNA溶液。(10) Place the adsorption column CR3 into a new RNase-Free centrifuge tube, drop 30-100 μL RNase-Free ddH 2 O into the middle of the adsorption membrane, leave it at room temperature for 2 minutes, and centrifuge at 12,000 rpm for 2 minutes to obtain an RNA solution. .
2.2cDNA的合成2.2 Synthesis of cDNA
应用SuperScript Ⅲ Rreverse Transcriptase试剂盒(Invitrogen,货号:18080085)并按试剂盒说明书进行操作:Apply SuperScript III Rreverse Transcriptase kit (Invitrogen, Cat. No.: 18080085) and operate according to the kit instructions:
(1)RNA模板变性(1) RNA template denaturation
65℃加热5min,迅速置于冰上骤冷,并在冰上静置2min。Heat at 65°C for 5 minutes, quickly cool on ice, and let stand on ice for 2 minutes.
(2)第一链cDNA合成(2) First-strand cDNA synthesis
短暂离心混匀。55℃反应60min,70℃加热15min终止反应,产物-20℃保存。Centrifuge briefly to mix. React at 55°C for 60 minutes, heat at 70°C for 15 minutes to terminate the reaction, and store the product at -20°C.
2.3目的基因扩增2.3 Target gene amplification
设计糖基转移酶基因AsUGT73E5、AsUGT73E1编码区引物AsUGT73E5-ORF-F/R、AsUGT73E1-ORF-F/R。以5倍稀释后的燕麦幼苗cDNA作为模板进行PCR扩增,分别使用引物AsUGT73E5-ORF-F/R、AsUGT73E1-ORF-F/R和2×Phanta Max Master Mix高保真酶(vazyme,货号:P515-02)对目的基因进行PCR扩增,反应体系如下:Design the glycosyltransferase gene AsUGT73E5 and AsUGT73E1 coding region primers AsUGT73E5-ORF-F/R and AsUGT73E1-ORF-F/R. PCR amplification was performed using 5-fold diluted oat seedling cDNA as a template, using primers AsUGT73E5-ORF-F/R, AsUGT73E1-ORF-F/R and 2×Phanta Max Master Mix high-fidelity enzyme (vazyme, Cat. No.: P515 -02) Perform PCR amplification of the target gene. The reaction system is as follows:
反应条件:95℃预变性3min;95℃变性30sec,按引物Tm值(AsUGT73E5-ORF-F/R:60℃,AsUGT73E1-ORF-F/R:60℃)退火30sec,72℃延伸1min,共33个循环;72℃彻底延伸7min。反应结束后,对PCR产物进行1%琼脂糖凝胶电泳检测。Reaction conditions: Pre-denaturation at 95°C for 3 minutes; denaturation at 95°C for 30 seconds, annealing for 30 seconds according to the primer Tm value (AsUGT73E5-ORF-F/R: 60°C, AsUGT73E1-ORF-F/R: 60°C), and extension at 72°C for 1 minute. 33 cycles; complete extension at 72°C for 7 minutes. After the reaction, the PCR products were detected by 1% agarose gel electrophoresis.
结果如图1所示,1为AsUGT73E5,2为AsUGT73E1,基因条带大小均为1500bp左右。The results are shown in Figure 1, 1 is AsUGT73E5, 2 is AsUGT73E1, and the gene band sizes are both about 1500bp.
2.4DNA凝胶回收2.4DNA gel recovery
使用Gel Extraction Kit(Omega,货号:D2500-02)试剂盒回收目的基因片段,按照试剂盒使用说明书进行操作,具体如下:Use the Gel Extraction Kit (Omega, Cat. No.: D2500-02) to recover the target gene fragment, and follow the kit instructions, as follows:
(1)在紫外切胶仪中切下含有目的条带的琼脂糖凝胶,取等体积的结合缓冲液/Binding Buffer,混合物在55℃孵育7min至凝胶完全融化。(1) Cut the agarose gel containing the target band in a UV gel cutter, take an equal volume of binding buffer/Binding Buffer, and incubate the mixture at 55°C for 7 minutes until the gel is completely melted.
(2)吸取700μL混合液,转移到套有2mL收集管的DNA吸附柱内,静置1min,10,000 g离心1min,弃滤液。(2) Take 700 μL of the mixed solution, transfer it to a DNA adsorption column with a 2 mL collection tube, let it stand for 1 min, centrifuge at 10,000 g for 1 min, and discard the filtrate.
(3)吸附柱置回收集管内,加入700μL无水乙醇稀释的SPW Wash Buffer,10,000g离心1min,弃滤液。重复一次。(3) Place the adsorption column back into the collection tube, add 700 μL SPW Wash Buffer diluted with absolute ethanol, centrifuge at 10,000g for 1 min, and discard the filtrate. repeat.
(4)弃去滤液,空吸附柱置回离心管内,12,000g离心2min。(4) Discard the filtrate, place the empty adsorption column back into the centrifuge tube, and centrifuge at 12,000g for 2 minutes.
(5)空吸附柱置于灭菌的1.5mL离心管中,打开管盖静置1min,在吸附膜中央加入30μL无菌水(60℃预热),室温静置1min。12,000g离心1min,洗脱DNA。(5) Place the empty adsorption column in a sterilized 1.5 mL centrifuge tube, open the tube lid and let it sit for 1 min. Add 30 μL of sterile water (preheated at 60°C) in the center of the adsorption membrane and let it stand at room temperature for 1 min. Centrifuge at 12,000g for 1 minute to elute DNA.
2.5克隆载体连接2.5 Cloning vector connection
将目的基因克隆至pClone007 Blunt Simple Vector(北京擎科生物,货号:TSV-007BS),反应体系如下表:Clone the target gene into pClone007 Blunt Simple Vector (Beijing Qingke Biotech, Cat. No.: TSV-007BS). The reaction system is as follows:
室温反应5min即可。React at room temperature for 5 minutes.
2.6大肠杆菌转化2.6 Transformation of E. coli
(1)取100μL冰浴融化的感受态细胞DH5α(上海唯地生物),加入目的DNA,轻轻混匀后冰浴放置30min;(1) Take 100 μL of competent cells DH5α (Shanghai VideBio) melted in ice bath, add the target DNA, mix gently and then place in ice bath for 30 minutes;
(2)42℃水浴热激60s,将离心管迅速转移到冰浴中2min;(2) Heat shock in a 42°C water bath for 60 seconds, then quickly transfer the centrifuge tube to an ice bath for 2 minutes;
(3)向离心管中加入200μL无抗性的无菌LB培养液,混匀后于37℃摇床中180rpm培养1h,使细菌复苏;(3) Add 200 μL of non-resistant sterile LB culture solution to the centrifuge tube, mix well and incubate in a 37°C shaker at 180 rpm for 1 hour to resuscitate the bacteria;
(4)吸取上一步转化的感受态细胞加到含有氨苄青霉素(Amp,筛选浓度100mg/L)抗性的LB琼脂培养基上,将细胞均匀涂开,吹干培养基表面液体,平板倒置于37℃过夜培养;(4) Add the competent cells transformed in the previous step to the LB agar medium containing ampicillin (Amp, screening concentration 100 mg/L) resistance, spread the cells evenly, blow dry the liquid on the surface of the medium, and place the plate upside down Incubate overnight at 37°C;
(5)挑取若干单菌落,加入含有Amp抗性(100mg/L)的500μL LB液体培养基中, 37℃180rpm培养4h,菌液PCR鉴定,鉴定引物为M13-F/R,阳性克隆送睿博兴科生物技术有限公司进行测序,获得序列正确的克隆载体pClone007-AsUGT73E5和 pClone007-AsUGT73E1。(5) Pick a number of single colonies, add them to 500 μL LB liquid culture medium containing Amp resistance (100 mg/L), and culture them at 37°C and 180 rpm for 4 hours. The bacterial liquid is identified by PCR. The identification primer is M13-F/R. Positive clones are sent Ruibo Xingke Biotechnology Co., Ltd. conducted sequencing and obtained the cloning vectors pClone007-AsUGT73E5 and pClone007-AsUGT73E1 with correct sequences.
2.7质粒提取2.7 Plasmid extraction
测序正确的样品保菌后,使用E.Z.N.A.Plasmid Mini Kit Ⅰ试剂盒(omega,货号:D6942-02) 按照使用说明书提取质粒,操作步骤如下:After the correctly sequenced samples are preserved, use the E.Z.N.A. Plasmid Mini Kit I (omega, Cat. No.: D6942-02) to extract the plasmid according to the instruction manual. The steps are as follows:
(1)取5mL 37℃过夜培养的菌液(12-16h),10,000g离心1min,弃去上清;(1) Take 5mL of bacterial liquid cultured overnight at 37°C (12-16h), centrifuge at 10,000g for 1 minute, and discard the supernatant;
(2)向离心管中加入250μL Solution Ⅰ(已加入RNase A),吹打混匀;(2) Add 250 μL Solution I (RNase A has been added) to the centrifuge tube and mix by pipetting;
(3)加入250μL Solution Ⅱ,上下颠倒4-6次混匀,静置2min使菌体充分裂解(总时间少于5min);(3) Add 250 μL Solution II, mix by inverting 4-6 times, and let stand for 2 minutes to fully lyse the bacteria (the total time is less than 5 minutes);
(4)加入350μL Solution Ⅲ,立即上下颠倒6-8次,让溶液彻底混匀,此时出现大量白色絮状沉淀。13,000g离心10min;(4) Add 350 μL Solution III and immediately turn it upside down 6-8 times to mix the solution thoroughly. At this time, a large amount of white flocculent precipitate will appear. Centrifuge at 13,000g for 10 minutes;
(5)将吸附柱置于收集管内,吸取离心后的上清加入吸附柱中,10,000g离心1min,弃滤液;(5) Place the adsorption column in the collection tube, add the centrifuged supernatant to the adsorption column, centrifuge at 10,000g for 1 minute, and discard the filtrate;
(6)吸附柱中加入700μL的DNA Wash Buffer,10,000g离心1min,弃滤液。重复一次;(6) Add 700 μL of DNA Wash Buffer to the adsorption column, centrifuge at 10,000 g for 1 min, and discard the filtrate. repeat;
(7)空吸附柱放回收集管中,13,000g离心2min,吸附柱转移至新的1.5mL离心管中,管盖打开干燥吸附柱1min,挥干吸附柱中残留的漂洗液;(7) Put the empty adsorption column back into the collection tube, centrifuge at 13,000g for 2 minutes, transfer the adsorption column to a new 1.5mL centrifuge tube, open the tube cover and dry the adsorption column for 1 minute, and evaporate the remaining rinse liquid in the adsorption column;
(8)吸附柱的膜中央加入50μL预热至55℃的无菌水,静置2min,13,000g离心1min。弃去吸附柱,质粒保存于-20℃待用。(8) Add 50 μL of sterile water preheated to 55°C to the center of the membrane of the adsorption column, let stand for 2 minutes, and centrifuge at 13,000g for 1 minute. Discard the adsorption column and store the plasmid at -20°C until use.
3.蛋白表达3. Protein expression
3.1原核表达载体构建3.1 Construction of prokaryotic expression vector
以包含目的基因AsUGT73E5和AsUGT73E1开放阅读框的pClone007载体(pClone007-AsUGT73E5和pClone007-AsUGT73E1)为模板,设计重组引物AsUGT73E5-pGEXF/R、AsUGT73E1-pGEXF/R进行PCR扩增,反应体系和反应条件同上述 2.3,获得用于构建表达载体的基因片段。Using the pClone007 vector (pClone007-AsUGT73E5 and pClone007-AsUGT73E1) containing the open reading frames of the target genes AsUGT73E5 and AsUGT73E1 as the template, design the recombination primers AsUGT73E5-pGEXF/R and AsUGT73E1-pGEXF/R for PCR amplification. The reaction system and reaction conditions are the same. 2.3 above, obtain the gene fragment used to construct the expression vector.
采用pGEX-6p-1作为原核表达载体。pGEX-6p-1载体用EcoRⅠ(Thermo,货号:FD0274) 和SalⅠ(Thermo,货号:FD0644)快速内切酶线性化,体系如下:pGEX-6p-1 was used as the prokaryotic expression vector. The pGEX-6p-1 vector was linearized with EcoRⅠ (Thermo, Cat. No.: FD0274) and SalⅠ (Thermo, Cat. No.: FD0644) fast endonucleases. The system is as follows:
37℃反应1h后终止。The reaction was terminated after 1 hour at 37°C.
将PCR扩增产物和线性化的pGEX-6p-1载体通过琼脂糖凝胶电泳检测后回收。使用ClonExpress Ⅱ One Step Cloning Kit试剂盒(vazyme,货号:C112-02)按照说明书对回收的基因片段和线性化pGEX-6p-1进行同源重组,将基因AsUGT73E5、AsUGT73E1的ORF分别克隆至原核表达载体pGEX-6p-1中,反应体系如下:The PCR amplification product and linearized pGEX-6p-1 vector were detected by agarose gel electrophoresis and recovered. Use ClonExpress II One Step Cloning Kit (vazyme, Cat. No.: C112-02) according to the instructions to perform homologous recombination on the recovered gene fragment and linearized pGEX-6p-1, and clone the ORFs of genes AsUGT73E5 and AsUGT73E1 into prokaryotic expression respectively. In the vector pGEX-6p-1, the reaction system is as follows:
37℃反应30min,降至4℃或置于冰上冷却,得到的反应产物转化大肠杆菌DH5α,转化方法同上述2.6。过夜培养后,挑取单菌落,加入含有Amp抗性(100mg/L)的500μL LB 液体培养基中,37℃ 180rpm培养4h,菌液PCR鉴定,鉴定引物为pGEX-F/R,阳性克隆送睿博兴科生物技术有限公司进行测序。测序结果正确的样品保菌后提取质粒 pGEX-AsUGT73E5/pGEX-AsUGT73E1,质粒提取方法同上述2.7。用提取的质粒转化大肠杆菌Rossetta(DE3)表达感受态(上海唯地生物),同时设置pGEX-6p-1空载体转化作为对照,转化方法同上述2.6。React at 37°C for 30 minutes, then lower to 4°C or cool on ice. The reaction product obtained is transformed into E. coli DH5α. The transformation method is the same as 2.6 above. After overnight culture, single colonies were picked, added to 500 μL LB liquid medium containing Amp resistance (100 mg/L), and cultured at 37°C 180 rpm for 4 hours. The bacterial liquid was identified by PCR. The identification primer was pGEX-F/R. Positive clones were sent Sequencing was performed by Ruibo Xingke Biotechnology Co., Ltd. For samples with correct sequencing results, the plasmid pGEX-AsUGT73E5/pGEX-AsUGT73E1 is extracted after culture preservation. The plasmid extraction method is the same as 2.7 above. Use the extracted plasmid to transform Escherichia coli Rossetta (DE3) expression competent form (Shanghai Vetech), and set up pGEX-6p-1 empty vector transformation as a control. The transformation method is the same as 2.6 above.
3.2蛋白诱导表达3.2 Protein induced expression
按1:100的体积比将含有pGEX-AsUGT73E5/pGEX-AsUGT73E1/pGEX-6p-1空载体的Rossetta(DE3)菌液分别接种于1L含有Amp抗性(100mg/L)的LB液体培养基中,37℃摇床200rpm培养至OD600=0.6,加入0.2mM IPTG,16℃摇床160rpm过夜诱导。4℃,4,000 rpm离心收集菌体,加入10mL预冷的PBS溶液(浓度0.01M,pH 7.4,配方:NaCl 8.0g, KCl 0.2g,Na2HPO4 1.44g,KH2PO4 0.24g,加蒸馏水至1L)重悬,冰上超声破碎至溶液呈半透明状。4℃,12,000rpm离心15min,收集上清和沉淀,SDS-PAGE电泳检测。The Rossetta (DE3) bacterial solution containing pGEX-AsUGT73E5/pGEX-AsUGT73E1/pGEX-6p-1 empty vector was inoculated into 1L LB liquid medium containing Amp resistance (100mg/L) at a volume ratio of 1:100. , culture at 37°C with a shaker at 200 rpm until OD 600 = 0.6, add 0.2mM IPTG, and induce overnight with a shaker at 16°C at 160 rpm. Collect the bacterial cells by centrifugation at 4°C and 4,000 rpm, add 10 mL of pre-cooled PBS solution (concentration 0.01M, pH 7.4, formula: NaCl 8.0g, KCl 0.2g, Na 2 HPO 4 1.44g, KH 2 PO 4 0.24g, add Distilled water to 1L), resuspend and sonicate on ice until the solution becomes translucent. Centrifuge at 12,000 rpm for 15 min at 4°C, collect the supernatant and precipitate, and detect by SDS-PAGE electrophoresis.
3.3蛋白纯化3.3 Protein purification
配制平衡/洗杂液(平衡液和洗杂液的配方一样)和洗脱液,并在使用前加入1mMDTT。平衡/洗杂液(1L):140mM NaCl,2.7mM KCl,10mM Na2HPO4,1.8mM KH2PO4,pH 7.4。洗脱液(1L):50mM Tris-HCl,10mM还原型谷胱甘肽,pH 8.0。Prepare the equilibrium/wash solution (the formula of the balance solution and the wash solution are the same) and eluent, and add 1mMDTT before use. Equilibration/wash solution (1L): 140mM NaCl, 2.7mM KCl, 10mM Na 2 HPO 4 , 1.8mM KH 2 PO 4 , pH 7.4. Eluent (1L): 50mM Tris-HCl, 10mM reduced glutathione, pH 8.0.
(1)将Glutathione Beads(常州天地人和生物,货号:SA008010)装入合适的层析柱,用5倍柱体积的平衡液进行平衡,使填料处于与目的蛋白相同的缓冲体系下,起到保护蛋白的作用;(1) Load Glutathione Beads (Changzhou Tiandi Renhe Biology, Cat. No.: SA008010) into a suitable chromatography column, balance it with 5 times the column volume of equilibrium solution, so that the filler is in the same buffer system as the target protein. The role of protective proteins;
(2)将样品加到平衡好的Glutathione Beads中,保证目的蛋白与GlutathioneBeads充分接触,提高目的蛋白的回收率,收集流出液;(2) Add the sample to the balanced Glutathione Beads to ensure full contact between the target protein and GlutathioneBeads, improve the recovery rate of the target protein, and collect the effluent;
(3)用10倍柱体积的洗杂液进行清洗,去除非特异性吸附的杂蛋白,收集洗杂液;(3) Wash with 10 times the column volume of impurity solution to remove non-specifically adsorbed impurity proteins and collect the impurity solution;
(4)使用5倍柱体积的洗脱液,收集洗脱液,即目的蛋白组分;(4) Use 5 times the column volume of eluent to collect the eluate, which is the target protein component;
(5)依次使用3倍柱体积的平衡液和5倍柱体积的去离子水平衡填料;(5) Use 3 times the column volume of equilibrium solution and 5 times the column volume of deionized water to balance the packing;
(6)将纯化后的蛋白液加入millipore 15mL超滤管(10KD),4℃,4,000rpm离心浓缩样品至500μL,加入15mL PBS磷酸缓冲液(浓度0.01M,配方:NaCl 8.0g,KCl 0.2g,Na2HPO4 1.44g,KH2PO4 0.24g,调节pH 7.4,加蒸馏水至1L),继续浓缩至500μL。重复一次;(6) Add the purified protein solution to a millipore 15mL ultrafiltration tube (10KD), centrifuge at 4°C, 4,000rpm to concentrate the sample to 500μL, and add 15mL PBS phosphate buffer (concentration 0.01M, formula: NaCl 8.0g, KCl 0.2g , Na 2 HPO 4 1.44g, KH 2 PO 4 0.24g, adjust pH to 7.4, add distilled water to 1L), and continue to concentrate to 500 μL. repeat;
(7)吸取纯化的蛋白,稀释后加入甘油至终浓度10%,-80℃保存。(7) Aspirate the purified protein, dilute it and add glycerol to a final concentration of 10%, and store it at -80°C.
SDS-PAGE检测纯化蛋白。结果如图2所示,1为未经诱导的全细胞蛋白;2为IPTG诱导后的全细胞蛋白;3为IPTG诱导后的细胞上清;4为IPTG诱导后的细胞沉淀;5为上清 GST柱纯化的蛋白;6为超滤浓缩后的纯化蛋白。与未经诱导的对照样品相比,重组蛋白在80KDa附近均出现了明显条带。AsUGT73E5和AsUGT73E1蛋白分别包含515和490个氨基酸,与GST标签融合后的分子量分别为82.21KDa和79.79KDa。Purified protein was detected by SDS-PAGE. The results are shown in Figure 2. 1 is the whole cell protein without induction; 2 is the whole cell protein after IPTG induction; 3 is the cell supernatant after IPTG induction; 4 is the cell pellet after IPTG induction; 5 is the supernatant. Protein purified by GST column; 6 is the purified protein after ultrafiltration and concentration. Compared with the uninduced control sample, the recombinant protein showed obvious bands near 80KDa. AsUGT73E5 and AsUGT73E1 proteins contain 515 and 490 amino acids respectively, and their molecular weights after fusion with the GST tag are 82.21KDa and 79.79KDa respectively.
实施例2.糖基转移酶AsUGT73E5和AsUGT73E1的功能鉴定Example 2. Functional identification of glycosyltransferases AsUGT73E5 and AsUGT73E1
1.酶活性检测1. Enzyme activity detection
(1)AsUGT73E5催化的糖基化反应(1) Glycosylation reaction catalyzed by AsUGT73E5
准确称取1mM甾体皂苷元(薯蓣皂苷元/偏诺皂苷元/纽阿替皂苷元),1mM UDP-Glucose(UDP-Glc),50μL纯化后的糖基转移酶AsUGT73E5,溶于PBS磷酸缓冲液(浓度0.01M,配方:NaCl 8.0g,KCl 0.2g,Na2HPO4 1.44g,KH2PO4 0.24g,调节pH 8.0,加蒸馏水至1L),使终体积达到300μL。37℃反应2h后,加入等体积甲醇终止酶活,产物减压旋干后,溶于500μL色谱甲醇待测。Accurately weigh 1mM steroidal sapogenin (diosgenin/patenogenin/neaartinogenin), 1mM UDP-Glucose (UDP-Glc), 50μL purified glycosyltransferase AsUGT73E5, and dissolve in PBS phosphate buffer solution (concentration 0.01M, formula: NaCl 8.0g, KCl 0.2g, Na 2 HPO 4 1.44g, KH 2 PO 4 0.24g, adjust pH 8.0, add distilled water to 1L), so that the final volume reaches 300 μL. After reacting at 37°C for 2 hours, an equal volume of methanol was added to terminate the enzyme activity. The product was spin-dried under reduced pressure and then dissolved in 500 μL chromatographic methanol for testing.
(2)AsUGT73E1催化的糖基化反应(2) Glycosylation reaction catalyzed by AsUGT73E1
重复(1)中的糖基化反应,将产物浓缩干燥后全部用作底物,加入1mM UDP-Rhamnose (UDP-Rha),50μL纯化后的糖基转移酶AsUGT73E1,溶于PBS磷酸缓冲液(pH 8.0),使终体积达到300μL。37℃反应2h后,加入等体积甲醇终止酶活,产物减压旋干后,溶于500μL色谱甲醇待测。Repeat the glycosylation reaction in (1), concentrate and dry the product and use it as a substrate. Add 1mM UDP-Rhamnose (UDP-Rha), 50μL of purified glycosyltransferase AsUGT73E1, and dissolve it in PBS phosphate buffer ( pH 8.0), bringing the final volume to 300 μL. After reacting at 37°C for 2 hours, an equal volume of methanol was added to terminate the enzyme activity. The product was spin-dried under reduced pressure and then dissolved in 500 μL chromatographic methanol for testing.
2.HPLC及LC-Q-TOF鉴定酶产物2. Identification of enzyme products by HPLC and LC-Q-TOF
(1)液相色谱(1) Liquid chromatography
本实验使用Thermo UltiMate 3000液相色谱仪,Thermo Hypersil GOLD C18液相色谱柱 (250mm×4.6mm,5μm)进行HPLC检测。流动相为水(A)和乙腈(B)。洗脱梯度:0~6min,20%~30%B;6~15min,30%~60%B;15~21min,60%~100%B;21~30min,100%B;30~35min,100%~20%B。流速1mL/min,柱温30℃,进样量10μL,检测波长:210nm。This experiment used a Thermo UltiMate 3000 liquid chromatograph and a Thermo Hypersil GOLD C 18 liquid chromatography column (250mm×4.6mm, 5μm) for HPLC detection. The mobile phases are water (A) and acetonitrile (B). Elution gradient: 0~6min, 20%~30%B; 6~15min, 30%~60%B; 15~21min, 60%~100%B; 21~30min, 100%B; 30~35min, 100 %~20%B. The flow rate is 1mL/min, the column temperature is 30°C, the injection volume is 10μL, and the detection wavelength is 210nm.
(2)质谱检测(2) Mass spectrometry detection
本实验使用AB SCIEX TripleTOF 6600超高分辨质谱仪进行检测。正离子数据采集模式,条件为:毛细管电压3.6kV,锥孔电压35kV,离子源温度105℃,脱溶剂气温度340℃,反向锥孔气流55L/h,脱溶剂气650L/h,萃取锥孔4V。质荷比数据扫描范围:50-1500m/z。This experiment used the AB SCIEX TripleTOF 6600 ultra-high resolution mass spectrometer for detection. Positive ion data acquisition mode, the conditions are: capillary voltage 3.6kV, cone voltage 35kV, ion source temperature 105℃, desolvation gas temperature 340℃, reverse cone gas flow 55L/h, desolvation gas 650L/h, extraction cone hole 4V. Mass-to-charge ratio data scanning range: 50-1500m/z.
结果与分析results and analysis
将AsUGT73E5蛋白与薯蓣皂苷元、UDP-Glc反应的产物用真空浓缩仪干燥,加入500μL 色谱甲醇溶解,0.22μm滤膜过滤后进行HPLC检测。如图3所示,与空载的反应相比,AsUGT73E5的产物在22.3min出现了新峰(product 1),与延龄草苷(trillin)标准品出峰时间相同。回收样品,加入AsUGT73E1蛋白和UDP-Rha继续反应,在20.7min出现了新产物峰(product 2),时间与重楼皂苷V标准品相符。TOF正离子扫描模式检测见图4,product 1 和product 2的分子量大小分别为577.38(M+H+)和723.43(M+H+),与延龄草苷(576.3) 和重楼皂苷V(722.4)的分子量一致,表明薯蓣皂苷元经过AsUGT73E5和AsUGT73E1的连续催化后生成了重楼皂苷V。The product of the reaction between AsUGT73E5 protein, diosgenin, and UDP-Glc was dried with a vacuum concentrator, dissolved in 500 μL of chromatographic methanol, and filtered with a 0.22 μm filter for HPLC detection. As shown in Figure 3, compared with the unloaded reaction, the product of AsUGT73E5 has a new peak (product 1) at 22.3 minutes, which is the same peak time as the trillin standard. The sample was recovered, AsUGT73E1 protein and UDP-Rha were added to continue the reaction. A new product peak (product 2) appeared at 20.7 minutes, and the time was consistent with the Chonglousaponin V standard. The TOF positive ion scanning mode detection is shown in Figure 4. The molecular weights of product 1 and product 2 are 577.38 (M+H + ) and 723.43 (M+H + ) respectively, which are similar to trillium (576.3) and chrysanthemum saponin V ( 722.4), indicating that diosgenin was continuously catalyzed by AsUGT73E5 and AsUGT73E1 to generate diosgenin V.
将AsUGT73E5蛋白与偏诺皂苷元、UDP-Glc反应的产物进行HPLC检测后(图5),与空载的反应相比,AsUGT73E5的产物在18.8min出现了新峰(product 3)。回收样品,加入AsUGT73E1蛋白和UDP-Rha继续反应,在17.1min出现了新产物峰(product 4),时间与重楼皂苷Ⅵ标准品相符。TOF正离子扫描模式检测见图6,product 3和product 4的分子量大小分别为593.37(M+H+)和739.43(M+H+),与偏诺皂苷元-3-O-葡糖苷(592.3)和重楼皂苷Ⅵ(738.4)的分子量一致,表明偏诺皂苷元经过AsUGT73E5和AsUGT73E1的连续催化后生成了重楼皂苷Ⅵ。AsUGT73E5和AsUGT73E1蛋白催化甾体皂苷元糖基化的过程见图7。After HPLC detection of the reaction product of AsUGT73E5 protein with metanogenin and UDP-Glc (Figure 5), compared with the unloaded reaction, the product of AsUGT73E5 showed a new peak (product 3) at 18.8 minutes. The sample was recovered, AsUGT73E1 protein and UDP-Rha were added to continue the reaction. A new product peak (product 4) appeared at 17.1 minutes, and the time was consistent with the Chonglousaponin VI standard. TOF positive ion scanning mode detection is shown in Figure 6. The molecular weights of product 3 and product 4 are 593.37 (M+H + ) and 739.43 (M+H + ) respectively, which is similar to that of metanosogenin-3-O-glucoside (592.3 ) is consistent with the molecular weight of chrysanthemum saponin VI (738.4), indicating that metanosaponin generates chrysanthemum saponin VI after continuous catalysis by AsUGT73E5 and AsUGT73E1. The process of glycosylation of steroidal sapogenins catalyzed by AsUGT73E5 and AsUGT73E1 proteins is shown in Figure 7.
将AsUGT73E5蛋白与纽阿替皂苷元、UDP-Glc反应的产物用真空浓缩仪干燥,加入500 μL色谱甲醇溶解,0.22μm滤膜过滤后进行HPLC检测。如图8所示,与空载的反应相比,AsUGT73E5的产物在16.7min出现了新峰(product 5)。回收样品,加入AsUGT73E1蛋白和UDP-Rha继续反应,在15.6min出现了第二个产物峰(product 6)。TOF正离子扫描模式检测见图9,product 5和product 6的分子量大小分别为593.37(M+H+)和739.43(M+H+),表明纽阿替皂苷元经过AsUGT73E5和AsUGT73E1的连续催化后生成了相应的糖基化产物。参考文献:The product of the reaction between AsUGT73E5 protein, neuaartinin, and UDP-Glc was dried with a vacuum concentrator, dissolved in 500 μL of chromatographic methanol, filtered with a 0.22 μm filter, and then subjected to HPLC detection. As shown in Figure 8, compared with the unloaded reaction, the product of AsUGT73E5 showed a new peak (product 5) at 16.7 minutes. The sample was recovered, AsUGT73E1 protein and UDP-Rha were added to continue the reaction, and the second product peak (product 6) appeared at 15.6 minutes. The TOF positive ion scanning mode detection is shown in Figure 9. The molecular weights of product 5 and product 6 are 593.37 (M+H + ) and 739.43 (M+H + ) respectively, indicating that neuaartinogen has been continuously catalyzed by AsUGT73E5 and AsUGT73E1. The corresponding glycosylation products are generated. references:
Cárdenas,P.D.,Sonawane,P.D.,Heinig,U.,Bocobza,S.E.,Burdman,S.,&Aharoni,A.(2015). The bitter side of the nightshades:Genomics drivesdiscovery in Solanaceae steroidal alkaloid metabolism.Phytochemistry,113,24-32.Cárdenas, P.D., Sonawane, P.D., Heinig, U., Bocobza, S.E., Burdman, S., & Aharoni, A. (2015). The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. Phytochemistry, 113, 24 -32.
Christ,B.,Xu,C.C.,Xu,M.L.,Li,F.S.,Wada,N.,Mitchell,A.J.,…&Weng,J.K.(2019). Repeated evolution of cytochrome P450-mediated spiroketal steroidbiosynthesis in plants.Nature Communications,10,3206.Christ, B., Xu, C.C., Xu, M.L., Li, F.S., Wada, N., Mitchell, A.J.,… & Weng, J.K. (2019). Repeated evolution of cytochrome P450-mediated spiroketal steroidbiosynthesis in plants. Nature Communications, 10 ,3206.
Deng,D.,Lauren,D.R.,Cooney,J.M.,Jensen,D.J.,Wurms,K.V.,Upritchard,J.E.,…&Li,M.Z. (2008).Antifungal saponins from Paris polyphylla Smith.PlantaMedica,74(11),1397-1402.Deng,D.,Lauren,D.R.,Cooney,J.M.,Jensen,D.J.,Wurms,K.V.,Upritchard,J.E.,…&Li,M.Z. (2008).Antifungal saponins from Paris polyphylla Smith.PlantaMedica,74(11),1397-1402 .
Gong,G.H.,Qin,Y.,Huang,W.,Zhou,S.,Wu,X.H.,Yang,X.H,…&Li.D.(2010).Protective effects of diosgenin in the hyperlipidemic rat model and in humanvascular endothelial cells against hydrogen peroxide-inducedapoptosis.Chemico-Biological Interactions,184(3), 366-375.Journal ofagricultural and food chemistry,64(7),1549-1556.Gong,G.H.,Qin,Y.,Huang,W.,Zhou,S.,Wu,X.H.,Yang,X.H,…&Li.D.(2010).Protective effects of diosgenin in the hyperlipidemic rat model and in humanvascular endothelial cells against hydrogen peroxide-induced poptosis. Chemico-Biological Interactions, 184(3), 366-375. Journal of agricultural and food chemistry, 64(7), 1549-1556.
He,J.L.,Yu,S.,Guo,C.J.,Tan,L.,Song,X.M.,Wang,M.,…&Peng,C.(2019).Polyphyllin I induces autophagy and cell cycle arrest via inhibiting PDK1/Akt/mTOR signal and downregulating cyclin B1 in human gastric carcinoma HGC-27 cells.Biomedicine&Pharmacotherapy,117,109189.He,J.L.,Yu,S.,Guo,C.J.,Tan,L.,Song,X.M.,Wang,M.,…&Peng,C.(2019).Polyphyllin I induces autophagy and cell cycle arrest via inhibiting PDK1/Akt/ mTOR signal and downregulating cyclin B1 in human gastric carcinoma HGC-27 cells. Biomedicine&Pharmacotherapy,117,109189.
Louveau,T.,Orme,A.,Pfalzgraf,H.,Stephenson,M.J.,Melton,R.,Saalbach,G.,...&Langdon,T. (2018).Analysis of two new arabinosyltransferases belongingto the carbohydrate-active enzyme(CAZY)glycosyl transferase family1 providesinsights into disease resistance and sugar donor specificity.The Plant Cell,30(12),3038-3057.Louveau,T.,Orme,A.,Pfalzgraf,H.,Stephenson,M.J.,Melton,R.,Saalbach,G.,...&Langdon,T. (2018).Analysis of two new arabinosyltransferases belonging to the carbohydrate-active enzyme(CAZY)glycosyl transferase family1 provides insights into disease resistance and sugar donor specificity. The Plant Cell, 30(12), 3038-3057.
Orme,A.,Louveau,T.,Stephenson,M.J.,Appelhagen,I.,Melton,R.,Cheema,J.,…&Osbourn, A.(2019).A noncanonical vacuolar sugar transferase requiredfor biosynthesis of antimicrobial defense compounds in oat.Proceedings of theNational Academy of Sciences, 201914652.Orme,A.,Louveau,T.,Stephenson,M.J.,Appelhagen,I.,Melton,R.,Cheema,J.,…&Osbourn, A.(2019).A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat.Proceedings of the National Academy of Sciences, 201914652.
Papadopoulou,K.,Melton,R.E.,Leggett,M.,Daniels,M.J.,&Osbourn,A.E.(1999). Compromised disease resistance in saponin-deficientplants.Proceedings of the National Academy of Sciences,96(22),12923-12928.Papadopoulou,K.,Melton,R.E.,Leggett,M.,Daniels,M.J.,&Osbourn,A.E.(1999). Compromised disease resistance in saponin-deficientplants.Proceedings of the National Academy of Sciences,96(22),12923-12928.
Qin,X.J.,Sun,D.J.,Ni,W.,Chen,C.X.,Hua,Y.,He,L.,&Liu,H.Y.(2012).Steroidal saponins with antimicrobial activity from stems and leaves ofParis polyphylla var.yunnanensis.Steroids,77(12),1242-1248.Qin, ,77(12),1242-1248.
Teng,J.F.,Qin,D.L.,Mei,Q.B.,Qiu,W.Q.,Pan,R.,Xiong,R.,…&Wu.,A.G.(2019). Polyphyllin VI,a saponin from Trillium tschonoskii Maxim.inducesapoptotic and autophagic cell death via the ROS triggered mTOR signalingpathway in non-small cell lung cancer. Pharmacological Research,147,104396.Teng,J.F.,Qin,D.L.,Mei,Q.B.,Qiu,W.Q.,Pan,R.,Xiong,R.,…&Wu.,A.G.(2019). Polyphyllin VI, a saponin from Trillium tschonoskii Maxim.inducesapoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer. Pharmacological Research,147,104396.
Vincken,J.P.,Heng,L.,de Groot,A.,&Gruppen,H.(2007).Saponins,classification and occurrence in the plant kingdom.Phytochemistry,68(3),275-297.Vincken,J.P.,Heng,L.,de Groot,A.,&Gruppen,H.(2007).Saponins,classification and occurrence in the plant kingdom.Phytochemistry,68(3),275-297.
Wang,G.X.,Han,J.,Zhao,L.W.,Jiang,D.X.,Liu,Y.T.,&Liu,X.L.(2010).Anthelmintic activity of steroidal saponins from ParisPolyphylla.Phytomedicine,17(14),1102-1105.Wang,G.
Xue,Z.Y.,Tan,Z.W.,Huang,A.C.,Zhou,Y.,Sun,J.C.,Wang,X.N.,…&Qi,X.Q.(2018). Identification of key amino acid residues determining productspecificity of 2,3-oxidosqualene cyclase in Oryza species.New Phytologist,218(3):1076-1088.Xue,Z.Y.,Tan,Z.W.,Huang,A.C.,Zhou,Y.,Sun,J.C.,Wang,X.N.,…&Qi,X.Q.(2018). Identification of key amino acid residues determining productspecificity of 2,3-oxidosqualene cyclase in Oryza species.New Phytologist,218(3):1076-1088.
Zhang,C.,Jia,X.J.,Bao,J.L.,Chen,S.H.,Wang,K.,Zhang,Y.L.,…&He,C.W.(2016). Polyphyllin VII induces apoptosis in HepG2 cells through ROS-mediatedmitochondrial dysfunction and MAPK pathways.BMC Complementary and AlternativeMedicine,16(58).Zhang, C., Jia, BMC Complementary and AlternativeMedicine,16(58).
序列表sequence list
<110> 东北林业大学<110> Northeast Forestry University
<120> 燕麦糖基转移酶AsUGT73E1及其在甾体皂苷合成中的应用<120> Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins
<130> P200850-DBL<130> P200850-DBL
<160> 16<160> 16
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 490<211> 490
<212> PRT<212> PRT
<213> 燕麦(Avena sativa L.)<213> Oats (Avena sativa L.)
<400> 1<400> 1
Met Val Ala Ser Arg Val Lys Lys Leu Arg Val Leu Leu Ile Pro PheMet Val Ala Ser Arg Val Lys Lys Leu Arg Val Leu Leu Ile Pro Phe
1 5 10 151 5 10 15
Phe Ala Thr Ser His Ile Glu Pro Tyr Thr Glu Leu Ala Ile Arg LeuPhe Ala Thr Ser His Ile Glu Pro Tyr Thr Glu Leu Ala Ile Arg Leu
20 25 30 20 25 30
Ala Gly Ala Lys Pro Asp Tyr Ala Val Glu Pro Thr Ile Ala Val ThrAla Gly Ala Lys Pro Asp Tyr Ala Val Glu Pro Thr Ile Ala Val Thr
35 40 45 35 40 45
Pro Ala Asn Val Pro Ile Val Gln Ser Leu Leu Glu Arg Arg Gly GlnPro Ala Asn Val Pro Ile Val Gln Ser Leu Leu Glu Arg Arg Gly Gln
50 55 60 50 55 60
Gln Gly Arg Ile Lys Ile Ala Thr Tyr Pro Phe Pro Ala Val Glu GlyGln Gly Arg Ile Lys Ile Ala Thr Tyr Pro Phe Pro Ala Val Glu Gly
65 70 75 8065 70 75 80
Leu Pro Ala Gly Val Glu Asn Leu Gly Lys Val Ala Ala Ala Asp AlaLeu Pro Ala Gly Val Glu Asn Leu Gly Lys Val Ala Ala Ala Asp Ala
85 90 95 85 90 95
Trp Arg Ile Asp Ala Ala Ala Ile Ser Asp Thr Leu Met Arg Pro AlaTrp Arg Ile Asp Ala Ala Ala Ile Ser Asp Thr Leu Met Arg Pro Ala
100 105 110 100 105 110
Gln Glu Ala Leu Val Arg Ala Gln Ser Pro Asp Ala Met Val Ala AspGln Glu Ala Leu Val Arg Ala Gln Ser Pro Asp Ala Met Val Ala Asp
115 120 125 115 120 125
Pro His Phe Ser Trp Gln Ala Gly Ile Ala Ala Asp Leu Gly Val ProPro His Phe Ser Trp Gln Ala Gly Ile Ala Ala Asp Leu Gly Val Pro
130 135 140 130 135 140
Leu Val Ser Phe Ser Val Val Gly Ala Phe Ser Gly Leu Val Met GlyLeu Val Ser Phe Ser Val Val Gly Ala Phe Ser Gly Leu Val Met Gly
145 150 155 160145 150 155 160
Lys Leu Met Ala Tyr Gly Ala Val Glu Asp Gly Glu Asp Ala Val ThrLys Leu Met Ala Tyr Gly Ala Val Glu Asp Gly Glu Asp Ala Val Thr
165 170 175 165 170 175
Ile Pro Gln Phe Pro Leu Pro Glu Ile Arg Ile Pro Val Thr Glu LeuIle Pro Gln Phe Pro Leu Pro Glu Ile Arg Ile Pro Val Thr Glu Leu
180 185 190 180 185 190
Pro Glu Phe Leu Arg Thr His Leu Leu Glu Arg Asp Gly Lys Asp ValPro Glu Phe Leu Arg Thr His Leu Leu Glu Arg Asp Gly Lys Asp Val
195 200 205 195 200 205
Asp Ser Ile Gly Lys Val Ser Val Gly Gln Asn Phe Gly Leu Ala IleAsp Ser Ile Gly Lys Val Ser Val Gly Gln Asn Phe Gly Leu Ala Ile
210 215 220 210 215 220
Asn Thr Ala Ser His Leu Glu Gln Gln Tyr Cys Glu Met His Thr SerAsn Thr Ala Ser His Leu Glu Gln Gln Tyr Cys Glu Met His Thr Ser
225 230 235 240225 230 235 240
Gly Gly Gln Ile Lys Arg Ala Tyr Phe Val Gly Pro Leu Ser Leu GlyGly Gly Gln Ile Lys Arg Ala Tyr Phe Val Gly Pro Leu Ser Leu Gly
245 250 255 245 250 255
Ala Glu Ala Val Ala Pro Gly Gly Gly Gly Gly Glu Thr Gln Ala ProAla Glu Ala Val Ala Pro Gly Gly Gly Gly Gly Glu Thr Gln Ala Pro
260 265 270 260 265 270
Pro Cys Ile Arg Trp Leu Asp Ser Lys Pro Asp Arg Ser Val Val TyrPro Cys Ile Arg Trp Leu Asp Ser Lys Pro Asp Arg Ser Val Val Tyr
275 280 285 275 280 285
Leu Cys Phe Gly Ser Leu Thr His Val Ser Asp Ala Gln Leu Asp GluLeu Cys Phe Gly Ser Leu Thr His Val Ser Asp Ala Gln Leu Asp Glu
290 295 300 290 295 300
Leu Ala Leu Gly Leu Glu Ala Ser Gly Lys Ala Phe Leu Trp Val ValLeu Ala Leu Gly Leu Glu Ala Ser Gly Lys Ala Phe Leu Trp Val Val
305 310 315 320305 310 315 320
Arg Ala Ala Glu Ala Trp Arg Pro Pro Ala Gly Trp Ala Glu Arg ValArg Ala Ala Glu Ala Trp Arg Pro Pro Ala Gly Trp Ala Glu Arg Val
325 330 335 325 330 335
Gln Asp Arg Gly Met Leu Leu Thr Ala Trp Ala Pro Gln Thr Ala IleGln Asp Arg Gly Met Leu Leu Thr Ala Trp Ala Pro Gln Thr Ala Ile
340 345 350 340 345 350
Leu Gly His Arg Ala Val Gly Ala Phe Val Thr His Cys Gly Trp AsnLeu Gly His Arg Ala Val Gly Ala Phe Val Thr His Cys Gly Trp Asn
355 360 365 355 360 365
Ser Val Leu Glu Ala Val Ala Ala Gly Leu Pro Val Leu Thr Trp ProSer Val Leu Glu Ala Val Ala Ala Gly Leu Pro Val Leu Thr Trp Pro
370 375 380 370 375 380
Met Val Phe Glu Gln Phe Ile Thr Glu Arg Leu Val Thr Glu Val MetMet Val Phe Glu Gln Phe Ile Thr Glu Arg Leu Val Thr Glu Val Met
385 390 395 400385 390 395 400
Gly Ile Gly Glu Arg Phe Trp Pro Glu Gly Ala Gly Arg Arg Ser ThrGly Ile Gly Glu Arg Phe Trp Pro Glu Gly Ala Gly Arg Arg Ser Thr
405 410 415 405 410 415
Arg Tyr Glu Glu His Gly Leu Val Pro Ala Glu Asp Val Ala Arg AlaArg Tyr Glu Glu His Gly Leu Val Pro Ala Glu Asp Val Ala Arg Ala
420 425 430 420 425 430
Val Thr Thr Phe Met Cys Pro Gly Gly Ala Gly Asp Ala Lys Arg GlnVal Thr Thr Phe Met Cys Pro Gly Gly Ala Gly Asp Ala Lys Arg Gln
435 440 445 435 440 445
Arg Ala Met Glu Leu Ala Ala Glu Ser Arg Ala Ala Met Ala Glu GlyArg Ala Met Glu Leu Ala Ala Glu Ser Arg Ala Ala Met Ala Glu Gly
450 455 460 450 455 460
Gly Ser Ser His Arg Asp Leu Cys Arg Leu Val Asp Asp Leu Val AlaGly Ser Ser His Arg Asp Leu Cys Arg Leu Val Asp Asp Leu Val Ala
465 470 475 480465 470 475 480
Ala Lys Leu Glu Arg Glu Gln Val Pro SerAla Lys Leu Glu Arg Glu Gln Val Pro Ser
485 490 485 490
<210> 2<210> 2
<211> 1473<211> 1473
<212> DNA<212> DNA
<213> 燕麦(Avena sativa L.)<213> Oats (Avena sativa L.)
<400> 2<400> 2
atggttgcca gccgtgtgaa gaagctgcgt gtcctgctca ttcccttctt cgcgacaagc 60atggttgcca gccgtgtgaa gaagctgcgt gtcctgctca ttcccttctt cgcgacaagc 60
cacatcgagc cctacaccga gctcgccatc cgcctcgccg gcgccaagcc ggactacgcc 120cacatcgagc cctacaccga gctcgccatc cgcctcgccg gcgccaagcc ggactacgcc 120
gtggagccaa caattgcggt gacgccggcg aacgtcccaa tcgtccagtc cttgctggag 180gtggagccaa caattgcggt gacgccggcg aacgtcccaa tcgtccagtc cttgctggag 180
cgacgcggac agcaggggcg catcaagatc gcgacgtacc cgttcccggc cgtggagggc 240cgacgcggac agcaggggcg catcaagatc gcgacgtacc cgttcccggc cgtggagggc 240
ctcccggcgg gcgtggagaa cctgggcaag gtcgcggcgg ccgacgcctg gcgcatcgac 300ctcccggcgg gcgtggagaa cctgggcaag gtcgcggcgg ccgacgcctg gcgcatcgac 300
gcggccgcca tcagcgacac cctgatgcgg cccgcgcagg aggcgctggt gagggcgcag 360gcggccgcca tcagcgacac cctgatgcgg cccgcgcagg aggcgctggt gagggcgcag 360
tcccccgacg ccatggtcgc cgacccgcac ttctcctggc aggccggcat cgccgccgat 420tcccccgacg ccatggtcgc cgacccgcac ttctcctggc aggccggcat cgccgccgat 420
ctgggcgtgc cgctggtgtc gttcagcgtg gtgggcgcct tctcggggct cgtcatgggc 480ctgggcgtgc cgctggtgtc gttcagcgtg gtgggcgcct tctcggggct cgtcatgggc 480
aaactcatgg cctacggcgc cgtcgaggac ggcgaagacg ccgttacgat ccctcagttt 540aaactcatgg cctacggcgc cgtcgaggac ggcgaagacg ccgttacgat ccctcagttt 540
ccccttccgg agatacggat accggtgacc gagctgccgg agttcctgag gacccacctg 600ccccttccgg agatacggat accggtgacc gagctgccgg agttcctgag gacccacctg 600
ctcgagcgtg acgggaagga cgtcgatagc atcggcaaag tttcggtggg acagaatttc 660ctcgagcgtg acgggaagga cgtcgatagc atcggcaaag tttcggtggg acagaatttc 660
ggcctcgcca tcaacacggc gtcgcacctg gagcagcagt actgcgagat gcacaccagc 720ggcctcgcca tcaacacggc gtcgcacctg gagcagcagt actgcgagat gcacaccagc 720
ggcggccaaa tcaagcgagc ctacttcgtg gggcccctct cgctgggagc cgaagcagtt 780ggcggccaaa tcaagcgagc ctacttcgtg gggcccctct cgctgggagc cgaagcagtt 780
gcccccggcg gcggcggcgg cgagacacag gcgccgccgt gcatccgttg gctggactcg 840gcccccggcg gcggcggcgg cgagacacag gcgccgccgt gcatccgttg gctggactcg 840
aagccggacc ggtcggtggt gtacctgtgc ttcgggagcc tgacccacgt ctcggacgcg 900aagccggacc ggtcggtggt gtacctgtgc ttcgggagcc tgacccacgt ctcggacgcg 900
cagctggacg agctggctct cgggctggag gcgtccggga aggcgttcct gtgggtggtg 960cagctggacg agctggctct cgggctggag gcgtccggga aggcgttcct gtgggtggtg 960
agggcggcgg aggcgtggcg gccgccggcg gggtgggcgg agcgcgtgca ggacaggggg 1020agggcggcgg aggcgtggcg gccgccggcg gggtgggcgg agcgcgtgca ggacaggggg 1020
atgctcctga ccgcctgggc cccgcagacc gccatcctgg gccaccgcgc cgtgggcgcc 1080atgctcctga ccgcctgggc cccgcagacc gccatcctgg gccaccgcgc cgtgggcgcc 1080
ttcgtgacgc actgcgggtg gaactcggtg ctggaggcgg tggcggcggg gctgccggtg 1140ttcgtgacgc actgcgggtg gaactcggtg ctggaggcgg tggcggcggg gctgccggtg 1140
ctgacgtggc cgatggtgtt cgagcagttc atcacggaga ggctggtgac ggaggtgatg 1200ctgacgtggc cgatggtgtt cgagcagttc atcacggaga ggctggtgac ggaggtgatg 1200
gggatcgggg agcggttctg gccggagggc gccggacggc ggagcaccag gtacgaagag 1260gggatcgggg agcggttctg gccggagggc gccggacggc ggagcaccag gtacgaagag 1260
cacgggctgg tcccggcgga ggacgtggcg cgggcggtga caacgttcat gtgccccgga 1320cacgggctgg tcccggcgga ggacgtggcg cgggcggtga caacgttcat gtgccccgga 1320
ggagcagggg acgccaagag gcagagggcg atggagctcg ccgccgagtc tcgtgcggcc 1380ggagcagggg acgccaagag gcagagggcg atggagctcg ccgccgagtc tcgtgcggcc 1380
atggcggaag gaggctcgtc gcaccgtgat ctgtgccgcc tcgttgacga tctcgtcgca 1440atggcggaag gaggctcgtc gcaccgtgat ctgtgccgcc tcgttgacga tctcgtcgca 1440
gctaagctag agagagagca ggtgcctagc tag 1473gctaagctag agagagagca ggtgcctagc tag 1473
<210> 3<210> 3
<211> 515<211> 515
<212> PRT<212> PRT
<213> 燕麦(Avena sativa L.)<213> Oats (Avena sativa L.)
<400> 3<400> 3
Met Ala Asp Leu His Phe Leu Val Val Pro Leu Ala Ala Gln Gly HisMet Ala Asp Leu His Phe Leu Val Val Pro Leu Ala Ala Gln Gly His
1 5 10 151 5 10 15
Ile Ile Pro Met Val Asp Val Ala Arg Leu Leu Ala Ala Arg Gly SerIle Ile Pro Met Val Asp Val Ala Arg Leu Leu Ala Ala Arg Gly Ser
20 25 30 20 25 30
Arg Val Thr Val Val Thr Thr Pro Val Asn Ala Ala Arg Asn Arg AlaArg Val Thr Val Val Thr Thr Pro Val Asn Ala Ala Arg Asn Arg Ala
35 40 45 35 40 45
Ala Val Asp Gly Ala Arg Lys Ala Gly Leu Ala Val Glu Leu Leu GluAla Val Asp Gly Ala Arg Lys Ala Gly Leu Ala Val Glu Leu Leu Glu
50 55 60 50 55 60
Leu Pro Phe Pro Ser Ala Gln Leu Gly Leu Pro Glu Gly Leu Glu AlaLeu Pro Phe Pro Ser Ala Gln Leu Gly Leu Pro Glu Gly Leu Glu Ala
65 70 75 8065 70 75 80
Val Asp Gln Leu Asn Gly Gln Pro Pro Glu Ile Ser Ile Gly Leu PheVal Asp Gln Leu Asn Gly Gln Pro Pro Glu Ile Ser Ile Gly Leu Phe
85 90 95 85 90 95
Lys Ala Ile Trp Thr Leu Ala Gly Pro Leu Glu Glu Tyr Leu Arg AlaLys Ala Ile Trp Thr Leu Ala Gly Pro Leu Glu Glu Tyr Leu Arg Ala
100 105 110 100 105 110
Leu Pro Arg Leu Pro Asp Cys Leu Val Ala Asp Leu Cys Asn Pro TrpLeu Pro Arg Leu Pro Asp Cys Leu Val Ala Asp Leu Cys Asn Pro Trp
115 120 125 115 120 125
Thr Ala Pro Val Cys Glu Arg Leu Gly Ile Pro Arg Leu Val Met HisThr Ala Pro Val Cys Glu Arg Leu Gly Ile Pro Arg Leu Val Met His
130 135 140 130 135 140
Cys Pro Ser Ala Tyr Phe Gln Leu Ala Val His Arg Leu Asn Glu HisCys Pro Ser Ala Tyr Phe Gln Leu Ala Val His Arg Leu Asn Glu His
145 150 155 160145 150 155 160
Gly Val Tyr Gly Gly Gly Val Glu Asp Tyr Asp Pro Thr Pro Ile GluGly Val Tyr Gly Gly Gly Val Glu Asp Tyr Asp Pro Thr Pro Ile Glu
165 170 175 165 170 175
Val Pro Gly Phe Pro Val Arg Ala Phe Gly Ser Lys Thr Thr Met ArgVal Pro Gly Phe Pro Val Arg Ala Phe Gly Ser Lys Thr Thr Met Arg
180 185 190 180 185 190
Gly Phe Phe Gln Tyr Pro Gly Val Glu Gln Glu His Leu Glu Ala LeuGly Phe Phe Gln Tyr Pro Gly Val Glu Gln Glu His Leu Glu Ala Leu
195 200 205 195 200 205
His Ala Glu Ala Thr Ala Asp Gly Leu Leu Phe Asn Ser Phe Arg AlaHis Ala Glu Ala Thr Ala Asp Gly Leu Leu Phe Asn Ser Phe Arg Ala
210 215 220 210 215 220
Ile Glu Ala Asp Phe Leu Asp Ala Tyr Ala Ala Ala Leu Gly Lys ThrIle Glu Ala Asp Phe Leu Asp Ala Tyr Ala Ala Ala Leu Gly Lys Thr
225 230 235 240225 230 235 240
Thr Trp Ala Val Gly Pro Thr Ala Leu Val Asn Asp Thr Thr Thr ThrThr Trp Ala Val Gly Pro Thr Ala Leu Val Asn Asp Thr Thr Thr Thr
245 250 255 245 250 255
Thr Ala Ser Ser Arg Ser Ser Thr Ile Val Ser Trp Leu Asp Ala ArgThr Ala Ser Ser Arg Ser Ser Thr Ile Val Ser Trp Leu Asp Ala Arg
260 265 270 260 265 270
Pro Pro Asp Ser Val Leu Tyr Val Ser Phe Gly Ser Ile Ser Leu LeuPro Pro Asp Ser Val Leu Tyr Val Ser Phe Gly Ser Ile Ser Leu Leu
275 280 285 275 280 285
Ser Ala Lys Gln Leu Ala Lys Leu Ala Asp Gly Leu Glu Ala Ser GlySer Ala Lys Gln Leu Ala Lys Leu Ala Asp Gly Leu Glu Ala Ser Gly
290 295 300 290 295 300
Arg Pro Phe Val Trp Ala Ile Lys Glu Asp Lys Ala Asp Ala Ala ValArg Pro Phe Val Trp Ala Ile Lys Glu Asp Lys Ala Asp Ala Ala Val
305 310 315 320305 310 315 320
Arg Ser Gln Leu Asp Glu Glu Gly Gly Phe Glu Ala Arg Val Lys AspArg Ser Gln Leu Asp Glu Glu Gly Gly Phe Glu Ala Arg Val Lys Asp
325 330 335 325 330 335
Arg Gly Leu Leu Val Arg Gly Trp Ala Pro Gln Val Ala Ile Leu SerArg Gly Leu Leu Val Arg Gly Trp Ala Pro Gln Val Ala Ile Leu Ser
340 345 350 340 345 350
His Pro Ala Val Gly Gly Phe Leu Thr His Cys Gly Trp Asn Ser ThrHis Pro Ala Val Gly Gly Phe Leu Thr His Cys Gly Trp Asn Ser Thr
355 360 365 355 360 365
Leu Glu Ala Leu Ser His Gly Val Pro Ala Leu Thr Trp Pro Thr AsnLeu Glu Ala Leu Ser His Gly Val Pro Ala Leu Thr Trp Pro Thr Asn
370 375 380 370 375 380
Ala Asp Gln Phe Cys Ser Glu Gln Val Ile Val Asp Val Leu Asp ValAla Asp Gln Phe Cys Ser Glu Gln Val Ile Val Asp Val Leu Asp Val
385 390 395 400385 390 395 400
Gly Val Arg Ser Gly Val Lys Ile Pro Ala Leu Tyr Val Pro Pro GluGly Val Arg Ser Gly Val Lys Ile Pro Ala Leu Tyr Val Pro Pro Glu
405 410 415 405 410 415
Ala Glu Gly Val Gln Val Glu Ser Gly Asp Val Glu Arg Ala Ile ValAla Glu Gly Val Gln Val Glu Ser Gly Asp Val Glu Arg Ala Ile Val
420 425 430 420 425 430
Glu Leu Met Asp Gly Gly Pro Glu Gly Ala Ala Arg Arg Ala Arg AlaGlu Leu Met Asp Gly Gly Pro Glu Gly Ala Ala Arg Arg Ala Arg Ala
435 440 445 435 440 445
Arg Lys Ile Ala Val Glu Ala Lys Ala Ala Met Glu Glu Gly Gly ThrArg Lys Ile Ala Val Glu Ala Lys Ala Ala Met Glu Glu Gly Gly Thr
450 455 460 450 455 460
Ser His Ser Asp Leu Thr Asp Met Ile Arg His Val Ser Glu Leu SerSer His Ser Asp Leu Thr Asp Met Ile Arg His Val Ser Glu Leu Ser
465 470 475 480465 470 475 480
Arg Lys Lys Arg Leu Gln Leu Glu Thr Ala Asp Ala Thr Cys Glu GluArg Lys Lys Arg Leu Gln Leu Glu Thr Ala Asp Ala Thr Cys Glu Glu
485 490 495 485 490 495
Ala Thr Arg Ala Ala Asp Asn Ala Ala Ala Val Leu Pro Leu Leu SerAla Thr Arg Ala Ala Asp Asn Ala Ala Ala Val Leu Pro Leu Leu Ser
500 505 510 500 505 510
Gln Ala AsnGln Ala Asn
515 515
<210> 4<210> 4
<211> 1548<211> 1548
<212> DNA<212> DNA
<213> 燕麦(Avena sativa L.)<213> Oats (Avena sativa L.)
<400> 4<400> 4
atggcggatc tacacttcct ggtcgtgccg ctggcggcgc agggccacat catccccatg 60atggcggatc tacacttcct ggtcgtgccg ctggcggcgc agggccacat catccccatg 60
gtggacgtgg cgcgcctcct cgccgcgcgt ggctcgcggg tcaccgtcgt caccacgccc 120gtggacgtgg cgcgcctcct cgccgcgcgt ggctcgcggg tcaccgtcgt caccacgccc 120
gtcaacgccg cgcgcaaccg ggccgccgtg gacggcgcca ggaaggcggg cctcgccgtc 180gtcaacgccg cgcgcaaccg ggccgccgtg gacggcgcca ggaaggcggg cctcgccgtc 180
gagctcctgg agctcccgtt ccccagcgcg cagctcggcc tgcctgaggg cctggaggcc 240gagctcctgg agctcccgtt ccccagcgcg cagctcggcc tgcctgaggg cctggaggcc 240
gtcgaccagc tgaacgggca gccacctgaa atctccatcg gcctcttcaa ggccatctgg 300gtcgaccagc tgaacgggca gccacctgaa atctccatcg gcctcttcaa ggccatctgg 300
accctggccg gaccgctgga ggagtacctc cgcgcgctgc cgcgcctgcc ggactgcctc 360accctggccg gaccgctgga ggagtacctc cgcgcgctgc cgcgcctgcc ggactgcctc 360
gtcgccgact tgtgcaaccc ttggacggcg ccggtctgcg agcgcctcgg catcccgagg 420gtcgccgact tgtgcaaccc ttggacggcg ccggtctgcg agcgcctcgg catcccgagg 420
ctggtgatgc actgcccgtc cgcctacttc cagctcgccg tgcaccgcct gaacgagcac 480ctggtgatgc actgcccgtc cgcctacttc cagctcgccg tgcaccgcct gaacgagcac 480
ggcgtgtacg gcggaggcgt cgaggactac gaccccacgc ctatcgaggt gccgggcttc 540ggcgtgtacg gcggaggcgt cgaggactac gaccccacgc ctatcgaggt gccgggcttc 540
cccgtgcgcg ccttcgggag caagaccacc atgcggggct tcttccagta ccccggcgtc 600cccgtgcgcg ccttcgggag caagaccacc atgcggggct tcttccagta ccccggcgtc 600
gagcaggagc accttgaagc gctccacgcc gaggccaccg ccgacggcct gctcttcaac 660gagcaggagc accttgaagc gctccacgcc gaggccaccg ccgacggcct gctcttcaac 660
agcttccgcg ccatcgaggc cgacttcctc gacgcctacg cggcggcgct cggcaagacg 720agcttccgcg ccatcgaggc cgacttcctc gacgcctacg cggcggcgct cggcaagacg 720
acgtgggccg tcgggccgac cgccttggtg aacgacacca ccaccaccac cgcctcctcg 780acgtgggccg tcgggccgac cgccttggtg aacgacacca ccaccaccac cgcctcctcg 780
aggtcgagca ccatcgtgtc gtggctcgac gcccggccgc cggactccgt gctgtacgtc 840aggtcgagca ccatcgtgtc gtggctcgac gcccggccgc cggactccgt gctgtacgtc 840
agcttcggca gcatctccct gctgtcggcg aagcagctgg cgaagctcgc ggacgggctg 900agcttcggca gcatctccct gctgtcggcg aagcagctgg cgaagctcgc ggacgggctg 900
gaggcgtcgg ggcggccgtt cgtgtgggcg atcaaggagg acaaggcgga cgcggcggtg 960gaggcgtcgg ggcggccgtt cgtgtgggcg atcaaggagg acaaggcgga cgcggcggtg 960
cggtcgcagc tggacgagga gggagggttc gaggcgcggg tcaaggacag gggcctcctg 1020cggtcgcagc tggacgagga gggagggttc gaggcgcggg tcaaggacag gggcctcctg 1020
gtgcgcgggt gggcgccgca ggtggccatc ctctcgcacc cggcggtggg cggcttcctc 1080gtgcgcgggt gggcgccgca ggtggccatc ctctcgcacc cggcggtggg cggcttcctc 1080
acgcactgcg gctggaacag cacgctggag gccctctcac acggcgtgcc ggcgctgacg 1140acgcactgcg gctggaacag cacgctggag gccctctcac acggcgtgcc ggcgctgacg 1140
tggcccacca acgccgacca gttctgcagc gagcaggtga tcgtggacgt cctcgacgtc 1200tggcccacca acgccgacca gttctgcagc gagcaggtga tcgtggacgt cctcgacgtc 1200
ggcgtcaggt ctggcgtcaa gatcccggcc ctgtacgtgc ccccggaggc cgagggggtg 1260ggcgtcaggt ctggcgtcaa gatcccggcc ctgtacgtgc ccccggaggc cgaggggggtg 1260
caggtggaga gcggcgacgt ggagagggcg atcgtggagc tgatggacgg cgggccggag 1320caggtggaga gcggcgacgt ggagagggcg atcgtggagc tgatggacgg cgggccggag 1320
ggagcggcga ggagggccag ggcaaggaag attgccgtgg aggccaaggc ggccatggag 1380ggagcggcga ggagggccag ggcaaggaag attgccgtgg aggccaaggc ggccatggag 1380
gaaggcggga cgtcgcactc cgacctaacg gacatgatcc gccatgtctc ggagctgtcc 1440gaaggcggga cgtcgcactc cgacctaacg gacatgatcc gccatgtctc ggagctgtcc 1440
aggaagaaga ggctccagct cgagacagcc gacgcgacct gtgaagaagc aacaagagca 1500aggaagaaga ggctccagct cgagacagcc gacgcgacct gtgaagaagc aacaagagca 1500
gcagacaacg ctgccgcagt actgcctcta ctgtcccaag ctaattaa 1548gcagacaacg ctgccgcagt actgcctcta ctgtcccaag ctaattaa 1548
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
atggcggatc tacacttcct 20atggcggatc tacacttcct 20
<210> 6<210> 6
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
ttaattagct tgggacagta ga 22ttaattagct tgggacagta ga 22
<210> 7<210> 7
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
atggttgcca gccgtgtga 19atggttgcca gccgtgtga 19
<210> 8<210> 8
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
ctagctaggc acctgctct 19ctagctaggc acctgctct 19
<210> 9<210> 9
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
gcccctggga tccccggaat tcatggcgga tctacacttc ct 42gcccctggga tccccggaat tcatggcgga tctacacttc ct 42
<210> 10<210> 10
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
cgatgcggcc gctcgagtcg acttaattag cttgggacag taga 44cgatgcggcc gctcgagtcg acttaattag cttggggacag taga 44
<210> 11<210> 11
<211> 41<211> 41
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
gcccctggga tccccggaat tcatggttgc cagccgtgtg a 41gcccctggga tccccggaat tcatggttgc cagccgtgtg a 41
<210> 12<210> 12
<211> 41<211> 41
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
cgatgcggcc gctcgagtcg acctagctag gcacctgctc t 41cgatgcggcc gctcgagtcg acctagctag gcacctgctc t 41
<210> 13<210> 13
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
tgtaaaacga cggccagt 18tgtaaaacga cggccagt 18
<210> 14<210> 14
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
caggaaacag ctatgacc 18caggaaacagctatgacc 18
<210> 15<210> 15
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
cagcaagtat atagcatggc c 21cagcaagtat atagcatggc c 21
<210> 16<210> 16
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
ggagctgcat gtgtcagagg 20ggagctgcat gtgtcagagg 20
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011251664.7A CN114480323B (en) | 2020-11-11 | 2020-11-11 | Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011251664.7A CN114480323B (en) | 2020-11-11 | 2020-11-11 | Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114480323A CN114480323A (en) | 2022-05-13 |
CN114480323B true CN114480323B (en) | 2023-10-13 |
Family
ID=81489776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011251664.7A Active CN114480323B (en) | 2020-11-11 | 2020-11-11 | Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114480323B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2268816A1 (en) * | 1996-10-21 | 1998-04-30 | Martina Baltrusch (Deceased) | Sterol glycosyl transferases |
WO2009041932A2 (en) * | 2007-06-25 | 2009-04-02 | Plant Bioscience Limited | Enzymes involved in triterpene synthesis |
GB201808617D0 (en) * | 2018-05-25 | 2018-07-11 | Plant Bioscience Ltd | Scaffold modification |
-
2020
- 2020-11-11 CN CN202011251664.7A patent/CN114480323B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2268816A1 (en) * | 1996-10-21 | 1998-04-30 | Martina Baltrusch (Deceased) | Sterol glycosyl transferases |
WO2009041932A2 (en) * | 2007-06-25 | 2009-04-02 | Plant Bioscience Limited | Enzymes involved in triterpene synthesis |
GB201808617D0 (en) * | 2018-05-25 | 2018-07-11 | Plant Bioscience Ltd | Scaffold modification |
Non-Patent Citations (1)
Title |
---|
Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins;Amorn Owatworakit 等;J Biol Chem .;第288卷(第6期);第3696-3704页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114480323A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moses et al. | Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata | |
Dai et al. | Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii | |
US9994883B2 (en) | Triterpenoid sapogenin production in plant and microbial cultures | |
Yin et al. | A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway | |
JP7455755B2 (en) | Method for increasing production of oxidosqualene, triterpenes, and/or triterpenoids, and host cells therefor | |
Srisawat et al. | Identification of oxidosqualene cyclases from the medicinal legume tree Bauhinia forficata: A step toward discovering preponderant α‐amyrin‐producing activity | |
Wang et al. | The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast | |
Yin et al. | Ginseng omics for ginsenoside biosynthesis | |
Xu et al. | Metabolome and transcriptome analysis reveals the transcriptional regulatory mechanism of triterpenoid saponin biosynthesis in soapberry (Sapindus mukorossi Gaertn.) | |
Han et al. | Cloning and characterization of oxidosqualene cyclases involved in taraxasterol, taraxerol and bauerenol triterpene biosynthesis in Taraxacum coreanum | |
Wen et al. | Transcription factors ZjMYB39 and ZjMYB4 regulate farnesyl diphosphate synthase-and squalene synthase-mediated triterpenoid biosynthesis in jujube | |
Rong et al. | Molecular cloning and functional analysis of squalene synthase 2 (SQS2) in Salvia miltiorrhiza Bunge | |
Chen et al. | Deciphering triterpenoid saponin biosynthesis by leveraging transcriptome response to methyl jasmonate elicitation in Saponaria vaccaria | |
CN116218799A (en) | CYP450 enzyme protein, coding gene and application of catalyzing the 16α hydroxylation of β-amyresinol | |
CN114807075B (en) | Glycosyltransferase PpUGT73E5 and its application in the synthesis of Chonglou saponin | |
Shiko et al. | Occurrence and conversion of progestogens and androgens are conserved in land plants | |
Xia et al. | Functional identification of AeHMGR gene involved in regulation of saponin biosynthesis in Aralia elata | |
Zhang et al. | Comparative transcriptome analysis and identification of candidate genes involved in cucurbitacin IIa biosynthesis in Hemsleya macrosperma | |
CN114480323B (en) | Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins | |
CN114480322B (en) | Oat glycosyltransferase AsUGT73E5 and its application in the synthesis of steroidal saponins | |
CN117844793A (en) | Application of oxidation squalene cyclization gene NiOSC2 in biosynthesis | |
Pu et al. | Discovery of unique CYP716C oxidase involved in pentacyclic triterpene biosynthesis from Camptotheca acuminata | |
CN115247159B (en) | Glycosyltransferases PpUGT80A33 and PpUGT80A34 of Polyphylla and their applications | |
Liu et al. | The triterpenoid saponin content difference is associated with the two type oxidosqualene cyclase gene copy numbers of Pulsatilla chinensis and Pulsatilla cernua | |
Hou et al. | Metabolic engineering of Saccharomyces cerevisiae for de novo dihydroniloticin production using novel CYP450 from neem (Azadirachta indica) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |