CN114479044B - Preparation and application of biodegradable functional hyperbranched polycarbonate compound - Google Patents
Preparation and application of biodegradable functional hyperbranched polycarbonate compound Download PDFInfo
- Publication number
- CN114479044B CN114479044B CN202210183152.4A CN202210183152A CN114479044B CN 114479044 B CN114479044 B CN 114479044B CN 202210183152 A CN202210183152 A CN 202210183152A CN 114479044 B CN114479044 B CN 114479044B
- Authority
- CN
- China
- Prior art keywords
- hyperbranched polycarbonate
- preparation
- functional
- cyclic carbonate
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000515 polycarbonate Polymers 0.000 title claims abstract description 30
- 239000004417 polycarbonate Substances 0.000 title claims abstract description 30
- 150000001875 compounds Chemical class 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000178 monomer Substances 0.000 claims abstract description 16
- 150000005676 cyclic carbonates Chemical class 0.000 claims abstract description 15
- 125000000524 functional group Chemical group 0.000 claims abstract description 9
- -1 mercapto alcohol compound Chemical class 0.000 claims abstract description 6
- 238000007151 ring opening polymerisation reaction Methods 0.000 claims abstract description 5
- 229940079593 drug Drugs 0.000 claims abstract description 3
- 239000003814 drug Substances 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 18
- VSTXCZGEEVFJES-UHFFFAOYSA-N 1-cycloundecyl-1,5-diazacycloundec-5-ene Chemical compound C1CCCCCC(CCCC1)N1CCCCCC=NCCC1 VSTXCZGEEVFJES-UHFFFAOYSA-N 0.000 claims description 6
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000000304 alkynyl group Chemical group 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- CHNUOJQWGUIOLD-NFZZJPOKSA-N epalrestat Chemical compound C=1C=CC=CC=1\C=C(/C)\C=C1/SC(=S)N(CC(O)=O)C1=O CHNUOJQWGUIOLD-NFZZJPOKSA-N 0.000 claims description 2
- 239000002685 polymerization catalyst Substances 0.000 claims description 2
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 claims description 2
- 238000013270 controlled release Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 238000005580 one pot reaction Methods 0.000 abstract description 3
- 238000011161 development Methods 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 33
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- 229920000587 hyperbranched polymer Polymers 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 6
- 229960000583 acetic acid Drugs 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 5
- 239000012362 glacial acetic acid Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 5
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 4
- 150000001540 azides Chemical class 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000002355 alkine group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000007040 multi-step synthesis reaction Methods 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
- C08G64/305—General preparatory processes using carbonates and alcohols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Inorganic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
本发明公开了生物可降解的功能性超支化聚碳酸酯化合物的制备及应用。所述的功能性超支化聚碳酸酯通过将环状碳酸酯类单体和巯基醇类化合物反应生成得到羟基化环状碳酸酯,然后与带有功能基团的环状碳酸酯开环聚合得到功能性超支化聚碳酸酯。本发明通过一锅法快速简便的获得功能化的聚碳酸酯,载药率高,具有高度支化的三维拓扑结构,有良好的生物相容性,合成路线简单,是一种开发更方便、更有效的制备功能性聚碳酸酯的方法。
The invention discloses the preparation and application of a biodegradable functional hyperbranched polycarbonate compound. The functional hyperbranched polycarbonate is obtained by reacting a cyclic carbonate monomer and a mercapto alcohol compound to obtain a hydroxylated cyclic carbonate, and then ring-opening polymerization with a cyclic carbonate with a functional group Functional hyperbranched polycarbonate. The present invention quickly and easily obtains functionalized polycarbonate through a one-pot method, has high drug loading rate, highly branched three-dimensional topological structure, good biocompatibility, simple synthetic route, and is a kind of more convenient development, A more efficient method for preparing functional polycarbonates.
Description
技术领域technical field
本发明涉及高分子材料制备方法及用途,特别涉及生物可降解的功能性超支化聚碳酸酯化合物制备方法及应用。The invention relates to a preparation method and application of a polymer material, in particular to a preparation method and application of a biodegradable functional hyperbranched polycarbonate compound.
背景技术Background technique
超支化聚合物(HBPs)是一种高度支化的三维网状分子,在过去的几十年中受到了广泛的关注。这种新型的超支化高分子聚合物由于其高度支化三维拓扑结构具有许多优异特性如单分散性、外围具有多反应位点、尺寸可控、重复性好等,已被广泛应用于药物递送领域。然而,超支化聚合物的制备需要繁琐的多步合成步骤,并且常见的超支化聚合物载体如超支化聚乙烯亚胺、超支化聚酰胺-胺等,普遍存在细胞毒性大、生物难降解等缺点。Hyperbranched polymers (HBPs), a type of highly branched three-dimensional network molecules, have received extensive attention in the past few decades. This new type of hyperbranched polymer has been widely used in drug delivery due to its highly branched three-dimensional topology with many excellent properties such as monodispersity, multiple reaction sites at the periphery, controllable size, and good repeatability. field. However, the preparation of hyperbranched polymers requires tedious multi-step synthesis steps, and common hyperbranched polymer carriers such as hyperbranched polyethyleneimine, hyperbranched polyamidoamine, etc., generally have high cytotoxicity and biodegradability. shortcoming.
为了克服以上缺点,越来越多研究人员致力于开发设计可生物降解超支化聚合物。此外,聚合物的可功能化也是一个重要方面,对于聚合物后续化学修饰和满足药物载体多功能性的需求具有重要意义。例如,陈学思等合成了含有炔基的丙交酯和碳酸酯共聚物微球,该微球与经过叠氮修饰的小牛血清白蛋白进行表面“Click”反应,得到表面接枝有BSA的聚合物微球。然而,功能性聚碳酸酯的合成总是涉及官能团的保护和脱保护,导致合成路线复杂且产率低。因此,开发更方便、更有效的制备功能性聚碳酸酯的方法仍然是一个活跃的研究领域。In order to overcome the above shortcomings, more and more researchers are devoting themselves to the development and design of biodegradable hyperbranched polymers. In addition, the functionalization of polymers is also an important aspect, which is of great significance for subsequent chemical modification of polymers and meeting the multifunctional requirements of drug carriers. For example, Chen Xuesi et al. synthesized lactide and carbonate copolymer microspheres containing alkyne groups. The surface "Click" reaction of the microspheres with azide-modified bovine serum albumin resulted in the polymerization of BSA grafted on the surface. object microspheres. However, the synthesis of functional polycarbonates always involves the protection and deprotection of functional groups, resulting in complex synthetic routes and low yields. Therefore, developing more convenient and efficient methods to prepare functional polycarbonates is still an active research area.
发明内容Contents of the invention
发明目的:本发明的目的是提供一种生物可降解的功能性超支化聚碳酸酯的制备方法。Purpose of the invention: the purpose of this invention is to provide a kind of preparation method of biodegradable functional hyperbranched polycarbonate.
技术方案:本发明通过将环状碳酸酯类单体和巯基醇类化合物反应生成得到羟基化环状碳酸酯,然后与带有功能基团的环状碳酸酯开环聚合得到功能化超支化聚碳酸酯。Technical solution: The present invention generates hydroxylated cyclic carbonates by reacting cyclic carbonate monomers with mercapto alcohols, and then ring-opening polymerizes with cyclic carbonates with functional groups to obtain functionalized hyperbranched polymers. Carbonate.
进一步地,所述环状碳酸酯类单体选自如下所示结构的化合物:Further, the cyclic carbonate monomer is selected from compounds with the following structures:
其中,R1选自H或者CH3,R2选自N3、炔基、ONO2、Br等。 Wherein, R 1 is selected from H or CH 3 , and R 2 is selected from N 3 , alkynyl, ONO 2 , Br and the like.
进一步地,所述巯基醇类化合物选自如下所示结构的化合物:Further, the mercapto alcohol compound is selected from compounds with the following structures:
其中,R3选自C2-C4烷基或C4-C8芳基。 Wherein, R 3 is selected from C2-C4 alkyl or C4-C8 aryl.
进一步地,开环聚合催化剂选自:1,8-二氮杂二环十一碳-7-烯(DBU)、辛酸亚锡(Sn(Oct)2)、4-二甲氨基吡啶(DMAP)或双(双三甲基硅基)胺锌(Zinc)。Further, the ring-opening polymerization catalyst is selected from: 1,8-diazabicycloundec-7-ene (DBU), stannous octoate (Sn(Oct) 2 ), 4-dimethylaminopyridine (DMAP) or zinc bis(bistrimethylsilyl)amine (Zinc).
所述的生物可降解的功能性超支化聚碳酸酯的制备方法,以优选的工艺条件为例,包括以下步骤:The preparation method of the described biodegradable functional hyperbranched polycarbonate, taking preferred process conditions as an example, comprises the following steps:
(1)环状碳酸酯类单体与一定比例巯基醇类化合物以二氯甲烷为溶剂,反应2-6h生成得到中间产物羟基化环状碳酸酯。(1) Cyclic carbonate monomers and a certain proportion of mercapto alcohol compounds are reacted for 2-6 hours with dichloromethane as a solvent to obtain intermediate product hydroxylated cyclic carbonates.
(2)继续在反应混合液中加入带有其他功能基团的环状碳酸酯和催化剂引发开环聚合,反应得到功能性超支化聚碳酸酯。(2) Continue to add cyclic carbonates and catalysts with other functional groups in the reaction mixture to initiate ring-opening polymerization, and react to obtain functional hyperbranched polycarbonate.
有益效果:本发明与现有技术相比,具有如下优势:Beneficial effect: compared with the prior art, the present invention has the following advantages:
该超支化聚碳酸酯的合成可通过一锅法合成直接得到带有功能基团的超支化聚碳酸酯,其合成过程简便方便,载药率高,具有高度支化的三维拓扑结构,有良好的生物相容性,代谢产物对人体无害。这种功能化聚碳酸酯可进一步和其他带有功能基团的化合物进行相应的化学反应,使其在药物递送和肿瘤治疗方面上具有重大应用前景。The synthesis of the hyperbranched polycarbonate can be directly synthesized by a one-pot method to obtain the hyperbranched polycarbonate with functional groups. The synthesis process is simple and convenient, and the drug loading rate is high. Biocompatibility, the metabolites are harmless to the human body. This functionalized polycarbonate can further undergo corresponding chemical reactions with other compounds with functional groups, making it have great application prospects in drug delivery and tumor treatment.
附图说明Description of drawings
图1为实施例1中叠氮化聚碳酸酯(HP(HAC-co-AEC),HAC∶AEC 2∶1)的氢核磁谱图;Fig. 1 is the proton nuclear magnetic spectrum of azide polycarbonate ( HP (HAC-co-AEC), HAC: AEC 2: 1) in embodiment 1;
图2为实施例1中叠氮化聚碳酸酯(HP(HAC-co-AEC),HAC∶AEC 2∶1)的红外谱图;Fig. 2 is the infrared spectrogram of azide polycarbonate ( HP (HAC-co-AEC), HAC: AEC 2: 1) in embodiment 1;
图3为实施例2中叠氮化聚碳酸酯(HP(HAC-co-AEC),HAC∶AEC 1∶1)的氢核磁谱图;Fig. 3 is the proton nuclear magnetic spectrum of azide polycarbonate ( HP (HAC-co-AEC), HAC: AEC 1: 1) in
图4为实施例3中叠氮化聚碳酸酯(HP(HAC-co-AEC),HAC∶AEC 1∶2)的氢核磁谱图。Fig. 4 is the H -NMR spectrum of the azide polycarbonate (HP(HAC-co-AEC), HAC:AEC 1:2) in Example 3.
具体实施方式Detailed ways
实施例1合成含有叠氮基团的超支化聚碳酸酯dPC(HAC∶AEC 2∶1)Embodiment 1 synthesizes hyperbranched polycarbonate dPC (HAC: AEC 2: 1) containing azide group
一锅法合成超支化聚碳酸酯One-pot Synthesis of Hyperbranched Polycarbonate
超支化HP(HAC-co-AEC)的合成:在手套箱中,将AC(1g,5mmol)单体溶解在10mL二氯甲烷中,加入密闭反应器里,然后加入巯基乙醇ME(l97.27mg,2.525mmol)和催化量的三乙胺,常温下反应4h。反应时间结束后,加入溶解在4mL二氯甲烷的AEC单体(427.9mg,2.5mmol)溶液,然后直接向反应液中加入催化剂DBU,接着把反应器密封好,转移出手套箱,放入50℃油浴中反应48h,反应结束后用2滴冰乙酸终止反应,在冰乙醚中进行沉淀,弃去上清液、收集底部透明的油状粘稠液体,真空干燥得到产物。核磁结果表明超支化聚合物中HAC单元和AEC单元的比例为10∶1。红外谱图如图2所示,在2100cm-1处的吸收峰为叠氮基团的特征峰。Synthesis of hyperbranched HP (HAC-co-AEC): In a glove box, AC (1g, 5mmol) monomer was dissolved in 10mL of dichloromethane, added to a closed reactor, and then mercaptoethanol ME (197. 27mg, 2.525mmol) and a catalytic amount of triethylamine, reacted at room temperature for 4h. After the reaction time finishes, add the AEC monomer (427.9mg, 2.5mmol) solution that is dissolved in 4mL dichloromethane, then directly add catalyst DBU in the reaction solution, then the reactor is sealed, transfer out glove box, put into 50 The reaction was carried out in an oil bath at ℃ for 48 hours. After the reaction was completed, the reaction was terminated with 2 drops of glacial acetic acid, precipitated in glacial ether, the supernatant was discarded, the transparent oily viscous liquid at the bottom was collected, and the product was obtained by vacuum drying. NMR results show that the ratio of HAC unit and AEC unit in the hyperbranched polymer is 10:1. The infrared spectrum is shown in Figure 2, the absorption peak at 2100cm -1 is the characteristic peak of the azide group.
实施例2合成含有叠氮基团的超支化聚碳酸酯dPC(HAC∶AEC 1∶1)Example 2 Synthesis of hyperbranched polycarbonate dPC (HAC: AEC 1: 1) containing azide group
超支化HP(HAC-co-AEC)的合成:在手套箱中,将AC(500mg,2.5mmol)单体溶解在8mL二氯甲烷中,加入密闭反应器里,然后加入巯基乙醇ME(394.5mg,5.05mmol)和催化量的三乙胺,常温下反应4h。反应时间结束后,加入溶解在4mL二氯甲烷的AEC单体(427.9mg,2.5mmol)溶液,然后直接向反应液中加入催化剂1,8-二氮杂二环十一碳-7-烯(DBU),接着把反应器密封好,转移出手套箱,放入50℃油浴中反应48h,反应结束后用2滴冰乙酸终止反应,在冰乙醚中进行沉淀,弃去上清液、收集底部透明的油状粘稠液体,真空干燥得到产物HP(HAC-co-AEC)。核磁结果表明超支化聚合物中HAC单元和AEC单元的比例为5∶2。Synthesis of hyperbranched HP (HAC-co-AEC): In a glove box, AC (500mg, 2.5mmol) monomer was dissolved in 8mL of dichloromethane, added to a closed reactor, and then mercaptoethanol ME (394.5 mg, 5.05mmol) and a catalytic amount of triethylamine were reacted at room temperature for 4h. After the reaction time ended, a solution of AEC monomer (427.9 mg, 2.5 mmol) dissolved in 4 mL of dichloromethane was added, and then directly to the reaction solution, catalyst 1,8-diazabicycloundecene-7-ene ( DBU), then seal the reactor well, transfer it out of the glove box, put it into an oil bath at 50°C for 48 hours, stop the reaction with 2 drops of glacial acetic acid after the reaction, precipitate in glacial ether, discard the supernatant, collect The transparent oily viscous liquid at the bottom was vacuum-dried to obtain the product HP (HAC-co-AEC). NMR results show that the ratio of HAC unit and AEC unit in the hyperbranched polymer is 5:2.
实施例3合成有叠氮基团的超支化聚碳酸酯dPC(HAC∶AEC 1∶2)Embodiment 3 synthesizes the hyperbranched polycarbonate dPC (HAC: AEC 1: 2) of azide group
超支化HP(HAC-co-AEC)的合成:在手套箱中,将AC(500mg,2.5mmol)单体溶解在8mL二氯甲烷中,加入密闭反应器里,然后加入巯基乙醇ME(394.5mg,5.05mmol)和催化量的三乙胺,常温下反应4h。反应时间结束后,加入溶解在8mL二氯甲烷的AEC单体(855.8mg,5mmol)溶液,然后直接向反应液中加入催化剂1,8-二氮杂二环十一碳-7-烯(DBU),接着把反应器密封好,转移出手套箱,放入50℃油浴中反应48h,反应结束后用2滴冰乙酸终止反应,在冰乙醚中进行沉淀,弃去上清液、收集底部透明的油状粘稠液体,真空干燥得到产物HP(HAC-co-AEC)。核磁结果表明超支化聚合物中HAC单元和AEC单元的比例为5∶4。Synthesis of hyperbranched HP (HAC-co-AEC): In a glove box, AC (500mg, 2.5mmol) monomer was dissolved in 8mL of dichloromethane, added to a closed reactor, and then mercaptoethanol ME (394.5 mg, 5.05mmol) and a catalytic amount of triethylamine were reacted at room temperature for 4h. After the reaction time finished, add the AEC monomer (855.8mg, 5mmol) solution that is dissolved in 8mL dichloromethane, then directly add catalyst 1,8-diazabicycloundec-7-ene (DBU ), then seal the reactor well, transfer it out of the glove box, and put it in an oil bath at 50°C for 48 hours. After the reaction, stop the reaction with 2 drops of glacial acetic acid, precipitate in glacial ether, discard the supernatant, and collect the bottom Transparent oily viscous liquid was dried in vacuum to obtain the product HP (HAC-co-AEC). NMR results show that the ratio of HAC unit and AEC unit in the hyperbranched polymer is 5:4.
实施例4合成含有硝酸酯基团的超支化聚碳酸酯dPC
超支化HP(HAC-co-NTC)的合成:在手套箱中,将AC(500mg,2.5mmol)单体溶解在8mL二氯甲烷中,加入密闭反应器里,然后加入巯基乙醇ME(394.5mg,5.05mmol)和催化量的三乙胺,常温下反应4h。反应时间结束后,加入溶解在10mL二氯甲烷的NTC单体(955mg,5mmol)溶液,然后直接向反应液中加入催化剂1,8-二氮杂二环十一碳-7-烯(DBU),接着把反应器密封好,转移出手套箱,放入50℃油浴中反应48h,反应结束后用2滴冰乙酸终止反应,在冰乙醚中进行沉淀,弃去上清液、收集底部透明的油状粘稠液体,真空干燥得到产物HP(HAC-co-NTC)。Synthesis of hyperbranched HP (HAC-co-NTC): In the glove box, AC (500mg, 2.5mmol) monomer was dissolved in 8mL dichloromethane, added to the closed reactor, and then mercaptoethanol ME (394.5 mg, 5.05mmol) and a catalytic amount of triethylamine were reacted at room temperature for 4h. After the reaction time ended, a solution of NTC monomer (955 mg, 5 mmol) dissolved in 10 mL of dichloromethane was added, and then the catalyst 1,8-diazabicycloundec-7-ene (DBU) was added directly to the reaction solution , then seal the reactor well, transfer it out of the glove box, and put it in an oil bath at 50°C for 48 hours. After the reaction, terminate the reaction with 2 drops of glacial acetic acid, precipitate in glacial ether, discard the supernatant, and collect the bottom transparent The oily viscous liquid was dried under vacuum to obtain the product HP (HAC-co-NTC).
实施例5合成含有溴官能基团的超支化聚碳酸酯dPCEmbodiment 5 synthesis contains the hyperbranched polycarbonate dPC of bromine functional group
超支化HP(HAC-co-BTC)的合成:在手套箱中,将AC(500mg,2.5mmol)单体溶解在8mL二氯甲烷中,加入密闭反应器里,然后加入巯基乙醇ME(394.5mg,5.05mmol)和催化量的三乙胺,常温下反应4h。反应时间结束后,加入溶解在10mL二氯甲烷的BTC单体(1.045g,5mmol)溶液,然后直接向反应液中加入催化剂1,8-二氮杂二环十一碳-7-烯(DBU),接着把反应器密封好,转移出手套箱,放入50℃油浴中反应48h,反应结束后用2滴冰乙酸终止反应,在冰乙醚中进行沉淀,弃去上清液、收集底部透明的油状粘稠液体,真空干燥得到产物HP(HAC-co-BTC)。Synthesis of hyperbranched HP (HAC-co-BTC): In a glove box, AC (500mg, 2.5mmol) monomer was dissolved in 8mL of dichloromethane, added to a closed reactor, and then mercaptoethanol ME (394.5 mg, 5.05mmol) and a catalytic amount of triethylamine were reacted at room temperature for 4h. After the reaction time finished, add the BTC monomer (1.045g, 5mmol) solution that is dissolved in 10mL dichloromethane, then directly add catalyst 1,8-diazabicycloundec-7-ene (DBU ), then seal the reactor well, transfer it out of the glove box, and put it in an oil bath at 50°C for 48 hours. After the reaction, stop the reaction with 2 drops of glacial acetic acid, precipitate in glacial ether, discard the supernatant, and collect the bottom The transparent oily viscous liquid was dried in vacuum to obtain the product HP (HAC-co-BTC).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210183152.4A CN114479044B (en) | 2022-02-24 | 2022-02-24 | Preparation and application of biodegradable functional hyperbranched polycarbonate compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210183152.4A CN114479044B (en) | 2022-02-24 | 2022-02-24 | Preparation and application of biodegradable functional hyperbranched polycarbonate compound |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114479044A CN114479044A (en) | 2022-05-13 |
CN114479044B true CN114479044B (en) | 2023-05-23 |
Family
ID=81484919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210183152.4A Active CN114479044B (en) | 2022-02-24 | 2022-02-24 | Preparation and application of biodegradable functional hyperbranched polycarbonate compound |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114479044B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111303397A (en) * | 2020-03-05 | 2020-06-19 | 中国药科大学 | A kind of biodegradable hyperbranched zwitterionic polycarbonate and its application |
CN113583229A (en) * | 2021-07-12 | 2021-11-02 | 青岛科技大学 | Preparation method of degradable hyperbranched aliphatic polycarbonate |
-
2022
- 2022-02-24 CN CN202210183152.4A patent/CN114479044B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111303397A (en) * | 2020-03-05 | 2020-06-19 | 中国药科大学 | A kind of biodegradable hyperbranched zwitterionic polycarbonate and its application |
CN113583229A (en) * | 2021-07-12 | 2021-11-02 | 青岛科技大学 | Preparation method of degradable hyperbranched aliphatic polycarbonate |
Non-Patent Citations (4)
Title |
---|
Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers;Chen, Wei;《Journal of controlled release》;第190卷;全文 * |
Hyperbranched thermolabile polycarbonates derived from a A2+B3 monomer system;Arnulf Scheel;《Macromolecular symposium》;全文 * |
Synthesis of Aliphatic Hyperbranched Polycarbonates via Organo-Catalyzed "A1+B2"-Ring-Opening Polymerization;Chengliang Wang;《Macromolecules》;第55卷(第3期);全文 * |
功能性生物可降解聚碳酸酯的设计合成;陈维;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》(第1期);B016-329 * |
Also Published As
Publication number | Publication date |
---|---|
CN114479044A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chujo et al. | Synthesis and redox gelation of disulfide-modified polyoxazoline | |
CN103642050A (en) | Dendritic polymer with POSS group and preparation method thereof | |
JPH1171519A (en) | Composition containing network structure based on dendrimer containing hydrophilic and hydrophobic nanoscopic domains | |
CN112812045B (en) | A kind of onium salt organic catalyst and its preparation method and application | |
CN114308120B (en) | A phosphine salt amphiphilic bifunctional organic catalyst and its preparation method and application | |
Lazarov et al. | Synthesis and Structural Characterization of β‐Diketiminato Yttrium Complexes and their Application in Epoxide/CO2‐Copolymerization | |
JP4590284B2 (en) | Method for producing polycarbonate | |
JPH0320331A (en) | Method for producing solvent-soluble polyorganosilsesquioxane | |
CN114479044B (en) | Preparation and application of biodegradable functional hyperbranched polycarbonate compound | |
Luleburgaz et al. | Modification of polyketone via chlorodimethylsilane-mediated reductive etherification reaction: A practical way for alkoxy-functional polymers | |
JP3793461B2 (en) | Method for polymerizing silalkylenesiloxane | |
CN103467742B (en) | Polyvinylene sulfide and preparation method thereof | |
Matsumoto et al. | Synthesis and properties of aromatic polyamide dendrimers with polyhedral oligomeric silsesquioxane cores | |
CN113683767B (en) | Polyalkylether compound and preparation method and application thereof | |
CN102898635A (en) | Amphipathic high polymer material and method for preparing same | |
CN112029084B (en) | Simple and controllable method for synthesizing alpha-mercapto-omega-hydroxyl polyether by taking thiocarboxylic acid as initiator | |
Smitha et al. | Heterogeneous dendronized polymer with peripheral copper moieties: From synthesis to catalysis and comparison with dendrigraft polymer | |
Sánchez-Barba et al. | Synthesis, structures and ring-opening polymerization studies of new zinc chloride and amide complexes supported by amidinate heteroscorpionate ligands | |
CN107383348A (en) | Single selenide polymer and preparation method thereof | |
US11987550B2 (en) | Method for preparing crosslinker compound | |
JP2011190367A (en) | Aliphatic polycarbonate and method for producing the same | |
Hermanová et al. | Novel triazole-based aluminum complex for ring-opening polymerization of lactones | |
Kandpal et al. | Studies on the synthesis and reaction of silicone oxirane dendrimer and their thermal and rheological properties | |
CN111491912B (en) | Method for producing acrylate compound | |
Manokhina et al. | Synthesis of Siloxane Derivatives of Phenylboronic Acids of Different Structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |