[go: up one dir, main page]

CN114464502B - DC contactor - Google Patents

DC contactor Download PDF

Info

Publication number
CN114464502B
CN114464502B CN202210017404.6A CN202210017404A CN114464502B CN 114464502 B CN114464502 B CN 114464502B CN 202210017404 A CN202210017404 A CN 202210017404A CN 114464502 B CN114464502 B CN 114464502B
Authority
CN
China
Prior art keywords
contact
direct current
arc
arc extinguishing
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210017404.6A
Other languages
Chinese (zh)
Other versions
CN114464502A (en
Inventor
蔡舜尧
邓子鸣
马成
冉小可
郭威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Digital Power Technologies Co Ltd
Original Assignee
Huawei Digital Power Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Digital Power Technologies Co Ltd filed Critical Huawei Digital Power Technologies Co Ltd
Priority to CN202210017404.6A priority Critical patent/CN114464502B/en
Publication of CN114464502A publication Critical patent/CN114464502A/en
Application granted granted Critical
Publication of CN114464502B publication Critical patent/CN114464502B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/14Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/546Contact arrangements for contactors having bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

本申请提供了一种直流接触器,在直流接触器工作的过程中,任意一个电磁装置可控制任意一个触桥运动,从而使得任意一个触桥的第一动触头与至少两个直流输入静触头中的任意一个直流输入静触头接触/分离,且第二动触头与至少两个直流输出端子中任意一个直流输出端子的直流输出静触头接触/分离,这时已导通或者断开任意一路高压直流电路。在断开任意一路高压直流电路的过程中,任意一个灭弧栅可对不同动触头和静触头分离时产生的电弧进行灭弧,从而实现独立控制至少两路高压直流电路导通或者断开的目的。基于本申请,在独立控制至少两路高压直流电路导通或者断开的同时可实现灭弧,进而提高了直流接触器的稳定性和安全性,适用性强。

The present application provides a DC contactor. During the operation of the DC contactor, any electromagnetic device can control the movement of any contact bridge, so that the first moving contact of any contact bridge contacts/separates with any one of the at least two DC input static contacts, and the second moving contact contacts/separates with the DC output static contact of any one of the at least two DC output terminals. At this time, any high-voltage DC circuit is turned on or off. In the process of disconnecting any high-voltage DC circuit, any arc extinguishing grid can extinguish the arc generated when different moving contacts and static contacts are separated, thereby achieving the purpose of independently controlling the conduction or disconnection of at least two high-voltage DC circuits. Based on the present application, arc extinguishing can be achieved while independently controlling the conduction or disconnection of at least two high-voltage DC circuits, thereby improving the stability and safety of the DC contactor, and having strong applicability.

Description

直流接触器DC contactor

技术领域Technical Field

本申请涉及电子电力技术领域,尤其涉及一种直流接触器。The present application relates to the field of electronic power technology, and in particular to a DC contactor.

背景技术Background technique

直流接触器一般应用于直流电路中,该直流电路还包括电源和负载,电源通过直流接触器连接负载,其中,直流接触器中包括电磁线圈、传动机构、弹簧、动触头以及静触头,电磁线圈在通电之后会产生磁场,该电磁线圈产生的磁场作用于传动机构,驱动传动机构运动使动触头与静触头闭合以导通直流电路;电磁线圈在断电之后,弹簧的反作用力作用于传动机构,驱动传动机构运动使动触头与静触头分开以断开直流电路。本申请的发明人在研究和实践过程中发现,在高压电流(如几百安的电流)流过直流接触器时,动触头与静触头分开时会产生电弧,产生的电弧可能烧蚀触头,从而导致直流接触器无法导通或者断开直流电路,直流接触器的稳定性低,安全性差,适用性差。A DC contactor is generally used in a DC circuit, which also includes a power supply and a load. The power supply is connected to the load through the DC contactor, wherein the DC contactor includes an electromagnetic coil, a transmission mechanism, a spring, a moving contact and a static contact. The electromagnetic coil generates a magnetic field after being energized. The magnetic field generated by the electromagnetic coil acts on the transmission mechanism, driving the transmission mechanism to move so that the moving contact and the static contact are closed to conduct the DC circuit; after the electromagnetic coil is powered off, the reaction force of the spring acts on the transmission mechanism, driving the transmission mechanism to move so that the moving contact and the static contact are separated to disconnect the DC circuit. The inventor of the present application has found in the process of research and practice that when a high voltage current (such as a current of several hundred amperes) flows through the DC contactor, an arc is generated when the moving contact and the static contact are separated. The generated arc may burn the contact, thereby causing the DC contactor to be unable to conduct or disconnect the DC circuit, and the DC contactor has low stability, poor safety, and poor applicability.

发明内容Summary of the invention

本申请提供了一种直流接触器,在独立控制至少两路高压直流电路导通或者断开的同时可实现灭弧,进而提高了直流接触器的稳定性和安全性,适用性强。The present application provides a DC contactor that can achieve arc extinguishing while independently controlling at least two high-voltage DC circuits to be turned on or off, thereby improving the stability and safety of the DC contactor and having strong applicability.

第一方面,本申请提供了一种直流接触器,该直流接触器中包括直流输入端子、至少两个直流输出端子、至少两个电磁装置、至少两个触桥以及至少两个灭弧栅,该电磁装置中的具体结构可由直流接触器的具体类型决定,该直流接触器的具体类型可包括但不限于磁保持接触器、常开接触器或者常闭接触器。其中,上述直流输入端子的一端设置有至少两个直流输入静触头,上述直流输入端子的另一端可用于连接直流输入模块,上述至少两个直流输出端子中每个直流输出端子的一端设置有直流输出静触头,每个直流输出端子的另一端可用于连接直流输出模块,上述至少两个触桥中每个触桥上设置有第一动触头和第二动触头。这里的直流输入模块是指为直流接触器提供输入电流的一个或者多个功能模块,该直流输出模块是指直流接触器提供输出电流的一个或者多个功能模块。由于每一个直流输出端子的另一端都会连接一个直流输出模块,因此存在至少两个直流输出模块。这里的至少两个直流输入静触头的数量、至少两个直流输出端子的数量、至少两个电磁装置的数量、至少两个触桥的数量以及至少两个直流输出模块的数量相同。其中,上述直流输入模块、直流接触器以及至少两个直流输出模块中的任意一个直流输出模块可构成任意一路高压直流电路,也就是说,上述直流输入模块、直流接触器以及至少两个直流输出模块可构成至少两路高压直流电路。In the first aspect, the present application provides a DC contactor, which includes a DC input terminal, at least two DC output terminals, at least two electromagnetic devices, at least two contact bridges and at least two arc extinguishing grids. The specific structure of the electromagnetic device can be determined by the specific type of the DC contactor, and the specific type of the DC contactor may include but is not limited to a magnetic holding contactor, a normally open contactor or a normally closed contactor. Among them, one end of the DC input terminal is provided with at least two DC input static contacts, and the other end of the DC input terminal can be used to connect a DC input module. One end of each of the at least two DC output terminals is provided with a DC output static contact, and the other end of each DC output terminal can be used to connect a DC output module. Each of the at least two contact bridges is provided with a first moving contact and a second moving contact. The DC input module here refers to one or more functional modules that provide input current for the DC contactor, and the DC output module refers to one or more functional modules that provide output current for the DC contactor. Since the other end of each DC output terminal is connected to a DC output module, there are at least two DC output modules. Here, the number of at least two DC input static contacts, the number of at least two DC output terminals, the number of at least two electromagnetic devices, the number of at least two contact bridges, and the number of at least two DC output modules are the same. The DC input module, the DC contactor, and any one of the at least two DC output modules can constitute any one high-voltage DC circuit, that is, the DC input module, the DC contactor, and the at least two DC output modules can constitute at least two high-voltage DC circuits.

在直流接触器工作的过程中,上述至少两个电磁装置中一个电磁装置可用于控制至少两个触桥中的一个触桥运动。其中,至少两个电磁装置中的任意一个电磁装置可控制任意一个触桥向至少两个直流输入静触头中的任意一个直流输入静触头和至少两个直流输出端子中任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触,且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通任意一路高压直流电路(即任意一路高压直流电路处于导通状态),进而可实现独立控制至少两路高压直流电路导通的目的。可选的,任意一个电磁装置还可控制任意一个触桥向远离任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离,且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开任意一路高压直流电路(即任意一路高压直流电路处于断开状态),进而可实现独立控制至少两路高压直流电路断开的目的。可以理解,至少两路高压直流电路中的任意一路高压直流电路可处于导通状态或者断开状态,也就是说,至少两路高压直流电路可同时处于导通状态或者断开状态,或者,至少两路高压直流电路中的一部分高压直流电路处于导通状态,同时至少两路高压直流电路中的另一部分高压直流电路处于断开状态,因此该直流接触器可实现独立控制至少两路高压直流电路导通或者断开的目的。During the operation of the DC contactor, one of the at least two electromagnetic devices can be used to control the movement of one of the at least two contact bridges. Among them, any one of the at least two electromagnetic devices can control any one of the contact bridges to move in the direction of any one of the at least two DC input static contacts and any one of the at least two DC output terminals. The first moving contact of any one of the contact bridges contacts with any one of the DC input static contacts, and the second moving contact of any one of the contact bridges contacts with the DC output static contact of any one of the DC output terminals. At this time, any one of the high-voltage DC circuits is turned on (that is, any one of the high-voltage DC circuits is in the on state), thereby achieving the purpose of independently controlling the conduction of at least two high-voltage DC circuits. Optionally, any electromagnetic device can also control any contact bridge to move in a direction away from any DC input static contact and any DC output static contact of any DC output terminal, so that the first moving contact of any contact bridge is separated from any DC input static contact, and the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal. At this time, any high-voltage DC circuit has been disconnected (that is, any high-voltage DC circuit is in a disconnected state), thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits. It can be understood that any one of the at least two high-voltage DC circuits can be in a conducting state or a disconnected state, that is, at least two high-voltage DC circuits can be in a conducting state or a disconnected state at the same time, or a part of the at least two high-voltage DC circuits is in a conducting state, and at the same time, another part of the at least two high-voltage DC circuits is in a disconnected state, so the DC contactor can achieve the purpose of independently controlling the conduction or disconnection of at least two high-voltage DC circuits.

在断开任意一路高压直流电路的过程中,上述至少两个灭弧栅中任意一个灭弧栅可用于对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧进行灭弧,并对任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时产生的电弧进行灭弧。可以得到,至少两个灭弧栅可对断开至少两路高压直流电路的过程中所产生的电弧进行灭弧,从而可避免烧蚀动触头和静触头,提高了直流接触器的稳定性和安全性,延长了直流接触器的使用寿命。在本申请中,可通过至少两个直流输入静触头、直流输出端子(及其直流输出静触头)、电磁装置以及触桥(及其动触头)来实现独立控制至少两路高压直流电路导通或者断开的目的;进一步地,通过至少两个灭弧栅对断开至少两路高压直流电路的过程中所产生的电弧进行灭弧,从而可避免烧蚀动触头和静触头,进而提高了直流接触器的稳定性和安全性,并且延长了直流接触器的使用寿命。另外,上述直流接触器中的至少两个直流输出端子共用同一个直流输入端子,也就是说,无需针对每个直流输出端子设置一个直流输入端子,从而减小了直流接触器的整体体积,同时也降低了直流接触器的接线复杂度,结构更加简单;由于一个直流接触器就可以导通或者断开至少两路高压直流电路,因此可有效节省直流接触器所占用的空间以及成本,安装更加方便,直流接触器的工作效率高,适用性强。In the process of disconnecting any high-voltage DC circuit, any one of the at least two arc-extinguishing grids can be used to extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and to extinguish the arc generated when the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal. It can be obtained that at least two arc-extinguishing grids can extinguish the arc generated in the process of disconnecting at least two high-voltage DC circuits, thereby avoiding the burning of moving contacts and static contacts, improving the stability and safety of the DC contactor, and extending the service life of the DC contactor. In the present application, the purpose of independently controlling the conduction or disconnection of at least two high-voltage DC circuits can be achieved through at least two DC input static contacts, DC output terminals (and DC output static contacts), electromagnetic devices, and contact bridges (and their moving contacts); further, the arc generated in the process of disconnecting at least two high-voltage DC circuits can be extinguished through at least two arc-extinguishing grids, thereby avoiding the burning of moving contacts and static contacts, thereby improving the stability and safety of the DC contactor, and extending the service life of the DC contactor. In addition, at least two DC output terminals in the above-mentioned DC contactor share the same DC input terminal, that is, there is no need to set a DC input terminal for each DC output terminal, thereby reducing the overall volume of the DC contactor, and also reducing the wiring complexity of the DC contactor, and the structure is simpler; since one DC contactor can turn on or off at least two high-voltage DC circuits, the space and cost occupied by the DC contactor can be effectively saved, the installation is more convenient, and the DC contactor has high working efficiency and strong applicability.

结合第一方面,在第一种可能的实施方式中,上述任意一个灭弧栅可设置于任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头之间,其中,任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头可用于接触同一个触桥(如上述任意一个触桥)的第一动触头和第二动触头。这里的灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,其中,多个金属栅片可同时对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧、以及任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时产生的电弧进行分割从而达到灭弧的目的,也就是说,任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头共用任意一个灭弧栅进行灭弧,提升了灭弧效率,并且减少了直流接触器中使用灭弧栅的数量,成本更低;另外,该灭弧栅的放置方式可有效利用直流输入静触头和直流输出静触头之间的空间,从而减小了直流接触器的整体体积,适用性更强。In combination with the first aspect, in a first possible implementation manner, any one of the above-mentioned arc extinguishing grids can be arranged between any one of the DC input static contacts and any one of the DC output static contacts of the DC output terminal, wherein any one of the DC input static contacts and any one of the DC output static contacts of the DC output terminal can be used to contact the first moving contact and the second moving contact of the same contact bridge (such as any one of the above-mentioned contact bridges). The arc extinguishing grid here can be composed of multiple metal grids made of magnetic materials (which can be simply referred to as multiple metal grids), wherein the multiple metal grids can simultaneously divide the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and the arc generated when the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal, so as to achieve the purpose of arc extinguishing. That is to say, any DC input static contact and any DC output static contact of any DC output terminal share any arc extinguishing grid for arc extinguishing, which improves the arc extinguishing efficiency and reduces the number of arc extinguishing grids used in the DC contactor, which is lower in cost. In addition, the placement method of the arc extinguishing grid can effectively utilize the space between the DC input static contact and the DC output static contact, thereby reducing the overall volume of the DC contactor and making it more applicable.

结合第一方面第一种可能的实施方式,在第二种可能的实施方式中,上述任意一个灭弧栅中包括第一栅片组、第二栅片组以及绝缘隔板,其中,该第一栅片组可朝向上述任意一个直流输入静触头,也就是说,该第一栅片组包括上述多个金属栅片中朝向任意一个直流输入静触头一侧的所有金属栅片;该第二栅片组可朝向上述任意一个直流输出端子的直流输出静触头,也就是说,该第二栅片组包括上述多个金属栅片中朝向任意一个直流输出端子的直流输出静触头一侧的所有金属栅片。可以理解,由于任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头共用任意一个灭弧栅进行灭弧,且任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头相对设置,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板(即由绝缘材料制成的绝缘平板)进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,并且延长了灭弧栅的使用寿命,适用性更强。In combination with the first possible implementation manner of the first aspect, in a second possible implementation manner, any of the above-mentioned arc extinguishing grids includes a first grid group, a second grid group and an insulating partition, wherein the first grid group may face any of the above-mentioned DC input static contacts, that is, the first grid group includes all the metal grids facing the side of any DC input static contact among the above-mentioned multiple metal grids; the second grid group may face the DC output static contact of any of the above-mentioned DC output terminals, that is, the second grid group includes all the metal grids facing the side of the DC output static contact of any DC output terminal among the above-mentioned multiple metal grids. It can be understood that since any DC input static contact and any DC output static contact of any DC output terminal share any arc extinguishing grid for arc extinguishing, and any DC input static contact and any DC output static contact of any DC output terminal are arranged relatively to each other, there is a risk of circuit short circuit caused by arc blowing. Therefore, an insulating partition (that is, an insulating plate made of insulating material) is arranged between the first grid group and the second grid group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blowing, which is safer, extends the service life of the arc extinguishing grid, and has stronger applicability.

结合第一方面第二种可能的实施方式,在第三种可能的实施方式中,上述直流接触器还包括多个第一塑料壳体,该多个第一塑料壳体中每个第一塑料壳体内嵌入有第一磁块。其中,上述任意一个直流输入静触头的两侧设置有多个第一塑料壳体中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第一塑料壳体相对设置于上述任意一个直流输入静触头的两侧。上述任意两个第一塑料壳体中的第一磁块平行设置,且两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第一动触头与任意一个直流输入静触头分离时会产生电弧,此时任意两个第一塑料壳体中的第一磁块产生的磁场力可将产生的电弧吹向任意一个灭弧栅的第一栅片组,使得任意一个灭弧栅的第一栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向第一栅片组),从而提升了灭弧效率,适用性更强。In combination with the second possible implementation of the first aspect, in a third possible implementation, the DC contactor further includes a plurality of first plastic shells, each of which has a first magnetic block embedded therein. Any two of the plurality of first plastic shells are disposed on both sides of any one of the DC input static contacts, and the two first plastic shells are disposed opposite to each other. In other words, the two first plastic shells are disposed opposite to each other on both sides of any one of the DC input static contacts. The first magnetic blocks in the two first plastic shells are disposed in parallel, and the placement of the first magnetic blocks in the two first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the first moving contact of any of the above-mentioned contact bridges is separated from any DC input static contact, an arc will be generated. At this time, the magnetic field force generated by the first magnetic blocks in any two first plastic shells can blow the generated arc to the first grid group of any arc extinguishing grid, so that the first grid group of any arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (i.e. blowing the arc to the first grid group) through the first magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

结合第一方面第三种可能的实施方式,在第四种可能的实施方式中,上述每个第一塑料壳体内嵌入有垂直放置的两个第一磁块,且每个第一塑料壳体中两个第一磁块垂直相交的一端设置有隔磁材料。本申请可以将每个第一塑料壳体中用于隔离两个第一磁块产生的磁场力的材料统称为隔磁材料,例如,该隔磁材料可包括但不限于高导磁率的软磁性材料。上述每个第一塑料壳体中的两个第一磁块分别朝向任意一个直流输入静触头与其相邻的直流输入静触头,也就是说,两个第一磁块中的一个第一磁块朝向任意一个直流输入静触头,两个第一磁块中的另一个第一磁块朝向至少两个直流输入静触头中与任意一个直流输入静触头相邻的直流输入静触头。可以理解,由于隔磁材料可避免每个第一塑料壳体中的两个第一磁块的磁场力相互影响,因此每个第一塑料壳体中的一个第一磁块产生的磁场力可用于实现对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧的定向吹弧,每个第一塑料壳体中的另一个第一磁块可用于实现对任意一个触桥相邻的触桥的第一动触头与任意一个直流输入静触头相邻的直流输入静触头分离时产生的电弧的定向吹弧,也就是说,每个第一塑料壳体中的两个第一磁块产生的磁场力可分别实现不同方向的电弧的定向吹弧,吹弧效率更高,并且节省了直流接触器的内部空间,适用性更强。In combination with the third possible implementation manner of the first aspect, in a fourth possible implementation manner, two vertically placed first magnetic blocks are embedded in each of the above-mentioned first plastic shells, and a magnetic isolation material is provided at one end of each first plastic shell where the two first magnetic blocks intersect vertically. In the present application, the materials used to isolate the magnetic field force generated by the two first magnetic blocks in each first plastic shell may be collectively referred to as magnetic isolation materials. For example, the magnetic isolation material may include but is not limited to soft magnetic materials with high magnetic permeability. The two first magnetic blocks in each of the above-mentioned first plastic shells are respectively oriented toward any one of the DC input static contacts and the DC input static contact adjacent to it, that is, one of the two first magnetic blocks is oriented toward any one of the DC input static contacts, and the other of the two first magnetic blocks is oriented toward a DC input static contact adjacent to any one of the at least two DC input static contacts. It can be understood that since the magnetic isolation material can prevent the magnetic field forces of the two first magnetic blocks in each first plastic shell from influencing each other, the magnetic field force generated by one of the first magnetic blocks in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and the other first magnetic block in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge adjacent to the contact bridge is separated from the DC input static contact adjacent to any DC input static contact. In other words, the magnetic field forces generated by the two first magnetic blocks in each first plastic shell can respectively achieve directional arc blowing of arcs in different directions, with higher arc blowing efficiency, saving the internal space of the DC contactor, and greater applicability.

结合第一方面第二种可能的实施方式至第一方面第四种可能的实施方式中任一种,在第五种可能的实施方式中,上述直流接触器还包括多个第二塑料壳体,多个第二塑料壳体中每个第二塑料壳体内嵌入有第二磁块。其中,上述任意一个直流输出端子的直流输出静触头的两侧设置有多个第二塑料壳体中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输出端子的直流输出静触头的两侧。上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时会产生电弧,此时任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向任意一个灭弧栅的第二栅片组,使得任意一个灭弧栅的第二栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向第二栅片组),从而提升了灭弧效率,适用性更强。In combination with any one of the second possible implementation of the first aspect to the fourth possible implementation of the first aspect, in a fifth possible implementation, the DC contactor further includes a plurality of second plastic shells, and a second magnetic block is embedded in each of the plurality of second plastic shells. Wherein, any two second plastic shells from the plurality of second plastic shells are arranged on both sides of the DC output static contact of any one of the DC output terminals, and any two second plastic shells are arranged oppositely. In other words, any two second plastic shells are arranged oppositely on both sides of the DC output static contact of any one of the DC output terminals. The second magnetic blocks in any two second plastic shells are arranged in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the second moving contact of any of the above-mentioned contact bridges is separated from the DC output static contact of any DC output terminal, an arc will be generated. At this time, the magnetic field force generated by the second magnetic blocks in any two first plastic shells can blow the generated arc to the second grid group of any arc extinguishing grid, so that the second grid group of any arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (i.e. blowing the arc to the second grid group) through the second magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

结合第一方面,在第六种可能的实施方式中,上述至少两个灭弧栅中包括至少一个第一灭弧栅和至少两个第二灭弧栅,其中,该至少一个第一灭弧栅中的任意一个第一灭弧栅和至少两个第二灭弧栅中的任意一个第二灭弧栅分别设置于任意一个触桥(即同一个触桥)的两端,任意一个第一灭弧栅可设置于任意一个触桥与至少两个触桥中的另一个触桥之间,且任意一个触桥与另一个触桥相对设置,换言之,任意一个触桥与另一个触桥相对设置于任意一个第一灭弧栅的两侧。同时,上述任意一个第一灭弧栅设置于任意一个直流输入静触头朝向电磁装置的一侧,由于任意一个直流输入静触头用于与任意一个触桥的第一动触头接触,因此该任意一个第一灭弧栅设置于任意一个触桥的第一动触头所在的一侧,而任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧。其中,任意一个第一灭弧栅可用于对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧、以及另一个触桥的第一动触头与至少两个直流输入静触头中的另一个直流输入静触头分离时产生的电弧进行灭弧,且任意一个直流输入静触头和另一个直流输入静触头相对设置。上述任意一个第二灭弧栅可用于对任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时产生的电弧进行灭弧。这里的第一灭弧栅和第二灭弧栅均可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成。可以理解,可分开设置第一灭弧栅和第二灭弧栅对不同的动触头(如第一动触头或者第二动触头)与静触头(如直流输入静触头或者直流输出静触头)分离时产生的电弧进行灭弧,灭弧效率更高;另外,该第一灭弧栅和第二灭弧栅的放置方式可有效利用任意一个触桥两端的空间,从而减小了直流接触器的整体体积,适用性更强。In combination with the first aspect, in a sixth possible implementation, the at least two arc extinguishing grids include at least one first arc extinguishing grid and at least two second arc extinguishing grids, wherein any one of the at least one first arc extinguishing grid and any one of the at least two second arc extinguishing grids are respectively arranged at both ends of any one contact bridge (i.e., the same contact bridge), and any one first arc extinguishing grid can be arranged between any one contact bridge and another one of the at least two contact bridges, and any one contact bridge is arranged opposite to another contact bridge, in other words, any one contact bridge is arranged opposite to another contact bridge on both sides of any one first arc extinguishing grid. At the same time, any one of the first arc extinguishing grids is arranged on the side of any one DC input static contact facing the electromagnetic device, and since any one DC input static contact is used to contact with the first moving contact of any one contact bridge, the any one first arc extinguishing grid is arranged on the side where the first moving contact of any one contact bridge is located, and any one second arc extinguishing grid is arranged on the side where the second moving contact of any one contact bridge is located. Among them, any first arc extinguishing grid can be used to extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and the arc generated when the first moving contact of another contact bridge is separated from another DC input static contact of at least two DC input static contacts, and any DC input static contact and another DC input static contact are arranged relative to each other. Any of the above-mentioned second arc extinguishing grids can be used to extinguish the arc generated when the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal. The first arc extinguishing grid and the second arc extinguishing grid here can both be composed of a plurality of metal grids of magnetic materials (which can be simply referred to as a plurality of metal grids). It can be understood that the first arc extinguishing grid and the second arc extinguishing grid can be separately arranged to extinguish the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from the static contact (such as the DC input static contact or the DC output static contact), and the arc extinguishing efficiency is higher; in addition, the placement method of the first arc extinguishing grid and the second arc extinguishing grid can effectively utilize the space at both ends of any contact bridge, thereby reducing the overall volume of the DC contactor and having stronger applicability.

结合第一方面第六种可能的实施方式,在第七种可能的实施方式中,上述直流接触器还包括多个第一塑料壳体,该多个第一塑料壳体中每个第一塑料壳体内嵌入有第一磁块。其中,上述任意一个直流输入静触头的两侧设置有多个第一塑料壳体中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输入静触头的两侧。上述任意两个第一塑料壳体中的第一磁块平行设置,且任意两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第一动触头与任意一个直流输入静触头分离时会产生电弧,此时任意两个第一塑料壳体中第一磁块产生的磁场力可将产生的电弧吹向任意一个第一灭弧栅,使得任意一个第一灭弧栅对电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向任意一个第一灭弧栅),从而提升了灭弧效率,适用性更强。In combination with the sixth possible implementation of the first aspect, in a seventh possible implementation, the DC contactor further includes a plurality of first plastic shells, each of which is embedded with a first magnetic block. Wherein, any two of the plurality of first plastic shells are arranged on both sides of any one of the DC input static contacts, and any two of the first plastic shells are arranged oppositely. In other words, any two second plastic shells are arranged oppositely on both sides of any one of the DC input static contacts. The first magnetic blocks in any two of the first plastic shells are arranged in parallel, and the placement of the first magnetic blocks in any two of the first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the first moving contact of any of the contact bridges is separated from any one of the DC input static contacts, an arc is generated. At this time, the magnetic field force generated by the first magnetic blocks in any two of the first plastic shells can blow the generated arc to any one of the first arc extinguishing grids, so that any one of the first arc extinguishing grids divides and extinguishes the arc, thereby realizing directional arc blowing of the arc (i.e., blowing the arc to any one of the first arc extinguishing grids) through the first magnetic blocks in any two of the second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

结合第一方面第六种可能的实施方式或者第一方面第七种可能的实施方式,在第八种可能的实施方式中,上述任意一个第一灭弧栅中包括第一栅片组、第二栅片组以及绝缘隔板,其中,第一栅片组朝向任意一个触桥,也就是说,该第一栅片组包括上述多个金属栅片中朝向任意一个触桥一侧的所有金属栅片;第二栅片组朝向另一个触桥,也就是说,该第二栅片组包括上述多个金属栅片中朝向另一个触桥一侧的所有金属栅片。可以理解,由于任意一个直流输入静触头及其相对设置的直流输入静触头共用任意一个第一灭弧栅(即同一个第一灭弧栅)进行灭弧,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,灭弧效率更高,并且延长了第一灭弧栅的使用寿命,适用性更强。In combination with the sixth possible implementation of the first aspect or the seventh possible implementation of the first aspect, in an eighth possible implementation, any of the above-mentioned first arc extinguishing grids includes a first grid group, a second grid group and an insulating partition, wherein the first grid group faces any one of the contact bridges, that is, the first grid group includes all the metal grids facing one side of any one of the above-mentioned multiple metal grids; the second grid group faces another contact bridge, that is, the second grid group includes all the metal grids facing one side of another of the above-mentioned multiple metal grids. It can be understood that since any one of the DC input static contacts and its oppositely arranged DC input static contacts share any one of the first arc extinguishing grids (that is, the same first arc extinguishing grid) for arc extinguishing, there is a risk of circuit short circuit caused by arc blow, so an insulating partition is set between the first grid group and the second grid group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blow, which is safer, has higher arc extinguishing efficiency, and prolongs the service life of the first arc extinguishing grid, and has stronger applicability.

结合第一方面第六种可能的实施方式至第一方面第八种可能的实施方式中任一种,在第九种可能的实施方式中,上述直流接触器还包括多个第二塑料壳体,该多个第二塑料壳体中每个第二塑料壳体内嵌入有第二磁块。其中,上述任意一个直流输出端子的直流输出静触头的两侧设置有该多个第二塑料壳体中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输出端子的直流输出静触头的两侧。上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时会产生电弧,此时任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向任意一个第二灭弧栅,使得任意一个第二灭弧栅对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向任意一个第二灭弧栅),灭弧效率更高;另外,由于上述任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧,因此不存在电弧对吹所导致的电路短路风险,也就是说,无需在任意一个第二灭弧栅中设置绝缘隔板,成本更低,适用性更强。In combination with any one of the sixth possible implementation of the first aspect to the eighth possible implementation of the first aspect, in a ninth possible implementation, the DC contactor further includes a plurality of second plastic shells, each of which has a second magnetic block embedded therein. Wherein, any two second plastic shells of the plurality of second plastic shells are disposed on both sides of the DC output static contact of any one of the DC output terminals, and any two second plastic shells are disposed oppositely. In other words, any two second plastic shells are disposed oppositely on both sides of the DC output static contact of any one of the DC output terminals. The second magnetic blocks in any two second plastic shells are disposed in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the second moving contact of any of the above-mentioned contact bridges is separated from the DC output static contact of any of the DC output terminals, an arc will be generated. At this time, the magnetic field force generated by the second magnetic blocks in any two first plastic shells can blow the generated arc to any second arc extinguishing grid, so that any second arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional arc blowing of the arc (that is, blowing the arc to any second arc extinguishing grid) through the second magnetic blocks in any two second plastic shells arranged in parallel, and the arc extinguishing efficiency is higher; in addition, since any of the above-mentioned second arc extinguishing grids is arranged on the side where the second moving contact of any of the contact bridges is located, there is no risk of circuit short circuit caused by arc blowing, that is, there is no need to set an insulating partition in any second arc extinguishing grid, which is lower in cost and more applicable.

结合第一方面至第一方面第九种可能的实施方式中任一种,在第十种可能的实施方式中,由于不同的动触头(如第一动触头或者第二动触头)与静触头(如直流输入静触头或者直流输出静触头)分离时所产生的电弧还会伴随产生气体(如高热气体),因此至少两个灭弧栅中的每个灭弧栅设置有第一排气孔,从而保证每个灭弧栅在对产生的电弧进行灭弧的同时通过第一排气孔将电弧产生的高热气体排出,从而避免了高热气体烧坏灭弧栅,延长了灭弧栅的使用寿命,适用性更强。In combination with any one of the first aspect to the ninth possible implementation manner of the first aspect, in the tenth possible implementation manner, since the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from the static contact (such as the DC input static contact or the DC output static contact) will also be accompanied by the generation of gas (such as high-temperature gas), each of the at least two arc extinguishing grids is provided with a first exhaust hole, thereby ensuring that each arc extinguishing grid extinguishes the generated arc while discharging the high-temperature gas generated by the arc through the first exhaust hole, thereby avoiding the high-temperature gas from burning the arc extinguishing grid, extending the service life of the arc extinguishing grid, and making it more applicable.

结合第一方面第十种可能的实施方式,在第十一种可能的实施方式中,上述直流接触器还包括第三塑料壳体(即接触器壳体),上述至少两个电磁装置、至少两个触桥、至少两个直流输入静触头、至少两个直流输出端子的直流输出静触头以及至少两个灭弧栅均设置在第三塑料壳体内。由于上述第一排气孔排出的高热气体仍存在于第三塑料壳体内,也就是说,第一排气孔排出的高热气体可能会烧坏第三塑料壳体,因此第三塑料壳体设置有第二排气孔,该第二排气孔可用于将上述第一排气孔排出的高热气体排出第三塑料壳体,从而可保护第三塑料壳体不被烧坏,适用性更强。In combination with the tenth possible implementation of the first aspect, in the eleventh possible implementation, the DC contactor further includes a third plastic shell (i.e., a contactor shell), and the at least two electromagnetic devices, at least two contact bridges, at least two DC input static contacts, at least two DC output static contacts of the DC output terminals, and at least two arc extinguishing grids are all arranged in the third plastic shell. Since the high-temperature gas discharged from the first exhaust hole still exists in the third plastic shell, that is, the high-temperature gas discharged from the first exhaust hole may burn the third plastic shell, the third plastic shell is provided with a second exhaust hole, and the second exhaust hole can be used to discharge the high-temperature gas discharged from the first exhaust hole out of the third plastic shell, thereby protecting the third plastic shell from being burned, and having stronger applicability.

结合第一方面至第一方面第十一种可能的实施方式中任一种,在第十二种可能的实施方式中,上述直流接触器的具体类型可包括但不限于磁保持接触器、常开接触器或者常闭接触器。在直流接触器为磁保持接触器的情况下,上述任意一个电磁装置可用于在电流由直流输入模块流向至少两个直流输出模块中的任意一个直流输出模块(即任意一个电磁装置中的线圈通入正向电流)时,控制任意一个触桥向任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路导通的目的。上述任意一个电磁装置还用于在电流由任意一个直流输出模块流向直流输入模块(即任意一个电磁装置中的线圈通入反向电流)时,控制任意一个触桥向远离任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路断开的目的。In combination with any one of the first aspect to the eleventh possible implementation of the first aspect, in the twelfth possible implementation, the specific type of the DC contactor may include but is not limited to a magnetic holding contactor, a normally open contactor or a normally closed contactor. In the case where the DC contactor is a magnetic holding contactor, any one of the above electromagnetic devices can be used to control any one of the contact bridges to move in the direction of any one of the DC input static contacts and any one of the DC output static contacts of the DC output terminal when the current flows from the DC input module to any one of the at least two DC output modules (i.e., a forward current is passed through the coil in any one of the electromagnetic devices), so that the first moving contact of any one of the contact bridges contacts with any one of the DC input static contacts, and the second moving contact of any one of the contact bridges contacts with the DC output static contact of any one of the DC output terminals. At this time, any one of the high-voltage DC circuits has been turned on, thereby achieving the purpose of independently controlling the conduction of at least two high-voltage DC circuits. Any of the above-mentioned electromagnetic devices is also used to control any contact bridge to move in a direction away from any DC input static contact and any DC output static contact of any DC output terminal when current flows from any DC output module to the DC input module (that is, a reverse current is passed through the coil in any electromagnetic device), so that the first moving contact of any contact bridge is separated from any DC input static contact, and the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal. At this time, any high-voltage DC circuit has been disconnected, thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits.

可选的,在直流接触器为常开接触器的情况下,上述任意一个电磁装置可用于在电流由直流输入模块流向任意一个直流输出模块(即任意一个电磁装置中的线圈通电)时,控制任意一个触桥向任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路导通的目的。上述任意一个电磁装置还用于在直流输入模块断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向远离任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路断开的目的。Optionally, in the case where the DC contactor is a normally open contactor, any one of the above-mentioned electromagnetic devices can be used to control any one of the contact bridges to move in the direction of any one of the DC input static contacts and any one of the DC output static contacts of the DC output terminal when current flows from the DC input module to any one of the DC output modules (i.e., the coil in any one of the electromagnetic devices is energized), so that the first moving contact of any one of the contact bridges contacts with any one of the DC input static contacts, and the second moving contact of any one of the contact bridges contacts with the DC output static contact of any one of the DC output terminals. At this time, any one of the high-voltage DC circuits has been turned on, thereby achieving the purpose of independently controlling the conduction of at least two high-voltage DC circuits. Any of the above-mentioned electromagnetic devices is also used to control any one of the contact bridges to move in a direction away from any one of the DC input static contacts and any one of the DC output static contacts of the DC output terminal when the DC input module is powered off (that is, the coil in any one of the electromagnetic devices is powered off), so that the first moving contact of any one of the contact bridges is separated from any one of the DC input static contacts, and the second moving contact of any one of the contact bridges is separated from the DC output static contact of any one of the DC output terminals. At this time, any one of the high-voltage DC circuits has been disconnected, thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits.

可选的,在直流接触器为常闭接触器的情况下,上述任意一个电磁装置可用于在电流由直流输入模块流向任意一个直流输出模块(即任意一个电磁装置中的线圈通电)时,控制任意一个触桥向远离任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路断开的目的。上述任意一个电磁装置还用于在直流输入模块断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路导通的目的。由此可见,由于一个直流接触器(如上述磁保持接触器、常开接触器或者常闭接触器)就可以导通或者断开至少两路高压直流电路,因此可有效节省直流接触器所占用的空间以及成本,安装更加方便,直流接触器的工作效率更高,适用性更强。Optionally, in the case where the DC contactor is a normally closed contactor, any one of the above-mentioned electromagnetic devices can be used to control any one of the contact bridges to move in a direction away from any one of the DC input static contacts and any one of the DC output static contacts of the DC output terminal when current flows from the DC input module to any one of the DC output modules (i.e., the coil in any one of the electromagnetic devices is energized), thereby causing the first moving contact of any one of the contact bridges to separate from any one of the DC input static contacts, and the second moving contact of any one of the contact bridges to separate from the DC output static contact of any one of the DC output terminals. At this time, any one of the high-voltage DC circuits has been disconnected, thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits. Any of the above electromagnetic devices is also used to control any contact bridge to move in the direction of any DC input static contact and any DC output static contact of any DC output terminal when the DC input module is powered off (i.e., the coil in any electromagnetic device is powered off), so that the first moving contact of any contact bridge contacts with any DC input static contact, and the second moving contact of any contact bridge contacts with the DC output static contact of any DC output terminal. At this time, any high-voltage DC circuit is turned on, and the purpose of independently controlling the conduction of at least two high-voltage DC circuits can be achieved. It can be seen from this that since a DC contactor (such as the above magnetic holding contactor, normally open contactor or normally closed contactor) can turn on or off at least two high-voltage DC circuits, the space and cost occupied by the DC contactor can be effectively saved, the installation is more convenient, and the DC contactor has higher working efficiency and stronger applicability.

第二方面,本申请提供了一种直流接触器,该直流接触器中包括直流输出端子、至少两个直流输入端子、至少两个电磁装置、至少两个触桥以及至少两个灭弧栅,该电磁装置中的具体结构可由直流接触器的具体类型决定,该直流接触器的具体类型可包括但不限于磁保持接触器、常开接触器或者常闭接触器。其中,上述直流输出端子的一端设置有至少两个直流输出静触头,上述直流输出端子的另一端可用于连接直流输出模块,上述至少两个直流输入端子中每个直流输入端子的一端设置有直流输入静触头,每个直流输入端子的另一端可用于连接直流输入模块,上述至少两个触桥中每个触桥上设置有第一动触头和第二动触头。这里的直流输入模块是指为直流接触器提供输入电流的一个或者多个功能模块,该直流输出模块是指直流接触器提供输出电流的一个或者多个功能模块。由于每一个直流输入端子的另一端都会连接一个直流输入模块,因此存在至少两个直流输入模块。这里的至少两个直流输出静触头的数量、至少两个直流输入端子的数量、至少两个电磁装置的数量、至少两个触桥的数量以及至少两个直流输入模块的数量相同。其中,上述至少两个直流输入模块中的任意一个直流输入模块、直流接触器以及直流输出模块可构成任意一路高压直流电路,也就是说,上述至少两个直流输入模块、直流接触器以及直流输出模块可构成至少两路高压直流电路。In the second aspect, the present application provides a DC contactor, which includes a DC output terminal, at least two DC input terminals, at least two electromagnetic devices, at least two contact bridges and at least two arc extinguishing grids. The specific structure of the electromagnetic device can be determined by the specific type of the DC contactor, and the specific type of the DC contactor may include but is not limited to a magnetic holding contactor, a normally open contactor or a normally closed contactor. Among them, one end of the DC output terminal is provided with at least two DC output static contacts, and the other end of the DC output terminal can be used to connect a DC output module. One end of each of the at least two DC input terminals is provided with a DC input static contact, and the other end of each DC input terminal can be used to connect a DC input module. Each of the at least two contact bridges is provided with a first moving contact and a second moving contact. The DC input module here refers to one or more functional modules that provide input current for the DC contactor, and the DC output module refers to one or more functional modules that provide output current for the DC contactor. Since the other end of each DC input terminal is connected to a DC input module, there are at least two DC input modules. The number of at least two DC output static contacts, the number of at least two DC input terminals, the number of at least two electromagnetic devices, the number of at least two contact bridges and the number of at least two DC input modules are the same. Among them, any one of the at least two DC input modules, the DC contactor and the DC output module can constitute any one high-voltage DC circuit, that is, the at least two DC input modules, the DC contactor and the DC output module can constitute at least two high-voltage DC circuits.

在直流接触器工作的过程中,上述至少两个电磁装置中一个电磁装置可用于控制至少两个触桥中的一个触桥运动。其中,至少两个电磁装置中的任意一个电磁装置可控制任意一个触桥向至少两个直流输出静触头中的任意一个直流输出静触头和至少两个直流输入端子中任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触,且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通任意一路高压直流电路(即任意一路高压直流电路处于导通状态),进而可实现独立控制至少两路高压直流电路导通的目的。可选的,任意一个电磁装置还可控制任意一个触桥向远离任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离,且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开任意一路高压直流电路(即任意一路高压直流电路处于断开状态),进而可实现独立控制至少两路高压直流电路断开的目的。可以理解,至少两路高压直流电路中的任意一路高压直流电路可处于导通状态或者断开状态,也就是说,至少两路高压直流电路可同时处于导通状态或者断开状态,或者,至少两路高压直流电路中的一部分高压直流电路处于导通状态,同时至少两路高压直流电路中的另一部分高压直流电路处于断开状态,因此该直流接触器可实现独立控制至少两路高压直流电路导通或者断开的目的。During the operation of the DC contactor, one of the at least two electromagnetic devices can be used to control the movement of one of the at least two contact bridges. Among them, any one of the at least two electromagnetic devices can control any one of the contact bridges to move in the direction of any one of the at least two DC output static contacts and the DC input static contact of any one of the at least two DC input terminals, so that the first moving contact of any one of the contact bridges contacts with any one of the DC output static contacts, and the second moving contact of any one of the contact bridges contacts with the DC input static contact of any one of the DC input terminals, at which time any one of the high-voltage DC circuits is turned on (that is, any one of the high-voltage DC circuits is in the on state), thereby achieving the purpose of independently controlling the conduction of at least two high-voltage DC circuits. Optionally, any electromagnetic device can also control any contact bridge to move in a direction away from any DC output static contact and any DC input static contact of any DC input terminal, so that the first moving contact of any contact bridge is separated from any DC output static contact, and the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal. At this time, any high-voltage DC circuit has been disconnected (that is, any high-voltage DC circuit is in a disconnected state), thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits. It can be understood that any one of the at least two high-voltage DC circuits can be in a conducting state or a disconnected state, that is, at least two high-voltage DC circuits can be in a conducting state or a disconnected state at the same time, or a part of the at least two high-voltage DC circuits is in a conducting state, and at the same time, another part of the at least two high-voltage DC circuits is in a disconnected state, so the DC contactor can achieve the purpose of independently controlling the conduction or disconnection of at least two high-voltage DC circuits.

在断开任意一路高压直流电路的过程中,上述至少两个灭弧栅中任意一个灭弧栅可用于对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧进行灭弧,并对任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时产生的电弧进行灭弧。可以得到,至少两个灭弧栅可对断开至少两路高压直流电路的过程中所产生的电弧进行灭弧,可避免烧蚀动触头和静触头,从而提高了直流接触器的稳定性和安全性,延长了直流接触器的使用寿命。在本申请中,可通过至少两个直流输出静触头、直流输入端子(及其直流输入静触头)、电磁装置以及触桥(及其动触头)来实现独立控制至少两路高压直流电路导通或者断开的目的;进一步地,通过至少两个灭弧栅对断开至少两路高压直流电路的过程中所产生的电弧进行灭弧,从而可避免烧蚀动触头和静触头,进而提高了直流接触器的稳定性和安全性,延长了直流接触器的使用寿命。另外,上述直流接触器中的至少两个直流输入端子共用同一个直流输出端子,也就是说,无需针对每个直流输入端子设置一个直流输出端子,从而减小了直流接触器的整体体积,同时也降低了直流接触器的接线复杂度,结构更加简单;由于一个直流接触器就可以导通或者断开至少两路高压直流电路,因此可有效节省直流接触器所占用的空间以及成本,安装更加方便,直流接触器的工作效率高,适用性强。In the process of disconnecting any high-voltage DC circuit, any one of the at least two arc-extinguishing grids can be used to extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and to extinguish the arc generated when the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal. It can be obtained that at least two arc-extinguishing grids can extinguish the arc generated in the process of disconnecting at least two high-voltage DC circuits, which can avoid burning the moving contact and the static contact, thereby improving the stability and safety of the DC contactor and extending the service life of the DC contactor. In the present application, the purpose of independently controlling the conduction or disconnection of at least two high-voltage DC circuits can be achieved through at least two DC output static contacts, DC input terminals (and DC input static contacts), electromagnetic devices, and contact bridges (and their moving contacts); further, the arc generated in the process of disconnecting at least two high-voltage DC circuits can be extinguished through at least two arc-extinguishing grids, thereby avoiding burning the moving contact and the static contact, thereby improving the stability and safety of the DC contactor and extending the service life of the DC contactor. In addition, at least two DC input terminals in the above-mentioned DC contactor share the same DC output terminal, that is, there is no need to set a DC output terminal for each DC input terminal, thereby reducing the overall volume of the DC contactor, and also reducing the wiring complexity of the DC contactor, and the structure is simpler; since one DC contactor can turn on or off at least two high-voltage DC circuits, the space and cost occupied by the DC contactor can be effectively saved, the installation is more convenient, and the DC contactor has high working efficiency and strong applicability.

结合第二方面,在第一种可能的实施方式中,上述任意一个灭弧栅可设置于任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头之间,其中,任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头可用于接触同一个触桥(如上述任意一个触桥)的第一动触头和第二动触头。这里的灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,其中,多个金属栅片可同时对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧、以及任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时产生的电弧进行分割从而达到灭弧的目的,也就是说,任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头共用任意一个灭弧栅进行灭弧,提升了灭弧效率,并且减少了直流接触器中使用灭弧栅的数量,成本更低;另外,该灭弧栅的放置方式可有效利用直流输出静触头和直流输入静触头之间的空间,从而减小了直流接触器的整体体积,适用性更强。In combination with the second aspect, in a first possible implementation manner, any one of the above-mentioned arc extinguishing grids can be arranged between any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal, wherein any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal can be used to contact the first moving contact and the second moving contact of the same contact bridge (such as any one of the above-mentioned contact bridges). The arc extinguishing grid here can be composed of multiple metal grids made of magnetic materials (which can be simply referred to as multiple metal grids), wherein the multiple metal grids can simultaneously divide the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and the arc generated when the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal, so as to achieve the purpose of arc extinguishing. That is to say, any DC output static contact and any DC input static contact of any DC input terminal share any arc extinguishing grid for arc extinguishing, which improves the arc extinguishing efficiency and reduces the number of arc extinguishing grids used in the DC contactor, which is lower in cost. In addition, the placement method of the arc extinguishing grid can effectively utilize the space between the DC output static contact and the DC input static contact, thereby reducing the overall volume of the DC contactor and making it more applicable.

结合第二方面第一种可能的实施方式,在第二种可能的实施方式中,上述任意一个灭弧栅中包括第一栅片组、第二栅片组以及绝缘隔板,其中,该第一栅片组可朝向上述任意一个直流输出静触头,也就是说,该第一栅片组包括上述多个金属栅片中朝向任意一个直流输出静触头一侧的所有金属栅片;该第二栅片组可朝向上述任意一个直流输入端子的直流输入静触头,也就是说,该第二栅片组包括上述多个金属栅片中朝向任意一个直流输入端子的直流输入静触头一侧的所有金属栅片。可以理解,由于任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头共用任意一个灭弧栅进行灭弧,且任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头相对设置,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板(即由绝缘材料制成的绝缘平板)进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,并且延长了灭弧栅的使用寿命,适用性更强。In combination with the first possible implementation manner of the second aspect, in a second possible implementation manner, any of the above-mentioned arc extinguishing grids includes a first grid group, a second grid group and an insulating partition, wherein the first grid group may face any of the above-mentioned DC output static contacts, that is, the first grid group includes all the metal grids facing the side of any DC output static contact among the above-mentioned multiple metal grids; the second grid group may face the DC input static contact of any of the above-mentioned DC input terminals, that is, the second grid group includes all the metal grids facing the side of the DC input static contact of any DC input terminal among the above-mentioned multiple metal grids. It can be understood that since any DC output static contact and any DC input static contact of any DC input terminal share any arc extinguishing grid for arc extinguishing, and any DC output static contact and any DC input static contact of any DC input terminal are arranged relatively to each other, there is a risk of circuit short circuit caused by arc blowing. Therefore, an insulating partition (that is, an insulating plate made of insulating material) is arranged between the first grid group and the second grid group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blowing, which is safer, extends the service life of the arc extinguishing grid, and is more applicable.

结合第二方面第二种可能的实施方式,在第三种可能的实施方式中,上述直流接触器还包括多个第一塑料壳体,该多个第一塑料壳体中每个第一塑料壳体内嵌入有第一磁块。其中,上述任意一个直流输出静触头的两侧设置有多个第一塑料壳体中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第一塑料壳体相对设置于上述任意一个直流输出静触头的两侧。上述任意两个第一塑料壳体中的第一磁块平行设置,且两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第一动触头与任意一个直流输出静触头分离时会产生电弧,此时任意两个第一塑料壳体中的第一磁块产生的磁场力可将产生的电弧吹向任意一个灭弧栅的第一栅片组,使得任意一个灭弧栅的第一栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向第一栅片组),从而提升了灭弧效率,适用性更强。In combination with the second possible implementation of the second aspect, in a third possible implementation, the DC contactor further includes a plurality of first plastic shells, each of which has a first magnetic block embedded therein. Any two of the plurality of first plastic shells are disposed on both sides of any one of the DC output static contacts, and the two first plastic shells are disposed oppositely. In other words, the two first plastic shells are disposed oppositely on both sides of any one of the DC output static contacts. The first magnetic blocks in the two first plastic shells are disposed in parallel, and the placement of the first magnetic blocks in the two first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the first moving contact of any of the above-mentioned contact bridges is separated from any of the DC output static contacts, an arc will be generated. At this time, the magnetic field force generated by the first magnetic blocks in any two first plastic shells can blow the generated arc toward the first grid group of any arc extinguishing grid, so that the first grid group of any arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (i.e. blowing the arc toward the first grid group) through the first magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

结合第二方面第三种可能的实施方式,在第四种可能的实施方式中,上述每个第一塑料壳体内嵌入有垂直放置的两个第一磁块,且每个第一塑料壳体中两个第一磁块垂直相交的一端设置有隔磁材料。本申请可以将每个第一塑料壳体中用于隔离两个第一磁块产生的磁场力的材料统称为隔磁材料,例如,该隔磁材料可包括但不限于高导磁率的软磁性材料。上述每个第一塑料壳体中的两个第一磁块分别朝向任意一个直流输出静触头与其相邻的直流输出静触头,也就是说,两个第一磁块中的一个第一磁块朝向任意一个直流输出静触头,两个第一磁块中的另一个第一磁块朝向至少两个直流输出静触头中与任意一个直流输出静触头相邻的直流输出静触头。可以理解,由于隔磁材料可避免每个第一塑料壳体中的两个第一磁块的磁场力相互影响,因此每个第一塑料壳体中的一个第一磁块产生的磁场力可用于实现对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧的定向吹弧,每个第一塑料壳体中的另一个第一磁块可用于实现对任意一个触桥相邻的触桥的第一动触头与任意一个直流输出静触头相邻的直流输出静触头分离时产生的电弧的定向吹弧,也就是说,每个第一塑料壳体中的两个第一磁块产生的磁场力可分别实现不同方向的电弧的定向吹弧,吹弧效率更高,并且节省了直流接触器的内部空间,适用性更强。In combination with the third possible implementation manner of the second aspect, in a fourth possible implementation manner, two vertically placed first magnetic blocks are embedded in each of the above-mentioned first plastic shells, and a magnetic isolation material is provided at one end of each first plastic shell where the two first magnetic blocks intersect vertically. In the present application, the materials used to isolate the magnetic field force generated by the two first magnetic blocks in each first plastic shell may be collectively referred to as magnetic isolation materials. For example, the magnetic isolation material may include but is not limited to soft magnetic materials with high magnetic permeability. The two first magnetic blocks in each of the above-mentioned first plastic shells are respectively oriented toward any one of the DC output static contacts and the DC output static contact adjacent to it, that is, one of the two first magnetic blocks is oriented toward any one of the DC output static contacts, and the other of the two first magnetic blocks is oriented toward a DC output static contact adjacent to any one of the DC output static contacts among at least two DC output static contacts. It can be understood that since the magnetic isolation material can prevent the magnetic field forces of the two first magnetic blocks in each first plastic shell from influencing each other, the magnetic field force generated by one of the first magnetic blocks in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and the other first magnetic block in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge adjacent to the contact bridge is separated from the DC output static contact adjacent to any DC output static contact. In other words, the magnetic field forces generated by the two first magnetic blocks in each first plastic shell can respectively achieve directional arc blowing of arcs in different directions, with higher arc blowing efficiency, saving the internal space of the DC contactor, and greater applicability.

结合第二方面第二种可能的实施方式至第二方面第四种可能的实施方式中任一种,在第五种可能的实施方式中,上述直流接触器还包括多个第二塑料壳体,多个第二塑料壳体中每个第二塑料壳体内嵌入有第二磁块。其中,上述任意一个直流输入端子的直流输入静触头的两侧设置有多个第二塑料壳体中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输入端子的直流输入静触头的两侧。上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时会产生电弧,此时任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向任意一个灭弧栅的第二栅片组,使得任意一个灭弧栅的第二栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向第二栅片组),从而提升了灭弧效率,适用性更强。In combination with any one of the second possible implementation manner of the second aspect to the fourth possible implementation manner of the second aspect, in a fifth possible implementation manner, the DC contactor further comprises a plurality of second plastic shells, and a second magnetic block is embedded in each of the plurality of second plastic shells. Wherein, any two second plastic shells from the plurality of second plastic shells are arranged on both sides of the DC input static contact of any one of the DC input terminals, and any two second plastic shells are arranged oppositely. In other words, any two second plastic shells are arranged oppositely on both sides of the DC input static contact of any one of the DC input terminals. The second magnetic blocks in any two second plastic shells are arranged in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the second moving contact of any of the above-mentioned contact bridges is separated from the DC input static contact of any DC input terminal, an arc will be generated. At this time, the magnetic field force generated by the second magnetic blocks in any two first plastic shells can blow the generated arc to the second grid group of any arc extinguishing grid, so that the second grid group of any arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (i.e. blowing the arc to the second grid group) through the second magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

结合第二方面,在第六种可能的实施方式中,上述至少两个灭弧栅中包括至少一个第一灭弧栅和至少两个第二灭弧栅,其中,该至少一个第一灭弧栅中的任意一个第一灭弧栅和至少两个第二灭弧栅中的任意一个第二灭弧栅分别设置于任意一个触桥(即同一个触桥)的两端,任意一个第一灭弧栅可设置于任意一个触桥与至少两个触桥中的另一个触桥之间,且任意一个触桥与另一个触桥相对设置,换言之,任意一个触桥与另一个触桥相对设置于任意一个第一灭弧栅的两侧。同时,上述任意一个第一灭弧栅设置于任意一个直流输出静触头朝向电磁装置的一侧,由于任意一个直流输出静触头用于与任意一个触桥的第一动触头接触,因此该任意一个第一灭弧栅设置于任意一个触桥的第一动触头所在的一侧,而任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧。其中,任意一个第一灭弧栅可用于对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧、以及另一个触桥的第一动触头与至少两个直流输出静触头中的另一个直流输出静触头分离时产生的电弧进行灭弧,且任意一个直流输出静触头和另一个直流输出静触头相对设置。上述任意一个第二灭弧栅可用于对任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时产生的电弧进行灭弧。这里的第一灭弧栅和第二灭弧栅均可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成。可以理解,可分开设置第一灭弧栅和第二灭弧栅对不同的动触头(如第一动触头或者第二动触头)与静触头(如直流输出静触头或者直流输入静触头)分离时产生的电弧进行灭弧,灭弧效率更高;另外,该第一灭弧栅和第二灭弧栅的放置方式可有效利用任意一个触桥两端的空间,从而减小了直流接触器的整体体积,适用性更强。In combination with the second aspect, in a sixth possible implementation, the at least two arc extinguishing grids include at least one first arc extinguishing grid and at least two second arc extinguishing grids, wherein any one of the at least one first arc extinguishing grid and any one of the at least two second arc extinguishing grids are respectively arranged at both ends of any one contact bridge (i.e., the same contact bridge), and any one first arc extinguishing grid can be arranged between any one contact bridge and another one of the at least two contact bridges, and any one contact bridge is arranged opposite to another contact bridge, in other words, any one contact bridge is arranged opposite to another contact bridge on both sides of any one first arc extinguishing grid. At the same time, any one of the first arc extinguishing grids is arranged on the side of any one DC output static contact facing the electromagnetic device, and since any one DC output static contact is used to contact with the first moving contact of any one contact bridge, the any one first arc extinguishing grid is arranged on the side where the first moving contact of any one contact bridge is located, and any one second arc extinguishing grid is arranged on the side where the second moving contact of any one contact bridge is located. Among them, any first arc extinguishing grid can be used to extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and the arc generated when the first moving contact of another contact bridge is separated from another DC output static contact of at least two DC output static contacts, and any DC output static contact and another DC output static contact are arranged relative to each other. Any of the above-mentioned second arc extinguishing grids can be used to extinguish the arc generated when the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal. The first arc extinguishing grid and the second arc extinguishing grid here can both be composed of a plurality of metal grids of magnetic materials (which can be simply referred to as a plurality of metal grids). It can be understood that the first arc extinguishing grid and the second arc extinguishing grid can be separately arranged to extinguish the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from the static contact (such as the DC output static contact or the DC input static contact), and the arc extinguishing efficiency is higher; in addition, the placement method of the first arc extinguishing grid and the second arc extinguishing grid can effectively utilize the space at both ends of any contact bridge, thereby reducing the overall volume of the DC contactor and making it more applicable.

结合第二方面第六种可能的实施方式,在第七种可能的实施方式中,上述直流接触器还包括多个第一塑料壳体,该多个第一塑料壳体中每个第一塑料壳体内嵌入有第一磁块。其中,上述任意一个直流输出静触头的两侧设置有多个第一塑料壳体中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输出静触头的两侧。上述任意两个第一塑料壳体中的第一磁块平行设置,且任意两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第一动触头与任意一个直流输出静触头分离时会产生电弧,此时任意两个第一塑料壳体中第一磁块产生的磁场力可将产生的电弧吹向任意一个第一灭弧栅,使得任意一个第一灭弧栅对电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向任意一个第一灭弧栅),从而提升了灭弧效率,适用性更强。In combination with the sixth possible implementation of the second aspect, in a seventh possible implementation, the DC contactor further includes a plurality of first plastic shells, each of which is embedded with a first magnetic block. Wherein, any two of the plurality of first plastic shells are arranged on both sides of any one of the DC output static contacts, and any two of the first plastic shells are arranged oppositely. In other words, any two of the second plastic shells are arranged oppositely on both sides of any one of the DC output static contacts. The first magnetic blocks in any two of the first plastic shells are arranged in parallel, and the placement of the first magnetic blocks in any two of the first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the first moving contact of any of the contact bridges is separated from any one of the DC output static contacts, an arc is generated. At this time, the magnetic field force generated by the first magnetic blocks in any two of the first plastic shells can blow the generated arc to any one of the first arc extinguishing grids, so that any one of the first arc extinguishing grids divides and extinguishes the arc, thereby realizing directional arc blowing of the arc (i.e., blowing the arc to any one of the first arc extinguishing grids) through the first magnetic blocks in any two of the second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

结合第二方面第六种可能的实施方式或者第二方面第七种可能的实施方式,在第八种可能的实施方式中,上述任意一个第一灭弧栅中包括第一栅片组、第二栅片组以及绝缘隔板,其中,第一栅片组朝向任意一个触桥,也就是说,该第一栅片组包括上述多个金属栅片中朝向任意一个触桥一侧的所有金属栅片;第二栅片组朝向另一个触桥,也就是说,该第二栅片组包括上述多个金属栅片中朝向另一个触桥一侧的所有金属栅片。可以理解,由于任意一个直流输出静触头及其相对设置的直流输出静触头共用任意一个第一灭弧栅(即同一个第一灭弧栅)进行灭弧,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,灭弧效率更高,并且延长了第一灭弧栅的使用寿命,适用性更强。In combination with the sixth possible implementation of the second aspect or the seventh possible implementation of the second aspect, in an eighth possible implementation, any of the above-mentioned first arc extinguishing grids includes a first grid group, a second grid group and an insulating partition, wherein the first grid group faces any one of the contact bridges, that is, the first grid group includes all the metal grids facing one side of any one of the contact bridges among the above-mentioned multiple metal grids; the second grid group faces another contact bridge, that is, the second grid group includes all the metal grids facing one side of another of the above-mentioned multiple metal grids. It can be understood that since any one of the DC output static contacts and its oppositely arranged DC output static contacts share any one of the first arc extinguishing grids (that is, the same first arc extinguishing grid) for arc extinguishing, there is a risk of circuit short circuit caused by arc blow, so an insulating partition is provided between the first grid group and the second grid group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blow, which is safer, has higher arc extinguishing efficiency, and prolongs the service life of the first arc extinguishing grid, and has stronger applicability.

结合第二方面第六种可能的实施方式至第二方面第八种可能的实施方式中任一种,在第九种可能的实施方式中,上述直流接触器还包括多个第二塑料壳体,该多个第二塑料壳体中每个第二塑料壳体内嵌入有第二磁块。其中,上述任意一个直流输入端子的直流输入静触头的两侧设置有该多个第二塑料壳体中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输入端子的直流输入静触头的两侧。上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。在上述任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时会产生电弧,此时任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向任意一个第二灭弧栅,使得任意一个第二灭弧栅对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向任意一个第二灭弧栅),灭弧效率更高;另外,由于上述任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧,因此不存在电弧对吹所导致的电路短路风险,也就是说,无需在任意一个第二灭弧栅中设置绝缘隔板,成本更低,适用性更强。In combination with any one of the sixth possible implementation manner of the second aspect to the eighth possible implementation manner of the second aspect, in a ninth possible implementation manner, the DC contactor further comprises a plurality of second plastic shells, each of the plurality of second plastic shells having a second magnetic block embedded therein. Wherein, any two second plastic shells of the plurality of second plastic shells are arranged on both sides of the DC input static contact of any one of the DC input terminals, and any two second plastic shells are arranged oppositely. In other words, any two second plastic shells are arranged oppositely on both sides of the DC input static contact of any one of the DC input terminals. The second magnetic blocks in any two second plastic shells are arranged in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. When the second moving contact of any of the above-mentioned contact bridges is separated from the DC input static contact of any of the DC input terminals, an arc will be generated. At this time, the magnetic field force generated by the second magnetic blocks in any two first plastic shells can blow the generated arc to any second arc extinguishing grid, so that any second arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional arc blowing of the arc (that is, blowing the arc to any second arc extinguishing grid) through the second magnetic blocks in any two second plastic shells arranged in parallel, and the arc extinguishing efficiency is higher; in addition, since any of the above-mentioned second arc extinguishing grids is arranged on the side where the second moving contact of any of the contact bridges is located, there is no risk of circuit short circuit caused by arc blowing, that is, there is no need to set an insulating partition in any second arc extinguishing grid, which is lower in cost and more applicable.

结合第二方面至第二方面第九种可能的实施方式中任一种,在第十种可能的实施方式中,由于不同的动触头(如第一动触头或者第二动触头)与静触头(如直流输出静触头或者直流输入静触头)分离时所产生的电弧还会伴随产生气体(如高热气体),因此至少两个灭弧栅中的每个灭弧栅设置有第一排气孔,从而保证每个灭弧栅在对产生的电弧进行灭弧的同时通过第一排气孔将电弧产生的高热气体排出,从而避免了高热气体烧坏灭弧栅,延长了灭弧栅的使用寿命,适用性更强。In combination with any one of the second aspect to the ninth possible implementation manners of the second aspect, in the tenth possible implementation manner, since the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from the static contact (such as the DC output static contact or the DC input static contact) will also be accompanied by the generation of gas (such as high-temperature gas), each of the at least two arc extinguishing grids is provided with a first exhaust hole, thereby ensuring that each arc extinguishing grid extinguishes the generated arc while discharging the high-temperature gas generated by the arc through the first exhaust hole, thereby avoiding the high-temperature gas from burning the arc extinguishing grid, extending the service life of the arc extinguishing grid, and making it more applicable.

结合第二方面第十种可能的实施方式,在第十一种可能的实施方式中,上述直流接触器还包括第三塑料壳体(即接触器壳体),上述至少两个电磁装置、至少两个触桥、至少两个直流输出静触头、至少两个直流输入端子的直流输入静触头以及至少两个灭弧栅均设置在第三塑料壳体内。由于上述第一排气孔排出的高热气体仍存在于第三塑料壳体内,也就是说,第一排气孔排出的高热气体可能会烧坏第三塑料壳体,因此第三塑料壳体设置有第二排气孔,该第二排气孔可用于将上述第一排气孔排出的高热气体排出第三塑料壳体,从而可保护第三塑料壳体不被烧坏,适用性更强。In combination with the tenth possible implementation of the second aspect, in the eleventh possible implementation, the DC contactor further includes a third plastic shell (i.e., a contactor shell), and the at least two electromagnetic devices, at least two contact bridges, at least two DC output static contacts, at least two DC input static contacts of the DC input terminals, and at least two arc extinguishing grids are all arranged in the third plastic shell. Since the high-temperature gas discharged from the first exhaust hole still exists in the third plastic shell, that is, the high-temperature gas discharged from the first exhaust hole may burn the third plastic shell, the third plastic shell is provided with a second exhaust hole, and the second exhaust hole can be used to discharge the high-temperature gas discharged from the first exhaust hole out of the third plastic shell, thereby protecting the third plastic shell from being burned, and having stronger applicability.

结合第二方面至第二方面第十一种可能的实施方式中任一种,在第十二种可能的实施方式中,上述直流接触器的具体类型可包括但不限于磁保持接触器、常开接触器或者常闭接触器。在直流接触器为磁保持接触器的情况下,上述任意一个电磁装置可用于在电流由至少两个直流输入模块中的任意一个直流输入模块流向直流输出模块(即任意一个电磁装置中的线圈通入正向电流)时,控制任意一个触桥向任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路导通的目的。上述任意一个电磁装置还用于在电流由直流输出模块流向任意一个直流输入模块(即任意一个电磁装置中的线圈通入反向电流)时,控制任意一个触桥向远离任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路断开的目的。In combination with any one of the second aspect to the eleventh possible implementation manner of the second aspect, in the twelfth possible implementation manner, the specific type of the above-mentioned DC contactor may include but is not limited to a magnetic holding contactor, a normally open contactor or a normally closed contactor. In the case where the DC contactor is a magnetic holding contactor, any one of the above-mentioned electromagnetic devices can be used to control any one of the contact bridges to move in the direction of any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal when the current flows from any one of the at least two DC input modules to the DC output module (that is, a positive current is passed through the coil in any one of the electromagnetic devices), so that the first moving contact of any one of the contact bridges contacts with any one of the DC output static contacts, and the second moving contact of any one of the contact bridges contacts with the DC input static contact of any one of the DC input terminals. At this time, any one of the high-voltage DC circuits has been turned on, thereby achieving the purpose of independently controlling the conduction of at least two high-voltage DC circuits. Any of the above-mentioned electromagnetic devices is also used to control any one of the contact bridges to move in a direction away from any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal when current flows from the DC output module to any one of the DC input modules (i.e., a reverse current is passed through the coil in any one of the electromagnetic devices), so that the first moving contact of any one of the contact bridges is separated from any one of the DC output static contacts, and the second moving contact of any one of the contact bridges is separated from the DC input static contact of any one of the DC input terminals. At this time, any one of the high-voltage DC circuits has been disconnected, thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits.

可选的,在直流接触器为常开接触器的情况下,上述任意一个电磁装置可用于在电流由任意一个直流输入模块流向直流输出模块(即任意一个电磁装置中的线圈通电)时,控制任意一个触桥向任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路导通的目的。上述任意一个电磁装置还用于在直流输入模块断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向远离任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路断开的目的。Optionally, in the case where the DC contactor is a normally open contactor, any one of the above-mentioned electromagnetic devices can be used to control any one of the contact bridges to move in the direction of any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal when current flows from any one of the DC input modules to the DC output module (i.e., the coil in any one of the electromagnetic devices is energized), so that the first moving contact of any one of the contact bridges contacts with any one of the DC output static contacts, and the second moving contact of any one of the contact bridges contacts with the DC input static contact of any one of the DC input terminals. At this time, any one of the high-voltage DC circuits has been turned on, thereby achieving the purpose of independently controlling the conduction of at least two high-voltage DC circuits. Any of the above-mentioned electromagnetic devices is also used to control any one of the contact bridges to move in a direction away from any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal when the DC input module is powered off (that is, the coil in any one of the electromagnetic devices is powered off), so that the first moving contact of any one of the contact bridges is separated from any one of the DC output static contacts, and the second moving contact of any one of the contact bridges is separated from the DC input static contact of any one of the DC input terminals. At this time, any one of the high-voltage DC circuits has been disconnected, thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits.

可选的,在直流接触器为常闭接触器的情况下,上述任意一个电磁装置可用于在电流由任意一个直流输入模块流向直流输出模块(即任意一个电磁装置中的线圈通电)时,控制任意一个触桥向远离任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路断开的目的。上述任意一个电磁装置还用于在直流输入模块断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通任意一路高压直流电路,进而可实现独立控制至少两路高压直流电路导通的目的。由此可见,由于一个直流接触器(如上述磁保持接触器、常开接触器或者常闭接触器)就可以导通或者断开至少两路高压直流电路,因此可有效节省直流接触器所占用的空间以及成本,安装更加方便,直流接触器的工作效率更高,适用性更强。Optionally, in the case where the DC contactor is a normally closed contactor, any one of the above-mentioned electromagnetic devices can be used to control any one of the contact bridges to move in a direction away from any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal when current flows from any one of the DC input modules to the DC output module (i.e., the coil in any one of the electromagnetic devices is energized), thereby causing the first moving contact of any one of the contact bridges to separate from any one of the DC output static contacts, and the second moving contact of any one of the contact bridges to separate from the DC input static contact of any one of the DC input terminals. At this time, any one of the high-voltage DC circuits has been disconnected, thereby achieving the purpose of independently controlling the disconnection of at least two high-voltage DC circuits. Any of the above electromagnetic devices is also used to control any contact bridge to move in the direction of any DC output static contact and any DC input static contact of any DC input terminal when the DC input module is powered off (i.e., the coil in any electromagnetic device is powered off), so that the first moving contact of any contact bridge contacts with any DC output static contact, and the second moving contact of any contact bridge contacts with the DC input static contact of any DC input terminal. At this time, any high-voltage DC circuit is turned on, and the purpose of independently controlling the conduction of at least two high-voltage DC circuits can be achieved. It can be seen that since a DC contactor (such as the above magnetic holding contactor, normally open contactor or normally closed contactor) can turn on or off at least two high-voltage DC circuits, the space and cost occupied by the DC contactor can be effectively saved, the installation is more convenient, and the DC contactor has higher working efficiency and stronger applicability.

在本申请中,可设置至少两个直流输入静触头、直流输出端子(及其直流输出静触头)、电磁装置、触桥(及其动触头)、第一塑料壳体、第二塑料壳体以及灭弧栅,实现在独立控制至少两路高压直流电路导通或者断开的同时进行灭弧,从而可避免烧蚀动触头和静触头,进而提高了直流接触器的稳定性和安全性,延长了直流接触器的使用寿命;另外,由于一个直流接触器就可以导通或者断开至少两路高压直流电路,因此可有效节省直流接触器所占用的空间以及成本,安装更加方便,直流接触器的工作效率更高,适用性强。In the present application, at least two DC input static contacts, a DC output terminal (and its DC output static contact), an electromagnetic device, a contact bridge (and its moving contact), a first plastic shell, a second plastic shell and an arc extinguishing grid can be set to achieve arc extinguishing while independently controlling the conduction or disconnection of at least two high-voltage DC circuits, thereby avoiding the burning of the moving contact and the static contact, thereby improving the stability and safety of the DC contactor and extending the service life of the DC contactor; in addition, since one DC contactor can conduct or disconnect at least two high-voltage DC circuits, the space and cost occupied by the DC contactor can be effectively saved, the installation is more convenient, the DC contactor has higher working efficiency and strong applicability.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本申请提供的直流接触器的应用场景示意图;FIG1 is a schematic diagram of an application scenario of a DC contactor provided in the present application;

图2是本申请提供的直流接触器的结构示意图;FIG2 is a schematic diagram of the structure of a DC contactor provided in the present application;

图3是本申请提供的直流接触器的另一结构示意图;FIG3 is another schematic structural diagram of a DC contactor provided in the present application;

图4是本申请提供的直流接触器的另一结构示意图;FIG4 is another schematic structural diagram of a DC contactor provided in the present application;

图5是本申请提供的直流接触器的另一结构示意图;FIG5 is another schematic structural diagram of a DC contactor provided in the present application;

图6是本申请提供的直流接触器的另一结构示意图;FIG6 is another schematic structural diagram of a DC contactor provided in the present application;

图7是本申请提供的直流接触器的另一结构示意图;FIG7 is another schematic structural diagram of a DC contactor provided in the present application;

图8是本申请提供的直流接触器的另一结构示意图;FIG8 is another schematic structural diagram of a DC contactor provided in the present application;

图9是本申请提供的磁保持接触器的一结构示意图;FIG9 is a schematic structural diagram of a magnetic latching contactor provided by the present application;

图10是本申请提供的磁保持接触器的另一结构示意图;FIG10 is another schematic structural diagram of the magnetic latching contactor provided by the present application;

图11是本申请提供的第一塑料壳体的结构示意图;FIG11 is a schematic structural diagram of a first plastic shell provided by the present application;

图12是本申请提供的第二塑料壳体的结构示意图;FIG12 is a schematic structural diagram of a second plastic shell provided by the present application;

图13是本申请提供的磁保持接触器的另一结构示意图;FIG13 is another schematic structural diagram of the magnetic latching contactor provided by the present application;

图14是本申请提供的磁保持接触器的又一结构示意图;FIG14 is another schematic structural diagram of a magnetic latching contactor provided by the present application;

图15是本申请提供的常开接触器的一结构示意图;FIG15 is a schematic structural diagram of a normally open contactor provided by the present application;

图16是本申请提供的常开接触器的另一结构示意图;FIG16 is another schematic diagram of the structure of the normally open contactor provided by the present application;

图17是本申请提供的直流接触器的结构示意图;FIG17 is a schematic diagram of the structure of a DC contactor provided in the present application;

图18是本申请提供的直流接触器的另一结构示意图;FIG18 is another schematic structural diagram of a DC contactor provided in the present application;

图19是本申请提供的直流接触器的另一结构示意图;FIG19 is another schematic structural diagram of a DC contactor provided in the present application;

图20是本申请提供的直流接触器的另一结构示意图;FIG20 is another schematic structural diagram of a DC contactor provided in the present application;

图21是本申请提供的直流接触器的另一结构示意图;FIG21 is another structural schematic diagram of a DC contactor provided by the present application;

图22是本申请提供的直流接触器的另一结构示意图;FIG22 is another schematic structural diagram of a DC contactor provided by the present application;

图23是本申请提供的直流接触器的又一结构示意图。FIG. 23 is another schematic structural diagram of the DC contactor provided in the present application.

具体实施方式Detailed ways

本申请提供的直流接触器适用于新能源智能微网领域,输配电领域或者新能源领域(如光伏并网领域或者风力并网领域),光伏发电领域(如对家用设备(如冰箱、空调)或者电网供电),风力发电领域,储能发电领域,电动设备领域以及大功率变换器领域(如将直流电转换为大功率的高压交流电)等多种应用领域,具体可根据实际应用场景确定,在此不做限制。The DC contactor provided in this application is suitable for the fields of new energy smart microgrids, power transmission and distribution or new energy (such as photovoltaic grid-connected fields or wind grid-connected fields), photovoltaic power generation (such as power supply to household appliances (such as refrigerators, air conditioners) or power grids), wind power generation, energy storage power generation, electric equipment, and high-power converters (such as converting direct current into high-power high-voltage alternating current) and other application fields. The specific application can be determined according to the actual application scenario and is not limited here.

本申请提供的直流接触器可适配不同的应用场景,比如,光伏供电场景、风力供电场景、储能供电场景、电动汽车充电场景或者其它应用场景,下面将以光伏供电场景为例进行说明,以下不再赘述。请一并参见图1,图1是本申请提供的直流接触器的应用场景示意图。如图1所示,光伏系统中包括光伏组串A至光伏组串N、直流接触器以及光伏逆变器,该光伏组串A至光伏组串N中的每个光伏组串可由多个光伏组件串并联组成,光伏组件也可以称为光伏板或者太阳能电池板。其中,光伏组串A至光伏组串N中各光伏组串分别通过直流接触器连接光伏逆变器的输入端,光伏逆变器的输出端可用于连接电网,光伏组串A至光伏组串N中的任意一个光伏组串、直流接触器以及光伏逆变器可构成一路高压直流回路,也就是说,光伏组串A至光伏组串N、直流接触器以及光伏逆变器可构成N路高压直流回路。在光伏系统正常工作的过程中,上述直流接触器可同时导通N路高压直流回路,这时光伏逆变器可将光伏组串A至光伏组串N提供的直流电压转换为交流电压,并基于该交流电压对电网供电。The DC contactor provided in this application can be adapted to different application scenarios, such as photovoltaic power supply scenarios, wind power supply scenarios, energy storage power supply scenarios, electric vehicle charging scenarios or other application scenarios. The photovoltaic power supply scenario will be used as an example for explanation below, and no further description will be given below. Please refer to Figure 1, which is a schematic diagram of the application scenario of the DC contactor provided in this application. As shown in Figure 1, the photovoltaic system includes photovoltaic strings A to photovoltaic strings N, DC contactors and photovoltaic inverters. Each photovoltaic string in the photovoltaic strings A to photovoltaic strings N can be composed of a plurality of photovoltaic components in series and parallel, and the photovoltaic components can also be referred to as photovoltaic panels or solar panels. Among them, each photovoltaic string in the photovoltaic strings A to photovoltaic strings N is connected to the input end of the photovoltaic inverter through a DC contactor, and the output end of the photovoltaic inverter can be used to connect to the power grid. Any one of the photovoltaic strings in the photovoltaic strings A to photovoltaic strings N, the DC contactor and the photovoltaic inverter can constitute a high-voltage DC circuit, that is, the photovoltaic strings A to photovoltaic strings N, the DC contactors and the photovoltaic inverter can constitute N high-voltage DC circuits. During the normal operation of the photovoltaic system, the above-mentioned DC contactor can simultaneously conduct N high-voltage DC circuits. At this time, the photovoltaic inverter can convert the DC voltage provided by photovoltaic strings A to N into AC voltage, and supply power to the grid based on the AC voltage.

在光伏系统中的部分光伏组串(如光伏组串A)故障或者断电的情况下,上述直流接触器可断开光伏组串A与光伏逆变器之间的一路高压直流回路,并导通光伏组串B至光伏组串N与光伏逆变器之间的N-1路高压直流回路,从而达到独立控制N路高压直流电路导通或者断开的目的,可有效节省直流接触器在光伏系统中所占用的空间以及成本,安装更加方便。由于直流接触器在断开光伏组串A与光伏逆变器之间的一路高压直流回路时其内部会产生电弧,因此直流接触器中还设置有灭弧栅,该灭弧栅可对直流接触器内部产生的电弧进行灭弧,从而可避免烧坏直流接触器的内部器件(如触头),提高了直流接触器的稳定性和安全性,延长了直流接触器的使用寿命。在导通上述N-1路高压直流回路之后,光伏逆变器可将光伏组串B至光伏组串N提供的直流电压转换为交流电压,并基于该交流电压对电网供电,由于一个直流接触器就可以导通或者断开上述N路高压直流回路,因此直流接触器的工作效率更高,进一步提升了系统供电效率,适用性更强。In the case of a failure or power outage of some photovoltaic strings (such as photovoltaic string A) in the photovoltaic system, the above-mentioned DC contactor can disconnect a high-voltage DC circuit between photovoltaic string A and the photovoltaic inverter, and conduct the N-1 high-voltage DC circuits between photovoltaic string B and photovoltaic string N and the photovoltaic inverter, thereby achieving the purpose of independently controlling the conduction or disconnection of N high-voltage DC circuits, which can effectively save the space and cost occupied by the DC contactor in the photovoltaic system, and is more convenient to install. Since an arc will be generated inside the DC contactor when the DC contactor disconnects a high-voltage DC circuit between the photovoltaic string A and the photovoltaic inverter, an arc extinguishing grid is also provided in the DC contactor, which can extinguish the arc generated inside the DC contactor, thereby avoiding burning of the internal components (such as contacts) of the DC contactor, improving the stability and safety of the DC contactor, and extending the service life of the DC contactor. After the above-mentioned N-1 high-voltage DC circuits are turned on, the photovoltaic inverter can convert the DC voltage provided by photovoltaic string B to photovoltaic string N into an AC voltage, and supply power to the grid based on the AC voltage. Since one DC contactor can turn on or off the above-mentioned N high-voltage DC circuits, the DC contactor has a higher working efficiency, further improving the system power supply efficiency and making it more applicable.

下面将结合图2至图23对本申请提供的直流接触器及其工作原理进行示例说明。The DC contactor provided in the present application and its working principle will be illustrated below with reference to FIGS. 2 to 23 .

在直流接触器为一进(即直流输入端子)多出(即直流输出端子)独立控制的直流接触器的情况下,请参见图2,图2是本申请提供的直流接触器的结构示意图。如图2所示,直流接触器1a中包括直流输入端子10、至少两个直流输出端子(如直流输出端子20a至直流输出端子20n)、至少两个电磁装置(如电磁装置30a至电磁装置30n)、至少两个触桥(如触桥40a至触桥40n)以及至少两个灭弧栅(如灭弧栅50a至灭弧栅50m),该电磁装置30a至电磁装置30n中每个电磁装置的具体结构可由直流接触器1a的具体类型决定,该直流接触器1a的具体类型可包括但不限于磁保持接触器、常开接触器或者常闭接触器。其中,上述直流输入端子10朝向触桥40a至触桥40n的一端设置有至少两个直流输入静触头(如直流输入静触头100a至直流输入静触头100n),上述直流输入端子10背向触桥40a至触桥40n的另一端可用于连接直流输入模块2。上述直流输出端子20a至直流输出端子20n中每个直流输出端子朝向触桥40a至触桥40n的一端设置有直流输出静触头,每个直流输出端子背向触桥40a至触桥40n的另一端可用于连接直流输出模块。这里的直流输入端子也可以称为直流进线端子(可简称为进线端子),直流输出端子也可以称为直流出线端子(可简称为出线端子)。上述触桥40a至触桥40n中每个触桥上设置有第一动触头和第二动触头,例如,每个触桥的两端设置有第一动触头和第二动触头。例如,触桥40a上设置有第一动触头401a和第二动触头402a,其中,第一动触头401a朝向直流输入静触头100a,第二动触头402a朝向直流输出端子20a;……,触桥40n上设置有第一动触头401n和第二动触头402n,其中,第一动触头401n朝向直流输入静触头100n,第二动触头402n朝向直流输出端子20n。In the case where the DC contactor is a DC contactor with one input (i.e., DC input terminal) and multiple outputs (i.e., DC output terminals) independently controlled, please refer to Figure 2, which is a schematic diagram of the structure of the DC contactor provided by the present application. As shown in Figure 2, the DC contactor 1a includes a DC input terminal 10, at least two DC output terminals (such as DC output terminals 20a to DC output terminals 20n), at least two electromagnetic devices (such as electromagnetic devices 30a to electromagnetic devices 30n), at least two contact bridges (such as contact bridges 40a to contact bridges 40n) and at least two arc extinguishing grids (such as arc extinguishing grids 50a to arc extinguishing grids 50m), and the specific structure of each electromagnetic device in the electromagnetic device 30a to the electromagnetic device 30n can be determined by the specific type of the DC contactor 1a, and the specific type of the DC contactor 1a can include but is not limited to a magnetic holding contactor, a normally open contactor, or a normally closed contactor. Among them, the DC input terminal 10 is provided with at least two DC input static contacts (such as DC input static contacts 100a to DC input static contacts 100n) at one end facing the contact bridges 40a to 40n, and the other end of the DC input terminal 10 facing away from the contact bridges 40a to 40n can be used to connect the DC input module 2. Each of the DC output terminals 20a to 20n is provided with a DC output static contact at one end facing the contact bridges 40a to 40n, and the other end of each DC output terminal facing away from the contact bridges 40a to 40n can be used to connect the DC output module. The DC input terminal here can also be called a DC input terminal (can be referred to as an input terminal for short), and the DC output terminal can also be called a DC output terminal (can be referred to as an output terminal for short). Each of the contact bridges 40a to 40n is provided with a first moving contact and a second moving contact, for example, a first moving contact and a second moving contact are provided at both ends of each contact bridge. For example, a first moving contact 401a and a second moving contact 402a are provided on the contact bridge 40a, wherein the first moving contact 401a faces the DC input static contact 100a, and the second moving contact 402a faces the DC output terminal 20a; ..., a first moving contact 401n and a second moving contact 402n are provided on the contact bridge 40n, wherein the first moving contact 401n faces the DC input static contact 100n, and the second moving contact 402n faces the DC output terminal 20n.

在一些可行的实施方式中,由于上述直流输出端子20a至直流输出端子20n中每个直流输出端子的另一端都会连接一个直流输出模块,因此存在至少两个直流输出模块(如直流输出模块3a至直流输出模块3n)。例如,直流输出端子20a朝向第二动触头402a的一端设置有直流输出静触头200a,直流输出端子20a背向第二动触头402a的另一端可用于连接直流输出模块3a,……,直流输出端子20n朝向第二动触头402n的一端设置有直流输出静触头200n,直流输出端子20n背向第二动触头402n的另一端可用于连接直流输出模块3n。其中,直流输入静触头100a至直流输入静触头100n的具体数量,以及直流输出端子20a至直流输出端子20n的具体数量可由直流输出模块3a至直流输出模块3n的具体数量决定,且直流输入静触头100a至直流输入静触头100n的数量大于或者等于2,直流输出端子20a至直流输出端子20n的数量大于或者等于2。例如,在直流输出模块3a至直流输出模块3n的数量为2时,直流输入静触头100a至直流输入静触头100n的数量为2,直流输出端子20a至直流输出端子20n的数量为2;在直流输出模块3a至直流输出模块3n的数量为3时,直流输入静触头100a至直流输入静触头100n的数量为3,直流输出端子20a至直流输出端子20n的数量为3;在直流输出模块3a至直流输出模块3n的数量为4时,直流输入静触头100a至直流输入静触头100n的数量为4,直流输出端子20a至直流输出端子20n的数量为4。In some feasible implementations, since the other end of each of the DC output terminals 20a to 20n is connected to a DC output module, there are at least two DC output modules (such as DC output modules 3a to 3n). For example, the DC output terminal 20a is provided with a DC output static contact 200a at one end facing the second moving contact 402a, and the other end of the DC output terminal 20a facing away from the second moving contact 402a can be used to connect to the DC output module 3a, ..., the DC output terminal 20n is provided with a DC output static contact 200n at one end facing the second moving contact 402n, and the other end of the DC output terminal 20n facing away from the second moving contact 402n can be used to connect to the DC output module 3n. Among them, the specific number of DC input static contacts 100a to DC input static contacts 100n, and the specific number of DC output terminals 20a to DC output terminals 20n can be determined by the specific number of DC output modules 3a to DC output modules 3n, and the number of DC input static contacts 100a to DC input static contacts 100n is greater than or equal to 2, and the number of DC output terminals 20a to DC output terminals 20n is greater than or equal to 2. For example, when the number of DC output modules 3a to 3n is 2, the number of DC input static contacts 100a to 100n is 2, and the number of DC output terminals 20a to 20n is 2; when the number of DC output modules 3a to 3n is 3, the number of DC input static contacts 100a to 100n is 3, and the number of DC output terminals 20a to 20n is 3; when the number of DC output modules 3a to 3n is 4, the number of DC input static contacts 100a to 100n is 4, and the number of DC output terminals 20a to 20n is 4.

其中,上述直流输入模块2是指为直流接触器1a提供输入电流的一个或者多个功能模块(如电源),直流输出模块3a至直流输出模块3n中每个直流输出模块是指直流接触器1a提供输出电流的一个或者多个功能模块(如负载)。此时,上述直流输入静触头100a至直流输入静触头100n可以理解为输入电流的静触点,且共用同一个直流输入端子10,也就是说,直流输入端子10的输入电流可以理解为直流输入模块2所提供的输入电流;上述直流输出端子20a至直流输出端子20n的直流输出静触头可以理解为n个输出电流的静触点,且直流输出端子20a至直流输出端子20n用于向直流输出模块3a至直流输出模块3n提供n个输出电流。例如,直流输入模块2可包括但不限于光伏组串、电池模块(如储能电池或者动力电池)、发电机、直流(direct current,DC)/DC变换器以及交流(alternating current,AC)/DC变换器,每个直流输出模块可包括但不限于DC/DC变换器、直流汇流箱、光伏逆变器、直流母线、DC/AC变换器、直流负载(如直流电网、蓄电池和基站设备等直流用电设备)以及交流负载(如交流电网、空调和冰箱等交流用电设备)。需要说明的是,直流输入模块2和每个直流输出模块的具体结构可由直流接触器1a所适配的实际应用场景决定,在此不作限制。Among them, the DC input module 2 refers to one or more functional modules (such as power supply) that provide input current for the DC contactor 1a, and each DC output module in the DC output modules 3a to 3n refers to one or more functional modules (such as load) that provide output current for the DC contactor 1a. At this time, the DC input static contacts 100a to 100n can be understood as static contacts of input current, and share the same DC input terminal 10, that is, the input current of the DC input terminal 10 can be understood as the input current provided by the DC input module 2; the DC output static contacts of the DC output terminals 20a to 20n can be understood as static contacts of n output currents, and the DC output terminals 20a to 20n are used to provide n output currents to the DC output modules 3a to 3n. For example, the DC input module 2 may include but is not limited to photovoltaic strings, battery modules (such as energy storage batteries or power batteries), generators, direct current (DC)/DC converters and alternating current (AC)/DC converters, and each DC output module may include but is not limited to DC/DC converters, DC junction boxes, photovoltaic inverters, DC buses, DC/AC converters, DC loads (such as DC power grids, batteries, base station equipment and other DC power equipment) and AC loads (such as AC power grids, air conditioners and refrigerators and other AC power equipment). It should be noted that the specific structure of the DC input module 2 and each DC output module can be determined by the actual application scenario to which the DC contactor 1a is adapted, and is not limited here.

在一些可行的实施方式中,上述直流输入模块2、直流输入端子10、直流输出端子20a、电磁装置30a、触桥40a以及直流输出模块3a可构成第一路高压直流电路,……,上述直流输入模块2、直流输入端子10、直流输出端子20n、电磁装置30n、触桥40n以及直流输出模块3n可构成第n路高压直流电路。也就是说,上述直流输入模块2、直流输入端子10、直流输出端子20a至直流输出端子20n、电磁装置30a至电磁装置30n、触桥40a至触桥40n以及直流输出模块3a至直流输出模块3n可构成n路高压直流电路。这里的n路高压直流电路可共用一个直流输入端子10,并独立使用直流输出端子20a至直流输出端子20n,换言之,一路高压直流电路使用一个直流输出端子,例如,第一路高压直流电路使用直流输出端子20a,……,第n路高压直流电路使用直流输出端子20n。这里的高压直流是指方向和时间不作周期性变化的高压电流(如几百安的电流),而该高压电流所通过的闭合导电回路称之为高压直流电路。在直流接触器1a工作的过程中,电磁装置30a至电磁装置30n中的一个电磁装置可控制触桥40a至触桥40n中的一个触桥运动,例如,电磁装置30a可控制触桥40a运动,……,电磁装置30n可控制触桥40n运动。In some feasible implementations, the DC input module 2, the DC input terminal 10, the DC output terminal 20a, the electromagnetic device 30a, the contact bridge 40a and the DC output module 3a can constitute a first high-voltage DC circuit, ..., the DC input module 2, the DC input terminal 10, the DC output terminal 20n, the electromagnetic device 30n, the contact bridge 40n and the DC output module 3n can constitute an n-th high-voltage DC circuit. In other words, the DC input module 2, the DC input terminal 10, the DC output terminals 20a to 20n, the electromagnetic devices 30a to 30n, the contact bridges 40a to 40n and the DC output modules 3a to 3n can constitute n-th high-voltage DC circuits. The n-th high-voltage DC circuits here can share a DC input terminal 10 and independently use the DC output terminals 20a to 20n. In other words, one high-voltage DC circuit uses one DC output terminal, for example, the first high-voltage DC circuit uses the DC output terminal 20a, ..., and the n-th high-voltage DC circuit uses the DC output terminal 20n. The high voltage direct current here refers to a high voltage current (such as a current of several hundred amperes) whose direction and time do not change periodically, and the closed conductive loop through which the high voltage current passes is called a high voltage direct current circuit. During the operation of the DC contactor 1a, one of the electromagnetic devices 30a to 30n can control the movement of one of the contact bridges 40a to 40n, for example, the electromagnetic device 30a can control the movement of the contact bridge 40a, ..., and the electromagnetic device 30n can control the movement of the contact bridge 40n.

在一些可行的实施方式中,上述电磁装置30a至电磁装置30n中的任意一个电磁装置可控制触桥40a至触桥40n中的任意一个触桥,向直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头和直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触,且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路(即任意一路高压直流电路处于导通状态)。例如,电磁装置30a可控制触桥40a向直流输入静触头100a和直流输出静触头200a的方向运动,从而使得第一动触头401a与直流输入静触头100a接触、且第二动触头402a与直流输出静触头200a接触,这时已导通第一路高压直流电路(即第一路高压直流电路处于导通状态);……,电磁装置30n可控制触桥40n向直流输入静触头100n和直流输出静触头200n的方向运动,从而使得第一动触头401n与直流输入静触头100n接触、且第二动触头402n与直流输出静触头200n接触,这时已导通第n路高压直流电路(即第n路高压直流电路处于导通状态),从而可实现独立控制n路高压直流电路导通的目的。In some feasible embodiments, any electromagnetic device among the above-mentioned electromagnetic devices 30a to 30n can control any contact bridge among the contact bridges 40a to 40n to move toward any DC input static contact among the DC input static contacts 100a to 100n and the DC output static contact of any DC output terminal among the DC output terminals 20a to 20n, so that the first moving contact of any contact bridge contacts with any DC input static contact, and the second moving contact of any contact bridge contacts with any DC output static contact of any DC output terminal, at this time, any one of the above-mentioned n high-voltage DC circuits has been turned on (that is, any one of the high-voltage DC circuits is in the on state). For example, the electromagnetic device 30a can control the contact bridge 40a to move in the direction of the DC input static contact 100a and the DC output static contact 200a, so that the first moving contact 401a contacts the DC input static contact 100a and the second moving contact 402a contacts the DC output static contact 200a, and at this time the first high-voltage DC circuit is turned on (i.e., the first high-voltage DC circuit is in the on state); ..., the electromagnetic device 30n can control the contact bridge 40n to move in the direction of the DC input static contact 100n and the DC output static contact 200n, so that the first moving contact 401n contacts the DC input static contact 100n and the second moving contact 402n contacts the DC output static contact 200n, and at this time the nth high-voltage DC circuit is turned on (i.e., the nth high-voltage DC circuit is in the on state), thereby achieving the purpose of independently controlling the conduction of n high-voltage DC circuits.

可选的,在一些可行的实施方式中,上述任意一个电磁装置还可控制任意一个触桥向远离任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离,且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开上述n路高压直流电路中的任意一路高压直流电路(即任意一路高压直流电路处于断开状态)。例如,电磁装置30a可控制触桥40a向远离直流输入静触头100a和直流输出静触头200a的方向运动,从而使得第一动触头401a与直流输入静触头100a分离、且第二动触头402a与直流输出静触头200a分离,这时已断开第一路高压直流电路(即第一路高压直流电路处于断开状态);……,电磁装置30n可控制触桥40n向远离直流输入静触头100n和直流输出静触头200n的方向运动,从而使得第一动触头401n与直流输入静触头100n分离、且第二动触头402n与直流输出静触头200n分离,这时已断开第n路高压直流电路(即第n路高压直流电路处于断开状态),从而可实现独立控制n路高压直流电路断开的目的。Optionally, in some feasible embodiments, any of the above-mentioned electromagnetic devices can also control any one of the contact bridges to move in a direction away from any one of the DC input static contacts and any one of the DC output static contacts of the DC output terminal, so that the first moving contact of any one of the contact bridges is separated from any one of the DC input static contacts, and the second moving contact of any one of the contact bridges is separated from the DC output static contact of any one of the DC output terminals. At this time, any one of the above-mentioned n high-voltage DC circuits has been disconnected (that is, any one of the high-voltage DC circuits is in a disconnected state). For example, the electromagnetic device 30a can control the contact bridge 40a to move in a direction away from the DC input static contact 100a and the DC output static contact 200a, so that the first moving contact 401a is separated from the DC input static contact 100a, and the second moving contact 402a is separated from the DC output static contact 200a. At this time, the first high-voltage DC circuit is disconnected (that is, the first high-voltage DC circuit is in a disconnected state); ..., the electromagnetic device 30n can control the contact bridge 40n to move in a direction away from the DC input static contact 100n and the DC output static contact 200n, so that the first moving contact 401n is separated from the DC input static contact 100n, and the second moving contact 402n is separated from the DC output static contact 200n. At this time, the nth high-voltage DC circuit is disconnected (that is, the nth high-voltage DC circuit is in a disconnected state), thereby achieving the purpose of independently controlling the disconnection of n high-voltage DC circuits.

需要说明的是,上述n路高压直流电路中的任意一路高压直流电路可处于导通状态或者断开状态,此时存在以下情况:上述n路高压直流电路同时处于导通状态;上述n路高压直流电路同时处于断开状态;上述n路高压直流电路中的一部分高压直流电路处于导通状态,同时上述n路高压直流电路中的另一部分高压直流电路处于断开状态,也就是说,上述直流接触器1a可实现独立控制n路高压直流电路导通或者断开的目的(即直流接触器1a为多触点的高压直流接触器)。It should be noted that any one of the n high-voltage DC circuits can be in an on state or an off state, and the following situations exist at this time: the n high-voltage DC circuits are in an on state at the same time; the n high-voltage DC circuits are in an off state at the same time; a part of the n high-voltage DC circuits is in an on state, and another part of the n high-voltage DC circuits is in an off state, that is, the DC contactor 1a can achieve the purpose of independently controlling the on or off of the n high-voltage DC circuits (that is, the DC contactor 1a is a multi-contact high-voltage DC contactor).

在一些可行的实施方式中,由于直流接触器1a在断开n路高压直流电路中的任意一路高压直流电路时其电压和电流会达到一定值,因此会使得任意一个触桥的第一动触头与任意一个直流输入静触头之间产生强力的白光(也称为电弧),且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头之间产生强力的白光(也称为电弧)。这时,上述灭弧栅50a至灭弧栅50m中的任意一个灭弧栅可对上述任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧进行灭弧,并对任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时产生的电弧进行灭弧。需要说明的是,上述灭弧栅50a至灭弧栅50m设置在直流接触器1a中可以对电弧进行有效灭弧的任何位置,在此不作限制。其中,上述灭弧栅50a至灭弧栅50m中的每个灭弧栅可使用磁性材料的金属栅片将电弧分割成若干短弧,并利用直流电弧的近极压降来达到熄灭电弧的目的,也就是说,每个灭弧栅利用短弧灭弧的原理对电弧进行灭弧,灭弧栅也可以称为横向金属栅片或者离子栅。其中,灭弧栅50a至灭弧栅50m中的任意一个灭弧栅可对断开任意一路高压直流电路的过程中所产生的电弧进行灭弧,因此上述灭弧栅50a至灭弧栅50m可对断开n路高压直流电路的过程中所产生的电弧进行灭弧。In some feasible implementations, since the voltage and current of the DC contactor 1a will reach a certain value when disconnecting any one of the n high-voltage DC circuits, a strong white light (also called an arc) will be generated between the first moving contact of any contact bridge and any DC input static contact, and a strong white light (also called an arc) will be generated between the second moving contact of any contact bridge and the DC output static contact of any DC output terminal. At this time, any one of the arc extinguishing grids 50a to 50m can extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and extinguish the arc generated when the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal. It should be noted that the arc extinguishing grids 50a to 50m are set at any position in the DC contactor 1a that can effectively extinguish the arc, and there is no limitation here. Among them, each of the arc extinguishing grids 50a to 50m can use a metal grid of magnetic material to divide the arc into several short arcs, and use the near-pole voltage drop of the DC arc to achieve the purpose of extinguishing the arc, that is, each arc extinguishing grid uses the principle of short arc extinguishing to extinguish the arc, and the arc extinguishing grid can also be called a transverse metal grid or an ion grid. Among them, any arc extinguishing grid from the arc extinguishing grid 50a to 50m can extinguish the arc generated in the process of disconnecting any high-voltage DC circuit, so the arc extinguishing grid 50a to 50m can extinguish the arc generated in the process of disconnecting n high-voltage DC circuits.

可以理解,由于直流接触器1a可通过直流输入静触头100a至直流输入静触头100n,直流输出端子20a至直流输出端子20n,电磁装置30a至电磁装置30n以及触桥40a至触桥40n来实现独立控制n路高压直流电路导通或者断开的目的;在断开n路高压直流电路的过程中会产生电弧,这时可通过灭弧栅50a至灭弧栅50m对电弧进行灭弧,从而可避免烧蚀动触头(如第一动触头和第二动触头)和静触头(如直流输入静触头和直流输出静触头),进而提高了直流接触器1a的稳定性和安全性,并且延长了直流接触器1a的使用寿命。另外,上述直流接触器1a中的直流输出端子20a至直流输出端子20n共用同一个直流输入端子10,也就是说,无需针对每个直流输出端子设置一个直流输入端子,从而减小了直流接触器1a的整体体积,同时也降低了直流接触器1a的接线复杂度,结构更加简单;由于一个直流接触器1a就可以导通或者断开n路高压直流电路,因此无须设置多个直流接触器来导通或者断开n路高压直流电路,从而有效节省了直流接触器1a所占用的空间以及成本,安装更加方便,直流接触器1a的工作效率更高,适用性更强。It can be understood that since the DC contactor 1a can achieve the purpose of independently controlling the conduction or disconnection of n high-voltage DC circuits through the DC input static contact 100a to the DC input static contact 100n, the DC output terminal 20a to the DC output terminal 20n, the electromagnetic device 30a to the electromagnetic device 30n and the contact bridge 40a to the contact bridge 40n; an arc will be generated in the process of disconnecting the n high-voltage DC circuits. At this time, the arc can be extinguished by the arc extinguishing grid 50a to the arc extinguishing grid 50m, thereby avoiding the burning of the moving contacts (such as the first moving contact and the second moving contact) and the static contacts (such as the DC input static contact and the DC output static contact), thereby improving the stability and safety of the DC contactor 1a, and extending the service life of the DC contactor 1a. In addition, the DC output terminals 20a to 20n in the above-mentioned DC contactor 1a share the same DC input terminal 10, that is, there is no need to set a DC input terminal for each DC output terminal, thereby reducing the overall volume of the DC contactor 1a, and also reducing the wiring complexity of the DC contactor 1a, and the structure is simpler; since one DC contactor 1a can turn on or off n high-voltage DC circuits, there is no need to set up multiple DC contactors to turn on or off n high-voltage DC circuits, thereby effectively saving the space and cost occupied by the DC contactor 1a, making installation more convenient, and the DC contactor 1a has higher working efficiency and stronger applicability.

在一些可行的实施方式中,如上述图2所示,直流接触器1a中还包括第三塑料壳体60(也可称为接触器壳体),上述电磁装置30a至电磁装置30n、触桥40a至触桥40n、直流输入静触头100a至直流输入静触头100n、直流输出静触头200a至直流输出静触头200n以及灭弧栅50a至灭弧栅50m均设置在第三塑料壳体60内,且直流输入端子10的另一端穿过第三塑料壳体60连接直流输入模块2,直流输出端子20a的另一端穿过第三塑料壳体60连接直流输出模块3a,……,直流输出端子20n的另一端穿过第三塑料壳体60连接直流输出模块3n。由于不同的动触头(如上述第一动触头401a至第一动触头401n或者第二动触头402a至第二动触头402n),与不同的静触头(如上述直流输入静触头100a至直流输入静触头100n或者直流输出静触头200a至直流输出静触头200n)分离时所产生的电弧还会伴随产生气体(如高热气体),这时电弧伴随产生的高热气体存在于第三塑料壳体60内,从而导致第三塑料壳体60存在烧坏的风险,因此,第三塑料壳体60上设置第二排气孔(图中未示出),并通过该第二排气孔将电弧伴随产生的高热气体排出第三塑料壳体60,从而可保护第三塑料壳体60不被烧坏。另外,该第二排气孔及时将第三塑料壳体60内的高热气体排出,可避免烧坏第三塑料壳体60内的器件,安全性更高,进而延长了第三塑料壳体60内器件的使用寿命,适用性更强。可选的,该直流接触器1a还可通过陶瓷密闭室来避免高热气体损坏第三塑料壳体60,具体可在该陶瓷密闭室中充入惰性气体或者氢气来避免电弧的危害,从而保护第三塑料壳体60不被烧坏,适用性更强。In some feasible embodiments, as shown in Figure 2 above, the DC contactor 1a also includes a third plastic shell 60 (also referred to as a contactor shell), and the above-mentioned electromagnetic devices 30a to 30n, contact bridges 40a to 40n, DC input static contacts 100a to 100n, DC output static contacts 200a to 200n, and arc extinguishing grids 50a to 50m are all arranged in the third plastic shell 60, and the other end of the DC input terminal 10 passes through the third plastic shell 60 to connect to the DC input module 2, the other end of the DC output terminal 20a passes through the third plastic shell 60 to connect to the DC output module 3a,..., and the other end of the DC output terminal 20n passes through the third plastic shell 60 to connect to the DC output module 3n. Since the arc generated when different moving contacts (such as the first moving contact 401a to the first moving contact 401n or the second moving contact 402a to the second moving contact 402n) are separated from different static contacts (such as the DC input static contact 100a to the DC input static contact 100n or the DC output static contact 200a to the DC output static contact 200n) will also be accompanied by the generation of gas (such as high-temperature gas), the high-temperature gas generated by the arc at this time exists in the third plastic shell 60, which leads to the risk of burning the third plastic shell 60. Therefore, a second exhaust hole (not shown in the figure) is provided on the third plastic shell 60, and the high-temperature gas generated by the arc is discharged from the third plastic shell 60 through the second exhaust hole, so as to protect the third plastic shell 60 from being burned. In addition, the second exhaust hole timely discharges the high-temperature gas in the third plastic shell 60, which can avoid burning the components in the third plastic shell 60, and has higher safety, thereby extending the service life of the components in the third plastic shell 60 and having stronger applicability. Optionally, the DC contactor 1a can also prevent high-temperature gas from damaging the third plastic shell 60 through a ceramic sealed chamber. Specifically, inert gas or hydrogen can be filled into the ceramic sealed chamber to avoid the harm of electric arc, thereby protecting the third plastic shell 60 from being burned, and having better applicability.

在一些可行的实施方式中,上述灭弧栅50a至灭弧栅50m中的任意一个灭弧栅可设置于直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头,和直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头之间。请一并参见图3,图3是本申请提供的直流接触器的另一结构示意图。如图3所示,上述图2所示的灭弧栅50a设置于直流输入静触头100a和直流输出端子20a的直流输出静触头200a之间,……,上述图2所示的灭弧栅50m设置于直流输入静触头100n与直流输出端子20n的直流输出静触头200n之间,这时,上述灭弧栅50a至灭弧栅50m的数量与直流输出端子20a至直流输出端子20n的数量相同,也就是说,灭弧栅50a至灭弧栅50m中包括n个灭弧栅。其中,灭弧栅50a至灭弧栅50m中的任意一个灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,上述任意一个灭弧栅中的多个金属栅片可同时对触桥40a至触桥40n中任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧,以及任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时产生的电弧进行分割从而达到灭弧的目的。例如,灭弧栅50a中的多个金属栅片可对触桥40a的第一动触头401a与直流输入静触头100a分离时产生的电弧进行分割灭弧,并对触桥40a的第二动触头402a与直流输出静触头200a分离时产生的电弧进行分割灭弧;……;灭弧栅50m中的多个金属栅片可对触桥40a的第一动触头401a与直流输入静触头100a分离时产生的电弧进行分割灭弧,并对触桥40a的第二动触头402a与直流输出静触头200a分离时产生的电弧进行分割灭弧。In some feasible embodiments, any one of the arc extinguishing grids 50a to 50m can be arranged between any one of the DC input static contacts 100a to 100n, and the DC output static contact of any one of the DC output terminals 20a to 20n. Please refer to FIG. 3, which is another structural schematic diagram of the DC contactor provided by the present application. As shown in FIG. 3, the arc extinguishing grid 50a shown in FIG. 2 is arranged between the DC input static contact 100a and the DC output static contact 200a of the DC output terminal 20a, ..., the arc extinguishing grid 50m shown in FIG. 2 is arranged between the DC input static contact 100n and the DC output static contact 200n of the DC output terminal 20n, at this time, the number of the arc extinguishing grids 50a to 50m is the same as the number of the DC output terminals 20a to 20n, that is, the arc extinguishing grids 50a to 50m include n arc extinguishing grids. Among them, any arc extinguishing grid from the arc extinguishing grid 50a to the arc extinguishing grid 50m can be composed of multiple metal grids made of magnetic materials (which can be simply referred to as multiple metal grids). The multiple metal grids in any of the above arc extinguishing grids can simultaneously divide the arc generated when the first moving contact of any contact bridge from the contact bridge 40a to the contact bridge 40n is separated from any DC input static contact, and the arc generated when the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal, so as to achieve the purpose of arc extinguishing. For example, the multiple metal grids in the arc extinguishing grid 50a can split and extinguish the arc generated when the first moving contact 401a of the contact bridge 40a is separated from the DC input static contact 100a, and split and extinguish the arc generated when the second moving contact 402a of the contact bridge 40a is separated from the DC output static contact 200a; ...; the multiple metal grids in the arc extinguishing grid 50m can split and extinguish the arc generated when the first moving contact 401a of the contact bridge 40a is separated from the DC input static contact 100a, and split and extinguish the arc generated when the second moving contact 402a of the contact bridge 40a is separated from the DC output static contact 200a.

可以理解,上述任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头共用任意一个灭弧栅(即同一个灭弧栅)进行灭弧,提升了灭弧效率,并且减少了直流接触器1a中使用灭弧栅的数量,成本更低;另外,上述灭弧栅50a至灭弧栅50m的放置方式可有效利用直流输入静触头和直流输出静触头之间的空间,从而减小了直流接触器1a的整体体积,适用性更强。It can be understood that any one of the above-mentioned DC input static contacts and any one of the DC output static contacts of the DC output terminal share any one arc extinguishing grid (i.e., the same arc extinguishing grid) for arc extinguishing, which improves the arc extinguishing efficiency and reduces the number of arc extinguishing grids used in the DC contactor 1a, which is lower in cost; in addition, the placement method of the above-mentioned arc extinguishing grids 50a to 50m can effectively utilize the space between the DC input static contact and the DC output static contact, thereby reducing the overall volume of the DC contactor 1a and making it more applicable.

在一些可行的实施方式中,上述灭弧栅50a至灭弧栅50m中的任意一个灭弧栅包括第一栅片组、第二栅片组以及绝缘隔板,其中,该第一栅片组可朝向上述直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头,上述第二栅片组可朝向上述直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头。在上述任意一个灭弧栅包括多个金属栅片的情况下,该第一栅片组包括任意一个灭弧栅中的多个金属栅片中朝向任意一个直流输入静触头一侧的所有金属栅片,该第二栅片组包括任意一个灭弧栅中的多个金属栅片中朝向任意一个直流输出端子的直流输出静触头一侧的所有金属栅片。可以理解,由于任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头共用任意一个灭弧栅进行灭弧,且任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头相对设置,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板(即由绝缘材料制成的绝缘平板)进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,并且延长了灭弧栅的使用寿命,适用性更强。In some feasible implementations, any arc extinguishing grid from the arc extinguishing grid 50a to the arc extinguishing grid 50m comprises a first grid group, a second grid group and an insulating partition, wherein the first grid group may face any DC input static contact from the DC input static contact 100a to the DC input static contact 100n, and the second grid group may face the DC output static contact of any DC output terminal 20a to the DC output terminal 20n. In the case where any arc extinguishing grid comprises a plurality of metal grids, the first grid group comprises all metal grids facing one side of any DC input static contact from the plurality of metal grids in any arc extinguishing grid, and the second grid group comprises all metal grids facing one side of the DC output static contact of any DC output terminal from the plurality of metal grids in any arc extinguishing grid. It can be understood that since any DC input static contact and any DC output static contact of any DC output terminal share any arc extinguishing grid for arc extinguishing, and any DC input static contact and any DC output static contact of any DC output terminal are arranged relatively to each other, there is a risk of circuit short circuit caused by arc blowing. Therefore, an insulating partition (that is, an insulating plate made of insulating material) is arranged between the first grid group and the second grid group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blowing, which is safer, extends the service life of the arc extinguishing grid, and has stronger applicability.

在一些可行的实施方式中,上述任意一个灭弧栅的具体结构如上述图3所示,灭弧栅50a包括朝向直流输入静触头100a的第一栅片组501a,朝向直流输出静触头200a的第二栅片组502a以及绝缘隔板503a(如塑料隔板),第一栅片组501a和第二栅片组502a之间通过绝缘隔板503a进行隔离。其中,第一栅片组501a可对第一动触头401a与直流输入静触头100a分离时产生的电弧进行分割灭弧,同时,第二栅片组502a可对第二动触头402a与直流输出静触头200a分离时产生的电弧进行分割灭弧,并且绝缘隔板503a可对其两侧产生的电弧进行隔离,从而避免灭弧栅50a由于电弧对吹所导致的电路短路风险,安全性更高。同理,灭弧栅50a至灭弧栅50m中其它灭弧栅的具体结构和工作原理可参见上述灭弧栅50a的具体结构和工作原理,比如,灭弧栅50m中包括朝向直流输入静触头100n的第一栅片组501m,朝向直流输出静触头200n的第二栅片组502m以及绝缘隔板503m(如塑料隔板),第一栅片组501m和第二栅片组502m之间通过绝缘隔板503m进行隔离。其中,第一栅片组501m可对第一动触头401n与直流输入静触头100n分离时产生的电弧进行分割灭弧,同时,第二栅片组502m可对第二动触头402n与直流输出静触头200n分离时产生的电弧进行分割灭弧,并且绝缘隔板503m可对其两侧产生的电弧进行隔离,从而避免灭弧栅50m由于电弧对吹所导致的电路短路风险,安全性更高。在上述图3所示的直流接触器1a还包括多个第一塑料壳体的情况下,直流接触器1a对应的俯视图请一并参见图4,图4是本申请提供的直流接触器的另一结构示意图。In some feasible implementations, the specific structure of any of the above arc extinguishing grids is as shown in FIG. 3 above, and the arc extinguishing grid 50a includes a first grid plate group 501a facing the DC input static contact 100a, a second grid plate group 502a facing the DC output static contact 200a, and an insulating partition 503a (such as a plastic partition), and the first grid plate group 501a and the second grid plate group 502a are isolated by the insulating partition 503a. Among them, the first grid plate group 501a can divide and extinguish the arc generated when the first moving contact 401a is separated from the DC input static contact 100a, and at the same time, the second grid plate group 502a can divide and extinguish the arc generated when the second moving contact 402a is separated from the DC output static contact 200a, and the insulating partition 503a can isolate the arcs generated on both sides thereof, thereby avoiding the risk of circuit short circuit caused by arc blow of the arc extinguishing grid 50a, and having higher safety. Similarly, the specific structure and working principle of other arc extinguishing grids in the arc extinguishing grid 50a to the arc extinguishing grid 50m can refer to the specific structure and working principle of the above-mentioned arc extinguishing grid 50a. For example, the arc extinguishing grid 50m includes a first grid plate group 501m facing the DC input static contact 100n, a second grid plate group 502m facing the DC output static contact 200n, and an insulating partition 503m (such as a plastic partition). The first grid plate group 501m and the second grid plate group 502m are isolated by the insulating partition 503m. Among them, the first grid plate group 501m can divide and extinguish the arc generated when the first moving contact 401n is separated from the DC input static contact 100n, and at the same time, the second grid plate group 502m can divide and extinguish the arc generated when the second moving contact 402n is separated from the DC output static contact 200n, and the insulating partition 503m can isolate the arcs generated on both sides thereof, thereby avoiding the risk of circuit short circuit caused by arc blowing of the arc extinguishing grid 50m, and having higher safety. In the case where the DC contactor 1a shown in FIG3 above also includes multiple first plastic shells, please refer to FIG4 for the corresponding top view of the DC contactor 1a, which is another structural schematic diagram of the DC contactor provided in the present application.

在一些可行的实施方式中,如图4所示,上述图3所示的直流接触器1a还包括第一塑料壳体70a至第一塑料壳体70s,该第一塑料壳体70a至第一塑料壳体70s中每个第一塑料壳体内嵌入有第一磁块,该第一磁块可包括但不限于永磁体。其中,上述直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头的两侧,设置有第一塑料壳体70a至第一塑料壳体70s中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第一塑料壳体相对设置于上述任意一个直流输入静触头的两侧;上述任意两个第一塑料壳体中的第一磁块平行设置,且任意两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则,任意两个第一塑料壳体中第一磁块的具体放置位置由灭弧栅50a至灭弧栅50m的放置位置以及流过直流接触器1a的电流的方向(即电流方向)决定。In some feasible embodiments, as shown in FIG. 4 , the DC contactor 1a shown in FIG. 3 further includes first plastic shells 70a to 70s, each of which has a first magnetic block embedded therein, and the first magnetic block may include but is not limited to a permanent magnet. Wherein, any two first plastic shells from the first plastic shells 70a to 70s are arranged on both sides of any DC input static contact from the DC input static contact 100a to 100n, and any two first plastic shells are arranged oppositely, in other words, any two first plastic shells are arranged oppositely on both sides of any DC input static contact; the first magnetic blocks in any two first plastic shells are arranged in parallel, and the placement of the first magnetic blocks in any two first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule, and the specific placement position of the first magnetic blocks in any two first plastic shells is determined by the placement position of the arc extinguishing grid 50a to 50m and the direction of the current flowing through the DC contactor 1a (i.e., the current direction).

需要说明的是,上述每个第一塑料壳体中可嵌入一个第一磁块或者两个第一磁块;不同的直流输入静触头两侧的第一塑料壳体可以为相同的第一塑料壳体,也可以为不同的第一塑料壳体,具体可根据实际应用场景确定,在此不作限制。在触桥40a至触桥40n中任意一个触桥的第一动触头与任意一个直流输入静触头分离时会产生电弧,上述任意两个第一塑料壳体中的第一磁块产生的磁场力可将产生的电弧吹向灭弧栅50a至灭弧栅50m中任意一个灭弧栅的第一栅片组,使得任意一个灭弧栅的第一栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向第一栅片组),从而提升了灭弧效率,适用性更强。It should be noted that one first magnetic block or two first magnetic blocks can be embedded in each of the above-mentioned first plastic shells; the first plastic shells on both sides of different DC input static contacts can be the same first plastic shells or different first plastic shells, which can be determined according to the actual application scenario and is not limited here. When the first moving contact of any contact bridge from the contact bridge 40a to the contact bridge 40n is separated from any DC input static contact, an arc will be generated, and the magnetic field force generated by the first magnetic blocks in any two of the above-mentioned first plastic shells can blow the generated arc to the first grid plate group of any arc extinguishing grid from the arc extinguishing grid 50a to the arc extinguishing grid 50m, so that the first grid plate group of any arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (that is, blowing the arc to the first grid plate group) through the first magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,上述第一塑料壳体70a至第一塑料壳体70s的具体放置方式如图4所示,直流输入静触头100a的两侧设置有第一塑料壳体70a和第一塑料壳体70b,且第一塑料壳体70a和第一塑料壳体70b相对设置,换言之,第一塑料壳体70a和第一塑料壳体70b相对设置于直流输入静触头100a的两侧,其中,第一塑料壳体70a中的第一磁块与第一塑料壳体70b中的第一磁块平行设置。在第一动触头401a与直流输入静触头100a分离时会产生电弧,第一塑料壳体70a和第一塑料壳体70b中第一磁块产生的磁场力可共同作用将产生的电弧吹向灭弧栅50a的第一栅片组,使得灭弧栅50a的第一栅片组对该电弧进行灭弧。同理,直流输入静触头100a至直流输入静触头100n中其它直流输入静触头的两侧的第一塑料壳体的放置方式可参见上述第一塑料壳体70a和第一塑料壳体70b的放置方式,比如,上述直流输入静触头100n的两侧设置有第一塑料壳体70s-1和第一塑料壳体70s,且第一塑料壳体70s-1和第一塑料壳体70s相对设置,换言之,第一塑料壳体70s-1和第一塑料壳体70s相对设置于直流输入静触头100n的两侧,其中,第一塑料壳体70s-1中的第一磁块与第一塑料壳体70s中的第一磁块平行设置。在第一动触头401n与直流输入静触头100n分离时会产生电弧,第一塑料壳体70s-1和第一塑料壳体70s中第一磁块产生的磁场力可共同作用将产生的电弧吹向灭弧栅50m的第一栅片组,使得灭弧栅50m的第一栅片组对该电弧进行灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了灭弧效率,适用性更强。In some feasible implementations, the specific placement of the first plastic shell 70a to the first plastic shell 70s is shown in FIG4 , and the first plastic shell 70a and the first plastic shell 70b are arranged on both sides of the DC input static contact 100a, and the first plastic shell 70a and the first plastic shell 70b are arranged oppositely, in other words, the first plastic shell 70a and the first plastic shell 70b are arranged oppositely on both sides of the DC input static contact 100a, wherein the first magnetic block in the first plastic shell 70a is arranged in parallel with the first magnetic block in the first plastic shell 70b. When the first moving contact 401a is separated from the DC input static contact 100a, an arc is generated, and the magnetic field force generated by the first magnetic block in the first plastic shell 70a and the first plastic shell 70b can work together to blow the generated arc to the first grid plate group of the arc extinguishing grid 50a, so that the first grid plate group of the arc extinguishing grid 50a extinguishes the arc. Similarly, the placement method of the first plastic shell on both sides of other DC input static contacts from the DC input static contact 100a to the DC input static contact 100n can refer to the placement method of the above-mentioned first plastic shell 70a and the first plastic shell 70b. For example, the first plastic shell 70s-1 and the first plastic shell 70s are arranged on both sides of the above-mentioned DC input static contact 100n, and the first plastic shell 70s-1 and the first plastic shell 70s are arranged opposite to each other. In other words, the first plastic shell 70s-1 and the first plastic shell 70s are arranged opposite to each other on both sides of the DC input static contact 100n, wherein the first magnetic block in the first plastic shell 70s-1 is arranged parallel to the first magnetic block in the first plastic shell 70s. When the first moving contact 401n is separated from the DC input static contact 100n, an arc will be generated. The magnetic field force generated by the first plastic shell 70s-1 and the first magnetic block in the first plastic shell 70s can work together to blow the generated arc toward the first grid group of the arc extinguishing grid 50m, so that the first grid group of the arc extinguishing grid 50m extinguishes the arc, thereby achieving the purpose of arc blowing by the magnetic field force and arc extinguishing by the arc extinguishing grid, further improving the arc extinguishing efficiency and enhancing applicability.

在一些可行的实施方式中,上述第一塑料壳体70a至第一塑料壳体70s中每个第一塑料壳体内嵌入有垂直放置的两个第一磁块,且每个第一塑料壳体中两个第一磁块垂直相交的一端设置有隔磁材料。上述每个第一塑料壳体中的两个第一磁块分别朝向任意一个直流输入静触头与其相邻的直流输入静触头,也就是说,两个第一磁块中的一个第一磁块朝向任意一个直流输入静触头,两个第一磁块中的另一个第一磁块朝向直流输入静触头100a至直流输入静触头100n中与任意一个直流输入静触头相邻的直流输入静触头。可以理解,由于隔磁材料可避免每个第一塑料壳体中的两个第一磁块的磁场力相互影响,因此每个第一塑料壳体中的一个第一磁块产生的磁场力可用于实现对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧的定向吹弧,每个第一塑料壳体中的另一个第一磁块可用于实现对任意一个触桥相邻的触桥的第一动触头与任意一个直流输入静触头相邻的直流输入静触头分离时产生的电弧的定向吹弧,也就是说,每个第一塑料壳体中的两个第一磁块产生的磁场力可分别实现不同方向的电弧的定向吹弧,吹弧效率更高,并且节省了直流接触器1a的内部空间,适用性更强。In some feasible implementations, two vertically placed first magnetic blocks are embedded in each of the first plastic shells 70a to 70s, and a magnetic isolation material is provided at one end of each first plastic shell where the two first magnetic blocks intersect vertically. The two first magnetic blocks in each of the first plastic shells are respectively oriented toward any one of the DC input static contacts and the DC input static contacts adjacent thereto, that is, one of the two first magnetic blocks is oriented toward any one of the DC input static contacts, and the other of the two first magnetic blocks is oriented toward the DC input static contact adjacent to any one of the DC input static contacts 100a to 100n. It can be understood that since the magnetic isolation material can prevent the magnetic field forces of the two first magnetic blocks in each first plastic shell from influencing each other, the magnetic field force generated by one of the first magnetic blocks in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and the other first magnetic block in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge adjacent to the contact bridge is separated from the DC input static contact adjacent to any DC input static contact. In other words, the magnetic field forces generated by the two first magnetic blocks in each first plastic shell can respectively achieve directional arc blowing of arcs in different directions, with higher arc blowing efficiency, saving the internal space of the DC contactor 1a, and greater applicability.

在一些可行的实施方式中,在每个第一塑料壳体中包括两个第一磁块的情况下,如图4所示,对于直流输入静触头100a而言,第一塑料壳体70a内嵌入有垂直放置的第一磁块701a和第一磁块702a,且第一磁块701a和第一磁块702a垂直相交的一端设置有隔磁材料703a,其中,第一磁块701a朝向直流输入静触头100a,第一磁块702a朝向与直流输入静触头100a相邻的一个直流输入静触头;第一塑料壳体70b内嵌入有垂直放置的第一磁块701b和第一磁块702b,且第一磁块701b和第一磁块702b垂直相交的一端设置有隔磁材料703b,其中,第一磁块701b朝向直流输入静触头100a,第一磁块702a朝向与直流输入静触头100a相邻的另一个直流输入静触头,其中,上述第一磁块701a和第一磁块701b平行设置。需要说明的是,直流输入静触头100a及其相邻的一个直流输入静触头共用第一塑料壳体70a,直流输入静触头100a及其相邻的另一个直流输入静触头共用第一塑料壳体70b。In some feasible implementations, when two first magnetic blocks are included in each first plastic shell, as shown in FIG. 4 , for the DC input static contact 100a, a vertically placed first magnetic block 701a and a first magnetic block 702a are embedded in the first plastic shell 70a, and a magnetic isolation material 703a is provided at one end where the first magnetic block 701a and the first magnetic block 702a intersect vertically, wherein the first magnetic block 701a faces the DC input static contact 100a, and the first magnetic block 702a faces the DC input static contact 100a. 0a adjacent to a DC input static contact; a first magnetic block 701b and a first magnetic block 702b placed vertically are embedded in the first plastic shell 70b, and a magnetic isolation material 703b is provided at one end where the first magnetic block 701b and the first magnetic block 702b intersect vertically, wherein the first magnetic block 701b faces the DC input static contact 100a, and the first magnetic block 702a faces another DC input static contact adjacent to the DC input static contact 100a, wherein the first magnetic block 701a and the first magnetic block 701b are arranged in parallel. It should be noted that the DC input static contact 100a and an adjacent DC input static contact share the first plastic shell 70a, and the DC input static contact 100a and another adjacent DC input static contact share the first plastic shell 70b.

由于隔磁材料703a可避免第一磁块701a和第一磁块702a相互影响,且隔磁材料703b可避免第一磁块701b和第一磁块702b影响,因此,第一磁块701a产生的磁场力和第一磁块701b产生的磁场力可共同作用将触桥40a的第一动触头401a与直流输入静触头100a分离时产生的电弧吹向灭弧栅50a;第一磁块702a及其平行设置的第一磁块产生的磁场力可共同作用,将触桥40a相邻的一个触桥的第一动触头与直流输入静触头100a相邻的一个直流输入静触头分离时产生的电弧吹向与灭弧栅50a相邻的一个灭弧栅;第一磁块702b及其平行设置的第一磁块产生的磁场力可共同作用,将触桥40a相邻的另一个触桥的第一动触头与直流输入静触头100a相邻的另一个直流输入静触头分离时产生的电弧吹向与灭弧栅50a相邻的另一个灭弧栅,从而实现不同方向的电弧的定向吹弧,并且节省了直流接触器1a的内部空间,适用性更强。Since the magnetic isolation material 703a can prevent the first magnetic block 701a and the first magnetic block 702a from influencing each other, and the magnetic isolation material 703b can prevent the first magnetic block 701b and the first magnetic block 702b from influencing each other, the magnetic field force generated by the first magnetic block 701a and the magnetic field force generated by the first magnetic block 701b can work together to blow the arc generated when the first moving contact 401a of the contact bridge 40a is separated from the DC input static contact 100a to the arc extinguishing grid 50a; the magnetic field force generated by the first magnetic block 702a and the first magnetic block arranged in parallel can work together to blow the first moving contact 401a of the contact bridge 40a adjacent to the DC input static contact 100a to the arc extinguishing grid 50a. The arc generated when the moving contact is separated from a DC input static contact adjacent to the DC input static contact 100a blows toward an arc extinguishing grid adjacent to the arc extinguishing grid 50a; the magnetic field force generated by the first magnetic block 702b and the first magnetic block arranged in parallel can work together to blow the arc generated when the first moving contact of another contact bridge adjacent to the contact bridge 40a is separated from another DC input static contact adjacent to the DC input static contact 100a toward another arc extinguishing grid adjacent to the arc extinguishing grid 50a, thereby realizing directional blowing of arcs in different directions, saving the internal space of the DC contactor 1a, and having stronger applicability.

对于直流输入静触头100n而言,第一塑料壳体70s-1内嵌入有垂直放置的第一磁块701s-1和第一磁块702s-1,且第一磁块701s-1和第一磁块702s-1垂直相交的一端设置有隔磁材料703s-1,其中,第一磁块701s-1朝向直流输入静触头100n,第一磁块702s-1朝向与直流输入静触头100n相邻的一个直流输入静触头;第一塑料壳体70s内嵌入有垂直放置的第一磁块701s和第一磁块702s,且第一磁块701s和第一磁块702s垂直相交的一端设置有隔磁材料703s,其中,第一磁块701s朝向直流输入静触头100n,第一磁块701s朝向与直流输入静触头100n相邻的另一个直流输入静触头,其中,上述第一磁块701s-1和第一磁块701s平行设置。需要说明的是,直流输入静触头100n及其相邻的一个直流输入静触头共用第一塑料壳体70s-1,直流输入静触头100n及其相邻的另一个直流输入静触头共用第一塑料壳体70s。For the DC input static contact 100n, a vertically placed first magnetic block 701s-1 and a first magnetic block 702s-1 are embedded in the first plastic shell 70s-1, and a magnetic isolation material 703s-1 is provided at one end where the first magnetic block 701s-1 and the first magnetic block 702s-1 intersect vertically, wherein the first magnetic block 701s-1 faces the DC input static contact 100n, and the first magnetic block 702s-1 faces a DC input static contact adjacent to the DC input static contact 100n. ; A vertically placed first magnetic block 701s and a first magnetic block 702s are embedded in the first plastic shell 70s, and a magnetic isolation material 703s is provided at one end where the first magnetic block 701s and the first magnetic block 702s intersect vertically, wherein the first magnetic block 701s faces the DC input static contact 100n, and the first magnetic block 701s faces another DC input static contact adjacent to the DC input static contact 100n, wherein the first magnetic block 701s-1 and the first magnetic block 701s are arranged in parallel. It should be noted that the DC input static contact 100n and an adjacent DC input static contact share the first plastic shell 70s-1, and the DC input static contact 100n and another adjacent DC input static contact share the first plastic shell 70s.

由于隔磁材料703s-1可避免第一磁块701s-1和第一磁块702s-1相互影响,且隔磁材料703s可避免第一磁块701s和第一磁块702s影响,因此,第一磁块701s-1产生的磁场力和第一磁块701s产生的磁场力可共同作用将触桥40n的第一动触头401n与直流输入静触头100n分离时产生的电弧吹向灭弧栅50m;第一磁块702s-1及其平行设置的第一磁块产生的磁场力可共同作用,将触桥40n相邻的一个触桥的第一动触头与直流输入静触头100n相邻的一个直流输入静触头分离时产生的电弧吹向与灭弧栅50m相邻的一个灭弧栅;第一磁块702s及其平行设置的第一磁块产生的磁场力可共同作用,将触桥40n相邻的另一个触桥的第一动触头与直流输入静触头100n相邻的另一个直流输入静触头分离时产生的电弧吹向与灭弧栅50n相邻的另一个灭弧栅,从而实现不同方向的电弧的定向吹弧,并且节省了直流接触器1a的内部空间,适用性更强。Since the magnetic isolation material 703s-1 can prevent the first magnetic block 701s-1 and the first magnetic block 702s-1 from influencing each other, and the magnetic isolation material 703s can prevent the first magnetic block 701s and the first magnetic block 702s from influencing each other, the magnetic field force generated by the first magnetic block 701s-1 and the magnetic field force generated by the first magnetic block 701s can work together to blow the arc generated when the first moving contact 401n of the contact bridge 40n is separated from the DC input static contact 100n to the arc extinguishing grid 50m; the magnetic field force generated by the first magnetic block 702s-1 and the first magnetic block arranged in parallel can work together to blow an adjacent one of the contact bridge 40n The arc generated when the first moving contact of the contact bridge is separated from a DC input static contact adjacent to the DC input static contact 100n blows toward an arc extinguishing grid adjacent to the arc extinguishing grid 50m; the magnetic field force generated by the first magnetic block 702s and the first magnetic block arranged in parallel can work together to blow the arc generated when the first moving contact of another contact bridge adjacent to the contact bridge 40n is separated from another DC input static contact adjacent to the DC input static contact 100n toward another arc extinguishing grid adjacent to the arc extinguishing grid 50n, thereby realizing directional blowing of arcs in different directions, saving the internal space of the DC contactor 1a, and having stronger applicability.

在一些可行的实施方式中,由于不同的动触头(如第一动触头或者第二动触头)与不同的静触头(如直流输入静触头或者直流输出静触头)分离时所产生的电弧,还会伴随产生气体(如高热气体),因此上述灭弧栅50a至灭弧栅50m中的每个灭弧栅设置有第一排气孔,从而保证每个灭弧栅在对产生的电弧进行灭弧的同时通过第一排气孔将电弧产生的高热气体排出,从而避免了高热气体烧坏灭弧栅,延长了灭弧栅的使用寿命,适用性更强。如图4所示,灭弧栅50a上设置有至少一个第一排气孔504a(如4个第一排气孔504a),其中,灭弧栅50a在对电弧进行灭弧的同时通过第一排气孔504a将电弧产生的高热气体排出;……;灭弧栅50m上设置有至少一个第一排气孔504m(如4个第一排气孔504m),其中,灭弧栅50m在对电弧进行灭弧的同时通过第一排气孔504m将电弧产生的高热气体排出。In some feasible embodiments, since the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from different static contacts (such as the DC input static contact or the DC output static contact) will also be accompanied by the generation of gas (such as high-temperature gas), each of the arc extinguishing grids 50a to 50m is provided with a first exhaust hole, thereby ensuring that each arc extinguishing grid can discharge the high-temperature gas generated by the arc through the first exhaust hole while extinguishing the generated arc, thereby avoiding the high-temperature gas from burning the arc extinguishing grid, extending the service life of the arc extinguishing grid, and enhancing applicability. As shown in FIG4 , at least one first exhaust hole 504a (such as four first exhaust holes 504a) is provided on the arc extinguishing grid 50a, wherein the arc extinguishing grid 50a discharges the hot gas generated by the arc through the first exhaust hole 504a while extinguishing the arc; ...; at least one first exhaust hole 504m (such as four first exhaust holes 504m) is provided on the arc extinguishing grid 50m, wherein the arc extinguishing grid 50m discharges the hot gas generated by the arc through the first exhaust hole 504m while extinguishing the arc.

进一步地,由于上述灭弧栅50a至灭弧栅50m中每个灭弧栅的第一排气孔排出的高热气体仍存在于第三塑料壳体60内,也就是说,第一排气孔504a至第一排气孔504m排出的高热气体可能会烧坏第三塑料壳体60,因此,第三塑料壳体60上设置第二排气孔(图中未示出),并通过该第二排气孔将第一排气孔504a至第一排气孔504m排出的高热气体排出第三塑料壳体60,从而可保护第三塑料壳体60不被烧坏;另外,该第二排气孔及时将高热气体排出可避免烧坏第三塑料壳体60内的器件,安全性更高,进而延长了第三塑料壳体60内器件的使用寿命,适用性更强。Furthermore, since the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid in the above-mentioned arc extinguishing grid 50a to the arc extinguishing grid 50m still exists in the third plastic shell 60, that is, the high-temperature gas discharged from the first exhaust hole 504a to the first exhaust hole 504m may burn the third plastic shell 60, therefore, a second exhaust hole (not shown in the figure) is set on the third plastic shell 60, and the high-temperature gas discharged from the first exhaust hole 504a to the first exhaust hole 504m is discharged from the third plastic shell 60 through the second exhaust hole, thereby protecting the third plastic shell 60 from being burned; in addition, the second exhaust hole discharges the high-temperature gas in time to avoid burning the components in the third plastic shell 60, which is safer, thereby extending the service life of the components in the third plastic shell 60 and having stronger applicability.

在一些可行的实施方式中,在上述图4所示的直流接触器1a还包括多个第二塑料壳体的情况下,直流接触器1a对应的俯视图请一并参见图5,图5是本申请提供的直流接触器的另一结构示意图。如图5所示,上述图4所示的直流接触器1a还包括第二塑料壳体80a至第二塑料壳体80q,该第二塑料壳体80a至第二塑料壳体80q中每个第二塑料壳体内嵌入有第二磁块。其中,上述直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头的两侧,设置有第二塑料壳体80a至第二塑料壳体80q中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输出端子的直流输出静触头的两侧;上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。这里的任意两个第二塑料壳体中第二磁块的具体放置位置由灭弧栅50a至灭弧栅50m的放置位置以及流过直流接触器1a的电流的方向(即电流方向)决定。在触桥40a至触桥40n中任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时会产生电弧,上述任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向任意一个灭弧栅的第二栅片组,使得任意一个灭弧栅的第二栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向第二栅片组),从而提升了灭弧效率,适用性更强。In some feasible embodiments, when the DC contactor 1a shown in FIG. 4 further includes a plurality of second plastic shells, please refer to FIG. 5 for the top view corresponding to the DC contactor 1a, which is another schematic diagram of the structure of the DC contactor provided in the present application. As shown in FIG. 5, the DC contactor 1a shown in FIG. 4 further includes a second plastic shell 80a to a second plastic shell 80q, and a second magnetic block is embedded in each of the second plastic shells 80a to the second plastic shell 80q. Wherein, any two second plastic shells from the second plastic shell 80a to the second plastic shell 80q are arranged on both sides of the DC output static contact of any one of the DC output terminals 20a to the DC output terminals 20n, and any two second plastic shells are arranged oppositely, in other words, any two second plastic shells are arranged oppositely on both sides of the DC output static contact of any one of the DC output terminals; the second magnetic blocks in the above-mentioned any two second plastic shells are arranged in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. The specific placement position of the second magnetic block in any two second plastic shells here is determined by the placement position of the arc extinguishing grid 50a to the arc extinguishing grid 50m and the direction of the current flowing through the DC contactor 1a (i.e., the current direction). When the second moving contact of any one of the contact bridges 40a to 40n is separated from the DC output static contact of any one of the DC output terminals, an arc will be generated. The magnetic field force generated by the second magnetic block in any two first plastic shells can blow the generated arc to the second grid plate group of any one of the arc extinguishing grids, so that the second grid plate group of any one of the arc extinguishing grids divides and extinguishes the arc, thereby realizing directional blowing of the arc (i.e., blowing the arc to the second grid plate group) through the second magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,上述第二塑料壳体80a至第二塑料壳体80q的具体放置方式如图5所示,直流输出静触头200a的两侧设置有第二塑料壳体80a和第二塑料壳体80b,且第二塑料壳体80a和第二塑料壳体80b相对设置,换言之,第二塑料壳体80a和第二塑料壳体80b相对设置于直流输出静触头200a的两侧,其中,第二塑料壳体80a内嵌入的第二磁块800a与第二塑料壳体80b内嵌入的第二磁块800b平行设置。在第二动触头402a与直流输出静触头200a分离时会产生电弧,第二磁块800a产生的磁场力和第二磁块800b产生的磁场力可共同作用将产生的电弧吹向灭弧栅50a的第二栅片组,使得灭弧栅50a的第二栅片组对该电弧进行灭弧。同理,直流输出静触头200a至直流输出静触头200n中其它直流输出静触头的两侧的第二塑料壳体的放置方式可参见上述第二塑料壳体80a至第二塑料壳体80q的放置方式,比如,直流输出静触头200n的两侧设置有第二塑料壳体80q-1和第二塑料壳体80q,且第二塑料壳体80q-1和第二塑料壳体80q相对设置,换言之,第二塑料壳体80q-1和第二塑料壳体80q相对设置于直流输出静触头200n的两侧,其中,第二塑料壳体80q-1内嵌入的第二磁块800q-1与第二塑料壳体80q内嵌入的第二磁块800q平行设置。在第二动触头402n与直流输出静触头200n分离时会产生电弧,第二磁块800q-1产生的磁场力与第二磁块800q产生的磁场力可共同作用将产生的电弧吹向灭弧栅50m的第二栅片组,使得灭弧栅50m的第二栅片组对该电弧进行灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了灭弧效率,适用性更强。In some feasible implementations, the specific placement of the second plastic shell 80a to the second plastic shell 80q is shown in FIG5 , and the second plastic shell 80a and the second plastic shell 80b are arranged on both sides of the DC output static contact 200a, and the second plastic shell 80a and the second plastic shell 80b are arranged oppositely, in other words, the second plastic shell 80a and the second plastic shell 80b are arranged oppositely on both sides of the DC output static contact 200a, wherein the second magnetic block 800a embedded in the second plastic shell 80a and the second magnetic block 800b embedded in the second plastic shell 80b are arranged in parallel. When the second moving contact 402a is separated from the DC output static contact 200a, an arc is generated, and the magnetic field force generated by the second magnetic block 800a and the magnetic field force generated by the second magnetic block 800b can work together to blow the generated arc to the second grid group of the arc extinguishing grid 50a, so that the second grid group of the arc extinguishing grid 50a extinguishes the arc. Similarly, the placement method of the second plastic shell on both sides of other DC output static contacts among the DC output static contacts 200a to 200n can refer to the placement method of the above-mentioned second plastic shells 80a to 80q. For example, the second plastic shell 80q-1 and the second plastic shell 80q are arranged on both sides of the DC output static contact 200n, and the second plastic shell 80q-1 and the second plastic shell 80q are arranged opposite to each other. In other words, the second plastic shell 80q-1 and the second plastic shell 80q are arranged opposite to each other on both sides of the DC output static contact 200n, wherein the second magnetic block 800q-1 embedded in the second plastic shell 80q-1 is arranged in parallel with the second magnetic block 800q embedded in the second plastic shell 80q. When the second moving contact 402n is separated from the DC output static contact 200n, an arc will be generated. The magnetic field force generated by the second magnetic block 800q-1 and the magnetic field force generated by the second magnetic block 800q can work together to blow the generated arc toward the second grid group of the arc extinguishing grid 50m, so that the second grid group of the arc extinguishing grid 50m extinguishes the arc, thereby achieving the purpose of arc blowing by the magnetic field force and arc extinguishing by the arc extinguishing grid, further improving the arc extinguishing efficiency and making it more applicable.

可以理解,上述第一塑料壳体70a至第一塑料壳体70s中第一磁块产生的磁场力的具体吹弧方向、以及上述第二塑料壳体80a至第二塑料壳体80q中第二磁块产生的磁场力的具体吹弧方向由灭弧栅50a至灭弧栅50m的具体放置方式决定。其中,该具体吹弧方向可以理解为任何可以使电弧拉长,能有效放置灭弧栅50a至灭弧栅50m并且不影响第三塑料壳体60的方向,该具体吹弧方向可根据实际应用场景确定,在此不作限制。It can be understood that the specific arc blowing direction of the magnetic field force generated by the first magnetic block in the first plastic shell 70a to the first plastic shell 70s, and the specific arc blowing direction of the magnetic field force generated by the second magnetic block in the second plastic shell 80a to the second plastic shell 80q are determined by the specific placement of the arc extinguishing grid 50a to the arc extinguishing grid 50m. Among them, the specific arc blowing direction can be understood as any direction that can lengthen the arc, can effectively place the arc extinguishing grid 50a to the arc extinguishing grid 50m and does not affect the third plastic shell 60. The specific arc blowing direction can be determined according to the actual application scenario and is not limited here.

可选的,在一些可行的实施方式中,上述图2所示的灭弧栅50a至灭弧栅50m中包括至少一个第一灭弧栅和至少两个第二灭弧栅,该至少一个第一灭弧栅中的任意一个第一灭弧栅,和至少两个第二灭弧栅中的任意一个第二灭弧栅分别设置于上述触桥40a至触桥40n中的任意一个触桥的两端。其中,上述任意一个第一灭弧栅可设置于任意一个触桥与至少两个触桥中的另一个触桥之间,且任意一个触桥与另一个触桥相对设置,换言之,任意一个触桥与另一个触桥相对设置于任意一个第一灭弧栅的两侧;上述任意一个第一灭弧栅设置于上述直流输入静触头100a至直流输入静触头100n中任意一个直流输入静触头朝向电磁装置30a至电磁装置30n的一侧。由于任意一个直流输入静触头用于与任意一个触桥的第一动触头接触,因此该任意一个第一灭弧栅设置于任意一个触桥的第一动触头所在的一侧,而任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧。Optionally, in some feasible implementations, the arc extinguishing grids 50a to 50m shown in FIG. 2 include at least one first arc extinguishing grid and at least two second arc extinguishing grids, and any one of the at least one first arc extinguishing grid and any one of the at least two second arc extinguishing grids are respectively arranged at both ends of any one of the contact bridges 40a to 40n. Wherein, any one of the first arc extinguishing grids can be arranged between any one of the contact bridges and another of the at least two contact bridges, and any one of the contact bridges is arranged opposite to the other contact bridge, in other words, any one of the contact bridges is arranged opposite to the other contact bridge on both sides of any one of the first arc extinguishing grids; any one of the first arc extinguishing grids is arranged on the side of any one of the DC input static contacts 100a to 100n facing the electromagnetic device 30a to 30n. Since any DC input static contact is used to contact the first moving contact of any contact bridge, any first arc extinguishing grid is arranged on the side where the first moving contact of any contact bridge is located, and any second arc extinguishing grid is arranged on the side where the second moving contact of any contact bridge is located.

在一些可行的实施方式中,上述任意一个第一灭弧栅可对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧,以及另一个触桥的第一动触头与另一个直流输入静触头分离时产生的电弧进行灭弧,其中,任意一个直流输入静触头和另一个直流输入静触头相对设置。这里的任意一个第一灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,上述任意一个第一灭弧栅中的多个金属栅片可同时对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧,以及另一个触桥的第一动触头与另一个直流输入静触头分离时产生的电弧进行分割从而达到灭弧的目的。上述任意一个第二灭弧栅可对任意一个触桥的第二动触头与直流输出静触头200a至直流输出静触头200n中的任意一个直流输出静触头分离时产生的电弧进行灭弧。这里的任意一个第二灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,任意一个第二灭弧栅中的多个金属栅片可同时对任意一个触桥的第二动触头与任意一个直流输出静触头分离时产生的电弧进行分割从而达到灭弧的目的。In some feasible implementations, any of the above-mentioned first arc-extinguishing grids can extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and the arc generated when the first moving contact of another contact bridge is separated from another DC input static contact, wherein any DC input static contact and another DC input static contact are arranged relative to each other. Any of the first arc-extinguishing grids here can be composed of a plurality of metal grids of magnetic material (which can be simply referred to as a plurality of metal grids), and the plurality of metal grids in any of the above-mentioned first arc-extinguishing grids can simultaneously divide the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact, and the arc generated when the first moving contact of another contact bridge is separated from another DC input static contact, thereby achieving the purpose of arc extinguishing. Any of the above-mentioned second arc-extinguishing grids can extinguish the arc generated when the second moving contact of any contact bridge is separated from any DC output static contact 200a to DC output static contacts 200n. Any second arc extinguishing grid here can be composed of multiple metal grids made of magnetic materials (which can be simply referred to as multiple metal grids). The multiple metal grids in any second arc extinguishing grid can simultaneously divide the arc generated when the second moving contact of any contact bridge is separated from any DC output static contact, thereby achieving the purpose of arc extinguishing.

可以理解,该直流接触器1a可通过分开设置第一灭弧栅和第二灭弧栅对不同的动触头(如第一动触头或者第二动触头)与静触头(如直流输入静触头或者直流输出静触头)分离时产生的电弧进行灭弧,灭弧效率更高;另外,该第一灭弧栅和第二灭弧栅的放置方式可有效利用任意一个触桥两端的空间,从而减小了直流接触器的整体体积,适用性更强。请一并参见图6,图6是本申请提供的直流接触器的另一结构示意图。It can be understood that the DC contactor 1a can extinguish the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from the static contact (such as the DC input static contact or the DC output static contact) by separately setting the first arc extinguishing grid and the second arc extinguishing grid, and the arc extinguishing efficiency is higher; in addition, the placement of the first arc extinguishing grid and the second arc extinguishing grid can effectively utilize the space at both ends of any contact bridge, thereby reducing the overall volume of the DC contactor and making it more applicable. Please also refer to Figure 6, which is another structural schematic diagram of the DC contactor provided by the present application.

在一些可行的实施方式中,如图6所示,上述图2所示的灭弧栅50a至灭弧栅50m中包括第二灭弧栅50a至第二灭弧栅50n、以及第一灭弧栅50n+1至第一灭弧栅50m,其中,第一灭弧栅50n+1和第二灭弧栅50a分别设置于触桥40a的两端,第一灭弧栅50n+1设置于触桥40a与其相对设置的触桥之间,且第一灭弧栅50n+1设置于直流输入静触头100a朝向电磁装置30a至电磁装置30n的一侧。由于直流输入静触头100a用于与触桥40a的第一动触头401a接触,因此第一灭弧栅50n+1设置于第一动触头401a所在的一侧,而第二灭弧栅50a设置于触桥40a的第二动触头402a所在的一侧。同理,第一灭弧栅50n+1至第一灭弧栅50m中的其它第一灭弧栅、以及第二灭弧栅50a至第二灭弧栅50n中其它第二灭弧栅的放置方式可参见上述第一灭弧栅50n+1和第二灭弧栅50a的放置方式,例如,第一灭弧栅50m和第二灭弧栅50n分别设置于触桥40n的两端,第一灭弧栅50m设置于触桥40n与其相对设置的触桥之间,且第一灭弧栅50m设置于直流输入静触头100n朝向电磁装置30a至电磁装置30n的一侧。由于直流输入静触头100n用于与触桥40n的第一动触头401n接触,因此第一灭弧栅50m设置于第一动触头401n所在的一侧,而第二灭弧栅50m设置于触桥40n的第二动触头402n所在的一侧。In some feasible implementations, as shown in FIG6 , the arc extinguishing grids 50a to 50m shown in FIG2 include the second arc extinguishing grids 50a to 50n, and the first arc extinguishing grids 50n+1 to 50m, wherein the first arc extinguishing grid 50n+1 and the second arc extinguishing grid 50a are respectively arranged at both ends of the contact bridge 40a, the first arc extinguishing grid 50n+1 is arranged between the contact bridge 40a and the contact bridge arranged opposite thereto, and the first arc extinguishing grid 50n+1 is arranged on the side of the DC input static contact 100a facing the electromagnetic devices 30a to 30n. Since the DC input static contact 100a is used to contact the first moving contact 401a of the contact bridge 40a, the first arc extinguishing grid 50n+1 is arranged on the side where the first moving contact 401a is located, and the second arc extinguishing grid 50a is arranged on the side where the second moving contact 402a of the contact bridge 40a is located. Similarly, the placement of the other first arc extinguishing grids from the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m, and the other second arc extinguishing grids from the second arc extinguishing grid 50a to the second arc extinguishing grid 50n can refer to the placement of the first arc extinguishing grid 50n+1 and the second arc extinguishing grid 50a described above, for example, the first arc extinguishing grid 50m and the second arc extinguishing grid 50n are respectively arranged at both ends of the contact bridge 40n, the first arc extinguishing grid 50m is arranged between the contact bridge 40n and the contact bridge arranged opposite thereto, and the first arc extinguishing grid 50m is arranged on the side of the DC input static contact 100n facing the electromagnetic device 30a to the electromagnetic device 30n. Since the DC input static contact 100n is used to contact the first moving contact 401n of the contact bridge 40n, the first arc extinguishing grid 50m is arranged on the side where the first moving contact 401n is located, and the second arc extinguishing grid 50m is arranged on the side where the second moving contact 402n of the contact bridge 40n is located.

在一些可行的实施方式中,在第一灭弧栅50n+1至第一灭弧栅50m对电弧进行灭弧的过程中,上述第一灭弧栅50n+1可对触桥40a的第一动触头401a与直流输入静触头100a分离时产生的电弧,以及触桥40a相对设置的触桥的第一动触头与直流输入静触头100a相对设置的直流输入静触头分离时产生的电弧进行灭弧。其中,第一灭弧栅50n+1可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,该多个金属栅片可同时对第一动触头401a与直流输入静触头100a分离时产生的电弧,以及触桥40a相对设置的触桥的第一动触头与直流输入静触头100a相对设置的直流输入静触头分离时产生的电弧进行分割从而达到灭弧的目的。同理,第一灭弧栅50n+1至第一灭弧栅50m中其它第一灭弧栅的结构和工作原理可参见上述第一灭弧栅50n+1的结构和工作原理,比如,第一灭弧栅50m可对触桥40n的第一动触头401a与直流输入静触头100n分离时产生的电弧,以及触桥40n相对设置的触桥的第一动触头与直流输入静触头100n相对设置的直流输入静触头分离时产生的电弧进行灭弧。其中,第一灭弧栅50m可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,该多个金属栅片可同时对第一动触头401a与直流输入静触头100n分离时产生的电弧,以及触桥40n相对设置的触桥的第一动触头与直流输入静触头100n相对设置的直流输入静触头分离时产生的电弧进行分割从而达到灭弧的目的。In some feasible implementations, during the process of the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m extinguishing the arc, the first arc extinguishing grid 50n+1 can extinguish the arc generated when the first moving contact 401a of the contact bridge 40a is separated from the DC input static contact 100a, and the arc generated when the first moving contact of the contact bridge opposite to the contact bridge 40a is separated from the DC input static contact 100a. The first arc extinguishing grid 50n+1 can be composed of a plurality of metal grids of magnetic material (which can be referred to as a plurality of metal grids), and the plurality of metal grids can simultaneously divide the arc generated when the first moving contact 401a is separated from the DC input static contact 100a, and the arc generated when the first moving contact of the contact bridge opposite to the contact bridge 40a is separated from the DC input static contact 100a, so as to achieve the purpose of arc extinguishing. Similarly, the structures and working principles of the other first arc extinguishing grids from the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m can refer to the structure and working principle of the first arc extinguishing grid 50n+1 mentioned above. For example, the first arc extinguishing grid 50m can extinguish the arc generated when the first moving contact 401a of the contact bridge 40n is separated from the DC input static contact 100n, and the arc generated when the first moving contact of the contact bridge arranged opposite to the contact bridge 40n is separated from the DC input static contact 100n arranged opposite to the DC input static contact 100n. Among them, the first arc extinguishing grid 50m can be composed of a plurality of metal grids of magnetic material (which can be referred to as a plurality of metal grids for short), and the plurality of metal grids can simultaneously divide the arc generated when the first moving contact 401a is separated from the DC input static contact 100n, and the arc generated when the first moving contact of the contact bridge arranged opposite to the contact bridge 40n is separated from the DC input static contact 100n arranged opposite to the DC input static contact 100n, so as to achieve the purpose of arc extinguishing.

在一些可行的实施方式中,上述第一灭弧栅50n+1至第一灭弧栅50m中的任意一个第一灭弧栅包括第一栅片组、第二栅片组以及绝缘隔板,其中,第一栅片组朝向上述触桥40a至触桥40n中的任意一个触桥,第二栅片组朝向触桥40a至触桥40n中与任意一个触桥相对设置的另一个触桥。在任意一个第一灭弧栅包括多个金属栅片的情况下,该第一栅片组包括多个金属栅片中朝向任意一个触桥一侧的所有金属栅片,该第二栅片组包括多个金属栅片中朝向另一个触桥一侧的所有金属栅片。上述任意一个第一灭弧栅的第一栅片组可对任意一个触桥的第一动触头与任意一个直流输入静触头分离时产生的电弧进行分割灭弧;任意一个第一灭弧栅的第二栅片组可对触桥40a相对设置的触桥的第一动触头与直流输入静触头100a相对设置的直流输入静触头分离时产生的电弧进行分割灭弧,灭弧效率更高。可以理解,由于直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头,及其相对设置的直流输入静触头共用任意一个第一灭弧栅(即同一个第一灭弧栅)进行灭弧,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,灭弧效率更高,并且延长了第一灭弧栅的使用寿命,适用性更强。In some feasible implementations, any first arc extinguishing grid from the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m comprises a first grid group, a second grid group and an insulating partition, wherein the first grid group faces any one of the contact bridges 40a to 40n, and the second grid group faces another contact bridge arranged opposite to any one of the contact bridges 40a to 40n. In the case where any first arc extinguishing grid comprises a plurality of metal grids, the first grid group comprises all metal grids facing one side of any one of the plurality of metal grids, and the second grid group comprises all metal grids facing another side of the plurality of metal grids. The first grid plate group of any of the above-mentioned first arc extinguishing grids can divide and extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC input static contact; the second grid plate group of any of the first arc extinguishing grids can divide and extinguish the arc generated when the first moving contact of the contact bridge relatively arranged with the contact bridge 40a is separated from the DC input static contact relatively arranged with the DC input static contact 100a, and the arc extinguishing efficiency is higher. It can be understood that since any DC input static contact of the DC input static contact 100a to the DC input static contact 100n and the DC input static contact relatively arranged with the same first arc extinguishing grid (i.e. the same first arc extinguishing grid) are used for arc extinguishing, there is a risk of circuit short circuit caused by arc blow, so an insulating partition is set between the first grid plate group and the second grid plate group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blow, which is safer, has higher arc extinguishing efficiency, and prolongs the service life of the first arc extinguishing grid, and has stronger applicability.

在一些可行的实施方式中,上述任意一个第一灭弧栅的具体结构如图6所示,第一灭弧栅50n+1包括朝向触桥40a一侧的第一栅片组501n+1,朝向与触桥40a相对设置的触桥一侧的第二栅片组502n+1以及绝缘隔板503n+1(如塑料隔板),第一栅片组501n+1和第二栅片组502n+1之间通过绝缘隔板503n+1进行隔离。其中,第一栅片组501n+1可对第一动触头401a与直流输入静触头100a分离时产生的电弧进行分割灭弧,同时,第二栅片组502n+1可对触桥40a相对设置的触桥的第一动触头与直流输入静触头100a相对设置的直流输入静触头分离时产生的电弧进行分割灭弧,并且绝缘隔板503a可对其两侧产生的电弧进行隔离,从而避免第一灭弧栅50n+1由于电弧对吹所导致的电路短路风险,安全性更高。同理,第一灭弧栅50n+1至第一灭弧栅50m中其它第一灭弧栅的具体结构和工作原理可参见上述第一灭弧栅50n+1的具体结构和工作原理,比如,第一灭弧栅50m中包括朝向触桥40n一侧的第一栅片组501m,朝向与触桥40n相对设置的触桥一侧的第二栅片组502m以及绝缘隔板503m(如塑料隔板),第一栅片组501m和第二栅片组502m之间通过绝缘隔板503m进行隔离。其中,第一栅片组501m可对触桥40n的第一动触头401n与直流输入静触头100n分离时产生的电弧进行分割灭弧,同时,第二栅片组502m可对触桥40n相对设置的触桥的第一动触头与直流输入静触头100n相对设置的直流输入静触头分离时产生的电弧进行分割灭弧,并且绝缘隔板503m可对其两侧产生的电弧进行隔离,从而避免第一灭弧栅50m由于电弧对吹所导致的电路短路风险,安全性更高。需要说明的是,上述第一灭弧栅50n+1至第一灭弧栅50m中的其它第一灭弧栅的具体结构和工作原理可参见上述第一灭弧栅50n+1(或者第一灭弧栅50m)的具体结构和工作原理,以下不再赘述。In some feasible embodiments, the specific structure of any one of the above-mentioned first arc extinguishing grids is shown in Figure 6, and the first arc extinguishing grid 50n+1 includes a first grid plate group 501n+1 facing the side of the contact bridge 40a, a second grid plate group 502n+1 facing the side of the contact bridge arranged opposite to the contact bridge 40a, and an insulating partition 503n+1 (such as a plastic partition), and the first grid plate group 501n+1 and the second grid plate group 502n+1 are isolated by the insulating partition 503n+1. Among them, the first grid plate group 501n+1 can divide and extinguish the arc generated when the first moving contact 401a is separated from the DC input static contact 100a. At the same time, the second grid plate group 502n+1 can divide and extinguish the arc generated when the first moving contact of the contact bridge 40a and the DC input static contact 100a are separated. The insulating partition 503a can isolate the arcs generated on both sides, thereby avoiding the risk of circuit short circuit caused by arc blowing in the first arc extinguishing grid 50n+1, which is safer. Similarly, the specific structures and working principles of other first arc extinguishing grids from the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m can refer to the specific structure and working principle of the first arc extinguishing grid 50n+1 mentioned above. For example, the first arc extinguishing grid 50m includes a first grid plate group 501m facing the contact bridge 40n, a second grid plate group 502m facing the contact bridge side opposite to the contact bridge 40n, and an insulating partition 503m (such as a plastic partition). The first grid plate group 501m and the second grid plate group 502m are isolated by the insulating partition 503m. Among them, the first grid plate group 501m can divide and extinguish the arc generated when the first moving contact 401n of the contact bridge 40n is separated from the DC input static contact 100n, and at the same time, the second grid plate group 502m can divide and extinguish the arc generated when the first moving contact of the contact bridge 40n and the DC input static contact 100n are separated, and the insulating partition 503m can isolate the arcs generated on both sides, thereby avoiding the risk of circuit short circuit caused by arc blowing of the first arc extinguishing grid 50m, which is safer. It should be noted that the specific structure and working principle of the other first arc extinguishing grids in the above-mentioned first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m can refer to the specific structure and working principle of the above-mentioned first arc extinguishing grid 50n+1 (or the first arc extinguishing grid 50m), which will not be repeated below.

在一些可行的实施方式中,在第二灭弧栅50a至第二灭弧栅50n中的任意一个第二灭弧栅对电弧进行灭弧的过程中,上述任意一个第二灭弧栅可对触桥40a至触桥40n中的任意一个触桥的第二动触头,与直流输出静触头200a至直流输出静触头200n中的任意一个直流输出静触头分离时产生的电弧进行灭弧。这里的第二灭弧栅50a至第二灭弧栅50n的数量与直流输出静触头200a至直流输出静触头200n的数量相同。其中,任意一个第二灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,如图6所示,第二灭弧栅50a可由多个金属栅片构成,该多个金属栅片可对触桥40a的第二动触头402a与直流输出静触头200a分离时产生的电弧进行分割从而达到灭弧的目的。同理,第二灭弧栅50a至第二灭弧栅50n中其它第二灭弧栅的结构和工作原理可参见上述第二灭弧栅50a的结构和工作原理,比如,第二灭弧栅50n可由多个金属栅片构成,该多个金属栅片可对触桥40n的第二动触头402n与直流输出静触头200n分离时产生的电弧进行分割从而达到灭弧的目的,灭弧效率更高。需要说明的是,上述第二灭弧栅50a至第二灭弧栅50n中的其它第二灭弧栅的具体结构和工作原理可参见上述第二灭弧栅50a(或者第二灭弧栅50n)的具体结构和工作原理,以下不再赘述。In some feasible implementations, during the process of arc extinguishing by any second arc extinguishing grid from the second arc extinguishing grid 50a to the second arc extinguishing grid 50n, any second arc extinguishing grid can extinguish the arc generated when the second moving contact of any contact bridge from the contact bridge 40a to the contact bridge 40n is separated from any DC output static contact 200a to the DC output static contact 200n. The number of the second arc extinguishing grids 50a to the second arc extinguishing grids 50n here is the same as the number of the DC output static contacts 200a to the DC output static contacts 200n. Among them, any second arc extinguishing grid can be composed of a plurality of metal grids of magnetic material (which can be referred to as a plurality of metal grids for short), as shown in FIG6, the second arc extinguishing grid 50a can be composed of a plurality of metal grids, and the plurality of metal grids can divide the arc generated when the second moving contact 402a of the contact bridge 40a is separated from the DC output static contact 200a to achieve the purpose of arc extinguishing. Similarly, the structure and working principle of the other second arc extinguishing grids in the second arc extinguishing grid 50a to the second arc extinguishing grid 50n can refer to the structure and working principle of the second arc extinguishing grid 50a. For example, the second arc extinguishing grid 50n can be composed of a plurality of metal grids, which can divide the arc generated when the second moving contact 402n of the contact bridge 40n is separated from the DC output static contact 200n, thereby achieving the purpose of arc extinguishing, and the arc extinguishing efficiency is higher. It should be noted that the specific structure and working principle of the other second arc extinguishing grids in the second arc extinguishing grid 50a to the second arc extinguishing grid 50n can refer to the specific structure and working principle of the second arc extinguishing grid 50a (or the second arc extinguishing grid 50n), which will not be repeated below.

在一些可行的实施方式中,由于不同的动触头(如第一动触头或者第二动触头)与不同的静触头(如直流输入静触头或者直流输出静触头)分离时所产生的电弧,还会伴随产生气体(如高热气体),因此上述第二灭弧栅50a至第二灭弧栅50n、以及第一灭弧栅50n+1至第一灭弧栅50m中的每个灭弧栅设置有第一排气孔,从而保证每个灭弧栅在对产生的电弧进行灭弧的同时通过第一排气孔将电弧产生的高热气体排出,从而避免了高热气体烧坏灭弧栅,延长了灭弧栅的使用寿命,适用性更强。如图6所示,第二灭弧栅50a上设置有至少一个第一排气孔500a(如2个第一排气孔500a),其中,第二灭弧栅50a在对电弧进行灭弧的同时通过第一排气孔500a将电弧产生的高热气体排出;……;第二灭弧栅50n上设置有至少一个第一排气孔500n(如2个第一排气孔500n),其中,第二灭弧栅50n在对电弧进行灭弧的同时通过第一排气孔500n将电弧产生的高热气体排出。第一灭弧栅50n+1上设置有至少一个第一排气孔504n+1(如2个第一排气孔504n+1),其中,第一灭弧栅50n+1在对电弧进行灭弧的同时通过第一排气孔504n+1将电弧产生的高热气体排出;……;第一灭弧栅50m上设置有至少一个第一排气孔504m(如2个第一排气孔504m),其中,第一灭弧栅50m在对电弧进行灭弧的同时通过第一排气孔504m将电弧产生的高热气体排出。In some feasible embodiments, since the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from different static contacts (such as the DC input static contact or the DC output static contact) will also be accompanied by the generation of gas (such as high-temperature gas), each arc extinguishing grid in the above-mentioned second arc extinguishing grid 50a to the second arc extinguishing grid 50n, and the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m is provided with a first exhaust hole, so as to ensure that each arc extinguishing grid can discharge the high-temperature gas generated by the arc through the first exhaust hole while extinguishing the generated arc, thereby avoiding the high-temperature gas from burning the arc extinguishing grid, extending the service life of the arc extinguishing grid, and making it more applicable. As shown in FIG6 , at least one first exhaust hole 500a (such as two first exhaust holes 500a) is provided on the second arc-extinguishing grid 50a, wherein the second arc-extinguishing grid 50a discharges the hot gas generated by the arc through the first exhaust hole 500a while extinguishing the arc; ...; at least one first exhaust hole 500n (such as two first exhaust holes 500n) is provided on the second arc-extinguishing grid 50n, wherein the second arc-extinguishing grid 50n discharges the hot gas generated by the arc through the first exhaust hole 500n while extinguishing the arc. At least one first exhaust hole 504n+1 (such as two first exhaust holes 504n+1) is provided on the first arc-extinguishing grid 50n+1, wherein the first arc-extinguishing grid 50n+1 discharges the high-temperature gas generated by the arc through the first exhaust hole 504n+1 while extinguishing the arc; ...; At least one first exhaust hole 504m (such as two first exhaust holes 504m) is provided on the first arc-extinguishing grid 50m, wherein the first arc-extinguishing grid 50m discharges the high-temperature gas generated by the arc through the first exhaust hole 504m while extinguishing the arc.

进一步地,由于上述第二灭弧栅50a至第二灭弧栅50n、以及第一灭弧栅50n+1至第一灭弧栅50m中的每个灭弧栅的第一排气孔所排出的高热气体仍存在于第三塑料壳体60内,也就是说,每个灭弧栅的第一排气孔所排出的高热气体可能会烧坏第三塑料壳体60,因此,第三塑料壳体60上设置第二排气孔(图中未示出),并通过该第二排气孔将每个灭弧栅的第一排气孔排出的高热气体排出第三塑料壳体60,从而可保护第三塑料壳体60不被烧坏;另外,该第二排气孔及时将高热气体排出可避免烧坏第三塑料壳体60内的器件,安全性更高,进而延长了第三塑料壳体60内器件的使用寿命,适用性更强。Furthermore, since the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid in the above-mentioned second arc extinguishing grid 50a to the second arc extinguishing grid 50n, and the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m still exists in the third plastic shell 60, that is, the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid may burn the third plastic shell 60. Therefore, a second exhaust hole (not shown in the figure) is provided on the third plastic shell 60, and the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid is discharged from the third plastic shell 60 through the second exhaust hole, thereby protecting the third plastic shell 60 from being burned; in addition, the second exhaust hole discharges the high-temperature gas in time to avoid burning the components in the third plastic shell 60, which is safer, thereby extending the service life of the components in the third plastic shell 60 and making it more applicable.

在一些可行的实施方式中,在上述图6所示的直流接触器1a还包括多个第一塑料壳体的情况下,直流接触器1a对应的俯视图请一并参见图7,图7是本申请提供的直流接触器的另一结构示意图。如图7所示,上述图6所示的直流接触器1a还包括第一塑料壳体90a至第一塑料壳体90t,该第一塑料壳体90a至第一塑料壳体90t中每个第一塑料壳体内嵌入有第一磁块,该第一磁块可包括但不限于永磁体。其中,上述直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头的两侧,设置有第一塑料壳体90a至第一塑料壳体90t中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第一塑料壳体相对设置于上述任意一个直流输入静触头的两侧;上述任意两个第一塑料壳体中的第一磁块平行设置,且任意两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则。这里的任意两个第一塑料壳体中第一磁块的具体放置位置由第一灭弧栅50n+1至第一灭弧栅50m的放置位置以及流过直流接触器1a的电流的方向(即电流方向)决定。In some feasible embodiments, when the DC contactor 1a shown in FIG. 6 further includes a plurality of first plastic shells, please refer to FIG. 7 for the top view corresponding to the DC contactor 1a, which is another schematic diagram of the structure of the DC contactor provided in the present application. As shown in FIG. 7, the DC contactor 1a shown in FIG. 6 further includes a first plastic shell 90a to a first plastic shell 90t, and each of the first plastic shells 90a to the first plastic shell 90t is embedded with a first magnetic block, and the first magnetic block may include but is not limited to a permanent magnet. Wherein, any two first plastic shells from the first plastic shell 90a to the first plastic shell 90t are arranged on both sides of any DC input static contact 100a to the DC input static contact 100n, and any two first plastic shells are arranged oppositely, in other words, any two first plastic shells are arranged oppositely on both sides of any DC input static contact; the first magnetic blocks in the above-mentioned any two first plastic shells are arranged in parallel, and the placement of the first magnetic blocks in any two first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. The specific placement positions of the first magnetic blocks in any two first plastic shells are determined by the placement positions of the first arc extinguishing grids 50n+1 to 50m and the direction of the current flowing through the DC contactor 1a (ie, the current direction).

在触桥40a至触桥40n中任意一个触桥的第一动触头与任意一个直流输入静触头分离时会产生电弧,上述任意两个第一塑料壳体中的第一磁块产生的磁场力可将产生的电弧吹向第一灭弧栅50n+1至第一灭弧栅50m中任意一个第一灭弧栅(如第一栅片组或者第二栅片组),使得任意一个第一灭弧栅的第一栅片组或者第二栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向第一灭弧栅),从而提升了灭弧效率,适用性更强。When the first moving contact of any contact bridge among the contact bridges 40a to 40n is separated from any DC input static contact, an arc will be generated. The magnetic field force generated by the first magnetic blocks in any two of the above-mentioned first plastic shells can blow the generated arc to any first arc extinguishing grid (such as the first grid group or the second grid group) among the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m, so that the first grid group or the second grid group of any first arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (i.e. blowing the arc to the first arc extinguishing grid) through the first magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,上述第一塑料壳体90a至第一塑料壳体90t的具体放置方式如图7所示,直流输入静触头100a的两侧设置有第一塑料壳体90a和第一塑料壳体90b,且第一塑料壳体90a和第一塑料壳体90b相对设置,换言之,第一塑料壳体90a和第一塑料壳体90b相对设置于直流输入静触头100a的两侧,其中,第一塑料壳体90a中的第一磁块900a与第一塑料壳体90b中的第一磁块900b平行设置。在第一动触头401a与直流输入静触头100a分离时会产生电弧,第一磁块900a产生的磁场力和第一磁块900b产生的磁场力可共同作用将产生的电弧吹向第一灭弧栅50n+1,使得第一灭弧栅50n+1对该电弧进行分割灭弧。同理,直流输入静触头100a至直流输入静触头100n中其它直流输入静触头的两侧的第一塑料壳体的放置方式可参见上述第一塑料壳体90a和第一塑料壳体90b的放置方式,比如,直流输入静触头100n的两侧设置有第一塑料壳体90t-1和第一塑料壳体90t,且第一塑料壳体90t-1和第一塑料壳体90t相对设置,换言之,第一塑料壳体90t-1和第一塑料壳体90t相对设置于直流输入静触头100n的两侧,其中,第一塑料壳体90t-1中的第一磁块900t-1与第一塑料壳体90t中的第一磁块900t平行设置。在第一动触头401n与直流输入静触头100n分离时会产生电弧,第一磁块900t-1产生的磁场力和第一磁块900t产生的磁场力可共同作用将产生的电弧吹向第一灭弧栅50m,使得第一灭弧栅50m对该电弧进行分割灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了灭弧效率,适用性更强。In some feasible implementations, the specific placement of the first plastic shell 90a to the first plastic shell 90t is shown in FIG. 7, and the first plastic shell 90a and the first plastic shell 90b are arranged on both sides of the DC input static contact 100a, and the first plastic shell 90a and the first plastic shell 90b are arranged oppositely. In other words, the first plastic shell 90a and the first plastic shell 90b are arranged oppositely on both sides of the DC input static contact 100a, wherein the first magnetic block 900a in the first plastic shell 90a and the first magnetic block 900b in the first plastic shell 90b are arranged in parallel. When the first moving contact 401a is separated from the DC input static contact 100a, an arc is generated, and the magnetic field force generated by the first magnetic block 900a and the magnetic field force generated by the first magnetic block 900b can work together to blow the generated arc to the first arc extinguishing grid 50n+1, so that the first arc extinguishing grid 50n+1 divides and extinguishes the arc. Similarly, the placement method of the first plastic shell on both sides of other DC input static contacts among the DC input static contacts 100a to 100n can refer to the placement method of the above-mentioned first plastic shell 90a and the first plastic shell 90b. For example, the first plastic shell 90t-1 and the first plastic shell 90t are arranged on both sides of the DC input static contact 100n, and the first plastic shell 90t-1 and the first plastic shell 90t are arranged opposite to each other. In other words, the first plastic shell 90t-1 and the first plastic shell 90t are arranged opposite to each other on both sides of the DC input static contact 100n, wherein the first magnetic block 900t-1 in the first plastic shell 90t-1 is arranged parallel to the first magnetic block 900t in the first plastic shell 90t. When the first moving contact 401n is separated from the DC input static contact 100n, an arc will be generated. The magnetic field force generated by the first magnetic block 900t-1 and the magnetic field force generated by the first magnetic block 900t can work together to blow the generated arc toward the first arc extinguishing grid 50m, so that the first arc extinguishing grid 50m divides the arc and extinguishes the arc, thereby achieving the purpose of arc blowing by magnetic field force and arc extinguishing by arc extinguishing grid, further improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,在上述图7所示的直流接触器1a还包括多个第二塑料壳体的情况下,直流接触器1a对应的俯视图请一并参见图8,图8是本申请提供的直流接触器的另一结构示意图。如图8所示,上述图7所示的直流接触器1a还包括第二塑料壳体91a至第二塑料壳体91p,该第二塑料壳体91a至第二塑料壳体91p中每个第二塑料壳体内嵌入有第二磁块。其中,上述直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头的两侧,设置有第二塑料壳体91a至第二塑料壳体91p中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输出端子的直流输出静触头的两侧;上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。这里的任意两个第二塑料壳体中第二磁块的具体放置位置由第二灭弧栅50a至第二灭弧栅50n的放置位置以及流过直流接触器1a的电流的方向(即电流方向)决定。In some feasible embodiments, when the DC contactor 1a shown in FIG. 7 further includes a plurality of second plastic shells, please refer to FIG. 8 for the top view corresponding to the DC contactor 1a, which is another structural schematic diagram of the DC contactor provided in the present application. As shown in FIG. 8, the DC contactor 1a shown in FIG. 7 further includes a second plastic shell 91a to a second plastic shell 91p, and a second magnetic block is embedded in each second plastic shell in the second plastic shell 91a to the second plastic shell 91p. Wherein, any two second plastic shells from the second plastic shell 91a to the second plastic shell 91p are arranged on both sides of the DC output static contact of any one of the DC output terminals 20a to the DC output terminals 20n, and any two second plastic shells are arranged oppositely, in other words, any two second plastic shells are arranged oppositely on both sides of the DC output static contact of any one of the DC output terminals; the second magnetic blocks in the above-mentioned any two second plastic shells are arranged in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. The specific placement positions of the second magnetic blocks in any two second plastic shells are determined by the placement positions of the second arc extinguishing grids 50a to 50n and the direction of the current flowing through the DC contactor 1a (ie, the current direction).

在触桥40a至触桥40n中任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离时会产生电弧,上述任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向上述第二灭弧栅50a至第二灭弧栅50n中的任意一个第二灭弧栅,使得任意一个第二灭弧栅对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向第二灭弧栅),进一步提升了直流接触器1a的灭弧效率;另外,由于上述任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧,因此不存在电弧对吹所导致的电路短路风险,也就是说,无需在任意一个第二灭弧栅中设置绝缘隔板,成本更低,适用性更强。When the second moving contact of any contact bridge among the contact bridges 40a to 40n is separated from the DC output static contact of any DC output terminal, an arc will be generated. The magnetic field force generated by the second magnetic block in any two of the first plastic shells can blow the generated arc toward any second arc extinguishing grid among the second arc extinguishing grids 50a to 50n, so that any second arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional arc blowing of the arc (i.e. blowing the arc toward the second arc extinguishing grid) through the second magnetic blocks in any two second plastic shells arranged in parallel, further improving the arc extinguishing efficiency of the DC contactor 1a; in addition, since any of the second arc extinguishing grids mentioned above is arranged on the side where the second moving contact of any contact bridge is located, there is no risk of circuit short circuit caused by arc blowing, that is, there is no need to set an insulating partition in any second arc extinguishing grid, which is lower in cost and more applicable.

在一些可行的实施方式中,上述第二塑料壳体91a至第二塑料壳体91p的具体放置方式如图8所示,直流输出静触头200a的两侧设置有第二塑料壳体91a和第二塑料壳体91b,且第二塑料壳体91a和第二塑料壳体91b相对设置,换言之,第二塑料壳体91a和第二塑料壳体91b相对设置于直流输出静触头200a的两侧,其中,第二塑料壳体91a内嵌入的第二磁块910a与第二塑料壳体91b内嵌入的第二磁块910b平行设置。在第二动触头402a与直流输出静触头200a分离时会产生电弧,该第二磁块910a产生的磁场力和第二磁块910b产生的磁场力可共同作用将产生的电弧吹向第二灭弧栅50a,使得第二灭弧栅50a对该电弧进行分割灭弧。同理,直流输出静触头200a至直流输出静触头200n中其它直流输出静触头的两侧的第二塑料壳体的放置方式可参见上述第二塑料壳体91a和第二塑料壳体91b的放置方式,比如,上述直流输出静触头200n的两侧设置有第二塑料壳体91p-1和第二塑料壳体91p,且第二塑料壳体91p-1和第二塑料壳体91p相对设置,换言之,第二塑料壳体91p-1和第二塑料壳体91p相对设置于直流输出静触头200n的两侧,其中,第二塑料壳体91p-1内嵌入的第二磁块910p-1与第二塑料壳体91p内嵌入的第二磁块910p平行设置。在第二动触头402n与直流输出静触头200n分离时会产生电弧,第二磁块910p-1产生的磁场力与第二磁块910p产生的磁场力可共同作用将产生的电弧吹向第二灭弧栅50n,使得第二灭弧栅50n对该电弧进行分割灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了直流接触器1a的灭弧效率,适用性更强。In some feasible implementations, the specific placement of the second plastic shell 91a to the second plastic shell 91p is shown in FIG8 , and the second plastic shell 91a and the second plastic shell 91b are arranged on both sides of the DC output static contact 200a, and the second plastic shell 91a and the second plastic shell 91b are arranged oppositely, in other words, the second plastic shell 91a and the second plastic shell 91b are arranged oppositely on both sides of the DC output static contact 200a, wherein the second magnetic block 910a embedded in the second plastic shell 91a and the second magnetic block 910b embedded in the second plastic shell 91b are arranged in parallel. When the second moving contact 402a is separated from the DC output static contact 200a, an arc is generated, and the magnetic field force generated by the second magnetic block 910a and the magnetic field force generated by the second magnetic block 910b can work together to blow the generated arc to the second arc extinguishing grid 50a, so that the second arc extinguishing grid 50a divides and extinguishes the arc. Similarly, the placement method of the second plastic shell on both sides of other DC output static contacts among the DC output static contacts 200a to 200n can refer to the placement method of the above-mentioned second plastic shell 91a and the second plastic shell 91b. For example, the second plastic shell 91p-1 and the second plastic shell 91p are arranged on both sides of the above-mentioned DC output static contact 200n, and the second plastic shell 91p-1 and the second plastic shell 91p are arranged opposite to each other. In other words, the second plastic shell 91p-1 and the second plastic shell 91p are arranged opposite to each other on both sides of the DC output static contact 200n, wherein the second magnetic block 910p-1 embedded in the second plastic shell 91p-1 is arranged parallel to the second magnetic block 910p embedded in the second plastic shell 91p. When the second moving contact 402n is separated from the DC output static contact 200n, an arc will be generated. The magnetic field force generated by the second magnetic block 910p-1 and the magnetic field force generated by the second magnetic block 910p can work together to blow the generated arc toward the second arc extinguishing grid 50n, so that the second arc extinguishing grid 50n divides the arc and extinguishes the arc, thereby achieving the purpose of arc blowing by magnetic field force and arc extinguishing by arc extinguishing grid, further improving the arc extinguishing efficiency of the DC contactor 1a and making it more applicable.

可以理解,上述第一塑料壳体90a至第一塑料壳体90t中第一磁块产生的磁场力的具体吹弧方向、以及上述第二塑料壳体91a至第二塑料壳体91p中第二磁块产生的磁场力的具体吹弧方向,由第二灭弧栅50a至第二灭弧栅50n和第一灭弧栅50n+1至第一灭弧栅50m的具体放置方式决定。其中,该具体吹弧方向可以理解为任何可以使电弧拉长,能有效放置第二灭弧栅50a至第二灭弧栅50n和第一灭弧栅50n+1至第一灭弧栅50m,并且不影响第三塑料壳体60的方向,该具体吹弧方向可根据实际应用场景确定,在此不作限制。It can be understood that the specific arc blowing direction of the magnetic field force generated by the first magnetic block in the first plastic shell 90a to the first plastic shell 90t, and the specific arc blowing direction of the magnetic field force generated by the second magnetic block in the second plastic shell 91a to the second plastic shell 91p, are determined by the specific placement of the second arc extinguishing grid 50a to the second arc extinguishing grid 50n and the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m. Among them, the specific arc blowing direction can be understood as any direction that can lengthen the arc, can effectively place the second arc extinguishing grid 50a to the second arc extinguishing grid 50n and the first arc extinguishing grid 50n+1 to the first arc extinguishing grid 50m, and does not affect the direction of the third plastic shell 60. The specific arc blowing direction can be determined according to the actual application scenario and is not limited here.

在一些可行的实施方式中,在上述直流接触器1a为磁保持接触器的情况下,上述电磁装置30a至电磁装置30n中的任意一个电磁装置,在电流由直流输入模块2流向直流输出模块3a至直流输出模块3n中的任意一个直流输出模块(即电流为正向电流)时,控制上述触桥40a至触桥40n中的任意一个触桥向上述直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头和直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路导通的目的。可选的,上述任意一个电磁装置还可在电流由任意一个直流输出模块流向直流输入模块2(即电流为反向电流)时,控制任意一个触桥向远离任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制上述n路高压直流电路断开的目的。由此可见,该磁保持接触器可实现独立控制上述n路高压直流电路导通或者断开的目的,可有效节省空间和成本,适用性更强。In some feasible embodiments, when the DC contactor 1a is a magnetic holding contactor, any one of the electromagnetic devices 30a to 30n controls any one of the contact bridges 40a to 40n to move toward any one of the DC input static contacts 100a to 100n and any one of the DC output static contacts 20a to 20n when current flows from the DC input module 2 to any one of the DC output modules 3a to 3n (i.e., the current is a forward current) so that the first moving contact of any one of the contact bridges contacts with any one of the DC input static contacts and the second moving contact of any one of the contact bridges contacts with any one of the DC output static contacts. At this time, any one of the n high-voltage DC circuits is turned on, thereby achieving the purpose of independently controlling the conduction of the n high-voltage DC circuits. Optionally, any of the above electromagnetic devices can also control any contact bridge to move in a direction away from any DC input static contact and any DC output static contact of any DC output terminal when the current flows from any DC output module to the DC input module 2 (i.e., the current is a reverse current), so that the first moving contact of any contact bridge is separated from any DC input static contact, and the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal. At this time, any one of the above n high-voltage DC circuits has been disconnected, and the purpose of independently controlling the disconnection of the above n high-voltage DC circuits can be achieved. It can be seen that the magnetic latching contactor can achieve the purpose of independently controlling the conduction or disconnection of the above n high-voltage DC circuits, which can effectively save space and cost and has stronger applicability.

在一些可行的实施方式中,为方便描述,下面将以一进四出独立控制的磁保持接触器为例进行说明,该磁保持接触器的具体结构可参见下述图9至图14。这里的一进四出可以理解为一个直流输入端子(即一个输入电流)和四个直流输出端子(即四个输出电流),且四个输出电流可以被独立控制以导通或者断开4路高压直流电路。在上述一进四出的磁保持接触器中,直流输入端子10的数量为1,直流输入静触头100a至直流输入静触头100n的数量为4,直流输出端子20a至直流输出端子20n的数量为4,直流输出静触头200a至直流输出静触头200n的数量为4,触桥40a至触桥40m的数量为4,第一动触头401a至第一动触头401n的数量为4,第二动触头402a至第二动触头402n的数量为4,电磁装置30a至电磁装置30n的数量为4,灭弧栅50a至灭弧栅50m的数量为4(或者6)。请一并参见图9,图9是本申请提供的磁保持接触器的一结构示意图。In some feasible implementations, for the convenience of description, a magnetic latching contactor with one input and four outputs independently controlled is used as an example for description, and the specific structure of the magnetic latching contactor can be seen in the following Figures 9 to 14. Here, one input and four outputs can be understood as one DC input terminal (i.e., one input current) and four DC output terminals (i.e., four output currents), and the four output currents can be independently controlled to turn on or off four high-voltage DC circuits. In the above-mentioned one-input-four-output magnetic latching contactor, the number of DC input terminals 10 is 1, the number of DC input static contacts 100a to DC input static contacts 100n is 4, the number of DC output terminals 20a to DC output terminals 20n is 4, the number of DC output static contacts 200a to DC output static contacts 200n is 4, the number of contact bridges 40a to contact bridges 40m is 4, the number of first moving contacts 401a to first moving contacts 401n is 4, the number of second moving contacts 402a to second moving contacts 402n is 4, the number of electromagnetic devices 30a to electromagnetic devices 30n is 4, and the number of arc extinguishing grids 50a to arc extinguishing grids 50m is 4 (or 6). Please refer to Figure 9, which is a structural schematic diagram of a magnetic latching contactor provided in the present application.

在一些可行的实施方式中,上述一进四出的磁保持接触器的截面图可以如图9所示,在该截面图所示的磁保持接触器的左侧结构中,直流端子112(即直流输入端子10)的一端设置有直流静触头119(即直流输入静触头),直流端子113(即直流输出端子20a)的一端设置有直流静触头120(即直流输出静触头200a);弹簧104、磁轭105、上部固定铁芯116、线圈107、软磁体108、永磁铁109(也可称为永磁体)以及下部固定铁芯110等部件可构成电磁装置(即电磁装置30a),其中,电磁装置30a中各个部件之间的位置关系如图9所示,该电磁装置30a中存在空气间隙117,上部固定铁芯116和下部固定铁芯110可构成电磁装置30a中的动铁芯,且该动铁芯连接触桥103(即触桥40a);触桥103的两端分别设置有动触头118(即第一动触头401a)和动触头126(即第二动触头402a);灭弧栅102(即灭弧栅50a)设置于直流静触头119和直流静触头120之间,且灭弧栅102中包括塑料隔板114(即绝缘隔板503a)。In some feasible embodiments, the cross-sectional view of the above-mentioned one-input and four-output magnetic latching contactor can be shown in Figure 9. In the left side structure of the magnetic latching contactor shown in the cross-sectional view, one end of the DC terminal 112 (i.e., the DC input terminal 10) is provided with a DC static contact 119 (i.e., the DC input static contact), and one end of the DC terminal 113 (i.e., the DC output terminal 20a) is provided with a DC static contact 120 (i.e., the DC output static contact 200a); the spring 104, the yoke 105, the upper fixed iron core 116, the coil 107, the soft magnetic 108, the permanent magnet 109 (also referred to as a permanent magnet) and the lower fixed iron core 110 and other components can constitute an electromagnetic device (i.e., an electromagnetic device 30a), wherein the positional relationship between the various components in the electromagnetic device 30a is shown in FIG9, an air gap 117 exists in the electromagnetic device 30a, an upper fixed iron core 116 and a lower fixed iron core 110 can constitute a moving iron core in the electromagnetic device 30a, and the moving iron core is connected to a contact bridge 103 (i.e., a contact bridge 40a); moving contacts 118 (i.e., a first moving contact 401a) and moving contacts 126 (i.e., a second moving contact 402a) are respectively provided at both ends of the contact bridge 103; an arc extinguishing grid 102 (i.e., an arc extinguishing grid 50a) is provided between the DC static contact 119 and the DC static contact 120, and the arc extinguishing grid 102 includes a plastic partition 114 (i.e., an insulating partition 503a).

其中,直流静触头119、直流静触头120、弹簧104、磁轭105、上部固定铁芯116、线圈107、软磁体108、永磁铁109、下部固定铁芯110、触桥103、动触头118、动触头126以及灭弧栅102均设置在塑料外壳101(即第三塑料壳体60)内。上述直流端子112的另一端用于连接上述直流输入模块2,直流端子113的另一端用于连接直流输出模块3a。可选的,上述磁保持接触器的左侧结构中还包括沉头固定螺钉106和安装预留孔111,其中,沉头固定螺钉106用于对磁轭105进行固定,安装预留孔111用于接入对磁保持接触器进行安装的部件。其中,磁轭105通常指本身不生产磁场且在磁路中只起磁力线传输的软磁材料,例如,导磁率比较高的软铁、A3钢(一种甲类钢)、软磁合金或者铁氧体材料。Among them, the DC static contact 119, the DC static contact 120, the spring 104, the yoke 105, the upper fixed iron core 116, the coil 107, the soft magnetic body 108, the permanent magnet 109, the lower fixed iron core 110, the contact bridge 103, the moving contact 118, the moving contact 126 and the arc extinguishing grid 102 are all arranged in the plastic shell 101 (i.e., the third plastic shell 60). The other end of the DC terminal 112 is used to connect the DC input module 2, and the other end of the DC terminal 113 is used to connect the DC output module 3a. Optionally, the left side structure of the magnetic holding contactor also includes a countersunk fixing screw 106 and a mounting reserved hole 111, wherein the countersunk fixing screw 106 is used to fix the yoke 105, and the mounting reserved hole 111 is used to access the components for installing the magnetic holding contactor. The yoke 105 generally refers to a soft magnetic material that does not generate a magnetic field and only transmits magnetic lines of force in a magnetic circuit, such as soft iron with relatively high magnetic permeability, A3 steel (a type A steel), soft magnetic alloy or ferrite material.

需要说明的是,由于上述截面图所示的磁保持接触器的右侧结构与其左侧结构对称,因此,该截面图所示的磁保持接触器的右侧结构可参见上述左侧结构的描述,以下不再赘述。另外,上述截面图所示的磁保持接触器可直接显示塑料外壳101,直流端子112,4个直流输入静触头中的直流静触头119及其相对设置的直流静触头,4个直流输出端子中的直流端子113及其相对设置的直流端子,4个直流输出静触头中的直流静触头120及其相对设置的直流静触头,4个电磁装置中的电磁装置30a及其相对设置的电磁装置,4个触桥中的触桥103及其相对设置的触桥,以及4个灭弧栅中的灭弧栅102及其相对设置的灭弧栅,该磁保持接触器中的其它部件之间的位置关系可参见上述左侧结构的描述,以下不再赘述。It should be noted that, since the right side structure of the magnetic holding contactor shown in the above cross-sectional view is symmetrical with its left side structure, the right side structure of the magnetic holding contactor shown in the cross-sectional view can refer to the description of the above left side structure, which will not be repeated below. In addition, the magnetic holding contactor shown in the above cross-sectional view can directly display the plastic housing 101, the DC terminal 112, the DC static contact 119 of the four DC input static contacts and the DC static contact arranged oppositely thereto, the DC terminal 113 of the four DC output terminals and the DC terminal arranged oppositely thereto, the DC static contact 120 of the four DC output static contacts and the DC static contact arranged oppositely thereto, the electromagnetic device 30a of the four electromagnetic devices and the electromagnetic device arranged oppositely thereto, the contact bridge 103 of the four contact bridges and the contact bridge arranged oppositely thereto, and the arc extinguishing grid 102 of the four arc extinguishing grids and the arc extinguishing grid arranged oppositely thereto, and the positional relationship between the other components in the magnetic holding contactor can refer to the description of the above left side structure, which will not be repeated below.

在一些可行的实施方式中,在电流由直流输入模块2流向直流输出模块3a(即电流为正向电流)时,线圈107在通入正向电流(如脉冲电流或信号电流)时会产生磁场,该线圈107产生的磁场和永磁铁109产生的磁场方向一致,线圈107产生的磁场(即磁场力)和永磁铁109产生的磁场相互叠加;这时,动铁芯会在线圈107产生的磁场、永磁铁109产生的磁场以及弹簧104的弹力作用下向上运动,使得触桥103向直流静触头119和直流静触头120的方向运动,动触头118与直流静触头120接触(即紧密闭合)、且动触头126与直流静触头120接触(即紧密闭合),从而导通直流输入模块2和直流输出模块3a所构成的直流电路(即上述n路高压直流电路中的第一路高压直流电路,n为4)。在动触头118与直流静触头120接触、且动触头126与直流静触头120接触之后,可断开线圈107的电流,永磁铁109产生的磁场会使得动铁芯保持在动触头118与直流静触头120接触、且动触头126与直流静触头120接触时其所在的位置不变。In some feasible implementations, when current flows from the DC input module 2 to the DC output module 3a (i.e., the current is a forward current), the coil 107 will generate a magnetic field when a forward current (such as a pulse current or a signal current) is passed through it. The magnetic field generated by the coil 107 is in the same direction as the magnetic field generated by the permanent magnet 109, and the magnetic field (i.e., the magnetic field force) generated by the coil 107 and the magnetic field generated by the permanent magnet 109 are superimposed on each other; at this time, the moving iron core will move upward under the action of the magnetic field generated by the coil 107, the magnetic field generated by the permanent magnet 109 and the elastic force of the spring 104, so that the contact bridge 103 moves in the direction of the DC static contact 119 and the DC static contact 120, the moving contact 118 contacts the DC static contact 120 (i.e., tightly closed), and the moving contact 126 contacts the DC static contact 120 (i.e., tightly closed), thereby conducting the DC circuit formed by the DC input module 2 and the DC output module 3a (i.e., the first high-voltage DC circuit in the above-mentioned n high-voltage DC circuits, n is 4). After the moving contact 118 contacts the DC static contact 120 and the moving contact 126 contacts the DC static contact 120, the current of the coil 107 can be disconnected, and the magnetic field generated by the permanent magnet 109 will keep the moving iron core at the position where the moving contact 118 contacts the DC static contact 120 and the moving contact 126 contacts the DC static contact 120.

在电流由直流输出模块3a流向直流输入模块2(即电流为反向电流)时,线圈107在通入反向电流时会产生磁场,该线圈107产生的磁场和永磁铁109产生的磁场方向相反,线圈107产生的磁场(即磁场力)和永磁铁109产生的磁场相互抵消;这时,动铁芯会受到重力势能并克服弹簧104的弹力向下运动,使得触桥103向远离直流静触头119和直流静触头120的方向运动,动触头118与直流静触头120分离(即断开)、且动触头126与直流静触头120断开,从而断开直流输入模块2和直流输出模块3a所构成的直流电路(即4路高压直流电路中的第一路高压直流电路)。在动触头118与直流静触头120分离、且动触头126与直流静触头120分离之后,可断开线圈107的电流,永磁铁109产生的磁场会使得动铁芯保持在动触头118与直流静触头120分离、且动触头126与直流静触头120分离时其所在的位置不变。由此可见,该磁保持接触器不需要一直给线圈通入电流来保持动触头与静触头接触或者分离,流程更加简单。需要说明的是,上述4路高压直流电路中的其它高压直流电路导通或者断开的工作原理可参见上述第一路高压直流电路导通或者断开的工作原理,以下不再赘述。由此可见,该磁保持接触器可通过对4个电磁装置中的线圈(即4个线圈)施加不同的信号电流(如正向电流或者反向电流),从而实现分别控制4路高压直流电路导通或者关断的目的,适用性强。请一并参见图10,图10是本申请提供的磁保持接触器的另一结构示意图。When the current flows from the DC output module 3a to the DC input module 2 (i.e., the current is a reverse current), the coil 107 will generate a magnetic field when the reverse current is passed through it. The magnetic field generated by the coil 107 is opposite to the magnetic field generated by the permanent magnet 109, and the magnetic field (i.e., magnetic field force) generated by the coil 107 and the magnetic field generated by the permanent magnet 109 cancel each other out; at this time, the moving iron core will be affected by the gravitational potential energy and overcome the elastic force of the spring 104 to move downward, so that the contact bridge 103 moves away from the DC static contact 119 and the DC static contact 120, the moving contact 118 is separated from the DC static contact 120 (i.e., disconnected), and the moving contact 126 is disconnected from the DC static contact 120, thereby disconnecting the DC circuit formed by the DC input module 2 and the DC output module 3a (i.e., the first high-voltage DC circuit among the four high-voltage DC circuits). After the moving contact 118 is separated from the DC static contact 120 and the moving contact 126 is separated from the DC static contact 120, the current of the coil 107 can be disconnected, and the magnetic field generated by the permanent magnet 109 will keep the moving iron core in the same position when the moving contact 118 is separated from the DC static contact 120 and the moving contact 126 is separated from the DC static contact 120. It can be seen that the magnetic holding contactor does not need to pass current into the coil all the time to keep the moving contact in contact or separation with the static contact, and the process is simpler. It should be noted that the working principle of turning on or off other high-voltage DC circuits in the above-mentioned 4-way high-voltage DC circuits can refer to the working principle of turning on or off the above-mentioned first high-voltage DC circuit, which will not be repeated below. It can be seen that the magnetic holding contactor can achieve the purpose of controlling the turning on or off of the 4-way high-voltage DC circuits by applying different signal currents (such as forward current or reverse current) to the coils in the 4 electromagnetic devices (i.e., 4 coils), and has strong applicability. Please refer to Figure 10, which is another structural schematic diagram of the magnetic holding contactor provided by the present application.

在一些可行的实施方式中,上述一进四出的磁保持接触器的俯视图可以如图10所示,塑料壳体123(即第一塑料壳体70a)和塑料壳体127(即第一塑料壳体70b)相对设置于直流静触头119(即直流输入静触头100a)的两侧;塑料壳体121(即第二塑料壳体80a)和塑料壳体122(即第二塑料壳体80b)相对设置于直流静触头120(即直流输出静触头200a)的两侧;灭弧栅102(即灭弧栅50a)上设置有排气孔115(即第一排气孔504a)。在断开上述4路高压直流电路中的第一路高压直流电路的过程中,灭弧栅102可同时对动触头126与直流静触头119断开时产生的电弧,以及动触头118与直流静触头120断开时产生的电弧进行灭弧,且灭弧栅102中的塑料隔板114可对相反方向的电弧进行隔离,从而可避免电弧对吹导致的短路风险;排气孔115可将电弧伴随产生的高热气体排出,塑料外壳101上预留的第二排气孔(图中未示出)可将排气孔115排出的高热气体排出塑料外壳101,从而保护塑料外壳101不被烧坏,适用性更强。In some feasible embodiments, the top view of the above-mentioned one-input and four-output magnetic holding contactor can be as shown in Figure 10, the plastic shell 123 (i.e., the first plastic shell 70a) and the plastic shell 127 (i.e., the first plastic shell 70b) are relatively arranged on both sides of the DC static contact 119 (i.e., the DC input static contact 100a); the plastic shell 121 (i.e., the second plastic shell 80a) and the plastic shell 122 (i.e., the second plastic shell 80b) are relatively arranged on both sides of the DC static contact 120 (i.e., the DC output static contact 200a); the arc extinguishing grid 102 (i.e., the arc extinguishing grid 50a) is provided with an exhaust hole 115 (i.e., the first exhaust hole 504a). In the process of disconnecting the first high-voltage DC circuit among the above-mentioned four high-voltage DC circuits, the arc extinguishing grid 102 can simultaneously extinguish the arc generated when the moving contact 126 is disconnected from the DC static contact 119, and the arc generated when the moving contact 118 is disconnected from the DC static contact 120, and the plastic partition 114 in the arc extinguishing grid 102 can isolate the arcs in opposite directions, thereby avoiding the risk of short circuit caused by arc blowing; the exhaust hole 115 can discharge the high-temperature gas generated by the arc, and the second exhaust hole reserved on the plastic shell 101 (not shown in the figure) can discharge the high-temperature gas discharged from the exhaust hole 115 out of the plastic shell 101, thereby protecting the plastic shell 101 from being burned, and having stronger applicability.

在一些可行的实施方式中,上述图10所示的俯视图可直接显示:直流端子112,直流静触头119及其相邻设置的直流静触头和相对设置的直流静触头(即4个直流输入静触头);直流端子113及其相邻设置的直流端子和相对设置的直流端子(即4个直流输出端子),直流静触头120及其相邻设置的直流静触头和相对设置的直流静触头(即4个直流输出静触头);灭弧栅102及其相邻设置的灭弧栅和相对设置的灭弧栅(即4个灭弧栅);直流静触头119两侧的塑料壳体123和塑料壳体127,4个直流输入静触头中其它三个直流输入静触头两侧的2个塑料壳体,共构成4个第一塑料壳体;以及直流静触头120两侧的塑料壳体121和塑料壳体122,4个直流输入静触头中其它三个直流输出静触头两侧的2个塑料壳体(即6个第二塑料壳体),其中,塑料壳体121和塑料壳体122、以及6个第二塑料壳体可构成8个第二塑料壳体。其中,由于上述4个直流输入静触头中的任意一个直流输入静触头及其相邻的直流输入静触头共用同一个第一塑料壳体,因此存在4个第一塑料壳体。例如,直流静触头119及其相邻的一个直流输入静触头共用塑料壳体123,直流静触头119及其相邻的另一个直流输入静触头共用塑料壳体127。In some feasible implementations, the top view shown in FIG. 10 above may directly display: the DC terminal 112, the DC static contact 119 and its adjacent DC static contact and its oppositely arranged DC static contact (i.e., 4 DC input static contacts); the DC terminal 113 and its adjacent DC terminal and its oppositely arranged DC terminal (i.e., 4 DC output terminals), the DC static contact 120 and its adjacent DC static contact and its oppositely arranged DC static contact (i.e., 4 DC output static contacts); the arc extinguishing grid 102 and its adjacent arc extinguishing grid and its oppositely arranged arc extinguishing grid (i.e. 4 arc extinguishing grids); plastic shells 123 and 127 on both sides of the DC static contact 119, and 2 plastic shells on both sides of the other three DC input static contacts among the 4 DC input static contacts, constitute 4 first plastic shells in total; and plastic shells 121 and 122 on both sides of the DC static contact 120, and 2 plastic shells on both sides of the other three DC output static contacts among the 4 DC input static contacts (i.e. 6 second plastic shells), wherein the plastic shells 121 and 122, and the 6 second plastic shells can constitute 8 second plastic shells. Among them, since any one of the above-mentioned 4 DC input static contacts and its adjacent DC input static contact share the same first plastic shell, there are 4 first plastic shells. For example, the DC static contact 119 and one of its adjacent DC input static contacts share the plastic shell 123, and the DC static contact 119 and another adjacent DC input static contact share the plastic shell 127.

在一些可行的实施方式中,上述图10所示的4个第一塑料壳体(包含塑料壳体123和塑料壳体127)的具体结构请一并参见图11,图11是本申请提供的第一塑料壳体的结构示意图。为方面描述,下面将以塑料壳体123和塑料壳体127为例进行说明,如图11所示,塑料壳体123(即第一塑料壳体70a)中嵌入有垂直放置的磁块124(即第一磁块701a)和磁块126(即第一磁块702a)、以及设置于磁块124和磁块126垂直相交的一端的隔磁材料125(即隔磁材料703a),塑料壳体127(即第一塑料壳体70b)中嵌入有垂直放置的磁块128(即第一磁块701b)和磁块130(即第一磁块702b)、以及设置于磁块128和磁块130垂直相交的一端的隔磁材料129(即隔磁材料703b)。其中,磁块124和磁块128平行设置,且磁块124和磁块128的放置方式遵从左手定则。其中,磁块124和磁块128的放置方式可以为,磁块124的北极(即N极)和磁块128的南极(即S极)相对设置,这样,磁块124和磁块128的磁场方向为:从磁块124的N极出发,经过塑料壳体123和塑料壳体127到达磁块128的S极,规范了磁场路线,磁吹效果更好。在上述磁块124和磁块128的磁场方向下,上述磁块124产生的磁场力和磁块128产生的磁场力可共同作用将动触头126与直流静触头119断开时产生的电弧吹向灭弧栅102的第一栅片组,使得灭弧栅102的第一栅片组对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图10所示的4个第一塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体123和塑料壳体127的结构及其工作原理,以下不再赘述。In some feasible implementations, please refer to FIG11 for the specific structure of the four first plastic shells (including the plastic shell 123 and the plastic shell 127) shown in FIG10 above. FIG11 is a schematic diagram of the structure of the first plastic shell provided in the present application. For the sake of convenience, the following will be described by taking the plastic shell 123 and the plastic shell 127 as an example. As shown in FIG11 , the plastic shell 123 (i.e., the first plastic shell 70a) is embedded with a vertically placed magnetic block 124 (i.e., the first magnetic block 701a) and a magnetic block 126 (i.e., the first magnetic block 702a), and a magnetic isolation material 125 (i.e., the magnetic isolation material 703a) arranged at one end where the magnetic block 124 and the magnetic block 126 intersect vertically, and the plastic shell 127 (i.e., the first plastic shell 70b) is embedded with a vertically placed magnetic block 128 (i.e., the first magnetic block 701b) and a magnetic block 130 (i.e., the first magnetic block 702b), and a magnetic isolation material 129 (i.e., the magnetic isolation material 703b) arranged at one end where the magnetic block 128 and the magnetic block 130 intersect vertically. Among them, the magnetic block 124 and the magnetic block 128 are arranged in parallel, and the placement of the magnetic block 124 and the magnetic block 128 complies with the left-hand rule. Among them, the magnetic block 124 and the magnetic block 128 can be placed in a manner that the north pole (i.e., N pole) of the magnetic block 124 and the south pole (i.e., S pole) of the magnetic block 128 are arranged relative to each other, so that the magnetic field direction of the magnetic block 124 and the magnetic block 128 is: starting from the N pole of the magnetic block 124, passing through the plastic shell 123 and the plastic shell 127 to reach the S pole of the magnetic block 128, which standardizes the magnetic field route and has a better magnetic blowing effect. Under the magnetic field direction of the magnetic block 124 and the magnetic block 128, the magnetic field force generated by the magnetic block 124 and the magnetic field force generated by the magnetic block 128 can work together to blow the arc generated when the moving contact 126 is disconnected from the DC static contact 119 to the first grid plate group of the arc extinguishing grid 102, so that the first grid plate group of the arc extinguishing grid 102 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and having stronger applicability. It should be noted that the structures and working principles of the other plastic shells among the four first plastic shells shown in FIG. 10 may refer to the structures and working principles of the plastic shells 123 and 127 , which will not be described in detail below.

在一些可行的实施方式中,为方便描述,下面将以相对设置于直流静触头120两侧的塑料壳体121和塑料壳体122为例进行说明,上述图10所示的塑料壳体121和塑料壳体122的具体结构请一并参见图12,图12是本申请提供的第二塑料壳体的结构示意图。如图12所示,塑料壳体121(即第二塑料壳体80a)内嵌入有磁块131(即上述第二磁块800a),塑料壳体122(即第二塑料壳体80b)内嵌入有磁块132(即上述第二磁块800b),磁块131和磁块132平行设置,且磁块131和磁块132的放置方式遵从左手定则。其中,磁块131和磁块132的放置方式可以为,磁块131的N极和磁块131的S极相对设置,这样,磁块131和磁块132的磁场方向为:从磁块131的N极出发,经过塑料壳体121和塑料壳体122到达磁块132的S极,规范了磁场路线,磁吹效果更好。在上述磁块131和磁块132的磁场方向下,上述磁块131产生的磁场力和磁块132产生的磁场力可共同作用将动触头118与直流静触头120断开时产生的电弧吹向灭弧栅102的第二栅片组,使得灭弧栅102的第二栅片组对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图10所示的8个第二塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体121和塑料壳体122的结构及其工作原理,以下不再赘述。In some feasible implementations, for the convenience of description, the following will be described by taking the plastic shell 121 and the plastic shell 122 relatively arranged on both sides of the DC static contact 120 as an example. The specific structures of the plastic shell 121 and the plastic shell 122 shown in FIG. 10 above are also shown in FIG. 12, which is a schematic diagram of the structure of the second plastic shell provided by the present application. As shown in FIG. 12, a magnetic block 131 (i.e., the second magnetic block 800a) is embedded in the plastic shell 121 (i.e., the second plastic shell 80a), and a magnetic block 132 (i.e., the second magnetic block 800b) is embedded in the plastic shell 122 (i.e., the second plastic shell 80b). The magnetic blocks 131 and 132 are arranged in parallel, and the placement of the magnetic blocks 131 and 132 complies with the left-hand rule. Among them, the magnetic block 131 and the magnetic block 132 can be placed in a manner that the N pole of the magnetic block 131 and the S pole of the magnetic block 131 are arranged relative to each other, so that the magnetic field direction of the magnetic block 131 and the magnetic block 132 is: starting from the N pole of the magnetic block 131, passing through the plastic shell 121 and the plastic shell 122 to reach the S pole of the magnetic block 132, which standardizes the magnetic field route and has a better magnetic blowing effect. Under the magnetic field direction of the magnetic block 131 and the magnetic block 132, the magnetic field force generated by the magnetic block 131 and the magnetic field force generated by the magnetic block 132 can work together to blow the arc generated when the moving contact 118 is disconnected from the DC static contact 120 to the second grid plate group of the arc extinguishing grid 102, so that the second grid plate group of the arc extinguishing grid 102 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and having stronger applicability. It should be noted that the structures and working principles of the other plastic shells among the eight second plastic shells shown in FIG. 10 may refer to the structures and working principles of the plastic shells 121 and 122 , which will not be described in detail below.

在一些可行的实施方式中,上述一进四出的磁保持接触器的具体结构还可参见图13,图13是本申请提供的磁保持接触器的另一结构示意图。上述一进四出的磁保持接触器的截面图可以如图13所示,在该截面图所示的磁保持接触器的左侧结构中,直流端子209(即直流输入端子10)的一端设置有直流静触头210(即直流输入静触头100a),直流端子201(即直流输出端子20a)的一端设置有直流静触头211(即直流输出静触头200a);弹簧212、磁轭205、上部固定铁芯218、线圈206、软磁体207、永磁铁208(也可称为永磁体)以及下部固定铁芯219等部件可构成电磁装置(即电磁装置30a),其中,电磁装置30a中各个部件之间的具体位置关系如图13所示,上部固定铁芯218和下部固定铁芯219可构成电磁装置30a中的动铁芯,且动铁芯连接触桥216(即触桥40a);触桥216的两端分别设置有动触头203(即第一动触头401a)和动触头217(即第二动触头402a);灭弧栅210(即第一灭弧栅50n+1)和灭弧栅204(即第二灭弧栅50a)分别设置于触桥216的两侧。其中,直流静触头210、直流静触头211、弹簧212、磁轭205、线圈206、软磁体207、永磁铁208、上部固定铁芯218、下部固定铁芯219、触桥216、动触头203、动触头217、灭弧栅210以及灭弧栅204均设置在塑料外壳202(即第三塑料壳体60)内。上述直流端子209的另一端用于连接上述直流输入模块2,直流端子201的另一端用于连接直流输出模块3a。In some feasible implementations, the specific structure of the above-mentioned one-input and four-output magnetic latching contactor can also be seen in Figure 13, which is another structural schematic diagram of the magnetic latching contactor provided by the present application. The cross-sectional view of the above-mentioned one-input and four-output magnetic latching contactor can be shown in Figure 13. In the left side structure of the magnetic latching contactor shown in the cross-sectional view, one end of the DC terminal 209 (i.e., the DC input terminal 10) is provided with a DC static contact 210 (i.e., the DC input static contact 100a), and one end of the DC terminal 201 (i.e., the DC output terminal 20a) is provided with a DC static contact 211 (i.e., the DC output static contact 200a); spring 212, yoke 205, upper fixed iron core 218, coil 206, soft magnetic body 207, permanent magnet 208 (also referred to as permanent magnet) and lower fixed iron core 219 and other components An electromagnetic device (i.e., electromagnetic device 30a) can be constituted, wherein the specific positional relationship between the various components in the electromagnetic device 30a is shown in Figure 13, the upper fixed iron core 218 and the lower fixed iron core 219 can constitute the moving iron core in the electromagnetic device 30a, and the moving iron core is connected to the contact bridge 216 (i.e., contact bridge 40a); the moving contact 203 (i.e., the first moving contact 401a) and the moving contact 217 (i.e., the second moving contact 402a) are respectively provided at both ends of the contact bridge 216; the arc extinguishing grid 210 (i.e., the first arc extinguishing grid 50n+1) and the arc extinguishing grid 204 (i.e., the second arc extinguishing grid 50a) are respectively provided on both sides of the contact bridge 216. Among them, the DC static contact 210, the DC static contact 211, the spring 212, the yoke 205, the coil 206, the soft magnetic body 207, the permanent magnet 208, the upper fixed iron core 218, the lower fixed iron core 219, the contact bridge 216, the moving contact 203, the moving contact 217, the arc extinguishing grid 210 and the arc extinguishing grid 204 are all arranged in the plastic shell 202 (i.e., the third plastic shell 60). The other end of the DC terminal 209 is used to connect the DC input module 2, and the other end of the DC terminal 201 is used to connect the DC output module 3a.

需要说明的是,由于上述截面图所示的磁保持接触器的右侧结构与其左侧结构对称,因此,该截面图所示的磁保持接触器的右侧结构可参见上述左侧结构的描述,以下不再赘述。另外,上述截面图所示的磁保持接触器可直接显示塑料外壳202,直流端子209,4个直流输入静触头中的直流静触头210及其相对设置的直流静触头,4个直流输出端子中的直流端子201及其相对设置的直流端子,4个直流输出静触头中的直流静触头211及其相对设置的直流静触头,4个电磁装置中的电磁装置30a及其相对设置的电磁装置,4个触桥中的触桥216及其相对设置的触桥,以及6个灭弧栅中的灭弧栅204、灭弧栅210及其相对设置的灭弧栅,该磁保持接触器中的其它部件之间的位置关系可参见上述左侧结构的描述,以下不再赘述。It should be noted that, since the right side structure of the magnetic holding contactor shown in the above cross-sectional view is symmetrical with its left side structure, the right side structure of the magnetic holding contactor shown in the cross-sectional view can refer to the description of the above left side structure, which will not be repeated below. In addition, the magnetic holding contactor shown in the above cross-sectional view can directly display the plastic housing 202, the DC terminal 209, the DC static contact 210 of the four DC input static contacts and the DC static contact arranged oppositely thereto, the DC terminal 201 of the four DC output terminals and the DC terminal arranged oppositely thereto, the DC static contact 211 of the four DC output static contacts and the DC static contact arranged oppositely thereto, the electromagnetic device 30a of the four electromagnetic devices and the electromagnetic device arranged oppositely thereto, the contact bridge 216 of the four contact bridges and the contact bridge arranged oppositely thereto, and the arc extinguishing grid 204, the arc extinguishing grid 210 and the arc extinguishing grid arranged oppositely thereto among the six arc extinguishing grids. The positional relationship between the other components in the magnetic holding contactor can refer to the description of the above left side structure, which will not be repeated below.

在一些可行的实施方式中,在电流由直流输入模块2流向直流输出模块3a(即电流为正向电流)时,线圈206在通入正向电流时会产生磁场,该线圈206产生的磁场和永磁铁208产生的磁场方向一致,线圈206产生的磁场和永磁铁208产生的磁场相互叠加;这时,动铁芯会在线圈206产生的磁场、永磁铁208产生的磁场以及弹簧212的弹力作用下向上运动,使得触桥216向直流静触头210和直流静触头211的方向运动,动触头217与直流静触头210接触(即紧密闭合)、且动触头203与直流静触头211接触,从而导通直流输入模块2和直流输出模块3a所构成的直流电路(即上述n路高压直流电路中的第一路高压直流电路,n为4)。在动触头217与直流静触头210接触、且动触头203与直流静触头211接触之后,可断开线圈206的电流,永磁铁208产生的磁场会使得动铁芯保持在动触头217与直流静触头210接触、且动触头203与直流静触头211接触时其所在的位置不变。In some feasible implementations, when current flows from the DC input module 2 to the DC output module 3a (i.e., the current is a forward current), the coil 206 will generate a magnetic field when a forward current is passed through it, and the magnetic field generated by the coil 206 is in the same direction as the magnetic field generated by the permanent magnet 208, and the magnetic field generated by the coil 206 and the magnetic field generated by the permanent magnet 208 are superimposed on each other; at this time, the moving iron core will move upward under the action of the magnetic field generated by the coil 206, the magnetic field generated by the permanent magnet 208 and the elastic force of the spring 212, so that the contact bridge 216 moves in the direction of the DC static contact 210 and the DC static contact 211, the moving contact 217 contacts the DC static contact 210 (i.e., tightly closed), and the moving contact 203 contacts the DC static contact 211, thereby turning on the DC circuit formed by the DC input module 2 and the DC output module 3a (i.e., the first high-voltage DC circuit in the above-mentioned n high-voltage DC circuits, n is 4). After the moving contact 217 contacts the DC stationary contact 210 and the moving contact 203 contacts the DC stationary contact 211, the current of the coil 206 can be disconnected, and the magnetic field generated by the permanent magnet 208 will keep the moving iron core at the position where the moving contact 217 contacts the DC stationary contact 210 and the moving contact 203 contacts the DC stationary contact 211.

在电流由直流输出模块3a流向直流输入模块2(即电流为反向电流)时,线圈206在通入反向电流时会产生磁场,该线圈206产生的磁场和永磁铁208产生的磁场方向相反,线圈206产生的磁场(即磁场力)和永磁铁208产生的磁场相互抵消;这时,动铁芯会受到重力势能并克服弹簧212的弹力向下运动,使得触桥216向远离直流静触头210和直流静触头211的方向运动,动触头217与直流静触头211分离(即断开)、且动触头203与直流静触头211断开,从而断开直流输入模块2和直流输出模块3a所构成的直流电路(即4路高压直流电路中的第一路高压直流电路)。在动触头217与直流静触头211分离、且动触头203与直流静触头211分离之后,可断开线圈206的电流,永磁铁208产生的磁场会使得动铁芯保持在动触头217与直流静触头211分离、且动触头203与直流静触头211分离时其所在的位置不变。由此可见,该磁保持接触器不需要一直给线圈通入电流来保持动触头与静触头接触或者分离,流程更加简单,适用性强。需要说明的是,上述4路高压直流电路中的其它高压直流电路导通或者断开的工作原理可参见上述第一路高压直流电路导通或者断开的工作原理,以下不再赘述。请一并参见图14,图14是本申请提供的磁保持接触器的又一结构示意图。When the current flows from the DC output module 3a to the DC input module 2 (i.e., the current is a reverse current), the coil 206 will generate a magnetic field when the reverse current is passed through it. The magnetic field generated by the coil 206 is in opposite directions to the magnetic field generated by the permanent magnet 208, and the magnetic field (i.e., the magnetic field force) generated by the coil 206 and the magnetic field generated by the permanent magnet 208 cancel each other out; at this time, the moving iron core will be affected by the gravitational potential energy and overcome the elastic force of the spring 212 to move downward, so that the contact bridge 216 moves away from the DC static contact 210 and the DC static contact 211, the moving contact 217 is separated from the DC static contact 211 (i.e., disconnected), and the moving contact 203 is disconnected from the DC static contact 211, thereby disconnecting the DC circuit formed by the DC input module 2 and the DC output module 3a (i.e., the first high-voltage DC circuit among the four high-voltage DC circuits). After the moving contact 217 is separated from the DC static contact 211, and the moving contact 203 is separated from the DC static contact 211, the current of the coil 206 can be disconnected, and the magnetic field generated by the permanent magnet 208 will keep the moving iron core in the same position when the moving contact 217 is separated from the DC static contact 211, and the moving contact 203 is separated from the DC static contact 211. It can be seen that the magnetic holding contactor does not need to constantly pass current through the coil to keep the moving contact in contact or separation with the static contact, and the process is simpler and has strong applicability. It should be noted that the working principle of the conduction or disconnection of other high-voltage DC circuits in the above-mentioned 4-way high-voltage DC circuits can refer to the working principle of the conduction or disconnection of the above-mentioned first high-voltage DC circuit, which will not be repeated below. Please also refer to Figure 14, which is another structural schematic diagram of the magnetic holding contactor provided in the present application.

在一些可行的实施方式中,上述一进四出的磁保持接触器的俯视图可以如图14所示,塑料壳体221(即第一塑料壳体70a)和塑料壳体222(即第一塑料壳体70b)相对设置于直流静触头210(即直流输入静触头100a)的两侧;塑料壳体213(即第二塑料壳体80a)和塑料壳体220(即第二塑料壳体80b)相对设置于直流静触头211(即直流输出静触头200a)的两侧;灭弧栅215(即第一灭弧栅50n+1)还设置有排气孔214(即第一排气孔504n+1),灭弧栅204(即第二灭弧栅50a)还设置有排气孔223(即第一排气孔500a)。在断开上述4路高压直流电路中的第一路高压直流电路的过程中,灭弧栅215可对动触头217与直流静触头210断开时产生的电弧进行灭弧,排气孔223可对动触头203与直流静触头211断开时产生的电弧进行灭弧,从而通过分开设置灭弧栅对不同方向的电弧进行灭弧,避免了电弧对吹导致的短路风险,并且这种灭弧栅的放置方式可降低磁保持接触器的整体高度;排气孔214和排气孔223可将电弧伴随产生的高热气体排出,塑料外壳202上预留的第二排气孔(图中未示出)可将排气孔214排出的高热气体排出塑料外壳202,从而保护塑料外壳202不被烧坏,适用性更强。In some feasible embodiments, the top view of the above-mentioned one-input and four-output magnetic holding contactor can be as shown in Figure 14, the plastic shell 221 (i.e., the first plastic shell 70a) and the plastic shell 222 (i.e., the first plastic shell 70b) are relatively arranged on both sides of the DC static contact 210 (i.e., the DC input static contact 100a); the plastic shell 213 (i.e., the second plastic shell 80a) and the plastic shell 220 (i.e., the second plastic shell 80b) are relatively arranged on both sides of the DC static contact 211 (i.e., the DC output static contact 200a); the arc extinguishing grid 215 (i.e., the first arc extinguishing grid 50n+1) is also provided with an exhaust hole 214 (i.e., the first exhaust hole 504n+1), and the arc extinguishing grid 204 (i.e., the second arc extinguishing grid 50a) is also provided with an exhaust hole 223 (i.e., the first exhaust hole 500a). In the process of disconnecting the first high-voltage DC circuit among the above-mentioned four high-voltage DC circuits, the arc extinguishing grid 215 can extinguish the arc generated when the moving contact 217 is disconnected from the DC static contact 210, and the exhaust hole 223 can extinguish the arc generated when the moving contact 203 is disconnected from the DC static contact 211, so that arcs in different directions are extinguished by separately setting arc extinguishing grids, thereby avoiding the risk of short circuit caused by arc blowing, and the placement of this arc extinguishing grid can reduce the overall height of the magnetic holding contactor; the exhaust hole 214 and the exhaust hole 223 can discharge the high-temperature gas generated by the arc, and the second exhaust hole (not shown in the figure) reserved on the plastic shell 202 can discharge the high-temperature gas discharged from the exhaust hole 214 out of the plastic shell 202, thereby protecting the plastic shell 202 from being burned, and having stronger applicability.

在一些可行的实施方式中,上述图14所示的俯视图可直接显示:直流端子209,直流静触头210及其相邻设置的直流静触头和相对设置的直流静触头(即4个直流输入静触头);直流端子201及其相邻设置的直流端子和相对设置的直流端子(即4个直流输出端子),直流静触头211及其相邻设置的直流静触头和相对设置的直流静触头(即4个直流输出静触头);灭弧栅215及其相对设置的灭弧栅(即2个第一灭弧栅),灭弧栅204及其相邻设置的灭弧栅和相对设置的灭弧栅(即4个第二灭弧栅),其中,2个第一灭弧栅和4个第二灭弧栅可构成6个灭弧栅;直流静触头210两侧的塑料壳体221和塑料壳体222,4个直流输入静触头中其它三个直流输入静触头两侧的2个塑料壳体(即6个第一塑料壳体),其中,塑料壳体221、塑料壳体222和6个第一塑料壳体构成8个第一塑料壳体;以及直流静触头211两侧的塑料壳体213和塑料壳体220,4个直流输入静触头中其它三个直流输出静触头两侧的2个塑料壳体(即6个第二塑料壳体),其中,塑料壳体213、塑料壳体220和6个第二塑料壳体构成8个第二塑料壳体。为方便描述,下面将以塑料壳体221、塑料壳体222、塑料壳体213和塑料壳体220为例进行说明。In some feasible implementations, the top view shown in FIG. 14 may directly display: the DC terminal 209, the DC static contact 210 and its adjacent DC static contact and its oppositely arranged DC static contact (i.e., four DC input static contacts); the DC terminal 201 and its adjacent DC terminal and its oppositely arranged DC terminal (i.e., four DC output terminals), the DC static contact 211 and its adjacent DC static contact and its oppositely arranged DC static contact (i.e., four DC output static contacts); the arc extinguishing grid 215 and its oppositely arranged arc extinguishing grid (i.e., two first arc extinguishing grids), the arc extinguishing grid 204 and its adjacent arc extinguishing grid and its oppositely arranged arc extinguishing grid (i.e., four second arc extinguishing grids), wherein the two first The arc extinguishing grid and the four second arc extinguishing grids can constitute six arc extinguishing grids; the plastic shell 221 and the plastic shell 222 on both sides of the DC static contact 210, the two plastic shells on both sides of the other three DC input static contacts among the four DC input static contacts (i.e., six first plastic shells), wherein the plastic shell 221, the plastic shell 222 and the six first plastic shells constitute eight first plastic shells; and the plastic shell 213 and the plastic shell 220 on both sides of the DC static contact 211, the two plastic shells on both sides of the other three DC output static contacts among the four DC input static contacts (i.e., six second plastic shells), wherein the plastic shell 213, the plastic shell 220 and the six second plastic shells constitute eight second plastic shells. For the convenience of description, the following will be described by taking the plastic shell 221, the plastic shell 222, the plastic shell 213 and the plastic shell 220 as examples.

在一些可行的实施方式中,上述塑料壳体221和塑料壳体222内均嵌入有磁块(即第一磁块),且塑料壳体221和塑料壳体222中的磁块平行设置,塑料壳体221和塑料壳体222中的磁块的放置方式遵从左手定则。其中,上述塑料壳体221和塑料壳体222中的磁块产生的磁场力可共同作用将动触头217与直流静触头211分离时产生的电弧吹向灭弧栅215,使得灭弧栅215对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图14所示的8个第一塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体221和塑料壳体222的结构及其工作原理,以下不再赘述。上述塑料壳体213和塑料壳体220内嵌入有磁块(即第二磁块),且塑料壳体213和塑料壳体220中的磁块平行设置,塑料壳体213和塑料壳体220中的磁块的放置方式遵从左手定则。其中,塑料壳体213和塑料壳体220中的磁块产生的磁场力可共同作用将动触头203与直流静触头211分离时产生的电弧吹向灭弧栅204,使得灭弧栅204对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图14所示的8个第二塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体213和塑料壳体220的结构及其工作原理,以下不再赘述。In some feasible embodiments, magnetic blocks (i.e., first magnetic blocks) are embedded in the plastic shell 221 and the plastic shell 222, and the magnetic blocks in the plastic shell 221 and the plastic shell 222 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 221 and the plastic shell 222 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 221 and the plastic shell 222 can work together to blow the arc generated when the moving contact 217 is separated from the DC static contact 211 to the arc extinguishing grid 215, so that the arc extinguishing grid 215 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of other plastic shells in the 8 first plastic shells shown in Figure 14 can refer to the structure and working principle of the plastic shell 221 and the plastic shell 222, and will not be repeated below. The above-mentioned plastic shell 213 and the plastic shell 220 are embedded with magnetic blocks (i.e., second magnetic blocks), and the magnetic blocks in the plastic shell 213 and the plastic shell 220 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 213 and the plastic shell 220 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 213 and the plastic shell 220 can work together to blow the arc generated when the moving contact 203 is separated from the DC static contact 211 to the arc extinguishing grid 204, so that the arc extinguishing grid 204 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the 8 second plastic shells shown in Figure 14 can refer to the structure and working principle of the above-mentioned plastic shell 213 and the plastic shell 220, and will not be repeated below.

在一些可行的实施方式中,在上述直流接触器1a为常开接触器的情况下,上述电磁装置30a至电磁装置30n中的任意一个电磁装置,在电流由直流输入模块2流向上述直流输出模块3a至直流输出模块3n中的任意一个直流输出模块(即任意一个电磁装置中的线圈通电)时,控制上述触桥40a至触桥40n中的任意一个触桥向直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头、和直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路导通的目的。可选的,上述任意一个电磁装置还可在直流输入模块2断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向远离任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路断开的目的。由此可见,该常开接触器可实现独立控制n路高压直流电路导通或者断开的目的,可靠性更高;另外,不需要设置辅助触点来判断接触器的开闭状态(即导通状态或者断开状态),不容易受到环境震动的影响,稳定性高且成本更低,适用性更强。In some feasible embodiments, when the DC contactor 1a is a normally open contactor, any one of the electromagnetic devices 30a to 30n controls any one of the contact bridges 40a to 40n to move toward any one of the DC input static contacts 100a to 100n and any one of the DC output static contacts 20a to 20n, and the DC output static contact of any one of the DC output terminals 20a to 20n, when current flows from the DC input module 2 to any one of the DC output modules 3a to 3n (i.e., the coil in any one of the electromagnetic devices is energized). This causes the first moving contact of any one of the contact bridges to contact with any one of the DC input static contacts, and the second moving contact of any one of the contact bridges to contact with the DC output static contact of any one of the DC output terminals. At this time, any one of the n high-voltage DC circuits is turned on, thereby achieving the purpose of independently controlling the conduction of the n high-voltage DC circuits. Optionally, any of the above electromagnetic devices can also control any contact bridge to move in a direction away from any DC input static contact and any DC output static contact of any DC output terminal when the DC input module 2 is powered off (i.e., the coil in any electromagnetic device is powered off), so that the first moving contact of any contact bridge is separated from any DC input static contact, and the second moving contact of any contact bridge is separated from the DC output static contact of any DC output terminal. At this time, any one of the n high-voltage DC circuits has been disconnected, and the purpose of independently controlling the disconnection of the n high-voltage DC circuits can be achieved. It can be seen from this that the normally open contactor can achieve the purpose of independently controlling the conduction or disconnection of n high-voltage DC circuits, and has higher reliability; in addition, there is no need to set auxiliary contacts to determine the open and closed state of the contactor (i.e., the conduction state or the disconnection state), and it is not easily affected by environmental vibrations, has high stability, lower cost, and stronger applicability.

在一些可行的实施方式中,为方便描述,下面将以一进三出独立控制的常开接触器为例进行说明,该常开接触器的具体结构可参见下述图15至图16。这里的一进三出可以理解为一个直流输入端子(即一个输入电流)和三个直流输出端子(即三个输出电流),且三个输出电流可以被独立控制以导通或者断开3路高压直流电路。在上述一进三出的常开接触器中,直流输入端子10的数量为1,直流输入静触头100a至直流输入静触头100n的数量为3,直流输出端子20a至直流输出端子20n的数量为3,直流输出静触头200a至直流输出静触头200n的数量为3,触桥40a至触桥40m的数量为3,第一动触头401a至第一动触头401n的数量为3,第二动触头402a至第二动触头402n的数量为3,电磁装置30a至电磁装置30n的数量为3,灭弧栅50a至灭弧栅50m的数量为5(或者3)。请一并参见图15,图15是本申请提供的常开接触器的一结构示意图。In some feasible implementations, for the convenience of description, a normally open contactor with one input and three outputs independently controlled is used as an example for description, and the specific structure of the normally open contactor can be seen in the following Figures 15 and 16. Here, one input and three outputs can be understood as a DC input terminal (i.e., one input current) and three DC output terminals (i.e., three output currents), and the three output currents can be independently controlled to turn on or off three high-voltage DC circuits. In the above-mentioned one-input and three-output normally open contactor, the number of DC input terminals 10 is 1, the number of DC input static contacts 100a to DC input static contacts 100n is 3, the number of DC output terminals 20a to DC output terminals 20n is 3, the number of DC output static contacts 200a to DC output static contacts 200n is 3, the number of contact bridges 40a to contact bridges 40m is 3, the number of first moving contacts 401a to first moving contacts 401n is 3, the number of second moving contacts 402a to second moving contacts 402n is 3, the number of electromagnetic devices 30a to electromagnetic devices 30n is 3, and the number of arc extinguishing grids 50a to arc extinguishing grids 50m is 5 (or 3). Please refer to Figure 15, which is a structural schematic diagram of a normally open contactor provided by the present application.

在一些可行的实施方式中,上述一进三出的常开接触器的截面图可以如图15所示,在该截面图所示的常开接触器的左侧结构中,直流端子307(即直流输入端子10)的一端设置有直流静触头308(即直流输入静触头),直流端子301(即直流输出端子20a)的一端设置有直流静触头309(即直流输出静触头200a);磁轭305、线圈306、支撑弹簧310以及动铁芯319可构成电磁装置(即电磁装置30a),其中,电磁装置30a中各个部件之间的位置关系如图15所示,且动铁芯319连接触桥316(即触桥40a);触桥316的两端分别设置有动触头317(即第一动触头401a)和动触头303(即第二动触头402a);灭弧栅315(即第一灭弧栅50n+1)和灭弧栅304(即第二灭弧栅50a)分别设置于触桥316的两侧。其中,直流静触头308、直流静触头309、磁轭305、线圈306、支撑弹簧310、动铁芯319、触桥316、动触头317、动触头303、灭弧栅315以及灭弧栅304均设置在塑料外壳302(即第三塑料壳体60)内。上述直流端子307的另一端用于连接上述直流输入模块2,直流端子301的另一端用于连接直流输出模块3a。In some feasible implementations, the cross-sectional view of the above-mentioned one-input and three-output normally open contactor can be as shown in FIG. 15. In the left side structure of the normally open contactor shown in the cross-sectional view, one end of the DC terminal 307 (i.e., the DC input terminal 10) is provided with a DC static contact 308 (i.e., the DC input static contact), and one end of the DC terminal 301 (i.e., the DC output terminal 20a) is provided with a DC static contact 309 (i.e., the DC output static contact 200a); the yoke 305, the coil 306, the support spring 310 and the moving iron core 3 19 can constitute an electromagnetic device (i.e., an electromagnetic device 30a), wherein the positional relationship between the various components in the electromagnetic device 30a is shown in FIG. 15, and the moving iron core 319 is connected to the contact bridge 316 (i.e., the contact bridge 40a); the two ends of the contact bridge 316 are respectively provided with a moving contact 317 (i.e., the first moving contact 401a) and a moving contact 303 (i.e., the second moving contact 402a); the arc extinguishing grid 315 (i.e., the first arc extinguishing grid 50n+1) and the arc extinguishing grid 304 (i.e., the second arc extinguishing grid 50a) are respectively provided on both sides of the contact bridge 316. Among them, the DC static contact 308, the DC static contact 309, the yoke 305, the coil 306, the support spring 310, the moving iron core 319, the contact bridge 316, the moving contact 317, the moving contact 303, the arc extinguishing grid 315 and the arc extinguishing grid 304 are all provided in the plastic shell 302 (i.e., the third plastic shell 60). The other end of the DC terminal 307 is used to connect to the DC input module 2, and the other end of the DC terminal 301 is used to connect to the DC output module 3a.

需要说明的是,由于上述截面图所示的常开接触器的右侧结构与其左侧结构对称,因此,该截面图所示的常开接触器的右侧结构可参见上述左侧结构的描述,以下不再赘述。另外,上述截面图所示的常开接触器可直接显示塑料外壳302,直流端子307,3个直流输入静触头中的直流静触头308及其相对设置的直流静触头,3个直流输出端子中的直流端子301及其相对设置的直流端子,3个直流输出静触头中的直流静触头309及其相对设置的直流静触头,3个电磁装置中的电磁装置30a及其相对设置的电磁装置,3个触桥中的触桥316及其相对设置的触桥,以及5个灭弧栅中的灭弧栅315、灭弧栅304及其相对设置的灭弧栅,该常开接触器中的其它部件之间的位置关系可参见上述左侧结构的描述,以下不再赘述。It should be noted that, since the right side structure of the normally open contactor shown in the above cross-sectional view is symmetrical with its left side structure, the right side structure of the normally open contactor shown in the cross-sectional view can refer to the description of the above left side structure, which will not be repeated below. In addition, the normally open contactor shown in the above cross-sectional view can directly display the plastic housing 302, the DC terminal 307, the DC static contact 308 of the three DC input static contacts and the DC static contact arranged oppositely, the DC terminal 301 of the three DC output terminals and the DC terminal arranged oppositely, the DC static contact 309 of the three DC output static contacts and the DC static contact arranged oppositely, the electromagnetic device 30a of the three electromagnetic devices and the electromagnetic device arranged oppositely, the contact bridge 316 of the three contact bridges and the contact bridge arranged oppositely, and the arc extinguishing grid 315, the arc extinguishing grid 304 and the arc extinguishing grid arranged oppositely among the five arc extinguishing grids. The positional relationship between other components in the normally open contactor can refer to the description of the above left side structure, which will not be repeated below.

在一些可行的实施方式中,在电流由直流输入模块2流向直流输出模块3a(即直流输入模块2通电)时,线圈306在通电之后会产生磁场,动铁芯319会在线圈306产生的磁场的作用下向上运动,使得触桥316向直流静触头308和直流静触头309的方向运动,动触头317与直流静触头308接触(即紧密闭合)、且动触头303与直流静触头309接触(即直流端子307通过触桥316与直流端子301联通),从而导通直流输入模块2和直流输出模块3a所构成的直流电路(即上述n路高压直流电路中的第一路高压直流电路,n为3)。在直流输入模块2断电时,线圈306在断电之后不再产生磁场,这时动铁芯319会在重力势能的作用下向下运动,使得触桥316向远离直流静触头308和直流静触头309的方向运动,动触头317与直流静触头308分离(即断开)、且动触头303与直流静触头309分离(即直流端子307和直流端子301分断),从而断开直流输入模块2和直流输出模块3a所构成的直流电路(即上述3路高压直流电路中的第一路高压直流电路)。需要说明的是,上述3路高压直流电路中的其它高压直流电路导通或者断开的工作原理可参见上述第一路高压直流电路导通或者断开的工作原理,以下不再赘述。请一并参见图16,图16是本申请提供的常开接触器的另一结构示意图。In some feasible embodiments, when current flows from the DC input module 2 to the DC output module 3a (i.e., the DC input module 2 is energized), the coil 306 will generate a magnetic field after being energized, and the moving iron core 319 will move upward under the action of the magnetic field generated by the coil 306, so that the contact bridge 316 moves in the direction of the DC static contact 308 and the DC static contact 309, the moving contact 317 contacts the DC static contact 308 (i.e., tightly closed), and the moving contact 303 contacts the DC static contact 309 (i.e., the DC terminal 307 is connected to the DC terminal 301 through the contact bridge 316), thereby turning on the DC circuit formed by the DC input module 2 and the DC output module 3a (i.e., the first high-voltage DC circuit in the above-mentioned n high-voltage DC circuits, n is 3). When the DC input module 2 is powered off, the coil 306 no longer generates a magnetic field after the power is turned off. At this time, the moving iron core 319 will move downward under the action of gravitational potential energy, so that the contact bridge 316 moves away from the DC static contact 308 and the DC static contact 309, and the moving contact 317 is separated from the DC static contact 308 (i.e. disconnected), and the moving contact 303 is separated from the DC static contact 309 (i.e. the DC terminal 307 and the DC terminal 301 are disconnected), thereby disconnecting the DC circuit formed by the DC input module 2 and the DC output module 3a (i.e. the first high-voltage DC circuit of the above-mentioned three high-voltage DC circuits). It should be noted that the working principle of the conduction or disconnection of other high-voltage DC circuits in the above-mentioned three high-voltage DC circuits can refer to the working principle of the conduction or disconnection of the above-mentioned first high-voltage DC circuit, which will not be repeated below. Please also refer to Figure 16, which is another structural schematic diagram of the normally open contactor provided in this application.

在一些可行的实施方式中,上述一进三出独立控制的常开接触器的俯视图可以如图16所示,塑料壳体316(即第一塑料壳体70a)和塑料壳体314(即第一塑料壳体70b)相对设置于直流静触头308(即直流输入静触头100a)的两侧;塑料壳体317(即第二塑料壳体80a)和塑料壳体318(即第二塑料壳体80b)相对设置于直流静触头309(即直流输出静触头200a)的两侧;灭弧栅315(即第一灭弧栅50n+1)还设置有排气孔313(即第一排气孔504n+1),灭弧栅311(即第二灭弧栅50a)还设置有排气孔319(即第一排气孔500a)。在断开上述4路高压直流电路中的第一路高压直流电路的过程中,灭弧栅315可对动触头317与直流静触头308断开时产生的电弧进行灭弧,排气孔319可对动触头303与直流静触头309断开时产生的电弧进行灭弧,从而通过分开设置灭弧栅对不同方向的电弧进行灭弧,避免了电弧对吹导致的短路风险,并且这种灭弧栅的放置方式可降低常开接触器的整体高度;排气孔313和排气孔319可将电弧伴随产生的高热气体排出,塑料外壳302上预留的第二排气孔(图中未示出)可将排气孔313和排气孔319排出的高热气体排出塑料外壳302,从而保护塑料外壳302不被烧坏,适用性更强。In some feasible embodiments, the top view of the above-mentioned one-input and three-output independently controlled normally open contactor can be as shown in Figure 16, the plastic shell 316 (i.e., the first plastic shell 70a) and the plastic shell 314 (i.e., the first plastic shell 70b) are relatively arranged on both sides of the DC static contact 308 (i.e., the DC input static contact 100a); the plastic shell 317 (i.e., the second plastic shell 80a) and the plastic shell 318 (i.e., the second plastic shell 80b) are relatively arranged on both sides of the DC static contact 309 (i.e., the DC output static contact 200a); the arc extinguishing grid 315 (i.e., the first arc extinguishing grid 50n+1) is also provided with an exhaust hole 313 (i.e., the first exhaust hole 504n+1), and the arc extinguishing grid 311 (i.e., the second arc extinguishing grid 50a) is also provided with an exhaust hole 319 (i.e., the first exhaust hole 500a). In the process of disconnecting the first high-voltage DC circuit among the above-mentioned four high-voltage DC circuits, the arc extinguishing grid 315 can extinguish the arc generated when the moving contact 317 and the DC static contact 308 are disconnected, and the exhaust hole 319 can extinguish the arc generated when the moving contact 303 and the DC static contact 309 are disconnected, so that arcs in different directions are extinguished by separately setting arc extinguishing grids, thereby avoiding the risk of short circuit caused by arc blowing, and the placement of this arc extinguishing grid can reduce the overall height of the normally open contactor; the exhaust holes 313 and the exhaust holes 319 can discharge the high-temperature gas generated by the arc, and the second exhaust hole (not shown in the figure) reserved on the plastic shell 302 can discharge the high-temperature gas discharged from the exhaust holes 313 and the exhaust holes 319 out of the plastic shell 302, thereby protecting the plastic shell 302 from being burned, and having stronger applicability.

其中,上述图16所示的俯视图可直接显示:塑料外壳302,直流端子307,直流静触头308及其相邻设置的直流静触头和相对设置的直流静触头(即3个直流输入静触头);直流端子301及其相邻设置的直流端子和相对设置的直流端子(即3个直流输出端子),直流静触头309及其相邻设置的直流静触头和相对设置的直流静触头(即3个直流输出静触头);灭弧栅315及其相对设置的灭弧栅(即2个第一灭弧栅),灭弧栅311及其相邻设置的灭弧栅和相对设置的灭弧栅(即3个第二灭弧栅),其中,2个第一灭弧栅和3个第二灭弧栅可构成5个灭弧栅;直流静触头308两侧的塑料壳体316和塑料壳体314,3个直流输入静触头中其它两个直流输入静触头两侧的2个塑料壳体(即4个第一塑料壳体),其中,塑料壳体316、塑料壳体314和4个第一塑料壳体构成6个第一塑料壳体;以及直流静触头309两侧的塑料壳体317和塑料壳体318,3个直流输入静触头中其它两个直流输出静触头两侧的2个塑料壳体(即4个第二塑料壳体),其中,塑料壳体317、塑料壳体318和4个第二塑料壳体构成6个第二塑料壳体。为方便描述,下面将以塑料壳体316、塑料壳体314、塑料壳体317和塑料壳体318为例进行说明。Among them, the top view shown in the above Figure 16 can directly display: the plastic housing 302, the DC terminal 307, the DC static contact 308 and its adjacent DC static contacts and the relatively arranged DC static contacts (i.e., three DC input static contacts); the DC terminal 301 and its adjacent DC terminals and the relatively arranged DC terminals (i.e., three DC output terminals), the DC static contact 309 and its adjacent DC static contacts and the relatively arranged DC static contacts (i.e., three DC output static contacts); the arc extinguishing grid 315 and its relatively arranged arc extinguishing grid (i.e., two first arc extinguishing grids), the arc extinguishing grid 311 and its adjacent arc extinguishing grid and the relatively arranged arc extinguishing grid (i.e., three second arc extinguishing grids), among which, the two first arc extinguishing grids The arc grid and the three second arc extinguishing grids can constitute five arc extinguishing grids; the plastic shell 316 and the plastic shell 314 on both sides of the DC static contact 308, the two plastic shells on both sides of the other two DC input static contacts of the three DC input static contacts (i.e., four first plastic shells), wherein the plastic shell 316, the plastic shell 314 and the four first plastic shells constitute six first plastic shells; and the plastic shell 317 and the plastic shell 318 on both sides of the DC static contact 309, the two plastic shells on both sides of the other two DC output static contacts of the three DC input static contacts (i.e., four second plastic shells), wherein the plastic shell 317, the plastic shell 318 and the four second plastic shells constitute six second plastic shells. For the convenience of description, the following will be described by taking the plastic shell 316, the plastic shell 314, the plastic shell 317 and the plastic shell 318 as examples.

在一些可行的实施方式中,上述塑料壳体316和塑料壳体314内均嵌入有磁块(即第一磁块),且塑料壳体316和塑料壳体314中的磁块平行设置,塑料壳体316和塑料壳体314中的磁块的放置方式遵从左手定则。其中,上述塑料壳体316和塑料壳体314中的磁块产生的磁场力可共同作用将动触头317与直流静触头309分离时产生的电弧吹向灭弧栅315,使得灭弧栅315对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图16所示的6个第一塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体316和塑料壳体314的结构及其工作原理,以下不再赘述。上述塑料壳体317和塑料壳体318内嵌入有磁块(即第二磁块),且塑料壳体317和塑料壳体318中的磁块平行设置,塑料壳体317和塑料壳体318中的磁块的放置方式遵从左手定则。其中,塑料壳体317和塑料壳体318中的磁块产生的磁场力可共同作用将动触头303与直流静触头309分离时产生的电弧吹向灭弧栅311,使得灭弧栅311对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图16所示的6个第二塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体317和塑料壳体318的结构及其工作原理,以下不再赘述。In some feasible embodiments, magnetic blocks (i.e., first magnetic blocks) are embedded in the plastic shell 316 and the plastic shell 314, and the magnetic blocks in the plastic shell 316 and the plastic shell 314 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 316 and the plastic shell 314 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 316 and the plastic shell 314 can work together to blow the arc generated when the moving contact 317 is separated from the DC static contact 309 to the arc extinguishing grid 315, so that the arc extinguishing grid 315 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the six first plastic shells shown in Figure 16 can refer to the structure and working principle of the plastic shell 316 and the plastic shell 314, and will not be repeated below. A magnetic block (i.e., a second magnetic block) is embedded in the plastic shell 317 and the plastic shell 318, and the magnetic blocks in the plastic shell 317 and the plastic shell 318 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 317 and the plastic shell 318 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 317 and the plastic shell 318 can work together to blow the arc generated when the moving contact 303 is separated from the DC static contact 309 to the arc extinguishing grid 311, so that the arc extinguishing grid 311 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the six second plastic shells shown in Figure 16 can refer to the structure and working principle of the plastic shell 317 and the plastic shell 318, and will not be repeated below.

在一些可行的实施方式中,在直流接触器1a为常闭接触器的情况下,上述电磁装置30a至电磁装置30n中的任意一个电磁装置,在电流由直流输入模块2流向直流输出模块3a至直流输出模块3n中的任意一个直流输出模块(即任意一个电磁装置中的线圈通电)时,控制触桥40a至触桥40n中的任意一个触桥向远离直流输入静触头100a至直流输入静触头100n中的任意一个直流输入静触头和直流输出端子20a至直流输出端子20n中任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头分离、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头分离,这时已断开上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制上述n路高压直流电路断开的目的。可选的,任意一个电磁装置还可在直流输入模块2断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向任意一个直流输入静触头和任意一个直流输出端子的直流输出静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输入静触头接触、且任意一个触桥的第二动触头与任意一个直流输出端子的直流输出静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路导通的目的。In some feasible embodiments, when the DC contactor 1a is a normally closed contactor, any one of the electromagnetic devices 30a to 30n controls any one of the contact bridges 40a to 40n to move in a direction away from any one of the DC input static contacts 100a to 100n and any one of the DC output static contacts 20a to 20n when current flows from the DC input module 2 to any one of the DC output modules 3a to 3n (i.e., the coil in any one of the electromagnetic devices is energized) so that the first moving contact of any one of the contact bridges is separated from any one of the DC input static contacts and the second moving contact of any one of the contact bridges is separated from the DC output static contact of any one of the DC output terminals 20a to 20n. At this time, any one of the n high-voltage DC circuits is disconnected, thereby achieving the purpose of independently controlling the disconnection of the n high-voltage DC circuits. Optionally, when the DC input module 2 is powered off (i.e., the coil in any electromagnetic device is powered off), any electromagnetic device can control any contact bridge to move toward any DC input static contact and any DC output static contact of any DC output terminal, so that the first moving contact of any contact bridge contacts with any DC input static contact, and the second moving contact of any contact bridge contacts with any DC output static contact of any DC output terminal. At this time, any one of the above-mentioned n high-voltage DC circuits is turned on, thereby achieving the purpose of independently controlling the conduction of the n high-voltage DC circuits.

由此可见,该常闭接触器可实现独立控制n路高压直流电路导通或者断开的目的,可靠性更高;另外,不需要设置辅助触点来判断接触器的开闭状态(即导通状态或者断开状态),不容易受到环境震动的影响,稳定性高且成本更低,适用性更强。由于一个直流接触器1a(如上述磁保持接触器、常开接触器或者常闭接触器)就可以导通或者断开n路高压直流电路,因此可有效节省直流接触器1a所占用的空间以及成本,安装更加方便,直流接触器1a的工作效率更高,适用性更强。It can be seen that the normally closed contactor can achieve the purpose of independently controlling the conduction or disconnection of n high-voltage DC circuits, and has higher reliability; in addition, there is no need to set auxiliary contacts to determine the open and closed state of the contactor (i.e., the conduction state or the disconnection state), and it is not easily affected by environmental vibrations, has high stability and lower cost, and is more applicable. Since a DC contactor 1a (such as the above-mentioned magnetic latching contactor, normally open contactor, or normally closed contactor) can conduct or disconnect n high-voltage DC circuits, the space and cost occupied by the DC contactor 1a can be effectively saved, the installation is more convenient, the DC contactor 1a has higher working efficiency, and is more applicable.

在本申请提供的直流接触器1a中,可通过至少两个直流输入静触头、直流输出端子(及其直流输出静触头)、电磁装置、触桥(及其动触头)、灭弧栅、嵌入第一磁块的第一塑料壳体以及嵌入第二磁块的第二塑料壳体,实现在独立控制至少两路高压直流电路导通或者断开的同时进行灭弧,从而提高了直流接触器1a的稳定性和安全性,并且延长了直流接触器1a的使用寿命。另外,由于一个直流接触器1a就可以导通或者断开至少两路高压直流电路,因此可有效节省直流接触器1a所占用的空间以及成本,安装更加方便,直流接触器1a的工作效率高,适用性强。In the DC contactor 1a provided in the present application, arc extinguishing can be achieved while independently controlling the conduction or disconnection of at least two high-voltage DC circuits through at least two DC input static contacts, a DC output terminal (and its DC output static contact), an electromagnetic device, a contact bridge (and its moving contact), an arc extinguishing grid, a first plastic shell embedded in a first magnetic block, and a second plastic shell embedded in a second magnetic block, thereby improving the stability and safety of the DC contactor 1a and extending the service life of the DC contactor 1a. In addition, since one DC contactor 1a can conduct or disconnect at least two high-voltage DC circuits, the space and cost occupied by the DC contactor 1a can be effectively saved, the installation is more convenient, and the DC contactor 1a has high working efficiency and strong applicability.

在直流接触器为多进(即直流输出端子)一出(即直流输入端子)独立控制的直流接触器的情况下,请参见图17,图17是本申请提供的直流接触器的另一结构示意图。如图17所示,直流接触器1b中包括直流输出端子21、至少两个直流输入端子(如直流输入端子11a至直流输入端子11n)、至少两个电磁装置(如电磁装置31a至电磁装置31n)、至少两个触桥(如触桥41a至触桥41n)以及至少两个灭弧栅(如灭弧栅51a至灭弧栅51m),该电磁装置31a至电磁装置31n中每个电磁装置的具体结构可由直流接触器1b的具体类型决定,该直流接触器1b的具体类型可包括但不限于磁保持接触器、常开接触器或者常闭接触器。其中,上述直流输出端子21朝向触桥41a至触桥41n的一端设置有至少两个直流输出静触头(如直流输出静触头210a至直流输出静触头210n),上述直流输出端子21背向触桥41a至触桥41n的另一端可用于连接直流输出模块4。上述直流输入端子11a至直流输入端子11n中每个直流输入端子朝向触桥41a至触桥41n的一端设置有直流输入静触头,每个直流输入端子背向触桥41a至触桥41n的另一端可用于连接直流输入模块。这里的直流输出端子也可以称为直流出线端子(可简称为出线端子),直流输入端子也可以称为直流进线端子(可简称为进线端子)。上述触桥41a至触桥41n中每个触桥上设置有第一动触头和第二动触头,例如,每个触桥的两端设置有第一动触头和第二动触头。例如,触桥41a上设置有第一动触头411a和第二动触头412a,其中,第一动触头411a朝向直流输出静触头210a,第二动触头412a朝向直流输入端子11a;……,触桥41n上设置有第一动触头411n和第二动触头412n,其中,第一动触头411n朝向直流输出静触头210n,第二动触头412n朝向直流输入端子11n。In the case where the DC contactor is a DC contactor with multiple inputs (i.e., DC output terminals) and one output (i.e., DC input terminals) independently controlled, please refer to Figure 17, which is another structural schematic diagram of the DC contactor provided by the present application. As shown in Figure 17, the DC contactor 1b includes a DC output terminal 21, at least two DC input terminals (such as DC input terminals 11a to DC input terminals 11n), at least two electromagnetic devices (such as electromagnetic devices 31a to electromagnetic devices 31n), at least two contact bridges (such as contact bridges 41a to contact bridges 41n) and at least two arc extinguishing grids (such as arc extinguishing grids 51a to arc extinguishing grids 51m), and the specific structure of each electromagnetic device in the electromagnetic device 31a to the electromagnetic device 31n can be determined by the specific type of the DC contactor 1b, and the specific type of the DC contactor 1b can include but is not limited to a magnetic holding contactor, a normally open contactor, or a normally closed contactor. Among them, the DC output terminal 21 is provided with at least two DC output static contacts (such as DC output static contacts 210a to DC output static contacts 210n) at one end facing the contact bridges 41a to 41n, and the other end of the DC output terminal 21 facing away from the contact bridges 41a to 41n can be used to connect the DC output module 4. Each of the DC input terminals 11a to 11n is provided with a DC input static contact at one end facing the contact bridges 41a to 41n, and the other end of each DC input terminal facing away from the contact bridges 41a to 41n can be used to connect the DC input module. The DC output terminal here can also be called a DC output terminal (can be simply referred to as an output terminal), and the DC input terminal can also be called a DC input terminal (can be simply referred to as an input terminal). Each of the contact bridges 41a to 41n is provided with a first moving contact and a second moving contact, for example, each contact bridge is provided with a first moving contact and a second moving contact at both ends. For example, a first moving contact 411a and a second moving contact 412a are provided on the contact bridge 41a, wherein the first moving contact 411a faces the DC output static contact 210a, and the second moving contact 412a faces the DC input terminal 11a; ..., a first moving contact 411n and a second moving contact 412n are provided on the contact bridge 41n, wherein the first moving contact 411n faces the DC output static contact 210n, and the second moving contact 412n faces the DC input terminal 11n.

在一些可行的实施方式中,由于上述直流输入端子11a至直流输入端子11n中每个直流输入端子的另一端都会连接一个直流输入模块,因此存在至少两个直流输入模块(如直流输入模块5a至直流输入模块5n)。例如,直流输入端子11a朝向第二动触头412a的一端设置有直流输入静触头110a,直流输入端子11a背向第二动触头412a的另一端可用于连接直流输入模块5a,……,直流输入端子11n朝向第二动触头412n的一端设置有直流输入静触头110n,直流输入端子11n背向第二动触头412n的另一端可用于连接直流输入模块5n。其中,直流输出静触头210a至直流输出静触头210n的具体数量,以及直流输入端子11a至直流输入端子11n的具体数量可由直流输入模块5a至直流输入模块5n的具体数量决定,且直流输出静触头210a至直流输出静触头210n的数量大于或者等于2,直流输入端子11a至直流输入端子11n的数量大于或者等于2。例如,在直流输入模块5a至直流输入模块5n的数量为2时,直流输出静触头210a至直流输出静触头210n的数量为2,直流输入端子11a至直流输入端子11n的数量为2;在直流输入模块5a至直流输入模块5n的数量为3时,直流输出静触头210a至直流输出静触头210n的数量为3,直流输入端子11a至直流输入端子11n的数量为3;在直流输入模块5a至直流输入模块5n的数量为4时,直流输出静触头210a至直流输出静触头210n的数量为4,直流输入端子11a至直流输入端子11n的数量为4。In some feasible implementations, since the other end of each of the DC input terminals 11a to 11n is connected to a DC input module, there are at least two DC input modules (such as DC input modules 5a to 5n). For example, the DC input terminal 11a is provided with a DC input static contact 110a at one end facing the second moving contact 412a, and the other end of the DC input terminal 11a facing away from the second moving contact 412a can be used to connect to the DC input module 5a, ..., the DC input terminal 11n is provided with a DC input static contact 110n at one end facing the second moving contact 412n, and the other end of the DC input terminal 11n facing away from the second moving contact 412n can be used to connect to the DC input module 5n. Among them, the specific number of DC output static contacts 210a to DC output static contacts 210n and the specific number of DC input terminals 11a to DC input terminals 11n can be determined by the specific number of DC input modules 5a to DC input modules 5n, and the number of DC output static contacts 210a to DC output static contacts 210n is greater than or equal to 2, and the number of DC input terminals 11a to DC input terminals 11n is greater than or equal to 2. For example, when the number of DC input modules 5a to 5n is 2, the number of DC output static contacts 210a to 210n is 2, and the number of DC input terminals 11a to 11n is 2; when the number of DC input modules 5a to 5n is 3, the number of DC output static contacts 210a to 210n is 3, and the number of DC input terminals 11a to 11n is 3; when the number of DC input modules 5a to 5n is 4, the number of DC output static contacts 210a to 210n is 4, and the number of DC input terminals 11a to 11n is 4.

其中,直流输入模块5a至直流输入模块5n中每个直流输入模块是指为直流接触器1b提供输入电流的一个或者多个功能模块(如电源),上述直流输出模块4是指直流接触器1b提供输出电流的一个或者多个功能模块(如负载)。此时,直流输入端子11a至直流输入端子11n的直流输入静触头可以理解为n个输入电流的静触点,且直流输入端子11a至直流输入端子11n的输入电流可以理解为直流输入模块5a至直流输入模块5n为直流接触器1b所提供的n个输入电流;直流输出静触头210a至直流输出静触头210n可以理解为输出电流的静触点,且共用同一个直流输出端子21,该直流输出端子21用于向直流输出模块4提供输出电流。例如,每个直流输入模块包括但不限于光伏组串、电池模块(如储能电池或者动力电池)、发电机、直流(direct current,DC)/DC变换器以及交流(alternating current,AC)/DC变换器,直流输出模块4包括但不限于DC/DC变换器、直流汇流箱、光伏逆变器、直流母线、DC/AC变换器、直流负载(如直流电网、蓄电池和基站设备等直流用电设备)以及交流负载(如交流电网、空调和冰箱等交流用电设备)。需要说明的是,直流输出模块4和每个直流输入模块的具体结构可由直流接触器1b所适配的实际应用场景决定,在此不作限制。Among them, each DC input module in the DC input module 5a to the DC input module 5n refers to one or more functional modules (such as power supply) that provide input current for the DC contactor 1b, and the above-mentioned DC output module 4 refers to one or more functional modules (such as load) that provide output current for the DC contactor 1b. At this time, the DC input static contacts of the DC input terminals 11a to the DC input terminals 11n can be understood as static contacts of n input currents, and the input currents of the DC input terminals 11a to the DC input terminals 11n can be understood as n input currents provided by the DC input modules 5a to the DC input modules 5n for the DC contactor 1b; the DC output static contacts 210a to the DC output static contacts 210n can be understood as static contacts of output currents, and share the same DC output terminal 21, which is used to provide output current to the DC output module 4. For example, each DC input module includes but is not limited to a photovoltaic string, a battery module (such as an energy storage battery or a power battery), a generator, a direct current (DC)/DC converter, and an alternating current (AC)/DC converter, and the DC output module 4 includes but is not limited to a DC/DC converter, a DC junction box, a photovoltaic inverter, a DC bus, a DC/AC converter, a DC load (such as a DC power grid, a battery, a base station device and other DC power equipment) and an AC load (such as an AC power grid, an air conditioner and a refrigerator and other AC power equipment). It should be noted that the specific structure of the DC output module 4 and each DC input module can be determined by the actual application scenario adapted by the DC contactor 1b, and is not limited here.

在一些可行的实施方式中,上述直流输出模块4、直流输出端子21、直流输入端子11a、电磁装置31a、触桥41a以及直流输入模块5a可构成第一路高压直流电路,……,上述直流输出模块4、直流输出端子21、直流输入端子11n、电磁装置31n、触桥41n以及直流输入模块5n可构成第n路高压直流电路。也就是说,上述直流输出模块4、直流输出端子21、直流输入端子11a至直流输入端子11n、电磁装置31a至电磁装置31n、触桥41a至触桥41n以及直流输入模块5a至直流输入模块5n可构成n路高压直流电路。这里的n路高压直流电路可共用一个直流输出端子21,并独立使用直流输入端子11a至直流输入端子11n,换言之,一路高压直流电路使用一个直流输入端子,例如,第一路高压直流电路使用直流输入端子11a,……,第n路高压直流电路使用直流输入端子11n。在直流接触器1b工作的过程中,电磁装置31a至电磁装置31n中的一个电磁装置可控制触桥41a至触桥41n中的一个触桥运动,例如,电磁装置31a可控制触桥41a运动,……,电磁装置31n可控制触桥41n运动。In some feasible implementations, the DC output module 4, the DC output terminal 21, the DC input terminal 11a, the electromagnetic device 31a, the contact bridge 41a and the DC input module 5a can constitute a first high-voltage DC circuit, ..., the DC output module 4, the DC output terminal 21, the DC input terminal 11n, the electromagnetic device 31n, the contact bridge 41n and the DC input module 5n can constitute an n-th high-voltage DC circuit. In other words, the DC output module 4, the DC output terminal 21, the DC input terminal 11a to the DC input terminal 11n, the electromagnetic device 31a to the electromagnetic device 31n, the contact bridge 41a to the contact bridge 41n and the DC input module 5a to the DC input module 5n can constitute an n-th high-voltage DC circuit. Here, the n-th high-voltage DC circuits can share a DC output terminal 21 and independently use the DC input terminals 11a to the DC input terminals 11n. In other words, one high-voltage DC circuit uses one DC input terminal, for example, the first high-voltage DC circuit uses the DC input terminal 11a, ..., and the n-th high-voltage DC circuit uses the DC input terminal 11n. During operation of the DC contactor 1b, one of the electromagnetic devices 31a to 31n can control the movement of one of the contact bridges 41a to 41n. For example, the electromagnetic device 31a can control the movement of the contact bridge 41a, ..., and the electromagnetic device 31n can control the movement of the contact bridge 41n.

在一些可行的实施方式中,上述电磁装置31a至电磁装置31n中的任意一个电磁装置可控制触桥41a至触桥41n中的任意一个触桥,向直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头和直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触,且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路(即任意一路高压直流电路处于导通状态)。例如,电磁装置31a可控制触桥41a向直流输出静触头210a和直流输入静触头110a的方向运动,从而使得第一动触头411a与直流输出静触头210a接触、且第二动触头412a与直流输入静触头110a接触,这时已导通第一路高压直流电路(即第一路高压直流电路处于导通状态);……,电磁装置31n可控制触桥41n向直流输出静触头210n和直流输入静触头110n的方向运动,从而使得第一动触头411n与直流输出静触头210n接触、且第二动触头412n与直流输入静触头110n接触,这时已导通第n路高压直流电路(即第n路高压直流电路处于导通状态),从而可实现独立控制n路高压直流电路导通的目的。In some feasible embodiments, any electromagnetic device among the above-mentioned electromagnetic devices 31a to 31n can control any contact bridge among the contact bridges 41a to 41n to move toward any DC output static contact among the DC output static contacts 210a to 210n and the DC input static contact of any DC input terminal 11a to 11n, so that the first moving contact of any contact bridge contacts with any DC output static contact, and the second moving contact of any contact bridge contacts with any DC input static contact of any DC input terminal, at this time, any one of the above-mentioned n high-voltage DC circuits is turned on (that is, any one of the high-voltage DC circuits is in the on state). For example, the electromagnetic device 31a can control the contact bridge 41a to move in the direction of the DC output static contact 210a and the DC input static contact 110a, so that the first moving contact 411a contacts the DC output static contact 210a and the second moving contact 412a contacts the DC input static contact 110a, and at this time the first high-voltage DC circuit is turned on (i.e., the first high-voltage DC circuit is in the on state); ..., the electromagnetic device 31n can control the contact bridge 41n to move in the direction of the DC output static contact 210n and the DC input static contact 110n, so that the first moving contact 411n contacts the DC output static contact 210n and the second moving contact 412n contacts the DC input static contact 110n, and at this time the nth high-voltage DC circuit is turned on (i.e., the nth high-voltage DC circuit is in the on state), thereby achieving the purpose of independently controlling the conduction of n high-voltage DC circuits.

可选的,在一些可行的实施方式中,上述任意一个电磁装置还可控制任意一个触桥向远离任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离,且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开上述n路高压直流电路中的任意一路高压直流电路(即任意一路高压直流电路处于断开状态)。例如,电磁装置31a可控制触桥41a向远离直流输出静触头210a和直流输入静触头110a的方向运动,从而使得第一动触头411a与直流输出静触头210a分离、且第二动触头412a与直流输入静触头110a分离,这时已断开第一路高压直流电路(即第一路高压直流电路处于断开状态);……;电磁装置31n可控制触桥41n向远离直流输出静触头210n和直流输入静触头110n的方向运动,从而使得第一动触头411n与直流输出静触头210n分离、且第二动触头412n与直流输入静触头110n分离,这时已断开第n路高压直流电路(即第n路高压直流电路处于断开状态),从而可实现独立控制n路高压直流电路断开的目的。Optionally, in some feasible embodiments, any of the above-mentioned electromagnetic devices can also control any one of the contact bridges to move in a direction away from any one of the DC output static contacts and any one of the DC input static contacts of the DC input terminal, so that the first moving contact of any one of the contact bridges is separated from any one of the DC output static contacts, and the second moving contact of any one of the contact bridges is separated from the DC input static contact of any one of the DC input terminals. At this time, any one of the above-mentioned n high-voltage DC circuits has been disconnected (that is, any one of the high-voltage DC circuits is in a disconnected state). For example, the electromagnetic device 31a can control the contact bridge 41a to move in a direction away from the DC output static contact 210a and the DC input static contact 110a, so that the first moving contact 411a is separated from the DC output static contact 210a, and the second moving contact 412a is separated from the DC input static contact 110a. At this time, the first high-voltage DC circuit is disconnected (that is, the first high-voltage DC circuit is in a disconnected state); ...; the electromagnetic device 31n can control the contact bridge 41n to move in a direction away from the DC output static contact 210n and the DC input static contact 110n, so that the first moving contact 411n is separated from the DC output static contact 210n, and the second moving contact 412n is separated from the DC input static contact 110n. At this time, the nth high-voltage DC circuit is disconnected (that is, the nth high-voltage DC circuit is in a disconnected state), thereby achieving the purpose of independently controlling the disconnection of n high-voltage DC circuits.

需要说明的是,上述n路高压直流电路中的任意一路高压直流电路可处于导通状态或者断开状态,此时存在以下情况:上述n路高压直流电路同时处于导通状态;上述n路高压直流电路同时处于断开状态;上述n路高压直流电路中的一部分高压直流电路处于导通状态,同时上述n路高压直流电路中的另一部分高压直流电路处于断开状态,也就是说,上述直流接触器1b可实现独立控制n路高压直流电路导通或者断开的目的。It should be noted that any one of the above-mentioned n high-voltage DC circuits can be in an on state or an off state, and the following situations exist at this time: the above-mentioned n high-voltage DC circuits are in an on state at the same time; the above-mentioned n high-voltage DC circuits are in an off state at the same time; a part of the above-mentioned n high-voltage DC circuits is in an on state, and at the same time another part of the above-mentioned n high-voltage DC circuits is in an off state, that is, the above-mentioned DC contactor 1b can achieve the purpose of independently controlling the on or off of the n high-voltage DC circuits.

在一些可行的实施方式中,由于直流接触器1b在断开n路高压直流电路中的任意一路高压直流电路时其电压和电流会达到一定值,因此会使得任意一个触桥的第一动触头与任意一个直流输出静触头之间产生强力的白光(也称为电弧),且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头之间产生强力的白光(也称为电弧)。这时,上述灭弧栅51a至灭弧栅51m中的任意一个灭弧栅可对上述任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧进行灭弧,并对任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时产生的电弧进行灭弧。需要说明的是,上述灭弧栅51a至灭弧栅51m设置在直流接触器1b中可以对电弧进行有效灭弧的任何位置,在此不作限制。其中,上述灭弧栅51a至灭弧栅51m中的每个灭弧栅可使用磁性材料的金属栅片将电弧分割成若干短弧,并利用直流电弧的近极压降来达到熄灭电弧的目的,也就是说,每个灭弧栅利用短弧灭弧的原理对电弧进行灭弧,灭弧栅也可以称为横向金属栅片或者离子栅。可以理解,灭弧栅51a至灭弧栅51m中的任意一个灭弧栅可对断开任意一路高压直流电路的过程中产生的电弧进行灭弧,因此上述灭弧栅51a至灭弧栅51m可对断开n路高压直流电路的过程中所产生的电弧进行灭弧。In some feasible implementations, since the voltage and current of the DC contactor 1b will reach a certain value when disconnecting any one of the n high-voltage DC circuits, a strong white light (also called an arc) will be generated between the first moving contact of any contact bridge and any DC output static contact, and a strong white light (also called an arc) will be generated between the second moving contact of any contact bridge and the DC input static contact of any DC input terminal. At this time, any one of the arc extinguishing grids 51a to 51m can extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and extinguish the arc generated when the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal. It should be noted that the arc extinguishing grids 51a to 51m are set at any position in the DC contactor 1b that can effectively extinguish the arc, and there is no limitation here. Among them, each of the arc extinguishing grids 51a to 51m can use a metal grid of magnetic material to divide the arc into several short arcs, and use the near-pole voltage drop of the DC arc to achieve the purpose of extinguishing the arc, that is, each arc extinguishing grid uses the principle of short arc extinguishing to extinguish the arc, and the arc extinguishing grid can also be called a transverse metal grid or an ion grid. It can be understood that any arc extinguishing grid from the arc extinguishing grid 51a to 51m can extinguish the arc generated in the process of disconnecting any high-voltage DC circuit, so the arc extinguishing grid 51a to 51m can extinguish the arc generated in the process of disconnecting n high-voltage DC circuits.

可以理解,直流接触器1b可通过直流输出静触头210a至直流输出静触头210n,直流输入端子11a至直流输入端子11n,电磁装置31a至电磁装置31n以及触桥41a至触桥41n来实现独立控制n路高压直流电路导通或者断开的目的;在断开n路高压直流电路的过程中会产生电弧,这时灭弧栅51a至灭弧栅51m可对该电弧进行灭弧,从而可避免烧蚀动触头(如第一动触头和第二动触头)和静触头(如直流输出静触头和直流输入静触头),进而提高了直流接触器1b的稳定性和安全性,并且延长了直流接触器1b的使用寿命。另外,上述直流接触器1b中的直流输入端子11a至直流输入端子11n共用同一个直流输出端子21,也就是说,无需针对每个直流输入端子设置一个直流输出端子,从而减小了直流接触器1b的整体体积,同时也降低了直流接触器1b的接线复杂度,结构更加简单;由于一个直流接触器1b就可以导通或者断开n路高压直流电路,因此无须设置多个高压直流接触器来导通或者断开n路高压直流电路,从而有效节省了直流接触器1b所占用的空间以及成本,安装更加方便,直流接触器1b的工作效率更高,适用性更强。It can be understood that the DC contactor 1b can achieve the purpose of independently controlling the conduction or disconnection of n high-voltage DC circuits through the DC output static contacts 210a to 210n, the DC input terminals 11a to 11n, the electromagnetic devices 31a to 31n and the contact bridges 41a to 41n; in the process of disconnecting the n high-voltage DC circuits, an arc will be generated. At this time, the arc extinguishing grid 51a to 51m can extinguish the arc, thereby avoiding the burning of the moving contacts (such as the first moving contact and the second moving contact) and the static contacts (such as the DC output static contact and the DC input static contact), thereby improving the stability and safety of the DC contactor 1b and extending the service life of the DC contactor 1b. In addition, the DC input terminals 11a to 11n in the above-mentioned DC contactor 1b share the same DC output terminal 21, that is, there is no need to set a DC output terminal for each DC input terminal, thereby reducing the overall volume of the DC contactor 1b, and also reducing the wiring complexity of the DC contactor 1b, and the structure is simpler; since one DC contactor 1b can turn on or off n high-voltage DC circuits, there is no need to set up multiple high-voltage DC contactors to turn on or off n high-voltage DC circuits, thereby effectively saving the space and cost occupied by the DC contactor 1b, making installation more convenient, and the DC contactor 1b has higher working efficiency and stronger applicability.

在一些可行的实施方式中,如上述图17所示,直流接触器1b中还包括第三塑料壳体61(也可称为接触器壳体),上述电磁装置31a至电磁装置31n、触桥41a至触桥41n、直流输出静触头210a至直流输出静触头210n、直流输入静触头110a至直流输入静触头110n以及灭弧栅51a至灭弧栅51m均设置在第三塑料壳体61内,且直流输出端子21的另一端穿过第三塑料壳体61连接直流输出模块4,直流输入端子11a的另一端穿过第三塑料壳体61连接直流输入模块5a,……,直流输入端子11n的另一端穿过第三塑料壳体61连接直流输入模块5n。由于不同的动触头(如上述第一动触头411a至第一动触头411n或者第二动触头412a至第二动触头412n),与不同的静触头(如上述直流输出静触头210a至直流输出静触头210n或者直流输入静触头110a至直流输入静触头110n)分离时所产生的电弧还会伴随产生气体(如高热气体),这时电弧伴随产生的高热气体存在于第三塑料壳体61内,从而导致第三塑料壳体61存在烧坏的风险,因此,第三塑料壳体61上设置第二排气孔(图中未示出),并通过该第二排气孔将电弧伴随产生的高热气体排出第三塑料壳体61,从而可保护第三塑料壳体61不被烧坏。另外,该第二排气孔及时将第三塑料壳体61内的高热气体排出,可避免烧坏第三塑料壳体61内的器件,安全性更高,进而延长了第三塑料壳体61内器件的使用寿命,适用性更强。可选的,该直流接触器1b还可通过陶瓷密闭室来避免高热气体损坏第三塑料壳体61,具体可在该陶瓷密闭室中充入惰性气体或者氢气来避免电弧的危害,从而保护第三塑料壳体61不被烧坏,适用性更强。In some feasible embodiments, as shown in FIG. 17 above, the DC contactor 1b also includes a third plastic shell 61 (also referred to as a contactor shell), and the above-mentioned electromagnetic devices 31a to 31n, contact bridges 41a to 41n, DC output static contacts 210a to 210n, DC input static contacts 110a to 110n, and arc extinguishing grids 51a to 51m are all arranged in the third plastic shell 61, and the other end of the DC output terminal 21 passes through the third plastic shell 61 to connect to the DC output module 4, the other end of the DC input terminal 11a passes through the third plastic shell 61 to connect to the DC input module 5a,..., and the other end of the DC input terminal 11n passes through the third plastic shell 61 to connect to the DC input module 5n. Since the arc generated when different moving contacts (such as the first moving contact 411a to the first moving contact 411n or the second moving contact 412a to the second moving contact 412n) are separated from different static contacts (such as the DC output static contact 210a to the DC output static contact 210n or the DC input static contact 110a to the DC input static contact 110n) will also be accompanied by the generation of gas (such as high-temperature gas), the high-temperature gas generated by the arc at this time exists in the third plastic shell 61, which leads to the risk of burning the third plastic shell 61. Therefore, a second exhaust hole (not shown in the figure) is provided on the third plastic shell 61, and the high-temperature gas generated by the arc is discharged from the third plastic shell 61 through the second exhaust hole, so as to protect the third plastic shell 61 from being burned. In addition, the second exhaust hole timely discharges the high-temperature gas in the third plastic shell 61, which can avoid burning the components in the third plastic shell 61, and has higher safety, thereby extending the service life of the components in the third plastic shell 61 and having stronger applicability. Optionally, the DC contactor 1b can also prevent high-temperature gas from damaging the third plastic shell 61 through a ceramic sealed chamber. Specifically, inert gas or hydrogen can be filled into the ceramic sealed chamber to avoid the harm of electric arc, thereby protecting the third plastic shell 61 from being burned, and having better applicability.

在一些可行的实施方式中,上述灭弧栅51a至灭弧栅51m中的任意一个灭弧栅可设置于直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头,和直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头之间。请一并参见图18,图18是本申请提供的直流接触器的另一结构示意图。如图18所示,上述图17所示的灭弧栅51a设置于直流输出静触头210a和直流输入端子11a的直流输入静触头110a之间,……,上述图17所示的灭弧栅51m设置于直流输出静触头210n与直流输入端子11n的直流输入静触头110n之间,这时,上述灭弧栅51a至灭弧栅51m的数量与直流输入端子11a至直流输入端子11n的数量相同,也就是说,灭弧栅51a至灭弧栅51m中包括n个灭弧栅。其中,灭弧栅51a至灭弧栅51m中的任意一个灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,上述任意一个灭弧栅中的多个金属栅片可同时对触桥41a至触桥41n中任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧,以及任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时产生的电弧进行分割从而达到灭弧的目的。例如,灭弧栅51a中的多个金属栅片可对触桥41a的第一动触头411a与直流输出静触头210a分离时产生的电弧进行分割灭弧,并对触桥41a的第二动触头412a与直流输入静触头110a分离时产生的电弧进行分割灭弧;……;灭弧栅51m中的多个金属栅片可对触桥41a的第一动触头411a与直流输出静触头210a分离时产生的电弧进行分割灭弧,并对触桥41a的第二动触头412a与直流输入静触头110a分离时产生的电弧进行分割灭弧。In some feasible implementations, any arc extinguishing grid from the arc extinguishing grid 51a to the arc extinguishing grid 51m can be disposed between any DC output static contact from the DC output static contact 210a to the DC output static contact 210n and the DC input static contact of any DC input terminal from the DC input terminal 11a to the DC input terminal 11n. Please also refer to FIG. 18, which is another structural schematic diagram of the DC contactor provided in the present application. As shown in Figure 18, the arc extinguishing grid 51a shown in Figure 17 is arranged between the DC output static contact 210a and the DC input static contact 110a of the DC input terminal 11a,..., the arc extinguishing grid 51m shown in Figure 17 is arranged between the DC output static contact 210n and the DC input static contact 110n of the DC input terminal 11n. At this time, the number of the above-mentioned arc extinguishing grids 51a to arc extinguishing grids 51m is the same as the number of DC input terminals 11a to DC input terminals 11n, that is, the arc extinguishing grids 51a to arc extinguishing grids 51m include n arc extinguishing grids. Among them, any arc extinguishing grid from the arc extinguishing grid 51a to the arc extinguishing grid 51m can be composed of multiple metal grids made of magnetic materials (which can be simply referred to as multiple metal grids). The multiple metal grids in any of the above arc extinguishing grids can simultaneously divide the arc generated when the first moving contact of any contact bridge from the contact bridge 41a to the contact bridge 41n is separated from any DC output static contact, and the arc generated when the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal, so as to achieve the purpose of arc extinguishing. For example, the multiple metal grids in the arc extinguishing grid 51a can split and extinguish the arc generated when the first moving contact 411a of the contact bridge 41a is separated from the DC output static contact 210a, and can split and extinguish the arc generated when the second moving contact 412a of the contact bridge 41a is separated from the DC input static contact 110a; ...; the multiple metal grids in the arc extinguishing grid 51m can split and extinguish the arc generated when the first moving contact 411a of the contact bridge 41a is separated from the DC output static contact 210a, and can split and extinguish the arc generated when the second moving contact 412a of the contact bridge 41a is separated from the DC input static contact 110a.

可以理解,上述任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头共用任意一个灭弧栅(即同一个灭弧栅)进行灭弧,提升了灭弧效率,并且减少了直流接触器1b中使用灭弧栅的数量,成本更低;另外,上述灭弧栅51a至灭弧栅51m的放置方式可有效利用直流输出静触头和直流输入静触头之间的空间,从而减小了直流接触器1b的整体体积,适用性更强。It can be understood that any one of the above-mentioned DC output static contacts and any one of the DC input static contacts of the DC input terminal share any one arc extinguishing grid (i.e., the same arc extinguishing grid) for arc extinguishing, which improves the arc extinguishing efficiency and reduces the number of arc extinguishing grids used in the DC contactor 1b, which is lower in cost; in addition, the placement method of the above-mentioned arc extinguishing grids 51a to 51m can effectively utilize the space between the DC output static contact and the DC input static contact, thereby reducing the overall volume of the DC contactor 1b and making it more applicable.

在一些可行的实施方式中,上述灭弧栅51a至灭弧栅51m中的任意一个灭弧栅包括第一栅片组、第二栅片组以及绝缘隔板,其中,该第一栅片组可朝向上述直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头,上述第二栅片组可朝向上述直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头。在上述任意一个灭弧栅包括多个金属栅片的情况下,该第一栅片组包括任意一个灭弧栅中的多个金属栅片中朝向任意一个直流输出静触头一侧的所有金属栅片,该第二栅片组包括任意一个灭弧栅中的多个金属栅片中朝向任意一个直流输入端子的直流输入静触头一侧的所有金属栅片。可以理解,由于任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头共用任意一个灭弧栅进行灭弧,且任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头相对设置,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板(即由绝缘材料制成的绝缘平板)进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,并且延长了灭弧栅的使用寿命,适用性更强。In some feasible implementations, any arc extinguishing grid from the arc extinguishing grid 51a to the arc extinguishing grid 51m includes a first grid group, a second grid group and an insulating partition, wherein the first grid group may face any DC output static contact from the DC output static contact 210a to the DC output static contact 210n, and the second grid group may face the DC input static contact of any DC input terminal from the DC input terminal 11a to the DC input terminal 11n. In the case where any arc extinguishing grid includes a plurality of metal grids, the first grid group includes all metal grids facing one side of any DC output static contact from the plurality of metal grids in any arc extinguishing grid, and the second grid group includes all metal grids facing one side of the DC input static contact of any DC input terminal from the plurality of metal grids in any arc extinguishing grid. It can be understood that since any DC output static contact and any DC input static contact of any DC input terminal share any arc extinguishing grid for arc extinguishing, and any DC output static contact and any DC input static contact of any DC input terminal are arranged relatively to each other, there is a risk of circuit short circuit caused by arc blowing. Therefore, an insulating partition (that is, an insulating plate made of insulating material) is arranged between the first grid group and the second grid group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blowing, which is safer, extends the service life of the arc extinguishing grid, and is more applicable.

在一些可行的实施方式中,上述任意一个灭弧栅的具体结构如上述图18所示,灭弧栅51a包括朝向直流输出静触头210a的第一栅片组511a,朝向直流输入静触头110a的第二栅片组512a以及绝缘隔板513a(如塑料隔板),第一栅片组511a和第二栅片组512a之间通过绝缘隔板513a进行隔离。其中,第一栅片组511a可对第一动触头411a与直流输出静触头210a分离时产生的电弧进行分割灭弧,同时,第二栅片组512a可对第二动触头412a与直流输入静触头110a分离时产生的电弧进行分割灭弧,并且绝缘隔板513a可对其两侧产生的电弧进行隔离,从而避免灭弧栅51a由于电弧对吹所导致的电路短路风险,安全性更高。同理,灭弧栅51a至灭弧栅51m中其它灭弧栅的具体结构和工作原理可参见上述灭弧栅51a的具体结构和工作原理,比如,灭弧栅51m中包括朝向直流输出静触头210n的第一栅片组511m,朝向直流输入静触头110n的第二栅片组512m以及绝缘隔板513m(如塑料隔板),第一栅片组511m和第二栅片组512m之间通过绝缘隔板513m进行隔离。其中,第一栅片组511m可对第一动触头411n与直流输出静触头210n分离时产生的电弧进行分割灭弧,同时,第二栅片组512m可对第二动触头412n与直流输入静触头110n分离时产生的电弧进行分割灭弧,并且绝缘隔板513m可对其两侧产生的电弧进行隔离,从而避免灭弧栅51m由于电弧对吹所导致的电路短路风险,安全性更高。In some feasible implementations, the specific structure of any of the above arc extinguishing grids is as shown in FIG. 18 above, and the arc extinguishing grid 51a includes a first grid plate group 511a facing the DC output static contact 210a, a second grid plate group 512a facing the DC input static contact 110a, and an insulating partition 513a (such as a plastic partition), and the first grid plate group 511a and the second grid plate group 512a are isolated by the insulating partition 513a. Among them, the first grid plate group 511a can divide and extinguish the arc generated when the first moving contact 411a is separated from the DC output static contact 210a, and at the same time, the second grid plate group 512a can divide and extinguish the arc generated when the second moving contact 412a is separated from the DC input static contact 110a, and the insulating partition 513a can isolate the arcs generated on both sides thereof, thereby avoiding the risk of circuit short circuit caused by arc blow in the arc extinguishing grid 51a, and having higher safety. Similarly, the specific structure and working principle of other arc extinguishing grids in the arc extinguishing grid 51a to the arc extinguishing grid 51m can refer to the specific structure and working principle of the above-mentioned arc extinguishing grid 51a. For example, the arc extinguishing grid 51m includes a first grid plate group 511m facing the DC output static contact 210n, a second grid plate group 512m facing the DC input static contact 110n, and an insulating partition 513m (such as a plastic partition). The first grid plate group 511m and the second grid plate group 512m are isolated by the insulating partition 513m. Among them, the first grid group 511m can split and extinguish the arc generated when the first moving contact 411n is separated from the DC output static contact 210n. At the same time, the second grid group 512m can split and extinguish the arc generated when the second moving contact 412n is separated from the DC input static contact 110n, and the insulating partition 513m can isolate the arcs generated on both sides, thereby avoiding the risk of circuit short circuit caused by arc blowing of the arc extinguishing grid 51m, which is safer.

需要说明的是,上述灭弧栅51a至灭弧栅51m中的其它灭弧栅的具体结构和工作原理可参见上述灭弧栅51a(或者灭弧栅51m)的具体结构和工作原理,以下不再赘述。在上述图18所示的直流接触器1b还包括多个第一塑料壳体的情况下,直流接触器1b对应的俯视图请一并参见图19,图19是本申请提供的直流接触器的另一结构示意图。It should be noted that the specific structure and working principle of the other arc extinguishing grids in the arc extinguishing grid 51a to the arc extinguishing grid 51m can refer to the specific structure and working principle of the arc extinguishing grid 51a (or the arc extinguishing grid 51m), which will not be repeated below. In the case where the DC contactor 1b shown in the above FIG. 18 also includes a plurality of first plastic shells, please refer to FIG. 19 for the corresponding top view of the DC contactor 1b, which is another structural schematic diagram of the DC contactor provided in the present application.

在一些可行的实施方式中,如图19所示,上述图18所示的直流接触器1b还包括第一塑料壳体71a至第一塑料壳体71s,该第一塑料壳体71a至第一塑料壳体71s中每个第一塑料壳体内嵌入有第一磁块,该第一磁块可包括但不限于永磁体。其中,上述直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头的两侧,设置有第一塑料壳体71a至第一塑料壳体71s中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第一塑料壳体相对设置于上述任意一个直流输出静触头的两侧;上述任意两个第一塑料壳体中的第一磁块平行设置,且任意两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则,任意两个第一塑料壳体中第一磁块的具体放置位置由灭弧栅51a至灭弧栅51m的放置位置以及流过直流接触器1b的电流的方向(即电流方向)决定。In some feasible embodiments, as shown in FIG. 19 , the DC contactor 1b shown in FIG. 18 further includes first plastic shells 71a to 71s, each of which has a first magnetic block embedded therein, and the first magnetic block may include but is not limited to a permanent magnet. Wherein, any two first plastic shells from the first plastic shells 71a to 71s are arranged on both sides of any one of the DC output static contacts 210a to 210n, and any two first plastic shells are arranged oppositely, in other words, any two first plastic shells are arranged oppositely on both sides of any one of the DC output static contacts; the first magnetic blocks in any two first plastic shells are arranged in parallel, and the placement of the first magnetic blocks in any two first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule, and the specific placement position of the first magnetic blocks in any two first plastic shells is determined by the placement position of the arc extinguishing grid 51a to 51m and the direction of the current flowing through the DC contactor 1b (i.e., the current direction).

需要说明的是,上述每个第一塑料壳体中可嵌入一个第一磁块或者两个第一磁块;不同的直流输出静触头两侧的第一塑料壳体可以为相同的第一塑料壳体,也可以为不同的第一塑料壳体,具体可根据实际应用场景确定,在此不作限制。在触桥41a至触桥41n中任意一个触桥的第一动触头与任意一个直流输出静触头分离时会产生电弧,上述任意两个第一塑料壳体中的第一磁块产生的磁场力可将产生的电弧吹向灭弧栅51a至灭弧栅51m中任意一个灭弧栅的第一栅片组,使得任意一个灭弧栅的第一栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向第一栅片组),从而提升了灭弧效率,适用性更强。It should be noted that one first magnetic block or two first magnetic blocks can be embedded in each of the above-mentioned first plastic shells; the first plastic shells on both sides of different DC output static contacts can be the same first plastic shells or different first plastic shells, which can be determined according to the actual application scenario and is not limited here. When the first moving contact of any contact bridge from the contact bridge 41a to the contact bridge 41n is separated from any DC output static contact, an arc will be generated, and the magnetic field force generated by the first magnetic blocks in any two of the above-mentioned first plastic shells can blow the generated arc to the first grid group of any arc extinguishing grid from the arc extinguishing grid 51a to the arc extinguishing grid 51m, so that the first grid group of any arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (that is, blowing the arc to the first grid group) through the first magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,上述第一塑料壳体71a至第一塑料壳体71s的具体放置方式如图19所示,直流输出静触头210a的两侧设置有第一塑料壳体71a和第一塑料壳体71b,且第一塑料壳体71a和第一塑料壳体71b相对设置,换言之,第一塑料壳体71a和第一塑料壳体71b相对设置于直流输出静触头210a的两侧,其中,第一塑料壳体71a中的第一磁块与第一塑料壳体71b中的第一磁块平行设置。在第一动触头411a与直流输出静触头210a分离时会产生电弧,第一塑料壳体71a和第一塑料壳体71b中第一磁块产生的磁场力可共同作用将产生的电弧吹向灭弧栅51a的第一栅片组,使得灭弧栅51a的第一栅片组对该电弧进行灭弧。同理,直流输出静触头210a至直流输出静触头210n中其它直流输出静触头的两侧的第一塑料壳体的放置方式可参见上述第一塑料壳体71a和第一塑料壳体71b的放置方式,比如,上述直流输出静触头210n的两侧设置有第一塑料壳体71s-1和第一塑料壳体71s,且第一塑料壳体71s-1和第一塑料壳体71s相对设置,换言之,第一塑料壳体71s-1和第一塑料壳体71s相对设置于直流输出静触头210n的两侧,其中,第一塑料壳体71s-1中的第一磁块与第一塑料壳体71s中的第一磁块平行设置。在第一动触头411n与直流输出静触头210n分离时会产生电弧,第一塑料壳体71s-1和第一塑料壳体71s中第一磁块产生的磁场力可共同作用将产生的电弧吹向灭弧栅51m的第一栅片组,使得灭弧栅51m的第一栅片组对该电弧进行灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了灭弧效率,适用性更强。In some feasible embodiments, the specific placement of the first plastic shell 71a to the first plastic shell 71s is shown in FIG. 19, and the first plastic shell 71a and the first plastic shell 71b are arranged on both sides of the DC output static contact 210a, and the first plastic shell 71a and the first plastic shell 71b are arranged opposite to each other. In other words, the first plastic shell 71a and the first plastic shell 71b are arranged opposite to each other on both sides of the DC output static contact 210a, wherein the first magnetic block in the first plastic shell 71a is arranged in parallel with the first magnetic block in the first plastic shell 71b. When the first moving contact 411a is separated from the DC output static contact 210a, an arc is generated, and the magnetic field force generated by the first magnetic block in the first plastic shell 71a and the first plastic shell 71b can work together to blow the generated arc to the first grid plate group of the arc extinguishing grid 51a, so that the first grid plate group of the arc extinguishing grid 51a extinguishes the arc. Similarly, the placement method of the first plastic shell on both sides of other DC output static contacts from the DC output static contact 210a to the DC output static contact 210n can refer to the placement method of the above-mentioned first plastic shell 71a and the first plastic shell 71b. For example, the first plastic shell 71s-1 and the first plastic shell 71s are arranged on both sides of the above-mentioned DC output static contact 210n, and the first plastic shell 71s-1 and the first plastic shell 71s are arranged opposite to each other. In other words, the first plastic shell 71s-1 and the first plastic shell 71s are arranged opposite to each other on both sides of the DC output static contact 210n, wherein the first magnetic block in the first plastic shell 71s-1 is arranged parallel to the first magnetic block in the first plastic shell 71s. When the first moving contact 411n is separated from the DC output static contact 210n, an arc will be generated. The magnetic field force generated by the first plastic shell 71s-1 and the first magnetic block in the first plastic shell 71s can work together to blow the generated arc toward the first grid group of the arc extinguishing grid 51m, so that the first grid group of the arc extinguishing grid 51m extinguishes the arc, thereby achieving the purpose of arc blowing by the magnetic field force and arc extinguishing by the arc extinguishing grid, further improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,上述第一塑料壳体71a至第一塑料壳体71s中每个第一塑料壳体内嵌入有垂直放置的两个第一磁块,且每个第一塑料壳体中两个第一磁块垂直相交的一端设置有隔磁材料。上述每个第一塑料壳体中的两个第一磁块分别朝向任意一个直流输出静触头与其相邻的直流输出静触头,也就是说,两个第一磁块中的一个第一磁块朝向任意一个直流输出静触头,两个第一磁块中的另一个第一磁块朝向直流输出静触头210a至直流输出静触头210n中与任意一个直流输出静触头相邻的直流输出静触头。可以理解,由于隔磁材料可避免每个第一塑料壳体中的两个第一磁块的磁场力相互影响,因此每个第一塑料壳体中的一个第一磁块产生的磁场力可用于实现对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧的定向吹弧,每个第一塑料壳体中的另一个第一磁块可用于实现对任意一个触桥相邻的触桥的第一动触头与任意一个直流输出静触头相邻的直流输出静触头分离时产生的电弧的定向吹弧,也就是说,每个第一塑料壳体中的两个第一磁块产生的磁场力可分别实现不同方向的电弧的定向吹弧,吹弧效率更高,并且节省了直流接触器1b的内部空间,适用性更强。In some feasible implementations, two vertically placed first magnetic blocks are embedded in each of the first plastic shells 71a to 71s, and a magnetic isolation material is provided at one end of each first plastic shell where the two first magnetic blocks intersect vertically. The two first magnetic blocks in each of the first plastic shells are respectively oriented toward any DC output static contact and its adjacent DC output static contact, that is, one of the two first magnetic blocks is oriented toward any DC output static contact, and the other of the two first magnetic blocks is oriented toward the DC output static contact adjacent to any DC output static contact among the DC output static contacts 210a to 210n. It can be understood that since the magnetic isolation material can prevent the magnetic field forces of the two first magnetic blocks in each first plastic shell from influencing each other, the magnetic field force generated by one of the first magnetic blocks in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and the other first magnetic block in each first plastic shell can be used to achieve directional arc blowing of the arc generated when the first moving contact of any contact bridge adjacent to the contact bridge is separated from the DC output static contact adjacent to any DC output static contact. In other words, the magnetic field forces generated by the two first magnetic blocks in each first plastic shell can respectively achieve directional arc blowing of arcs in different directions, with higher arc blowing efficiency, saving the internal space of the DC contactor 1b, and greater applicability.

在一些可行的实施方式中,在每个第一塑料壳体中包括两个第一磁块的情况下,如图19所示,对于直流输出静触头210a而言,第一塑料壳体71a内嵌入有垂直放置的第一磁块711a和第一磁块712a,且第一磁块711a和第一磁块712a垂直相交的一端设置有隔磁材料713a,其中,第一磁块711a朝向直流输出静触头210a,第一磁块712a朝向与直流输出静触头210a相邻的一个直流输出静触头;第一塑料壳体71b内嵌入有垂直放置的第一磁块711b和第一磁块712b,且第一磁块711b和第一磁块712b垂直相交的一端设置有隔磁材料713b,其中,第一磁块711b朝向直流输出静触头210a,第一磁块712a朝向与直流输出静触头210a相邻的另一个直流输出静触头,其中,上述第一磁块711a和第一磁块711b平行设置。需要说明的是,直流输出静触头210a及其相邻的一个直流输出静触头共用第一塑料壳体71a,直流输出静触头210a及其相邻的另一个直流输出静触头共用第一塑料壳体71b。In some feasible embodiments, when two first magnetic blocks are included in each first plastic shell, as shown in FIG. 19, for the DC output static contact 210a, a vertically placed first magnetic block 711a and a first magnetic block 712a are embedded in the first plastic shell 71a, and a magnetic isolation material 713a is provided at one end where the first magnetic block 711a and the first magnetic block 712a intersect vertically, wherein the first magnetic block 711a faces the DC output static contact 210a, and the first magnetic block 712a faces the DC output static contact 210a. 0a adjacent to a DC output static contact; a first magnetic block 711b and a first magnetic block 712b placed vertically are embedded in the first plastic shell 71b, and a magnetic isolation material 713b is provided at one end where the first magnetic block 711b and the first magnetic block 712b intersect vertically, wherein the first magnetic block 711b faces the DC output static contact 210a, and the first magnetic block 712a faces another DC output static contact adjacent to the DC output static contact 210a, wherein the first magnetic block 711a and the first magnetic block 711b are arranged in parallel. It should be noted that the DC output static contact 210a and an adjacent DC output static contact share the first plastic shell 71a, and the DC output static contact 210a and another adjacent DC output static contact share the first plastic shell 71b.

由于隔磁材料713a可避免第一磁块711a和第一磁块712a相互影响,且隔磁材料713b可避免第一磁块711b和第一磁块712b影响,因此,第一磁块711a产生的磁场力和第一磁块711b产生的磁场力可共同作用将触桥41a的第一动触头411a与直流输出静触头210a分离时产生的电弧吹向灭弧栅51a;第一磁块712a及其平行设置的第一磁块产生的磁场力可共同作用,将触桥41a相邻的一个触桥的第一动触头与直流输出静触头210a相邻的一个直流输出静触头分离时产生的电弧吹向与灭弧栅51a相邻的一个灭弧栅;第一磁块712b及其平行设置的第一磁块产生的磁场力可共同作用,将触桥41a相邻的另一个触桥的第一动触头与直流输出静触头210a相邻的另一个直流输出静触头分离时产生的电弧吹向与灭弧栅51a相邻的另一个灭弧栅,从而实现不同方向的电弧的定向吹弧,并且节省了直流接触器1b的内部空间,适用性更强。Since the magnetic isolation material 713a can prevent the first magnetic block 711a and the first magnetic block 712a from influencing each other, and the magnetic isolation material 713b can prevent the first magnetic block 711b and the first magnetic block 712b from influencing each other, the magnetic field force generated by the first magnetic block 711a and the magnetic field force generated by the first magnetic block 711b can work together to blow the arc generated when the first moving contact 411a of the contact bridge 41a is separated from the DC output static contact 210a to the arc extinguishing grid 51a; the magnetic field force generated by the first magnetic block 712a and the first magnetic block arranged in parallel can work together to blow the first moving contact 411a of the contact bridge 41a adjacent to the DC output static contact 210a to the arc extinguishing grid 51a. The arc generated when the moving contact is separated from a DC output static contact adjacent to the DC output static contact 210a blows toward an arc extinguishing grid adjacent to the arc extinguishing grid 51a; the magnetic field force generated by the first magnetic block 712b and the first magnetic block arranged in parallel can work together to blow the arc generated when the first moving contact of another contact bridge adjacent to the contact bridge 41a is separated from another DC output static contact adjacent to the DC output static contact 210a toward another arc extinguishing grid adjacent to the arc extinguishing grid 51a, thereby realizing directional blowing of arcs in different directions, saving the internal space of the DC contactor 1b, and making it more applicable.

对于直流输出静触头210n而言,第一塑料壳体71s-1内嵌入有垂直放置的第一磁块711s-1和第一磁块712s-1,且第一磁块711s-1和第一磁块712s-1垂直相交的一端设置有隔磁材料713s-1,其中,第一磁块711s-1朝向直流输出静触头210n,第一磁块712s-1朝向与直流输出静触头210n相邻的一个直流输出静触头;第一塑料壳体71s内嵌入有垂直放置的第一磁块711s和第一磁块712s,且第一磁块711s和第一磁块712s垂直相交的一端设置有隔磁材料713s,其中,第一磁块711s朝向直流输出静触头210n,第一磁块711s朝向与直流输出静触头210n相邻的另一个直流输出静触头,其中,上述第一磁块711s-1和第一磁块711s平行设置。需要说明的是,直流输出静触头210n及其相邻的一个直流输出静触头共用第一塑料壳体71s-1,直流输出静触头210n及其相邻的另一个直流输出静触头共用第一塑料壳体71s。For the DC output static contact 210n, a vertically placed first magnetic block 711s-1 and a first magnetic block 712s-1 are embedded in the first plastic shell 71s-1, and a magnetic isolation material 713s-1 is provided at one end where the first magnetic block 711s-1 and the first magnetic block 712s-1 intersect vertically, wherein the first magnetic block 711s-1 faces the DC output static contact 210n, and the first magnetic block 712s-1 faces a DC output static contact adjacent to the DC output static contact 210n. ; A first magnetic block 711s and a first magnetic block 712s are vertically embedded in the first plastic shell 71s, and a magnetic isolation material 713s is provided at one end where the first magnetic block 711s and the first magnetic block 712s intersect vertically, wherein the first magnetic block 711s faces the DC output static contact 210n, and the first magnetic block 711s faces another DC output static contact adjacent to the DC output static contact 210n, wherein the first magnetic block 711s-1 and the first magnetic block 711s are arranged in parallel. It should be noted that the DC output static contact 210n and an adjacent DC output static contact share the first plastic shell 71s-1, and the DC output static contact 210n and another adjacent DC output static contact share the first plastic shell 71s.

由于隔磁材料713s-1可避免第一磁块711s-1和第一磁块712s-1相互影响,且隔磁材料713s可避免第一磁块711s和第一磁块712s影响,因此,第一磁块711s-1产生的磁场力和第一磁块711s产生的磁场力可共同作用将触桥41n的第一动触头411n与直流输出静触头210n分离时产生的电弧吹向灭弧栅51m;第一磁块712s-1及其平行设置的第一磁块产生的磁场力可共同作用,将触桥41n相邻的一个触桥的第一动触头与直流输出静触头210n相邻的一个直流输出静触头分离时产生的电弧吹向与灭弧栅51m相邻的一个灭弧栅;第一磁块712s及其平行设置的第一磁块产生的磁场力可共同作用,将触桥41n相邻的另一个触桥的第一动触头与直流输出静触头210n相邻的另一个直流输出静触头分离时产生的电弧吹向与灭弧栅51n相邻的另一个灭弧栅,从而实现不同方向的电弧的定向吹弧,并且节省了直流接触器1b的内部空间,适用性更强。Since the magnetic isolation material 713s-1 can prevent the first magnetic block 711s-1 and the first magnetic block 712s-1 from influencing each other, and the magnetic isolation material 713s can prevent the first magnetic block 711s and the first magnetic block 712s from influencing each other, the magnetic field force generated by the first magnetic block 711s-1 and the magnetic field force generated by the first magnetic block 711s can work together to blow the arc generated when the first moving contact 411n of the contact bridge 41n is separated from the DC output static contact 210n to the arc extinguishing grid 51m; the magnetic field force generated by the first magnetic block 712s-1 and the first magnetic block arranged in parallel can work together to blow an adjacent one of the contact bridges 41n The arc generated when the first moving contact of the contact bridge is separated from a DC output static contact adjacent to the DC output static contact 210n blows toward an arc extinguishing grid adjacent to the arc extinguishing grid 51m; the magnetic field force generated by the first magnetic block 712s and the first magnetic block arranged in parallel with it can work together to blow the arc generated when the first moving contact of another contact bridge adjacent to the contact bridge 41n is separated from another DC output static contact adjacent to the DC output static contact 210n toward another arc extinguishing grid adjacent to the arc extinguishing grid 51n, thereby realizing directional blowing of arcs in different directions, saving the internal space of the DC contactor 1b, and making it more applicable.

在一些可行的实施方式中,由于不同的动触头(如第一动触头或者第二动触头)与不同的静触头(如直流输出静触头或者直流输入静触头)分离时所产生的电弧,还会伴随产生气体(如高热气体),因此上述灭弧栅51a至灭弧栅51m中的每个灭弧栅设置有第一排气孔,从而保证每个灭弧栅在对产生的电弧进行灭弧的同时通过第一排气孔将电弧产生的高热气体排出,从而避免了高热气体烧坏灭弧栅,延长了灭弧栅的使用寿命,适用性更强。如图4所示,灭弧栅51a上设置有至少一个第一排气孔514a(如4个第一排气孔514a),其中,灭弧栅51a在对电弧进行灭弧的同时通过第一排气孔514a将电弧产生的高热气体排出;……;灭弧栅51m上设置有至少一个第一排气孔514m(如4个第一排气孔514m),其中,灭弧栅51m在对电弧进行灭弧的同时通过第一排气孔514m将电弧产生的高热气体排出。In some feasible embodiments, since the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from different static contacts (such as the DC output static contact or the DC input static contact) will also be accompanied by the generation of gas (such as high-temperature gas), each of the arc extinguishing grids 51a to 51m is provided with a first exhaust hole, thereby ensuring that each arc extinguishing grid can discharge the high-temperature gas generated by the arc through the first exhaust hole while extinguishing the generated arc, thereby avoiding the high-temperature gas from burning the arc extinguishing grid, extending the service life of the arc extinguishing grid, and enhancing applicability. As shown in FIG4 , at least one first exhaust hole 514a (such as four first exhaust holes 514a) is provided on the arc extinguishing grid 51a, wherein the arc extinguishing grid 51a discharges the hot gas generated by the arc through the first exhaust hole 514a while extinguishing the arc; ...; at least one first exhaust hole 514m (such as four first exhaust holes 514m) is provided on the arc extinguishing grid 51m, wherein the arc extinguishing grid 51m discharges the hot gas generated by the arc through the first exhaust hole 514m while extinguishing the arc.

进一步地,由于上述灭弧栅51a至灭弧栅51m中每个灭弧栅的第一排气孔排出的高热气体仍存在于第三塑料壳体61内,也就是说,第一排气孔514a至第一排气孔514m排出的高热气体可能会烧坏第三塑料壳体61,因此,第三塑料壳体61上设置第二排气孔(图中未示出),并通过该第二排气孔将第一排气孔514a至第一排气孔514m排出的高热气体排出第三塑料壳体61,从而可保护第三塑料壳体61不被烧坏;另外,该第二排气孔及时将高热气体排出可避免烧坏第三塑料壳体61内的器件,安全性更高,进而延长了第三塑料壳体61内器件的使用寿命,适用性更强。Furthermore, since the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid in the above-mentioned arc extinguishing grid 51a to the arc extinguishing grid 51m still exists in the third plastic shell 61, that is, the high-temperature gas discharged from the first exhaust hole 514a to the first exhaust hole 514m may burn the third plastic shell 61, therefore, a second exhaust hole (not shown in the figure) is set on the third plastic shell 61, and the high-temperature gas discharged from the first exhaust hole 514a to the first exhaust hole 514m is discharged from the third plastic shell 61 through the second exhaust hole, thereby protecting the third plastic shell 61 from being burned; in addition, the second exhaust hole discharges the high-temperature gas in time to avoid burning the components in the third plastic shell 61, which is safer, thereby extending the service life of the components in the third plastic shell 61 and making it more applicable.

在一些可行的实施方式中,在上述图19所示的直流接触器1b还包括多个第二塑料壳体的情况下,直流接触器1b对应的俯视图请一并参见图20,图20是本申请提供的直流接触器的另一结构示意图。如图20所示,上述图19所示的直流接触器1b还包括第二塑料壳体81a至第二塑料壳体81q,该第二塑料壳体81a至第二塑料壳体81q中每个第二塑料壳体内嵌入有第二磁块。其中,上述直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头的两侧,设置有第二塑料壳体81a至第二塑料壳体81q中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输入端子的直流输入静触头的两侧;上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。这里的任意两个第二塑料壳体中第二磁块的具体放置位置由灭弧栅51a至灭弧栅51m的放置位置以及流过直流接触器1b的电流的方向(即电流方向)决定。In some feasible embodiments, when the DC contactor 1b shown in FIG. 19 above also includes a plurality of second plastic shells, please refer to FIG. 20 for the top view corresponding to the DC contactor 1b, which is another structural schematic diagram of the DC contactor provided in the present application. As shown in FIG. 20, the DC contactor 1b shown in FIG. 19 above also includes a second plastic shell 81a to a second plastic shell 81q, and a second magnetic block is embedded in each of the second plastic shells 81a to the second plastic shell 81q. Among them, any two second plastic shells from the second plastic shell 81a to the second plastic shell 81q are arranged on both sides of the DC input static contact of any one of the DC input terminals 11a to the DC input terminals 11n, and any two second plastic shells are arranged oppositely, in other words, any two second plastic shells are arranged oppositely on both sides of the DC input static contact of any one of the DC input terminals; the second magnetic blocks in the above-mentioned any two second plastic shells are arranged in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. The specific placement positions of the second magnetic blocks in any two second plastic shells are determined by the placement positions of the arc extinguishing grids 51a to 51m and the direction of the current flowing through the DC contactor 1b (ie, the current direction).

在触桥41a至触桥41n中任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时会产生电弧,上述任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向任意一个灭弧栅的第二栅片组,使得任意一个灭弧栅的第二栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向第二栅片组),从而提升了灭弧效率,适用性更强。When the second moving contact of any contact bridge among the contact bridges 41a to 41n is separated from the DC input static contact of any DC input terminal, an arc will be generated. The magnetic field force generated by the second magnetic blocks in any two first plastic shells can blow the generated arc to the second grid group of any arc extinguishing grid, so that the second grid group of any arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (i.e. blowing the arc to the second grid group) through the second magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,上述第二塑料壳体81a至第二塑料壳体81q的具体放置方式如图20所示,直流输入静触头110a的两侧设置有第二塑料壳体81a和第二塑料壳体81b,且第二塑料壳体81a和第二塑料壳体81b相对设置,换言之,第二塑料壳体81a和第二塑料壳体81b相对设置于直流输入静触头110a的两侧,其中,第二塑料壳体81a内嵌入的第二磁块810a与第二塑料壳体81b内嵌入的第二磁块810b平行设置。在第二动触头412a与直流输入静触头110a分离时会产生电弧,第二磁块810a产生的磁场力和第二磁块810b产生的磁场力可共同作用将产生的电弧吹向灭弧栅51a的第二栅片组,使得灭弧栅51a的第二栅片组对该电弧进行灭弧。同理,直流输入静触头110a至直流输入静触头110n中其它直流输入静触头的两侧的第二塑料壳体的放置方式可参见上述第二塑料壳体81a和第二塑料壳体81b的放置方式,比如,上述直流输入静触头110n的两侧设置有第二塑料壳体81q-1和第二塑料壳体81q,且第二塑料壳体81q-1和第二塑料壳体81q相对设置,换言之,第二塑料壳体81q-1和第二塑料壳体81q相对设置于直流输入静触头110n的两侧,其中,第二塑料壳体81q-1内嵌入的第二磁块810q-1与第二塑料壳体81q内嵌入的第二磁块810q平行设置。在第二动触头412n与直流输入静触头110n分离时会产生电弧,第二磁块810q-1产生的磁场力与第二磁块810q产生的磁场力可共同作用将产生的电弧吹向灭弧栅51m的第二栅片组,使得灭弧栅51m的第二栅片组对该电弧进行灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了灭弧效率,适用性更强。In some feasible embodiments, the specific placement of the second plastic shell 81a to the second plastic shell 81q is shown in FIG. 20, and the second plastic shell 81a and the second plastic shell 81b are arranged on both sides of the DC input static contact 110a, and the second plastic shell 81a and the second plastic shell 81b are arranged oppositely. In other words, the second plastic shell 81a and the second plastic shell 81b are arranged oppositely on both sides of the DC input static contact 110a, wherein the second magnetic block 810a embedded in the second plastic shell 81a and the second magnetic block 810b embedded in the second plastic shell 81b are arranged in parallel. When the second moving contact 412a is separated from the DC input static contact 110a, an arc is generated, and the magnetic field force generated by the second magnetic block 810a and the magnetic field force generated by the second magnetic block 810b can work together to blow the generated arc to the second grid group of the arc extinguishing grid 51a, so that the second grid group of the arc extinguishing grid 51a extinguishes the arc. Similarly, the placement method of the second plastic shell on both sides of other DC input static contacts among the DC input static contacts 110a to 110n can refer to the placement method of the above-mentioned second plastic shell 81a and the second plastic shell 81b. For example, the second plastic shell 81q-1 and the second plastic shell 81q are arranged on both sides of the above-mentioned DC input static contact 110n, and the second plastic shell 81q-1 and the second plastic shell 81q are arranged opposite to each other. In other words, the second plastic shell 81q-1 and the second plastic shell 81q are arranged opposite to each other on both sides of the DC input static contact 110n, wherein the second magnetic block 810q-1 embedded in the second plastic shell 81q-1 is arranged parallel to the second magnetic block 810q embedded in the second plastic shell 81q. When the second moving contact 412n is separated from the DC input static contact 110n, an arc will be generated. The magnetic field force generated by the second magnetic block 810q-1 and the magnetic field force generated by the second magnetic block 810q can work together to blow the generated arc toward the second grid group of the arc extinguishing grid 51m, so that the second grid group of the arc extinguishing grid 51m extinguishes the arc, thereby achieving the purpose of arc blowing by the magnetic field force and arc extinguishing by the arc extinguishing grid, further improving the arc extinguishing efficiency and making it more applicable.

可以理解,上述第一塑料壳体71a至第一塑料壳体71s中第一磁块产生的磁场力的具体吹弧方向、以及上述第二塑料壳体81a至第二塑料壳体81q中第二磁块产生的磁场力的具体吹弧方向由灭弧栅51a至灭弧栅51m的具体放置方式决定。其中,该具体吹弧方向可以理解为任何可以使电弧拉长,能有效放置灭弧栅51a至灭弧栅51m并且不影响第三塑料壳体61的方向,该具体吹弧方向可根据实际应用场景确定,在此不作限制。It can be understood that the specific arc blowing direction of the magnetic field force generated by the first magnetic block in the first plastic shell 71a to the first plastic shell 71s, and the specific arc blowing direction of the magnetic field force generated by the second magnetic block in the second plastic shell 81a to the second plastic shell 81q are determined by the specific placement of the arc extinguishing grid 51a to the arc extinguishing grid 51m. Among them, the specific arc blowing direction can be understood as any direction that can lengthen the arc, can effectively place the arc extinguishing grid 51a to the arc extinguishing grid 51m and does not affect the third plastic shell 61. The specific arc blowing direction can be determined according to the actual application scenario and is not limited here.

可选的,在一些可行的实施方式中,上述图17所示的灭弧栅51a至灭弧栅51m中包括至少一个第一灭弧栅和至少两个第二灭弧栅,该至少一个第一灭弧栅中的任意一个第一灭弧栅,和至少两个第二灭弧栅中的任意一个第二灭弧栅分别设置于上述触桥41a至触桥41n中的任意一个触桥的两端。其中,上述任意一个第一灭弧栅可设置于任意一个触桥与至少两个触桥中的另一个触桥之间,且任意一个触桥与另一个触桥相对设置,换言之,任意一个触桥与另一个触桥相对设置于任意一个第一灭弧栅的两侧;上述任意一个第一灭弧栅设置于上述直流输出静触头210a至直流输出静触头210n中任意一个直流输出静触头朝向电磁装置31a至电磁装置31n的一侧。由于任意一个直流输出静触头用于与任意一个触桥的第一动触头接触,因此该任意一个第一灭弧栅设置于任意一个触桥的第一动触头所在的一侧,而任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧。Optionally, in some feasible implementations, the arc extinguishing grids 51a to 51m shown in FIG. 17 include at least one first arc extinguishing grid and at least two second arc extinguishing grids, and any one of the at least one first arc extinguishing grid and any one of the at least two second arc extinguishing grids are respectively arranged at both ends of any one of the contact bridges 41a to 41n. Wherein, any one of the first arc extinguishing grids can be arranged between any one of the contact bridges and another of the at least two contact bridges, and any one of the contact bridges is arranged opposite to the other contact bridge, in other words, any one of the contact bridges is arranged opposite to the other contact bridge on both sides of any one of the first arc extinguishing grids; any one of the first arc extinguishing grids is arranged on the side of any one of the DC output static contacts 210a to 210n facing the electromagnetic device 31a to 31n. Since any DC output static contact is used to contact the first moving contact of any contact bridge, any first arc extinguishing grid is arranged on the side where the first moving contact of any contact bridge is located, and any second arc extinguishing grid is arranged on the side where the second moving contact of any contact bridge is located.

在一些可行的实施方式中,上述任意一个第一灭弧栅可对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧,以及另一个触桥的第一动触头与另一个直流输出静触头分离时产生的电弧进行灭弧,其中,任意一个直流输出静触头和另一个直流输出静触头相对设置。这里的任意一个第一灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,上述任意一个第一灭弧栅中的多个金属栅片可同时对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧,以及另一个触桥的第一动触头与另一个直流输出静触头分离时产生的电弧进行分割从而达到灭弧的目的。上述任意一个第二灭弧栅可对任意一个触桥的第二动触头与直流输入静触头110a至直流输入静触头110n中的任意一个直流输入静触头分离时产生的电弧进行灭弧。这里的任意一个第二灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,任意一个第二灭弧栅中的多个金属栅片可同时对任意一个触桥的第二动触头与任意一个直流输入静触头分离时产生的电弧进行分割从而达到灭弧的目的。In some feasible implementations, any of the above-mentioned first arc-extinguishing grids can extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and the arc generated when the first moving contact of another contact bridge is separated from another DC output static contact, wherein any DC output static contact and another DC output static contact are arranged relative to each other. Any of the first arc-extinguishing grids here can be composed of a plurality of metal grids of magnetic material (which can be simply referred to as a plurality of metal grids), and the plurality of metal grids in any of the above-mentioned first arc-extinguishing grids can simultaneously divide the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact, and the arc generated when the first moving contact of another contact bridge is separated from another DC output static contact, thereby achieving the purpose of arc extinguishing. Any of the above-mentioned second arc-extinguishing grids can extinguish the arc generated when the second moving contact of any contact bridge is separated from any DC input static contact 110a to DC input static contacts 110n. Any second arc extinguishing grid here can be composed of multiple metal grids made of magnetic materials (which can be simply referred to as multiple metal grids). The multiple metal grids in any second arc extinguishing grid can simultaneously divide the arc generated when the second moving contact of any contact bridge is separated from any DC input static contact, thereby achieving the purpose of arc extinguishing.

可以理解,该直流接触器1b可通过分开设置第一灭弧栅和第二灭弧栅对不同的动触头(如第一动触头或者第二动触头)与静触头(如直流输出静触头或者直流输入静触头)分离时产生的电弧进行灭弧,灭弧效率更高;另外,该第一灭弧栅和第二灭弧栅的放置方式可有效利用任意一个触桥两端的空间,从而减小了直流接触器的整体体积,适用性更强。请一并参见图21,图21是本申请提供的直流接触器的另一结构示意图。It can be understood that the DC contactor 1b can extinguish the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from the static contact (such as the DC output static contact or the DC input static contact) by separately setting the first arc extinguishing grid and the second arc extinguishing grid, and the arc extinguishing efficiency is higher; in addition, the placement of the first arc extinguishing grid and the second arc extinguishing grid can effectively utilize the space at both ends of any contact bridge, thereby reducing the overall volume of the DC contactor and making it more applicable. Please also refer to Figure 21, which is another structural schematic diagram of the DC contactor provided by the present application.

在一些可行的实施方式中,如图21所示,上述图17所示的灭弧栅51a至灭弧栅51m中包括第二灭弧栅51a至第二灭弧栅51n、以及第一灭弧栅51n+1至第一灭弧栅51m,其中,第一灭弧栅51n+1和第二灭弧栅51a分别设置于触桥41a的两端,第一灭弧栅51n+1设置于触桥41a与其相对设置的触桥之间,且第一灭弧栅51n+1设置于直流输出静触头210a朝向电磁装置31a至电磁装置31n的一侧。由于直流输出静触头210a用于与触桥41a的第一动触头411a接触,因此第一灭弧栅51n+1设置于第一动触头411a所在的一侧,而第二灭弧栅51a设置于触桥41a的第二动触头412a所在的一侧。同理,第一灭弧栅51n+1至第一灭弧栅51m中的其它第一灭弧栅、以及第二灭弧栅51a至第二灭弧栅51n中其它第二灭弧栅的放置方式可参见上述第一灭弧栅51n+1和第二灭弧栅51a的放置方式,例如,第一灭弧栅51m和第二灭弧栅51n分别设置于触桥41n的两端,第一灭弧栅51m设置于触桥41n与其相对设置的触桥之间,且第一灭弧栅51m设置于直流输出静触头210n朝向电磁装置31a至电磁装置31n的一侧。由于直流输出静触头210n用于与触桥41n的第一动触头411n接触,因此第一灭弧栅51m设置于第一动触头411n所在的一侧,而第二灭弧栅51m设置于触桥41n的第二动触头412n所在的一侧。In some feasible embodiments, as shown in FIG21, the arc extinguishing grids 51a to 51m shown in FIG17 include the second arc extinguishing grids 51a to 51n, and the first arc extinguishing grids 51n+1 to 51m, wherein the first arc extinguishing grid 51n+1 and the second arc extinguishing grid 51a are respectively arranged at both ends of the contact bridge 41a, the first arc extinguishing grid 51n+1 is arranged between the contact bridge 41a and the contact bridge arranged opposite thereto, and the first arc extinguishing grid 51n+1 is arranged on the side of the DC output static contact 210a facing the electromagnetic devices 31a to 31n. Since the DC output static contact 210a is used to contact the first moving contact 411a of the contact bridge 41a, the first arc extinguishing grid 51n+1 is arranged on the side where the first moving contact 411a is located, and the second arc extinguishing grid 51a is arranged on the side where the second moving contact 412a of the contact bridge 41a is located. Similarly, the placement of the other first arc extinguishing grids from the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m, and the other second arc extinguishing grids from the second arc extinguishing grid 51a to the second arc extinguishing grid 51n can refer to the placement of the first arc extinguishing grid 51n+1 and the second arc extinguishing grid 51a described above, for example, the first arc extinguishing grid 51m and the second arc extinguishing grid 51n are respectively arranged at both ends of the contact bridge 41n, the first arc extinguishing grid 51m is arranged between the contact bridge 41n and the contact bridge arranged opposite thereto, and the first arc extinguishing grid 51m is arranged on the side of the DC output static contact 210n facing the electromagnetic device 31a to the electromagnetic device 31n. Since the DC output static contact 210n is used to contact the first moving contact 411n of the contact bridge 41n, the first arc extinguishing grid 51m is arranged on the side where the first moving contact 411n is located, and the second arc extinguishing grid 51m is arranged on the side where the second moving contact 412n of the contact bridge 41n is located.

在一些可行的实施方式中,在第一灭弧栅51n+1至第一灭弧栅51m对电弧进行灭弧的过程中,上述第一灭弧栅51n+1可对触桥41a的第一动触头411a与直流输出静触头210a分离时产生的电弧,以及触桥41a相对设置的触桥的第一动触头与直流输出静触头210a相对设置的直流输出静触头分离时产生的电弧进行灭弧。其中,第一灭弧栅51n+1可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,该多个金属栅片可同时对第一动触头411a与直流输出静触头210a分离时产生的电弧,以及触桥41a相对设置的触桥的第一动触头与直流输出静触头210a相对设置的直流输出静触头分离时产生的电弧进行分割从而达到灭弧的目的。同理,第一灭弧栅51n+1至第一灭弧栅51m中其它第一灭弧栅的结构和工作原理可参见上述第一灭弧栅51n+1的结构和工作原理,比如,上述第一灭弧栅51m可对触桥41n的第一动触头411a与直流输出静触头210n分离时产生的电弧,以及触桥41n相对设置的触桥的第一动触头与直流输出静触头210n相对设置的直流输出静触头分离时产生的电弧进行灭弧。其中,第一灭弧栅51m可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,该多个金属栅片可同时对第一动触头411a与直流输出静触头210n分离时产生的电弧,以及触桥41n相对设置的触桥的第一动触头与直流输出静触头210n相对设置的直流输出静触头分离时产生的电弧进行分割从而达到灭弧的目的。In some feasible implementations, during the process of the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m extinguishing the arc, the first arc extinguishing grid 51n+1 can extinguish the arc generated when the first moving contact 411a of the contact bridge 41a is separated from the DC output static contact 210a, and the arc generated when the first moving contact of the contact bridge opposite to the contact bridge 41a is separated from the DC output static contact 210a. The first arc extinguishing grid 51n+1 can be composed of a plurality of metal grids of magnetic material (which can be referred to as a plurality of metal grids), and the plurality of metal grids can simultaneously divide the arc generated when the first moving contact 411a is separated from the DC output static contact 210a, and the arc generated when the first moving contact of the contact bridge opposite to the contact bridge 41a is separated from the DC output static contact 210a, so as to achieve the purpose of arc extinguishing. Similarly, the structures and working principles of other first arc extinguishing grids from the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m can refer to the structure and working principle of the first arc extinguishing grid 51n+1. For example, the first arc extinguishing grid 51m can extinguish the arc generated when the first moving contact 411a of the contact bridge 41n is separated from the DC output static contact 210n, and the arc generated when the first moving contact of the contact bridge arranged opposite to the contact bridge 41n is separated from the DC output static contact 210n. The first arc extinguishing grid 51m can be composed of a plurality of metal grids of magnetic material (which can be referred to as a plurality of metal grids), and the plurality of metal grids can simultaneously divide the arc generated when the first moving contact 411a is separated from the DC output static contact 210n, and the arc generated when the first moving contact of the contact bridge arranged opposite to the contact bridge 41n is separated from the DC output static contact 210n, so as to achieve the purpose of arc extinguishing.

在一些可行的实施方式中,上述第一灭弧栅51n+1至第一灭弧栅51m中的任意一个第一灭弧栅包括第一栅片组、第二栅片组以及绝缘隔板,其中,第一栅片组朝向上述触桥41a至触桥41n中的任意一个触桥,第二栅片组朝向触桥41a至触桥41n中与任意一个触桥相对设置的另一个触桥。在任意一个第一灭弧栅包括多个金属栅片的情况下,该第一栅片组包括多个金属栅片中朝向任意一个触桥一侧的所有金属栅片,该第二栅片组包括多个金属栅片中朝向另一个触桥一侧的所有金属栅片。上述任意一个第一灭弧栅的第一栅片组可对任意一个触桥的第一动触头与任意一个直流输出静触头分离时产生的电弧进行分割灭弧;任意一个第一灭弧栅的第二栅片组可对触桥41a相对设置的触桥的第一动触头与直流输出静触头210a相对设置的直流输出静触头分离时产生的电弧进行分割灭弧,灭弧效率更高。可以理解,由于直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头,及其相对设置的直流输出静触头共用任意一个第一灭弧栅(即同一个第一灭弧栅)进行灭弧,此时存在电弧对吹所导致的电路短路风险,因此第一栅片组和第二栅片组之间设置绝缘隔板进行隔离,从而避免电弧对吹所导致的电路短路风险,安全性更高,灭弧效率更高,并且延长了第一灭弧栅的使用寿命,适用性更强。In some feasible implementations, any first arc extinguishing grid from the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m comprises a first grid group, a second grid group and an insulating partition, wherein the first grid group faces any one of the contact bridges 41a to 41n, and the second grid group faces another contact bridge from the contact bridges 41a to 41n that is arranged opposite to any one of the contact bridges. In the case where any first arc extinguishing grid comprises a plurality of metal grids, the first grid group comprises all metal grids facing one side of any one of the plurality of metal grids, and the second grid group comprises all metal grids facing another side of the plurality of metal grids. The first grid group of any of the above-mentioned first arc extinguishing grids can divide and extinguish the arc generated when the first moving contact of any contact bridge is separated from any DC output static contact; the second grid group of any of the first arc extinguishing grids can divide and extinguish the arc generated when the first moving contact of the contact bridge relatively arranged with the contact bridge 41a is separated from the DC output static contact relatively arranged with the DC output static contact 210a, and the arc extinguishing efficiency is higher. It can be understood that since any DC output static contact of the DC output static contact 210a to the DC output static contact 210n and the DC output static contact relatively arranged with the same first arc extinguishing grid (i.e. the same first arc extinguishing grid) are used for arc extinguishing, there is a risk of circuit short circuit caused by arc blow, so an insulating partition is set between the first grid group and the second grid group for isolation, thereby avoiding the risk of circuit short circuit caused by arc blow, which is safer, has higher arc extinguishing efficiency, and prolongs the service life of the first arc extinguishing grid, and has stronger applicability.

在一些可行的实施方式中,上述任意一个第一灭弧栅的具体结构如图21所示,第一灭弧栅51n+1包括朝向触桥41a一侧的第一栅片组511n+1,朝向与触桥41a相对设置的触桥一侧的第二栅片组512n+1以及绝缘隔板513n+1(如塑料隔板),第一栅片组511n+1和第二栅片组512n+1之间通过绝缘隔板513n+1进行隔离。其中,第一栅片组511n+1可对第一动触头411a与直流输出静触头210a分离时产生的电弧进行分割灭弧,同时,第二栅片组512n+1可对触桥41a相对设置的触桥的第一动触头与直流输出静触头210a相对设置的直流输出静触头分离时产生的电弧进行分割灭弧,并且绝缘隔板513a可对其两侧产生的电弧进行隔离,从而避免第一灭弧栅51n+1由于电弧对吹所导致的电路短路风险,安全性更高。同理,第一灭弧栅51n+1至第一灭弧栅51m中其它第一灭弧栅的具体结构和工作原理可参见上述第一灭弧栅51n+1的具体结构和工作原理,比如,第一灭弧栅51m中包括朝向触桥41n一侧的第一栅片组511m,朝向与触桥41n相对设置的触桥一侧的第二栅片组512m以及绝缘隔板513m(如塑料隔板),第一栅片组511m和第二栅片组512m之间通过绝缘隔板513m进行隔离。其中,第一栅片组511m可对触桥41n的第一动触头411n与直流输出静触头210n分离时产生的电弧进行分割灭弧,同时,第二栅片组512m可对触桥41n相对设置的触桥的第一动触头与直流输出静触头210n相对设置的直流输出静触头分离时产生的电弧进行分割灭弧,并且绝缘隔板513m可对其两侧产生的电弧进行隔离,从而避免第一灭弧栅51m由于电弧对吹所导致的电路短路风险,安全性更高。需要说明的是,上述第一灭弧栅51n+1至第一灭弧栅51m中的其它第一灭弧栅的具体结构和工作原理可参见上述第一灭弧栅51n+1(或者第一灭弧栅51m)的具体结构和工作原理,以下不再赘述。In some feasible embodiments, the specific structure of any one of the above-mentioned first arc extinguishing grids is shown in Figure 21, and the first arc extinguishing grid 51n+1 includes a first grid plate group 511n+1 facing the side of the contact bridge 41a, a second grid plate group 512n+1 facing the side of the contact bridge arranged opposite to the contact bridge 41a, and an insulating partition 513n+1 (such as a plastic partition), and the first grid plate group 511n+1 and the second grid plate group 512n+1 are isolated by the insulating partition 513n+1. Among them, the first grid plate group 511n+1 can split and extinguish the arc generated when the first moving contact 411a is separated from the DC output static contact 210a. At the same time, the second grid plate group 512n+1 can split and extinguish the arc generated when the first moving contact of the contact bridge 41a and the DC output static contact 210a are separated. The insulating partition 513a can isolate the arcs generated on both sides, thereby avoiding the risk of circuit short circuit caused by arc blowing in the first arc extinguishing grid 51n+1, which is safer. Similarly, the specific structures and working principles of other first arc extinguishing grids from the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m can refer to the specific structure and working principles of the above-mentioned first arc extinguishing grid 51n+1. For example, the first arc extinguishing grid 51m includes a first grid plate group 511m facing the contact bridge 41n, a second grid plate group 512m facing the contact bridge side opposite to the contact bridge 41n, and an insulating partition 513m (such as a plastic partition). The first grid plate group 511m and the second grid plate group 512m are isolated by the insulating partition 513m. Among them, the first grid plate group 511m can divide and extinguish the arc generated when the first moving contact 411n of the contact bridge 41n is separated from the DC output static contact 210n, and at the same time, the second grid plate group 512m can divide and extinguish the arc generated when the first moving contact of the contact bridge 41n and the DC output static contact 210n are separated, and the insulating partition 513m can isolate the arcs generated on both sides, thereby avoiding the risk of circuit short circuit caused by arc blowing of the first arc extinguishing grid 51m, which is safer. It should be noted that the specific structure and working principle of the other first arc extinguishing grids in the above-mentioned first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m can refer to the specific structure and working principle of the above-mentioned first arc extinguishing grid 51n+1 (or the first arc extinguishing grid 51m), which will not be repeated below.

在一些可行的实施方式中,在第二灭弧栅51a至第二灭弧栅51n中的任意一个第二灭弧栅对电弧进行灭弧的过程中,上述任意一个第二灭弧栅可对触桥41a至触桥41n中的任意一个触桥的第二动触头,与直流输入静触头110a至直流输入静触头110n中的任意一个直流输入静触头分离时产生的电弧进行灭弧。这里的第二灭弧栅51a至第二灭弧栅51n的数量与直流输入静触头110a至直流输入静触头110n的数量相同。其中,任意一个第二灭弧栅可由多个磁性材料的金属栅片(可简称为多个金属栅片)构成,如图21所示,第二灭弧栅51a可由多个金属栅片构成,该多个金属栅片可对触桥41a的第二动触头412a与直流输入静触头110a分离时产生的电弧进行分割从而达到灭弧的目的。同理,第二灭弧栅51a至第二灭弧栅51n中其它第二灭弧栅的结构和工作原理可参见上述第二灭弧栅51a的结构和工作原理,比如,第二灭弧栅51n可由多个金属栅片构成,该多个金属栅片可对触桥41n的第二动触头412n与直流输入静触头110n分离时产生的电弧进行分割从而达到灭弧的目的,灭弧效率更高。需要说明的是,上述第二灭弧栅51a至第二灭弧栅51n中的其它第二灭弧栅的具体结构和工作原理可参见上述第二灭弧栅51a(或者第二灭弧栅51n)的具体结构和工作原理,以下不再赘述。In some feasible implementations, during the process of arc extinguishing by any second arc extinguishing grid 51a to 51n, any second arc extinguishing grid can extinguish the arc generated when the second moving contact of any contact bridge 41a to 41n is separated from any DC input static contact 110a to 110n. The number of second arc extinguishing grids 51a to 51n is the same as the number of DC input static contacts 110a to 110n. Any second arc extinguishing grid can be composed of a plurality of metal grids of magnetic material (which can be referred to as a plurality of metal grids for short), as shown in FIG21, the second arc extinguishing grid 51a can be composed of a plurality of metal grids, and the plurality of metal grids can divide the arc generated when the second moving contact 412a of the contact bridge 41a is separated from the DC input static contact 110a, thereby achieving the purpose of arc extinguishing. Similarly, the structure and working principle of the other second arc extinguishing grids in the second arc extinguishing grid 51a to the second arc extinguishing grid 51n can refer to the structure and working principle of the second arc extinguishing grid 51a, for example, the second arc extinguishing grid 51n can be composed of a plurality of metal grids, which can divide the arc generated when the second moving contact 412n of the contact bridge 41n is separated from the DC input static contact 110n, thereby achieving the purpose of arc extinguishing, and the arc extinguishing efficiency is higher. It should be noted that the specific structure and working principle of the other second arc extinguishing grids in the second arc extinguishing grid 51a to the second arc extinguishing grid 51n can refer to the specific structure and working principle of the second arc extinguishing grid 51a (or the second arc extinguishing grid 51n), which will not be repeated below.

在一些可行的实施方式中,由于不同的动触头(如第一动触头或者第二动触头)与不同的静触头(如直流输出静触头或者直流输入静触头)分离时所产生的电弧,还会伴随产生气体(如高热气体),因此上述第二灭弧栅51a至第二灭弧栅51n、以及第一灭弧栅51n+1至第一灭弧栅51m中的每个灭弧栅设置有第一排气孔,从而保证每个灭弧栅在对产生的电弧进行灭弧的同时通过第一排气孔将电弧产生的高热气体排出,从而避免了高热气体烧坏灭弧栅,延长了灭弧栅的使用寿命,适用性更强。如图21所示,第二灭弧栅51a上设置有至少一个第一排气孔510a(如2个第一排气孔510a),其中,第二灭弧栅51a在对电弧进行灭弧的同时通过第一排气孔510a将电弧产生的高热气体排出;……;第二灭弧栅51n上设置有至少一个第一排气孔510n(如2个第一排气孔510n),其中,第二灭弧栅51n在对电弧进行灭弧的同时通过第一排气孔510n将电弧产生的高热气体排出。第一灭弧栅51n+1上设置有至少一个第一排气孔514n+1(如2个第一排气孔514n+1),其中,第一灭弧栅51n+1在对电弧进行灭弧的同时通过第一排气孔514n+1将电弧产生的高热气体排出;……;第一灭弧栅51m上设置有至少一个第一排气孔514m(如2个第一排气孔514m),其中,第一灭弧栅51m在对电弧进行灭弧的同时通过第一排气孔514m将电弧产生的高热气体排出。In some feasible embodiments, since the arc generated when different moving contacts (such as the first moving contact or the second moving contact) are separated from different static contacts (such as the DC output static contact or the DC input static contact) will also be accompanied by the generation of gas (such as high-temperature gas), each arc extinguishing grid in the above-mentioned second arc extinguishing grid 51a to the second arc extinguishing grid 51n, and the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m is provided with a first exhaust hole, thereby ensuring that each arc extinguishing grid can extinguish the generated arc while discharging the high-temperature gas generated by the arc through the first exhaust hole, thereby avoiding the high-temperature gas from burning the arc extinguishing grid, extending the service life of the arc extinguishing grid, and making it more applicable. As shown in FIG. 21 , at least one first exhaust hole 510a (such as two first exhaust holes 510a) is provided on the second arc-extinguishing grid 51a, wherein the second arc-extinguishing grid 51a discharges the hot gas generated by the arc through the first exhaust hole 510a while extinguishing the arc; ...; at least one first exhaust hole 510n (such as two first exhaust holes 510n) is provided on the second arc-extinguishing grid 51n, wherein the second arc-extinguishing grid 51n discharges the hot gas generated by the arc through the first exhaust hole 510n while extinguishing the arc. At least one first exhaust hole 514n+1 (such as two first exhaust holes 514n+1) is provided on the first arc-extinguishing grid 51n+1, wherein the first arc-extinguishing grid 51n+1 discharges the high-temperature gas generated by the arc through the first exhaust hole 514n+1 while extinguishing the arc; ...; At least one first exhaust hole 514m (such as two first exhaust holes 514m) is provided on the first arc-extinguishing grid 51m, wherein the first arc-extinguishing grid 51m discharges the high-temperature gas generated by the arc through the first exhaust hole 514m while extinguishing the arc.

进一步地,由于上述第二灭弧栅51a至第二灭弧栅51n、以及第一灭弧栅51n+1至第一灭弧栅51m中的每个灭弧栅的第一排气孔所排出的高热气体仍存在于第三塑料壳体61内,也就是说,每个灭弧栅的第一排气孔所排出的高热气体可能会烧坏第三塑料壳体61,因此,第三塑料壳体61上设置第二排气孔(图中未示出),并通过该第二排气孔将每个灭弧栅的第一排气孔排出的高热气体排出第三塑料壳体61,从而可保护第三塑料壳体61不被烧坏;另外,该第二排气孔及时将高热气体排出可避免烧坏第三塑料壳体61内的器件,安全性更高,进而延长了第三塑料壳体61内器件的使用寿命,适用性更强。Furthermore, since the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid in the above-mentioned second arc extinguishing grid 51a to the second arc extinguishing grid 51n, and the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m still exists in the third plastic shell 61, that is, the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid may burn the third plastic shell 61. Therefore, a second exhaust hole (not shown in the figure) is provided on the third plastic shell 61, and the high-temperature gas discharged from the first exhaust hole of each arc extinguishing grid is discharged from the third plastic shell 61 through the second exhaust hole, thereby protecting the third plastic shell 61 from being burned; in addition, the second exhaust hole discharges the high-temperature gas in time to avoid burning the components in the third plastic shell 61, which is safer, thereby extending the service life of the components in the third plastic shell 61 and making it more applicable.

在一些可行的实施方式中,在上述图21所示的直流接触器1b还包括多个第一塑料壳体的情况下,直流接触器1b对应的俯视图请一并参见图22,图22是本申请提供的直流接触器的另一结构示意图。如图22所示,上述图21所示的直流接触器1b还包括第一塑料壳体92a至第一塑料壳体92t,该第一塑料壳体92a至第一塑料壳体92t中每个第一塑料壳体内嵌入有第一磁块,该第一磁块可包括但不限于永磁体。其中,上述直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头的两侧,设置有第一塑料壳体92a至第一塑料壳体92t中的任意两个第一塑料壳体,且任意两个第一塑料壳体相对设置,换言之,任意两个第一塑料壳体相对设置于上述任意一个直流输出静触头的两侧;上述任意两个第一塑料壳体中的第一磁块平行设置,且任意两个第一塑料壳体中第一磁块的放置(如磁块的极性)遵从左手定则。这里的任意两个第一塑料壳体中第一磁块的具体放置位置由第一灭弧栅51n+1至第一灭弧栅51m的放置位置以及流过直流接触器1b的电流的方向(即电流方向)决定。In some feasible embodiments, when the DC contactor 1b shown in FIG. 21 above also includes a plurality of first plastic shells, please refer to FIG. 22 for the top view corresponding to the DC contactor 1b, which is another structural schematic diagram of the DC contactor provided in the present application. As shown in FIG. 22, the DC contactor 1b shown in FIG. 21 above also includes first plastic shells 92a to 92t, and each of the first plastic shells 92a to 92t is embedded with a first magnetic block, and the first magnetic block may include but is not limited to a permanent magnet. Wherein, any two first plastic shells from the first plastic shell 92a to 92t are arranged on both sides of any one of the DC output static contacts 210a to 210n, and any two first plastic shells are arranged oppositely, in other words, any two first plastic shells are arranged oppositely on both sides of any one of the DC output static contacts; the first magnetic blocks in the above two first plastic shells are arranged in parallel, and the placement of the first magnetic blocks in any two first plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. The specific placement positions of the first magnetic blocks in any two first plastic shells are determined by the placement positions of the first arc extinguishing grids 51n+1 to 51m and the direction of the current flowing through the DC contactor 1b (ie, the current direction).

在触桥41a至触桥41n中任意一个触桥的第一动触头与任意一个直流输出静触头分离时会产生电弧,上述任意两个第一塑料壳体中的第一磁块产生的磁场力可将产生的电弧吹向第一灭弧栅51n+1至第一灭弧栅51m中任意一个第一灭弧栅(如第一栅片组或者第二栅片组),使得任意一个第一灭弧栅的第一栅片组或者第二栅片组对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第一磁块来实现对电弧的定向吹弧(即将电弧吹向第一灭弧栅),从而提升了灭弧效率,适用性更强。When the first moving contact of any contact bridge among the contact bridges 41a to 41n is separated from any DC output static contact, an arc will be generated. The magnetic field force generated by the first magnetic blocks in any two of the above-mentioned first plastic shells can blow the generated arc to any first arc extinguishing grid (such as the first grid group or the second grid group) among the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m, so that the first grid group or the second grid group of any first arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional blowing of the arc (i.e. blowing the arc to the first arc extinguishing grid) through the first magnetic blocks in any two second plastic shells arranged in parallel, thereby improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,上述第一塑料壳体92a至第一塑料壳体92t的具体放置方式如图7所示,直流输出静触头210a的两侧设置有第一塑料壳体92a和第一塑料壳体92b,且第一塑料壳体92a和第一塑料壳体92b相对设置,换言之,第一塑料壳体92a和第一塑料壳体92b相对设置于直流输出静触头210a的两侧,其中,第一塑料壳体92a中的第一磁块920a与第一塑料壳体92b中的第一磁块920b平行设置。在第一动触头411a与直流输出静触头210a分离时会产生电弧,第一磁块920a产生的磁场力和第一磁块920b产生的磁场力可共同作用将产生的电弧吹向第一灭弧栅51n+1,使得第一灭弧栅51n+1对该电弧进行分割灭弧。同理,直流输出静触头210a至直流输出静触头210n中其它直流输出静触头的两侧的第一塑料壳体的放置方式可参见上述第一塑料壳体92a和第一塑料壳体92b的放置方式,比如,上述直流输出静触头210n的两侧设置有第一塑料壳体92t-1和第一塑料壳体92t,且第一塑料壳体92t-1和第一塑料壳体92t相对设置,换言之,第一塑料壳体92t-1和第一塑料壳体92t相对设置于直流输出静触头210n的两侧,其中,第一塑料壳体92t-1中的第一磁块920t-1与第一塑料壳体92t中的第一磁块920t平行设置。在第一动触头411n与直流输出静触头210n分离时会产生电弧,第一磁块920t-1产生的磁场力和第一磁块920t产生的磁场力可共同作用将产生的电弧吹向第一灭弧栅51m,使得第一灭弧栅51m对该电弧进行分割灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了灭弧效率,适用性更强。In some feasible embodiments, the specific placement of the first plastic shell 92a to the first plastic shell 92t is shown in FIG. 7, and the first plastic shell 92a and the first plastic shell 92b are arranged on both sides of the DC output static contact 210a, and the first plastic shell 92a and the first plastic shell 92b are arranged oppositely. In other words, the first plastic shell 92a and the first plastic shell 92b are arranged oppositely on both sides of the DC output static contact 210a, wherein the first magnetic block 920a in the first plastic shell 92a and the first magnetic block 920b in the first plastic shell 92b are arranged in parallel. When the first moving contact 411a is separated from the DC output static contact 210a, an arc is generated, and the magnetic field force generated by the first magnetic block 920a and the magnetic field force generated by the first magnetic block 920b can work together to blow the generated arc to the first arc extinguishing grid 51n+1, so that the first arc extinguishing grid 51n+1 divides and extinguishes the arc. Similarly, the placement method of the first plastic shell on both sides of other DC output static contacts from the DC output static contact 210a to the DC output static contact 210n can refer to the placement method of the above-mentioned first plastic shell 92a and the first plastic shell 92b. For example, the first plastic shell 92t-1 and the first plastic shell 92t are arranged on both sides of the above-mentioned DC output static contact 210n, and the first plastic shell 92t-1 and the first plastic shell 92t are arranged opposite to each other. In other words, the first plastic shell 92t-1 and the first plastic shell 92t are arranged opposite to each other on both sides of the DC output static contact 210n, wherein the first magnetic block 920t-1 in the first plastic shell 92t-1 is arranged parallel to the first magnetic block 920t in the first plastic shell 92t. When the first moving contact 411n is separated from the DC output static contact 210n, an arc will be generated. The magnetic field force generated by the first magnetic block 920t-1 and the magnetic field force generated by the first magnetic block 920t can work together to blow the generated arc toward the first arc extinguishing grid 51m, so that the first arc extinguishing grid 51m divides the arc and extinguishes the arc, thereby achieving the purpose of arc blowing by magnetic field force and arc extinguishing by arc extinguishing grid, further improving the arc extinguishing efficiency and making it more applicable.

在一些可行的实施方式中,在上述图22所示的直流接触器1b还包括多个第二塑料壳体的情况下,直流接触器1b对应的俯视图请一并参见图23,图23是本申请提供的直流接触器的又一结构示意图。如图23所示,上述图22所示的直流接触器1b还包括第二塑料壳体93a至第二塑料壳体93p,该第二塑料壳体93a至第二塑料壳体93p中每个第二塑料壳体内嵌入有第二磁块。其中,上述直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头的两侧,设置有第二塑料壳体93a至第二塑料壳体93p中的任意两个第二塑料壳体,且任意两个第二塑料壳体相对设置,换言之,任意两个第二塑料壳体相对设置于任意一个直流输入端子的直流输入静触头的两侧;上述任意两个第二塑料壳体中的第二磁块平行设置,且任意两个第二塑料壳体中第二磁块的放置(如磁块的极性)遵从左手定则。这里的任意两个第二塑料壳体中第二磁块的具体放置位置由第二灭弧栅51a至第二灭弧栅51n的放置位置以及流过直流接触器1b的电流的方向(即电流方向)决定。In some feasible embodiments, when the DC contactor 1b shown in FIG. 22 further includes a plurality of second plastic shells, please refer to FIG. 23 for the top view corresponding to the DC contactor 1b, which is another structural schematic diagram of the DC contactor provided in the present application. As shown in FIG. 23, the DC contactor 1b shown in FIG. 22 further includes a second plastic shell 93a to a second plastic shell 93p, and a second magnetic block is embedded in each of the second plastic shells 93a to the second plastic shell 93p. Wherein, any two second plastic shells from the second plastic shell 93a to the second plastic shell 93p are arranged on both sides of the DC input static contact of any one of the DC input terminals 11a to the DC input terminals 11n, and any two second plastic shells are arranged oppositely, in other words, any two second plastic shells are arranged oppositely on both sides of the DC input static contact of any one of the DC input terminals; the second magnetic blocks in the above-mentioned any two second plastic shells are arranged in parallel, and the placement of the second magnetic blocks in any two second plastic shells (such as the polarity of the magnetic blocks) complies with the left-hand rule. The specific placement positions of the second magnetic blocks in any two second plastic shells are determined by the placement positions of the second arc extinguishing grids 51a to 51n and the direction of the current flowing through the DC contactor 1b (ie, the current direction).

在触桥41a至触桥41n中任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离时会产生电弧,上述任意两个第一塑料壳体中第二磁块产生的磁场力可将产生的电弧吹向上述第二灭弧栅51a至第二灭弧栅51n中的任意一个第二灭弧栅,使得任意一个第二灭弧栅对该电弧进行分割灭弧,从而通过平行设置的任意两个第二塑料壳体中的第二磁块来实现对电弧的定向吹弧(即将电弧吹向第二灭弧栅),进一步提升了直流接触器1b的灭弧效率;另外,由于上述任意一个第二灭弧栅设置于任意一个触桥的第二动触头所在的一侧,因此不存在电弧对吹所导致的电路短路风险,也就是说,无需在任意一个第二灭弧栅中设置绝缘隔板,成本更低,适用性更强。When the second moving contact of any contact bridge among the contact bridges 41a to 41n is separated from the DC input static contact of any DC input terminal, an arc will be generated. The magnetic field force generated by the second magnetic block in any two of the first plastic shells can blow the generated arc toward any second arc extinguishing grid among the second arc extinguishing grids 51a to 51n, so that any second arc extinguishing grid divides the arc and extinguishes the arc, thereby realizing directional arc blowing of the arc (i.e. blowing the arc toward the second arc extinguishing grid) through the second magnetic blocks in any two second plastic shells arranged in parallel, further improving the arc extinguishing efficiency of the DC contactor 1b; in addition, since any of the second arc extinguishing grids mentioned above is arranged on the side where the second moving contact of any contact bridge is located, there is no risk of circuit short circuit caused by arc blowing, that is, there is no need to set an insulating partition in any second arc extinguishing grid, which is lower in cost and more applicable.

在一些可行的实施方式中,上述第二塑料壳体93a至第二塑料壳体93p的具体放置方式如图23所示,直流输入静触头110a的两侧设置有第二塑料壳体93a和第二塑料壳体93b,且第二塑料壳体93a和第二塑料壳体93b相对设置,换言之,第二塑料壳体93a和第二塑料壳体93b相对设置于直流输入静触头110a的两侧,其中,第二塑料壳体93a内嵌入的第二磁块930a与第二塑料壳体93b内嵌入的第二磁块930b平行设置。在第二动触头412a与直流输入静触头110a分离时会产生电弧,该第二磁块930a产生的磁场力和第二磁块930b产生的磁场力可共同作用将产生的电弧吹向第二灭弧栅51a,使得第二灭弧栅51a对该电弧进行分割灭弧。同理,直流输入静触头110a至直流输入静触头110n中其它直流输入静触头的两侧的第二塑料壳体的放置方式可参见上述第二塑料壳体93a和第二塑料壳体93b的放置方式,比如,上述直流输入静触头110n的两侧设置有第二塑料壳体93p-1和第二塑料壳体93p,且第二塑料壳体93p-1和第二塑料壳体93p相对设置,换言之,第二塑料壳体93p-1和第二塑料壳体93p相对设置于直流输入静触头110n的两侧,其中,第二塑料壳体93p-1内嵌入的第二磁块930p-1与第二塑料壳体93p内嵌入的第二磁块930p平行设置。在第二动触头412n与直流输入静触头110n分离时会产生电弧,第二磁块930p-1产生的磁场力与第二磁块930p产生的磁场力可共同作用将产生的电弧吹向第二灭弧栅51n,使得第二灭弧栅51n对该电弧进行分割灭弧,从而达到磁场力吹弧和灭弧栅灭弧的目的,进一步提升了直流接触器1b的灭弧效率,适用性更强。In some feasible embodiments, the specific placement of the second plastic shell 93a to the second plastic shell 93p is shown in FIG. 23, and the second plastic shell 93a and the second plastic shell 93b are arranged on both sides of the DC input static contact 110a, and the second plastic shell 93a and the second plastic shell 93b are arranged oppositely. In other words, the second plastic shell 93a and the second plastic shell 93b are arranged oppositely on both sides of the DC input static contact 110a, wherein the second magnetic block 930a embedded in the second plastic shell 93a and the second magnetic block 930b embedded in the second plastic shell 93b are arranged in parallel. When the second moving contact 412a is separated from the DC input static contact 110a, an arc is generated, and the magnetic field force generated by the second magnetic block 930a and the magnetic field force generated by the second magnetic block 930b can work together to blow the generated arc to the second arc extinguishing grid 51a, so that the second arc extinguishing grid 51a divides and extinguishes the arc. Similarly, the placement method of the second plastic shell on both sides of other DC input static contacts from the DC input static contact 110a to the DC input static contact 110n can refer to the placement method of the above-mentioned second plastic shell 93a and the second plastic shell 93b. For example, the second plastic shell 93p-1 and the second plastic shell 93p are arranged on both sides of the above-mentioned DC input static contact 110n, and the second plastic shell 93p-1 and the second plastic shell 93p are arranged opposite to each other. In other words, the second plastic shell 93p-1 and the second plastic shell 93p are arranged opposite to each other on both sides of the DC input static contact 110n, wherein the second magnetic block 930p-1 embedded in the second plastic shell 93p-1 is arranged parallel to the second magnetic block 930p embedded in the second plastic shell 93p. When the second moving contact 412n is separated from the DC input static contact 110n, an arc will be generated. The magnetic field force generated by the second magnetic block 930p-1 and the magnetic field force generated by the second magnetic block 930p can work together to blow the generated arc toward the second arc extinguishing grid 51n, so that the second arc extinguishing grid 51n divides the arc and extinguishes the arc, thereby achieving the purpose of arc blowing by magnetic field force and arc extinguishing by arc extinguishing grid, further improving the arc extinguishing efficiency of the DC contactor 1b and making it more applicable.

可以理解,上述第一塑料壳体92a至第一塑料壳体92t中第一磁块产生的磁场力的具体吹弧方向、以及上述第二塑料壳体93a至第二塑料壳体93p中第二磁块产生的磁场力的具体吹弧方向,由第二灭弧栅51a至第二灭弧栅51n和第一灭弧栅51n+1至第一灭弧栅51m的具体放置方式决定。其中,该具体吹弧方向可以理解为任何可以使电弧拉长,能有效放置第二灭弧栅51a至第二灭弧栅51n和第一灭弧栅51n+1至第一灭弧栅51m,并且不影响第三塑料壳体61的方向,该具体吹弧方向可根据实际应用场景确定,在此不作限制。It can be understood that the specific arc blowing direction of the magnetic field force generated by the first magnetic block in the first plastic shell 92a to the first plastic shell 92t, and the specific arc blowing direction of the magnetic field force generated by the second magnetic block in the second plastic shell 93a to the second plastic shell 93p, are determined by the specific placement of the second arc extinguishing grid 51a to the second arc extinguishing grid 51n and the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m. Among them, the specific arc blowing direction can be understood as any direction that can lengthen the arc, can effectively place the second arc extinguishing grid 51a to the second arc extinguishing grid 51n and the first arc extinguishing grid 51n+1 to the first arc extinguishing grid 51m, and does not affect the direction of the third plastic shell 61. The specific arc blowing direction can be determined according to the actual application scenario and is not limited here.

在一些可行的实施方式中,在上述直流接触器1b为磁保持接触器的情况下,上述电磁装置31a至电磁装置31n中的任意一个电磁装置,在电流由直流输入模块5a至直流输入模块5n中的任意一个直流输入模块流向直流输出模块4(即任意一个电磁装置中的线圈通入正向电流)时,控制上述触桥41a至触桥41n中的任意一个触桥向上述直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头和直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路导通的目的。可选的,上述任意一个电磁装置还可在电流由直流输出模块4流向任意一个直流输入模块(即任意一个电磁装置中的线圈通入反向电流)时,控制任意一个触桥向远离任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制上述n路高压直流电路断开的目的。由此可见,该磁保持接触器可实现独立控制上述n路高压直流电路导通或者断开的目的,可有效节省空间和成本,适用性更强。In some feasible embodiments, when the DC contactor 1b is a magnetic holding contactor, any one of the electromagnetic devices 31a to 31n controls any one of the contact bridges 41a to 41n to move toward any one of the DC output static contacts 210a to 210n and the DC input static contact of any one of the DC input terminals 11a to 11n when current flows from any one of the DC input modules 5a to 5n to the DC output module 4 (i.e., a forward current is passed through the coil in any one of the electromagnetic devices), so that the first moving contact of any one of the contact bridges contacts with any one of the DC output static contacts, and the second moving contact of any one of the contact bridges contacts with the DC input static contact of any one of the DC input terminals. At this time, any one of the n high-voltage DC circuits is turned on, thereby achieving the purpose of independently controlling the conduction of the n high-voltage DC circuits. Optionally, any of the above electromagnetic devices can also control any contact bridge to move in a direction away from any DC output static contact and any DC input static contact of any DC input terminal when current flows from the DC output module 4 to any DC input module (i.e., reverse current is passed through the coil in any electromagnetic device), so that the first moving contact of any contact bridge is separated from any DC output static contact, and the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal. At this time, any one of the above n high-voltage DC circuits has been disconnected, and the purpose of independently controlling the disconnection of the above n high-voltage DC circuits can be achieved. It can be seen that the magnetic holding contactor can achieve the purpose of independently controlling the conduction or disconnection of the above n high-voltage DC circuits, which can effectively save space and cost and has stronger applicability.

在一些可行的实施方式中,为方便描述,下面将以四进一出独立控制的磁保持接触器为例进行说明,这里的四进一出可以理解为四个直流输入端子(即四个输入电流)和一个直流输出端子(即一个输出电流),且四个输入电流可以被独立控制以导通或者断开4路高压直流电路。在上述一进四出的磁保持接触器中,直流输出端子21的数量为1,直流输出静触头210a至直流输出静触头210n的数量为4,直流输入端子11a至直流输入端子11n的数量为4,直流输入静触头110a至直流输入静触头110n的数量为4,触桥41a至触桥41m的数量为4,第一动触头411a至第一动触头411n的数量为4,第二动触头412a至第二动触头412n的数量为4,电磁装置31a至电磁装置31n的数量为4,灭弧栅51a至灭弧栅51m的数量为4(或者6)。In some feasible implementations, for the convenience of description, the following will be described by taking a magnetic latching contactor with four inputs and one output independently controlled as an example, where the four inputs and one output can be understood as four DC input terminals (i.e., four input currents) and one DC output terminal (i.e., one output current), and the four input currents can be independently controlled to turn on or off four high-voltage DC circuits. In the above-mentioned one-input and four-output magnetic latching contactor, the number of DC output terminals 21 is 1, the number of DC output static contacts 210a to DC output static contacts 210n is 4, the number of DC input terminals 11a to DC input terminals 11n is 4, the number of DC input static contacts 110a to DC input static contacts 110n is 4, the number of contact bridges 41a to contact bridges 41m is 4, the number of first moving contacts 411a to first moving contacts 411n is 4, the number of second moving contacts 412a to second moving contacts 412n is 4, the number of electromagnetic devices 31a to electromagnetic devices 31n is 4, and the number of arc extinguishing grids 51a to arc extinguishing grids 51m is 4 (or 6).

在一些可行的实施方式中,上述四进一出的磁保持接触器的截面图可以如上述图9所示,在该截面图所示的磁保持接触器的左侧结构中,直流端子112(即直流输出端子21)的一端设置有直流静触头119(即直流输出静触头),直流端子113(即直流输入端子11a)的一端设置有直流静触头120(即直流输入静触头110a);弹簧104、磁轭105、上部固定铁芯116、线圈107、软磁体108、永磁铁109(也可称为永磁体)以及下部固定铁芯110等部件可构成电磁装置(即电磁装置31a),其中,电磁装置31a中各个部件之间的位置关系如图9所示,该电磁装置31a中存在空气间隙117,上部固定铁芯116和下部固定铁芯110可构成电磁装置31a中的动铁芯,且该动铁芯连接触桥103(即触桥41a);触桥103的两端分别设置有动触头118(即第一动触头411a)和动触头126(即第二动触头412a);灭弧栅102(即灭弧栅51a)设置于直流静触头119和直流静触头120之间,且灭弧栅102中包括塑料隔板114(即绝缘隔板513a)。In some feasible implementations, the cross-sectional view of the above-mentioned four-input-one-output magnetic latching contactor can be as shown in FIG. 9 above. In the left side structure of the magnetic latching contactor shown in the cross-sectional view, one end of the DC terminal 112 (i.e., the DC output terminal 21) is provided with a DC static contact 119 (i.e., the DC output static contact), and one end of the DC terminal 113 (i.e., the DC input terminal 11a) is provided with a DC static contact 120 (i.e., the DC input static contact 110a); the spring 104, the yoke 105, the upper fixed iron core 116, the coil 107, the soft magnetic 108, the permanent magnet 109 (also referred to as a permanent magnet) and the lower fixed iron core 110 and other components can constitute an electromagnetic device (i.e., an electromagnetic device). 9 , there is an air gap 117 in the electromagnetic device 31a, the upper fixed iron core 116 and the lower fixed iron core 110 can constitute the moving iron core in the electromagnetic device 31a, and the moving iron core is connected to the contact bridge 103 (i.e., the contact bridge 41a); the two ends of the contact bridge 103 are respectively provided with a moving contact 118 (i.e., the first moving contact 411a) and a moving contact 126 (i.e., the second moving contact 412a); the arc extinguishing grid 102 (i.e., the arc extinguishing grid 51a) is arranged between the DC static contact 119 and the DC static contact 120, and the arc extinguishing grid 102 includes a plastic partition 114 (i.e., the insulating partition 513a).

其中,直流静触头119、直流静触头120、弹簧104、磁轭105、上部固定铁芯116、线圈107、软磁体108、永磁铁109、下部固定铁芯110、触桥103、动触头118、动触头126以及灭弧栅102均设置在塑料外壳101(即第三塑料壳体61)内。上述直流端子112的另一端用于连接上述直流输出模块4,直流端子113的另一端用于连接直流输入模块5a。可选的,上述磁保持接触器的左侧结构中还包括沉头固定螺钉106和安装预留孔111,其中,沉头固定螺钉106用于对磁轭105进行固定,安装预留孔111用于接入对磁保持接触器进行安装的部件。其中,磁轭105通常指本身不生产磁场且在磁路中只起磁力线传输的软磁材料,例如,导磁率比较高的软铁、A3钢(一种甲类钢)、软磁合金或者铁氧体材料。Among them, the DC static contact 119, the DC static contact 120, the spring 104, the yoke 105, the upper fixed iron core 116, the coil 107, the soft magnetic body 108, the permanent magnet 109, the lower fixed iron core 110, the contact bridge 103, the moving contact 118, the moving contact 126 and the arc extinguishing grid 102 are all arranged in the plastic shell 101 (i.e., the third plastic shell 61). The other end of the DC terminal 112 is used to connect the DC output module 4, and the other end of the DC terminal 113 is used to connect the DC input module 5a. Optionally, the left side structure of the magnetic holding contactor also includes a countersunk fixing screw 106 and a mounting reserved hole 111, wherein the countersunk fixing screw 106 is used to fix the yoke 105, and the mounting reserved hole 111 is used to access the components for installing the magnetic holding contactor. The yoke 105 generally refers to a soft magnetic material that does not generate a magnetic field and only transmits magnetic lines of force in a magnetic circuit, such as soft iron with relatively high magnetic permeability, A3 steel (a type A steel), soft magnetic alloy or ferrite material.

需要说明的是,由于上述截面图所示的磁保持接触器的右侧结构与其左侧结构对称,因此,该截面图所示的磁保持接触器的右侧结构可参见上述左侧结构的描述,以下不再赘述。另外,上述截面图所示的磁保持接触器可直接显示塑料外壳101,直流端子112,4个直流输出静触头中的直流静触头119及其相对设置的直流静触头,4个直流输入端子中的直流端子113及其相对设置的直流端子,4个直流输入静触头中的直流静触头120及其相对设置的直流静触头,4个电磁装置中的电磁装置31a及其相对设置的电磁装置,4个触桥中的触桥103及其相对设置的触桥,以及4个灭弧栅中的灭弧栅102及其相对设置的灭弧栅,该磁保持接触器中的其它部件之间的位置关系可参见上述左侧结构的描述,以下不再赘述。It should be noted that, since the right side structure of the magnetic holding contactor shown in the above cross-sectional view is symmetrical with its left side structure, the right side structure of the magnetic holding contactor shown in the cross-sectional view can refer to the description of the above left side structure, which will not be repeated below. In addition, the magnetic holding contactor shown in the above cross-sectional view can directly display the plastic housing 101, the DC terminal 112, the DC static contact 119 of the four DC output static contacts and the DC static contact arranged oppositely thereto, the DC terminal 113 of the four DC input terminals and the DC terminal arranged oppositely thereto, the DC static contact 120 of the four DC input static contacts and the DC static contact arranged oppositely thereto, the electromagnetic device 31a of the four electromagnetic devices and the electromagnetic device arranged oppositely thereto, the contact bridge 103 of the four contact bridges and the contact bridge arranged oppositely thereto, and the arc extinguishing grid 102 of the four arc extinguishing grids and the arc extinguishing grid arranged oppositely thereto, and the positional relationship between the other components in the magnetic holding contactor can refer to the description of the above left side structure, which will not be repeated below.

在一些可行的实施方式中,在电流由直流输入模块5a流向直流输出模块4时,线圈107在通入正向电流(如脉冲电流或信号电流)时会产生磁场,该线圈107产生的磁场和永磁铁109产生的磁场方向一致,线圈107产生的磁场(即磁场力)和永磁铁109产生的磁场相互叠加;这时,动铁芯会在线圈107产生的磁场、永磁铁109产生的磁场以及弹簧104的弹力作用下向上运动,使得触桥103向直流输出静触头119和直流输出静触头120的方向运动,动触头118与直流输出静触头120接触(即紧密闭合)、且动触头126与直流输出静触头120接触(即紧密闭合),从而导通直流输出模块4和直流输入模块5a所构成的直流电路(即上述n路高压直流电路中的第一路高压直流电路,n为4)。在动触头118与直流输出静触头120接触、且动触头126与直流输出静触头120接触之后,可断开线圈107的电流,永磁铁109产生的磁场会使得动铁芯保持在动触头118与直流输出静触头120接触、且动触头126与直流输出静触头120接触时其所在的位置不变。In some feasible embodiments, when current flows from the DC input module 5a to the DC output module 4, the coil 107 will generate a magnetic field when a positive current (such as a pulse current or a signal current) is passed through it. The magnetic field generated by the coil 107 is in the same direction as the magnetic field generated by the permanent magnet 109, and the magnetic field (i.e., magnetic field force) generated by the coil 107 and the magnetic field generated by the permanent magnet 109 are superimposed on each other; at this time, the moving iron core will move upward under the action of the magnetic field generated by the coil 107, the magnetic field generated by the permanent magnet 109, and the elastic force of the spring 104, so that the contact bridge 103 moves in the direction of the DC output static contact 119 and the DC output static contact 120, the moving contact 118 contacts the DC output static contact 120 (i.e., tightly closed), and the moving contact 126 contacts the DC output static contact 120 (i.e., tightly closed), thereby turning on the DC circuit formed by the DC output module 4 and the DC input module 5a (i.e., the first high-voltage DC circuit in the above-mentioned n high-voltage DC circuits, n is 4). After the moving contact 118 contacts the DC output static contact 120 and the moving contact 126 contacts the DC output static contact 120, the current of the coil 107 can be disconnected, and the magnetic field generated by the permanent magnet 109 will keep the moving iron core at the position where the moving contact 118 contacts the DC output static contact 120 and the moving contact 126 contacts the DC output static contact 120.

在电流由直流输出模块4流向直流输入模块5a时,线圈107在通入反向电流时会产生磁场,该线圈107产生的磁场和永磁铁109产生的磁场方向相反,线圈107产生的磁场(即磁场力)和永磁铁109产生的磁场相互抵消;这时,动铁芯会受到重力势能并克服弹簧104的弹力向下运动,使得触桥103向远离直流输出静触头119和直流输出静触头120的方向运动,动触头118与直流输出静触头120分离(即断开)、且动触头126与直流输出静触头120断开,从而断开直流输出模块4和直流输入模块5a所构成的直流电路(即4路高压直流电路中的第一路高压直流电路)。在动触头118与直流输出静触头120分离、且动触头126与直流输出静触头120分离之后,可断开线圈107的电流,永磁铁109产生的磁场会使得动铁芯保持在动触头118与直流输出静触头120分离、且动触头126与直流输出静触头120分离时其所在的位置不变。由此可见,该磁保持接触器不需要一直给线圈通入电流来保持动触头与静触头接触或者分离,流程更加简单。需要说明的是,上述4路高压直流电路中的其它高压直流电路导通或者断开的工作原理可参见上述第一路高压直流电路导通或者断开的工作原理,以下不再赘述。由此可见,该磁保持接触器可通过对4个电磁装置中的线圈(即4个线圈)施加不同的信号电流(如正向电流或者反向电流),从而实现分别控制4路高压直流电路导通或者关断的目的,适用性强。When current flows from the DC output module 4 to the DC input module 5a, the coil 107 will generate a magnetic field when a reverse current is passed through it. The magnetic field generated by the coil 107 is in opposite directions to the magnetic field generated by the permanent magnet 109, and the magnetic field (i.e., magnetic field force) generated by the coil 107 and the magnetic field generated by the permanent magnet 109 cancel each other out. At this time, the moving iron core will be affected by the gravitational potential energy and overcome the elastic force of the spring 104 to move downward, so that the contact bridge 103 moves away from the DC output static contact 119 and the DC output static contact 120, the moving contact 118 is separated (i.e., disconnected) from the DC output static contact 120, and the moving contact 126 is disconnected from the DC output static contact 120, thereby disconnecting the DC circuit formed by the DC output module 4 and the DC input module 5a (i.e., the first high-voltage DC circuit among the four high-voltage DC circuits). After the moving contact 118 is separated from the DC output static contact 120 and the moving contact 126 is separated from the DC output static contact 120, the current of the coil 107 can be disconnected, and the magnetic field generated by the permanent magnet 109 will keep the moving iron core in the same position when the moving contact 118 is separated from the DC output static contact 120 and the moving contact 126 is separated from the DC output static contact 120. It can be seen that the magnetic holding contactor does not need to always pass current into the coil to keep the moving contact in contact or separation with the static contact, and the process is simpler. It should be noted that the working principle of the other high-voltage DC circuits in the above-mentioned 4-way high-voltage DC circuits being turned on or off can refer to the working principle of the first high-voltage DC circuit being turned on or off, and will not be repeated below. It can be seen that the magnetic holding contactor can achieve the purpose of controlling the turning on or off of the 4-way high-voltage DC circuits by applying different signal currents (such as forward current or reverse current) to the coils in the 4 electromagnetic devices (i.e., 4 coils), and has strong applicability.

在一些可行的实施方式中,上述四进一出的磁保持接触器的俯视图可以如上述图10所示,塑料壳体123(即第一塑料壳体71a)和塑料壳体127(即第一塑料壳体71b)相对设置于直流静触头119(即直流输出静触头210a)的两侧;塑料壳体121(即第二塑料壳体81a)和塑料壳体122(即第二塑料壳体81b)相对设置于直流静触头120(即直流输入静触头110a)的两侧;灭弧栅102(即灭弧栅51a)上设置有排气孔115(即第一排气孔514a)。在断开上述4路高压直流电路中的第一路高压直流电路的过程中,灭弧栅102可同时对动触头126与直流静触头119断开时产生的电弧,以及动触头118与直流静触头120断开时产生的电弧进行灭弧,且灭弧栅102中的塑料隔板114可对相反方向的电弧进行隔离,从而可避免电弧对吹导致的短路风险;排气孔115可将电弧伴随产生的高热气体排出,塑料外壳101上预留的第二排气孔(图中未示出)可将排气孔115排出的高热气体排出塑料外壳101,从而保护塑料外壳101不被烧坏,适用性更强。In some feasible embodiments, the top view of the above-mentioned four-input and one-output magnetic holding contactor can be as shown in Figure 10 above, the plastic shell 123 (i.e., the first plastic shell 71a) and the plastic shell 127 (i.e., the first plastic shell 71b) are relatively arranged on both sides of the DC static contact 119 (i.e., the DC output static contact 210a); the plastic shell 121 (i.e., the second plastic shell 81a) and the plastic shell 122 (i.e., the second plastic shell 81b) are relatively arranged on both sides of the DC static contact 120 (i.e., the DC input static contact 110a); the arc extinguishing grid 102 (i.e., the arc extinguishing grid 51a) is provided with an exhaust hole 115 (i.e., the first exhaust hole 514a). In the process of disconnecting the first high-voltage DC circuit among the above-mentioned four high-voltage DC circuits, the arc extinguishing grid 102 can simultaneously extinguish the arc generated when the moving contact 126 is disconnected from the DC static contact 119, and the arc generated when the moving contact 118 is disconnected from the DC static contact 120, and the plastic partition 114 in the arc extinguishing grid 102 can isolate the arcs in opposite directions, thereby avoiding the risk of short circuit caused by arc blowing; the exhaust hole 115 can discharge the high-temperature gas generated by the arc, and the second exhaust hole (not shown in the figure) reserved on the plastic shell 101 can discharge the high-temperature gas discharged from the exhaust hole 115 out of the plastic shell 101, thereby protecting the plastic shell 101 from being burned, and having stronger applicability.

在一些可行的实施方式中,上述图10所示的俯视图可直接显示:直流端子112,直流静触头119及其相邻设置的直流静触头和相对设置的直流静触头(即4个直流输出静触头);直流端子113及其相邻设置的直流端子和相对设置的直流端子(即4个直流输入端子),直流静触头120及其相邻设置的直流静触头和相对设置的直流静触头(即4个直流输入静触头);灭弧栅102及其相邻设置的灭弧栅和相对设置的灭弧栅(即4个灭弧栅);直流静触头119两侧的塑料壳体123和塑料壳体127,4个直流静触头中其它三个直流静触头两侧的2个塑料壳体,共构成4个第一塑料壳体;以及直流静触头120两侧的塑料壳体121和塑料壳体122,4个直流静触头中其它三个直流静触头两侧的2个塑料壳体(即6个第二塑料壳体),其中,塑料壳体121和塑料壳体122、以及6个第二塑料壳体可构成8个第二塑料壳体。其中,由于上述4个直流静触头中的任意一个直流静触头及其相邻的直流输出静触头共用同一个第一塑料壳体,因此存在4个第一塑料壳体。例如,直流静触头119及其相邻的一个直流静触头共用塑料壳体123,直流静触头119及其相邻的另一个直流静触头共用塑料壳体127。为方面描述,下面将以塑料壳体123、塑料壳体127、塑料壳体121以及塑料壳体122为例进行说明。In some feasible implementations, the top view shown in FIG. 10 may directly display: the DC terminal 112, the DC static contact 119 and its adjacent DC static contact and the relatively DC static contact (i.e., four DC output static contacts); the DC terminal 113 and its adjacent DC terminal and the relatively DC terminal (i.e., four DC input terminals), the DC static contact 120 and its adjacent DC static contact and the relatively DC static contact (i.e., four DC input static contacts); the arc extinguishing grid 102 and its adjacent arc extinguishing grid and the relatively DC static contact; Arc extinguishing grid (i.e., 4 arc extinguishing grids); plastic shells 123 and plastic shells 127 on both sides of DC static contact 119, and 2 plastic shells on both sides of other three DC static contacts among the 4 DC static contacts, constitute 4 first plastic shells in total; and plastic shells 121 and plastic shells 122 on both sides of DC static contact 120, and 2 plastic shells on both sides of other three DC static contacts among the 4 DC static contacts (i.e., 6 second plastic shells), wherein plastic shells 121 and plastic shells 122, and 6 second plastic shells can constitute 8 second plastic shells. Among them, since any one of the above-mentioned 4 DC static contacts and its adjacent DC output static contact share the same first plastic shell, there are 4 first plastic shells. For example, DC static contact 119 and one of its adjacent DC static contacts share plastic shell 123, and DC static contact 119 and another adjacent DC static contact share plastic shell 127. For the sake of convenience of description, the following description will be made by taking the plastic housing 123 , the plastic housing 127 , the plastic housing 121 and the plastic housing 122 as examples.

在一些可行的实施方式中,上述塑料壳体123(即第一塑料壳体71a)中嵌入有磁块(即第一磁块),塑料壳体127(即第一塑料壳体71b)中嵌入有磁块(即第一磁块),该塑料壳体123中的磁块和塑料壳体127中的磁块平行设置,且磁块的放置方式遵从左手定则。其中,上述塑料壳体123中的磁块产生的磁场力和塑料壳体127中的磁块产生的磁场力可共同作用将动触头126与直流输出静触头119断开时产生的电弧吹向灭弧栅102的第一栅片组,使得灭弧栅102的第一栅片组对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图10所示的4个第一塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体123和塑料壳体127的结构及其工作原理,以下不再赘述。上述塑料壳体121(即第二塑料壳体81a)内嵌入有磁块(即第二磁块810a),塑料壳体122(即第二塑料壳体81b)内嵌入有磁块(即上述第二磁块810b),该塑料壳体121中的磁块和塑料壳体122中的磁块平行设置,且磁块的放置方式遵从左手定则。其中,上述塑料壳体121中的磁块产生的磁场力和塑料壳体122中的磁块产生的磁场力可共同作用将动触头118与直流输出静触头120断开时产生的电弧吹向灭弧栅102的第二栅片组,使得灭弧栅102的第二栅片组对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图10所示的8个第二塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体121和塑料壳体122的结构及其工作原理,以下不再赘述。In some feasible embodiments, a magnetic block (i.e., a first magnetic block) is embedded in the plastic shell 123 (i.e., the first plastic shell 71a), and a magnetic block (i.e., a first magnetic block) is embedded in the plastic shell 127 (i.e., the first plastic shell 71b). The magnetic blocks in the plastic shell 123 and the magnetic blocks in the plastic shell 127 are arranged in parallel, and the placement of the magnetic blocks complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic block in the plastic shell 123 and the magnetic field force generated by the magnetic block in the plastic shell 127 can work together to blow the arc generated when the moving contact 126 is disconnected from the DC output static contact 119 to the first grid group of the arc extinguishing grid 102, so that the first grid group of the arc extinguishing grid 102 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the four first plastic shells shown in Figure 10 can refer to the structure and working principle of the plastic shell 123 and the plastic shell 127, and will not be repeated below. The plastic shell 121 (i.e., the second plastic shell 81a) is embedded with a magnetic block (i.e., the second magnetic block 810a), and the plastic shell 122 (i.e., the second plastic shell 81b) is embedded with a magnetic block (i.e., the second magnetic block 810b). The magnetic blocks in the plastic shell 121 and the magnetic blocks in the plastic shell 122 are arranged in parallel, and the placement of the magnetic blocks complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic block in the plastic shell 121 and the magnetic field force generated by the magnetic block in the plastic shell 122 can work together to blow the arc generated when the moving contact 118 is disconnected from the DC output static contact 120 to the second grid group of the arc extinguishing grid 102, so that the second grid group of the arc extinguishing grid 102 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the 8 second plastic shells shown in Figure 10 can refer to the structure and working principle of the plastic shell 121 and the plastic shell 122, and will not be repeated below.

在一些可行的实施方式中,上述四进一出的磁保持接触器的截面图还可以如上述图13所示,在该截面图所示的磁保持接触器的左侧结构中,直流输出端子209(即直流输出端子21)的一端设置有直流输出静触头210(即直流输出静触头210a),直流输出端子201(即直流输入端子11a)的一端设置有直流输出静触头211(即直流输入静触头110a);弹簧212、磁轭205、上部固定铁芯218、线圈206、软磁体207、永磁铁208(也可称为永磁体)以及下部固定铁芯219等部件可构成电磁装置(即电磁装置31a),其中,电磁装置31a中各个部件之间的具体位置关系如图13所示,上部固定铁芯218和下部固定铁芯219可构成电磁装置31a中的动铁芯,且动铁芯连接触桥216(即触桥41a);触桥216的两端分别设置有动触头203(即第一动触头411a)和动触头217(即第二动触头412a);灭弧栅210(即第一灭弧栅51n+1)和灭弧栅204(即第二灭弧栅51a)分别设置于触桥216的两侧。其中,直流输出静触头210、直流输出静触头211、弹簧212、磁轭205、线圈206、软磁体207、永磁铁208、上部固定铁芯218、下部固定铁芯219、触桥216、动触头203、动触头217、灭弧栅210以及灭弧栅204均设置在塑料外壳202(即第三塑料壳体61)内。上述直流输出端子209的另一端用于连接上述直流输出模块4,直流输出端子201的另一端用于连接直流输入模块5a。In some feasible implementations, the cross-sectional view of the above-mentioned four-input and one-output magnetic latching contactor can also be as shown in Figure 13 above. In the left side structure of the magnetic latching contactor shown in the cross-sectional view, one end of the DC output terminal 209 (i.e., the DC output terminal 21) is provided with a DC output static contact 210 (i.e., the DC output static contact 210a), and one end of the DC output terminal 201 (i.e., the DC input terminal 11a) is provided with a DC output static contact 211 (i.e., the DC input static contact 110a); the spring 212, the yoke 205, the upper fixed iron core 218, the coil 206, the soft magnetic body 207, the permanent magnet 208 (also referred to as a permanent magnet) and The lower fixed iron core 219 and other components can constitute an electromagnetic device (i.e., the electromagnetic device 31a), wherein the specific positional relationship between the various components in the electromagnetic device 31a is shown in Figure 13, the upper fixed iron core 218 and the lower fixed iron core 219 can constitute the moving iron core in the electromagnetic device 31a, and the moving iron core is connected to the contact bridge 216 (i.e., the contact bridge 41a); the moving contact 203 (i.e., the first moving contact 411a) and the moving contact 217 (i.e., the second moving contact 412a) are respectively provided at both ends of the contact bridge 216; the arc extinguishing grid 210 (i.e., the first arc extinguishing grid 51n+1) and the arc extinguishing grid 204 (i.e., the second arc extinguishing grid 51a) are respectively provided on both sides of the contact bridge 216. Among them, the DC output static contact 210, the DC output static contact 211, the spring 212, the yoke 205, the coil 206, the soft magnetic body 207, the permanent magnet 208, the upper fixed iron core 218, the lower fixed iron core 219, the contact bridge 216, the moving contact 203, the moving contact 217, the arc extinguishing grid 210 and the arc extinguishing grid 204 are all arranged in the plastic shell 202 (i.e., the third plastic shell 61). The other end of the DC output terminal 209 is used to connect the DC output module 4, and the other end of the DC output terminal 201 is used to connect the DC input module 5a.

需要说明的是,由于上述截面图所示的磁保持接触器的右侧结构与其左侧结构对称,因此,该截面图所示的磁保持接触器的右侧结构可参见上述左侧结构的描述,以下不再赘述。另外,上述截面图所示的磁保持接触器可直接显示塑料外壳202,直流输出端子209,4个直流输出静触头中的直流输出静触头210及其相对设置的直流输出静触头,4个直流输入端子中的直流输出端子201及其相对设置的直流输出端子,4个直流输入静触头中的直流输出静触头211及其相对设置的直流输出静触头,4个电磁装置中的电磁装置31a及其相对设置的电磁装置,4个触桥中的触桥216及其相对设置的触桥,以及6个灭弧栅中的灭弧栅204、灭弧栅210及其相对设置的灭弧栅,该磁保持接触器中的其它部件之间的位置关系可参见上述左侧结构的描述,以下不再赘述。It should be noted that, since the right side structure of the magnetic holding contactor shown in the above cross-sectional view is symmetrical with its left side structure, the right side structure of the magnetic holding contactor shown in the cross-sectional view can refer to the description of the above left side structure, which will not be repeated below. In addition, the magnetic holding contactor shown in the above cross-sectional view can directly display the plastic housing 202, the DC output terminal 209, the DC output static contact 210 of the four DC output static contacts and the DC output static contact arranged oppositely, the DC output terminal 201 of the four DC input terminals and the DC output terminal arranged oppositely, the DC output static contact 211 of the four DC input static contacts and the DC output static contact arranged oppositely, the electromagnetic device 31a of the four electromagnetic devices and the electromagnetic device arranged oppositely, the contact bridge 216 of the four contact bridges and the contact bridge arranged oppositely, and the arc extinguishing grid 204, the arc extinguishing grid 210 and the arc extinguishing grid arranged oppositely among the six arc extinguishing grids. The positional relationship between the other components in the magnetic holding contactor can refer to the description of the above left side structure, which will not be repeated below.

在一些可行的实施方式中,在电流由直流输入模块5a流向直流输出模块4时,线圈206在通入正向电流时会产生磁场,该线圈206产生的磁场和永磁铁208产生的磁场方向一致,线圈206产生的磁场和永磁铁208产生的磁场相互叠加;这时,动铁芯会在线圈206产生的磁场、永磁铁208产生的磁场以及弹簧212的弹力作用下向上运动,使得触桥216向直流输出静触头210和直流输出静触头211的方向运动,动触头217与直流输出静触头210接触(即紧密闭合)、且动触头203与直流输出静触头211接触,从而导通直流输出模块4和直流输入模块5a所构成的直流电路(即上述n路高压直流电路中的第一路高压直流电路,n为4)。在动触头217与直流输出静触头210接触、且动触头203与直流输出静触头211接触之后,可断开线圈206的电流,永磁铁208产生的磁场会使得动铁芯保持在动触头217与直流输出静触头210接触、且动触头203与直流输出静触头211接触时其所在的位置不变。In some feasible embodiments, when current flows from the DC input module 5a to the DC output module 4, the coil 206 will generate a magnetic field when a forward current is passed through it. The magnetic field generated by the coil 206 and the magnetic field generated by the permanent magnet 208 are in the same direction, and the magnetic field generated by the coil 206 and the magnetic field generated by the permanent magnet 208 are superimposed on each other; at this time, the moving iron core will move upward under the action of the magnetic field generated by the coil 206, the magnetic field generated by the permanent magnet 208 and the elastic force of the spring 212, so that the contact bridge 216 moves in the direction of the DC output static contact 210 and the DC output static contact 211, the moving contact 217 contacts the DC output static contact 210 (i.e., tightly closed), and the moving contact 203 contacts the DC output static contact 211, thereby turning on the DC circuit formed by the DC output module 4 and the DC input module 5a (i.e., the first high-voltage DC circuit in the above-mentioned n high-voltage DC circuits, n is 4). After the moving contact 217 contacts the DC output static contact 210 and the moving contact 203 contacts the DC output static contact 211, the current of the coil 206 can be disconnected, and the magnetic field generated by the permanent magnet 208 will keep the moving iron core at the position where the moving contact 217 contacts the DC output static contact 210 and the moving contact 203 contacts the DC output static contact 211.

在电流由直流输出模块4流向直流输入模块5a时,线圈206在通入反向电流时会产生磁场,该线圈206产生的磁场和永磁铁208产生的磁场方向相反,线圈206产生的磁场(即磁场力)和永磁铁208产生的磁场相互抵消;这时,动铁芯会受到重力势能并克服弹簧212的弹力向下运动,使得触桥216向远离直流输出静触头210和直流输出静触头211的方向运动,动触头217与直流输出静触头211分离(即断开)、且动触头203与直流输出静触头211断开,从而断开直流输出模块4和直流输入模块5a所构成的直流电路(即4路高压直流电路中的第一路高压直流电路)。在动触头217与直流输出静触头211分离、且动触头203与直流输出静触头211分离之后,可断开线圈206的电流,永磁铁208产生的磁场会使得动铁芯保持在动触头217与直流输出静触头211分离、且动触头203与直流输出静触头211分离时其所在的位置不变。由此可见,该磁保持接触器不需要一直给线圈通入电流来保持动触头与静触头接触或者分离,流程更加简单,适用性强。需要说明的是,上述4路高压直流电路中的其它高压直流电路导通或者断开的工作原理可参见上述第一路高压直流电路导通或者断开的工作原理,以下不再赘述。When current flows from the DC output module 4 to the DC input module 5a, the coil 206 will generate a magnetic field when a reverse current is passed through it. The magnetic field generated by the coil 206 is in opposite directions to the magnetic field generated by the permanent magnet 208, and the magnetic field (i.e., magnetic field force) generated by the coil 206 and the magnetic field generated by the permanent magnet 208 cancel each other out. At this time, the moving iron core will be affected by the gravitational potential energy and overcome the elastic force of the spring 212 to move downward, so that the contact bridge 216 moves away from the DC output static contact 210 and the DC output static contact 211, the moving contact 217 is separated from the DC output static contact 211 (i.e., disconnected), and the moving contact 203 is disconnected from the DC output static contact 211, thereby disconnecting the DC circuit formed by the DC output module 4 and the DC input module 5a (i.e., the first high-voltage DC circuit among the four high-voltage DC circuits). After the moving contact 217 is separated from the DC output static contact 211, and the moving contact 203 is separated from the DC output static contact 211, the current of the coil 206 can be disconnected, and the magnetic field generated by the permanent magnet 208 will keep the moving iron core at the same position when the moving contact 217 is separated from the DC output static contact 211, and the moving contact 203 is separated from the DC output static contact 211. It can be seen that the magnetic holding contactor does not need to constantly pass current through the coil to keep the moving contact in contact or separation with the static contact, and the process is simpler and has strong applicability. It should be noted that the working principle of the conduction or disconnection of other high-voltage DC circuits in the above-mentioned 4 high-voltage DC circuits can refer to the working principle of the conduction or disconnection of the above-mentioned first high-voltage DC circuit, which will not be repeated below.

在一些可行的实施方式中,上述四进一出的磁保持接触器的俯视图可以如上述图14所示,塑料壳体221(即第一塑料壳体71a)和塑料壳体222(即第一塑料壳体71b)相对设置于直流输出静触头210(即直流输出静触头210a)的两侧;塑料壳体213(即第二塑料壳体81a)和塑料壳体220(即第二塑料壳体81b)相对设置于直流输出静触头211(即直流输入静触头110a)的两侧;灭弧栅215(即第一灭弧栅51n+1)还设置有排气孔214(即第一排气孔514n+1),灭弧栅204(即第二灭弧栅51a)还设置有排气孔223(即第一排气孔510a)。在断开上述4路高压直流电路中的第一路高压直流电路的过程中,灭弧栅215可对动触头217与直流输出静触头210断开时产生的电弧进行灭弧,排气孔223可对动触头203与直流输出静触头211断开时产生的电弧进行灭弧,从而通过分开设置灭弧栅对不同方向的电弧进行灭弧,避免了电弧对吹导致的短路风险,并且这种灭弧栅的放置方式可降低磁保持接触器的整体高度;排气孔214和排气孔223可将电弧伴随产生的高热气体排出,塑料外壳202上预留的第二排气孔(图中未示出)可将排气孔214排出的高热气体排出塑料外壳202,从而保护塑料外壳202不被烧坏,适用性更强。In some feasible embodiments, the top view of the above-mentioned four-input and one-output magnetic holding contactor can be as shown in Figure 14 above, the plastic shell 221 (i.e., the first plastic shell 71a) and the plastic shell 222 (i.e., the first plastic shell 71b) are relatively arranged on both sides of the DC output static contact 210 (i.e., the DC output static contact 210a); the plastic shell 213 (i.e., the second plastic shell 81a) and the plastic shell 220 (i.e., the second plastic shell 81b) are relatively arranged on both sides of the DC output static contact 211 (i.e., the DC input static contact 110a); the arc extinguishing grid 215 (i.e., the first arc extinguishing grid 51n+1) is also provided with an exhaust hole 214 (i.e., the first exhaust hole 514n+1), and the arc extinguishing grid 204 (i.e., the second arc extinguishing grid 51a) is also provided with an exhaust hole 223 (i.e., the first exhaust hole 510a). In the process of disconnecting the first high-voltage DC circuit among the above-mentioned four high-voltage DC circuits, the arc extinguishing grid 215 can extinguish the arc generated when the moving contact 217 is disconnected from the DC output static contact 210, and the exhaust hole 223 can extinguish the arc generated when the moving contact 203 is disconnected from the DC output static contact 211, so that arcs in different directions are extinguished by separately setting arc extinguishing grids, thereby avoiding the risk of short circuit caused by arc blowing, and the placement of this arc extinguishing grid can reduce the overall height of the magnetic holding contactor; the exhaust hole 214 and the exhaust hole 223 can discharge the high-temperature gas generated by the arc, and the second exhaust hole (not shown in the figure) reserved on the plastic shell 202 can discharge the high-temperature gas discharged from the exhaust hole 214 out of the plastic shell 202, thereby protecting the plastic shell 202 from being burned, and having stronger applicability.

在一些可行的实施方式中,上述图14所示的俯视图可直接显示:直流输出端子209,直流输出静触头210及其相邻设置的直流输出静触头和相对设置的直流输出静触头(即4个直流输出静触头);直流输出端子201及其相邻设置的直流输出端子和相对设置的直流输出端子(即4个直流输入端子),直流输出静触头211及其相邻设置的直流输出静触头和相对设置的直流输出静触头(即4个直流输入静触头);灭弧栅215及其相对设置的灭弧栅(即2个第一灭弧栅),灭弧栅204及其相邻设置的灭弧栅和相对设置的灭弧栅(即4个第二灭弧栅),其中,2个第一灭弧栅和4个第二灭弧栅可构成6个灭弧栅;直流输出静触头210两侧的塑料壳体221和塑料壳体222,4个直流输出静触头中其它三个直流输出静触头两侧的2个塑料壳体(即6个第一塑料壳体),其中,塑料壳体221、塑料壳体222和6个第一塑料壳体构成8个第一塑料壳体;以及直流输出静触头211两侧的塑料壳体213和塑料壳体220,4个直流输出静触头中其它三个直流输入静触头两侧的2个塑料壳体(即6个第二塑料壳体),其中,塑料壳体213、塑料壳体220和6个第二塑料壳体构成8个第二塑料壳体。为方便描述,下面将以塑料壳体221、塑料壳体222、塑料壳体213和塑料壳体220为例进行说明。In some feasible implementations, the top view shown in FIG. 14 may directly display: the DC output terminal 209, the DC output static contact 210 and its adjacent DC output static contact and its oppositely arranged DC output static contact (i.e., 4 DC output static contacts); the DC output terminal 201 and its adjacent DC output terminal and its oppositely arranged DC output terminal (i.e., 4 DC input terminals), the DC output static contact 211 and its adjacent DC output static contact and its oppositely arranged DC output static contact (i.e., 4 DC input static contacts); the arc extinguishing grid 215 and its oppositely arranged arc extinguishing grid (i.e., 2 first arc extinguishing grids), the arc extinguishing grid 204 and its adjacent arc extinguishing grid and its oppositely arranged arc extinguishing grid (i.e., 4 second arc extinguishing grids) , wherein the two first arc extinguishing grids and the four second arc extinguishing grids can constitute six arc extinguishing grids; the plastic shell 221 and the plastic shell 222 on both sides of the DC output static contact 210, the two plastic shells on both sides of the other three DC output static contacts among the four DC output static contacts (i.e., six first plastic shells), wherein the plastic shell 221, the plastic shell 222 and the six first plastic shells constitute eight first plastic shells; and the plastic shell 213 and the plastic shell 220 on both sides of the DC output static contact 211, the two plastic shells on both sides of the other three DC input static contacts among the four DC output static contacts (i.e., six second plastic shells), wherein the plastic shell 213, the plastic shell 220 and the six second plastic shells constitute eight second plastic shells. For the convenience of description, the following will be described by taking the plastic shell 221, the plastic shell 222, the plastic shell 213 and the plastic shell 220 as examples.

在一些可行的实施方式中,上述塑料壳体221和塑料壳体222内均嵌入有磁块(即第一磁块),且塑料壳体221和塑料壳体222中的磁块平行设置,塑料壳体221和塑料壳体222中的磁块的放置方式遵从左手定则。其中,上述塑料壳体221和塑料壳体222中的磁块产生的磁场力可共同作用将动触头217与直流输出静触头211分离时产生的电弧吹向灭弧栅215,使得灭弧栅215对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图14所示的8个第一塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体221和塑料壳体222的结构及其工作原理,以下不再赘述。上述塑料壳体213和塑料壳体220内嵌入有磁块(即第二磁块),且塑料壳体213和塑料壳体220中的磁块平行设置,塑料壳体213和塑料壳体220中的磁块的放置方式遵从左手定则。其中,塑料壳体213和塑料壳体220中的磁块产生的磁场力可共同作用将动触头203与直流输出静触头211分离时产生的电弧吹向灭弧栅204,使得灭弧栅204对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图14所示的8个第二塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体213和塑料壳体220的结构及其工作原理,以下不再赘述。In some feasible embodiments, magnetic blocks (i.e., first magnetic blocks) are embedded in the plastic shell 221 and the plastic shell 222, and the magnetic blocks in the plastic shell 221 and the plastic shell 222 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 221 and the plastic shell 222 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 221 and the plastic shell 222 can work together to blow the arc generated when the moving contact 217 is separated from the DC output static contact 211 to the arc extinguishing grid 215, so that the arc extinguishing grid 215 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of other plastic shells in the 8 first plastic shells shown in Figure 14 can refer to the structure and working principle of the plastic shell 221 and the plastic shell 222, and will not be repeated below. A magnetic block (i.e., a second magnetic block) is embedded in the plastic shell 213 and the plastic shell 220, and the magnetic blocks in the plastic shell 213 and the plastic shell 220 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 213 and the plastic shell 220 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 213 and the plastic shell 220 can work together to blow the arc generated when the moving contact 203 is separated from the DC output static contact 211 to the arc extinguishing grid 204, so that the arc extinguishing grid 204 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the 8 second plastic shells shown in Figure 14 can refer to the structure and working principle of the plastic shell 213 and the plastic shell 220, and will not be repeated below.

在一些可行的实施方式中,在上述直流接触器1b为常开接触器的情况下,上述电磁装置31a至电磁装置31n中的任意一个电磁装置,在电流由上述直流输入模块5a至直流输入模块5n中的任意一个直流输入模块流向直流输出模块4(即任意一个电磁装置中的线圈通电)时,控制上述触桥41a至触桥41n中的任意一个触桥向直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头、和直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路导通的目的。可选的,上述任意一个电磁装置还可在任意一个直流输入模块断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向远离任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路断开的目的。由此可见,该常开接触器可实现独立控制n路高压直流电路导通或者断开的目的,可靠性更高;另外,不需要设置辅助触点来判断接触器的开闭状态(即导通状态或者断开状态),不容易受到环境震动的影响,稳定性高且成本更低,适用性更强。In some feasible embodiments, when the DC contactor 1b is a normally open contactor, any one of the electromagnetic devices 31a to 31n controls any one of the contact bridges 41a to 41n to move toward any one of the DC output static contacts 210a to 210n and the DC input static contact of any one of the DC input terminals 11a to 11n, when current flows from any one of the DC input modules 5a to 5n to the DC output module 4 (i.e., the coil in any one of the electromagnetic devices is energized), so that the first moving contact of any one of the contact bridges contacts with any one of the DC output static contacts, and the second moving contact of any one of the contact bridges contacts with the DC input static contact of any one of the DC input terminals. At this time, any one of the n high-voltage DC circuits is turned on, thereby achieving the purpose of independently controlling the conduction of the n high-voltage DC circuits. Optionally, any of the above electromagnetic devices can also control any contact bridge to move in a direction away from any DC output static contact and any DC input static contact of any DC input terminal when any DC input module is powered off (i.e., the coil in any electromagnetic device is powered off), so that the first moving contact of any contact bridge is separated from any DC output static contact, and the second moving contact of any contact bridge is separated from the DC input static contact of any DC input terminal. At this time, any one of the n high-voltage DC circuits has been disconnected, and the purpose of independently controlling the disconnection of the n high-voltage DC circuits can be achieved. It can be seen from this that the normally open contactor can achieve the purpose of independently controlling the conduction or disconnection of n high-voltage DC circuits, and has higher reliability; in addition, there is no need to set auxiliary contacts to determine the open and closed state of the contactor (i.e., the conduction state or the disconnection state), and it is not easily affected by environmental vibrations, has high stability, lower cost, and stronger applicability.

在一些可行的实施方式中,为方便描述,下面将以三进一出独立控制的常开接触器为例进行说明,该常开接触器的具体结构可参见上述图15至图16。这里的三进一出可以理解为三个直流输入端子(即三个输入电流)和一个直流输出端子(即一个输出电流),且三个输入电流可以被独立控制以导通或者断开3路高压直流电路。在上述三进一出的常开接触器中,直流输出端子21的数量为1,直流输出静触头210a至直流输出静触头210n的数量为3,直流输入端子11a至直流输入端子11n的数量为3,直流输入静触头110a至直流输入静触头110n的数量为3,触桥41a至触桥41m的数量为3,第一动触头411a至第一动触头411n的数量为3,第二动触头412a至第二动触头412n的数量为3,电磁装置31a至电磁装置31n的数量为3,灭弧栅51a至灭弧栅51m的数量为5(或者3)。In some feasible implementations, for the convenience of description, a normally open contactor with three inputs and one output independently controlled is used as an example for description, and the specific structure of the normally open contactor can be seen in the above-mentioned Figures 15 and 16. The three inputs and one output here can be understood as three DC input terminals (i.e., three input currents) and one DC output terminal (i.e., one output current), and the three input currents can be independently controlled to turn on or off three high-voltage DC circuits. In the above-mentioned three-input-one-output normally open contactor, the number of DC output terminals 21 is 1, the number of DC output static contacts 210a to DC output static contacts 210n is 3, the number of DC input terminals 11a to DC input terminals 11n is 3, the number of DC input static contacts 110a to DC input static contacts 110n is 3, the number of contact bridges 41a to contact bridges 41m is 3, the number of first moving contacts 411a to first moving contacts 411n is 3, the number of second moving contacts 412a to second moving contacts 412n is 3, the number of electromagnetic devices 31a to electromagnetic devices 31n is 3, and the number of arc extinguishing grids 51a to arc extinguishing grids 51m is 5 (or 3).

在一些可行的实施方式中,上述三进一出的常开接触器的截面图可以如上述图15所示,在该截面图所示的常开接触器的左侧结构中,直流输出端子307(即直流输出端子21)的一端设置有直流输出静触头308(即直流输出静触头),直流输出端子301(即直流输入端子11a)的一端设置有直流输出静触头309(即直流输入静触头110a);磁轭305、线圈306、支撑弹簧310以及动铁芯319可构成电磁装置(即电磁装置31a),其中,电磁装置31a中各个部件之间的位置关系如图15所示,且动铁芯319连接触桥316(即触桥41a);触桥316的两端分别设置有动触头317(即第一动触头411a)和动触头303(即第二动触头412a);灭弧栅315(即第一灭弧栅51n+1)和灭弧栅304(即第二灭弧栅51a)分别设置于触桥316的两侧。其中,直流输出静触头308、直流输出静触头309、磁轭305、线圈306、支撑弹簧310、动铁芯319、触桥316、动触头317、动触头303、灭弧栅315以及灭弧栅304均设置在塑料外壳302(即第三塑料壳体61)内。上述直流输出端子307的另一端用于连接上述直流输出模块4,直流输出端子301的另一端用于连接直流输入模块5a。In some feasible implementations, the cross-sectional view of the above-mentioned three-input and one-output normally open contactor can be as shown in Figure 15 above. In the left side structure of the normally open contactor shown in the cross-sectional view, a DC output static contact 308 (i.e., a DC output static contact) is provided at one end of the DC output terminal 307 (i.e., the DC output terminal 21), and a DC output static contact 309 (i.e., a DC input static contact 110a) is provided at one end of the DC output terminal 301 (i.e., the DC input terminal 11a); the yoke 305, the coil 306, the support spring 310 and the and the moving iron core 319 can constitute an electromagnetic device (i.e., the electromagnetic device 31a), wherein the positional relationship between the various components in the electromagnetic device 31a is shown in FIG. 15, and the moving iron core 319 is connected to the contact bridge 316 (i.e., the contact bridge 41a); the two ends of the contact bridge 316 are respectively provided with a moving contact 317 (i.e., the first moving contact 411a) and a moving contact 303 (i.e., the second moving contact 412a); the arc extinguishing grid 315 (i.e., the first arc extinguishing grid 51n+1) and the arc extinguishing grid 304 (i.e., the second arc extinguishing grid 51a) are respectively provided on both sides of the contact bridge 316. Among them, the DC output static contact 308, the DC output static contact 309, the yoke 305, the coil 306, the support spring 310, the moving iron core 319, the contact bridge 316, the moving contact 317, the moving contact 303, the arc extinguishing grid 315 and the arc extinguishing grid 304 are all provided in the plastic shell 302 (i.e., the third plastic shell 61). The other end of the DC output terminal 307 is used to connect to the DC output module 4, and the other end of the DC output terminal 301 is used to connect to the DC input module 5a.

需要说明的是,由于上述截面图所示的常开接触器的右侧结构与其左侧结构对称,因此,该截面图所示的常开接触器的右侧结构可参见上述左侧结构的描述,以下不再赘述。另外,上述截面图所示的常开接触器可直接显示塑料外壳302,直流输出端子307,3个直流输出静触头中的直流输出静触头308及其相对设置的直流输出静触头,3个直流输入端子中的直流输出端子301及其相对设置的直流输出端子,3个直流输入静触头中的直流输出静触头309及其相对设置的直流输出静触头,3个电磁装置中的电磁装置31a及其相对设置的电磁装置,3个触桥中的触桥316及其相对设置的触桥,以及5个灭弧栅中的灭弧栅315、灭弧栅304及其相对设置的灭弧栅,该常开接触器中的其它部件之间的位置关系可参见上述左侧结构的描述,以下不再赘述。It should be noted that, since the right side structure of the normally open contactor shown in the above cross-sectional view is symmetrical with its left side structure, the right side structure of the normally open contactor shown in the cross-sectional view can refer to the description of the above left side structure, and will not be repeated below. In addition, the normally open contactor shown in the above cross-sectional view can directly display the plastic housing 302, the DC output terminal 307, the DC output static contact 308 of the three DC output static contacts and the DC output static contact arranged oppositely, the DC output terminal 301 of the three DC input terminals and the DC output terminal arranged oppositely, the DC output static contact 309 of the three DC input static contacts and the DC output static contact arranged oppositely, the electromagnetic device 31a of the three electromagnetic devices and the electromagnetic device arranged oppositely, the contact bridge 316 of the three contact bridges and the contact bridge arranged oppositely, and the arc extinguishing grid 315, the arc extinguishing grid 304 of the five arc extinguishing grids and the arc extinguishing grid arranged oppositely, and the positional relationship between other components in the normally open contactor can refer to the description of the above left side structure, and will not be repeated below.

在一些可行的实施方式中,在电流由直流输出模块4流向直流输入模块5a(即直流输出模块4通电)时,线圈306在通电之后会产生磁场,动铁芯319会在线圈306产生的磁场的作用下向上运动,使得触桥316向直流输出静触头308和直流输出静触头309的方向运动,动触头317与直流输出静触头308接触(即紧密闭合)、且动触头303与直流输出静触头309接触(即直流输出端子307通过触桥316与直流输出端子301联通),从而导通直流输出模块4和直流输入模块5a所构成的直流电路(即上述n路高压直流电路中的第一路高压直流电路,n为3)。在直流输出模块4断电时,线圈306在断电之后不再产生磁场,这时动铁芯319会在重力势能的作用下向下运动,使得触桥316向远离直流输出静触头308和直流输出静触头309的方向运动,动触头317与直流输出静触头308分离(即断开)、且动触头303与直流输出静触头309分离(即直流输出端子307和直流输出端子301分断),从而断开直流输出模块4和直流输入模块5a所构成的直流电路(即上述3路高压直流电路中的第一路高压直流电路)。需要说明的是,上述3路高压直流电路中的其它高压直流电路导通或者断开的工作原理可参见上述第一路高压直流电路导通或者断开的工作原理,以下不再赘述。In some feasible embodiments, when current flows from the DC output module 4 to the DC input module 5a (i.e., the DC output module 4 is powered on), the coil 306 will generate a magnetic field after being powered on, and the moving iron core 319 will move upward under the action of the magnetic field generated by the coil 306, so that the contact bridge 316 moves in the direction of the DC output static contact 308 and the DC output static contact 309, the moving contact 317 contacts the DC output static contact 308 (i.e., tightly closed), and the moving contact 303 contacts the DC output static contact 309 (i.e., the DC output terminal 307 is connected to the DC output terminal 301 through the contact bridge 316), thereby turning on the DC circuit formed by the DC output module 4 and the DC input module 5a (i.e., the first high-voltage DC circuit in the above-mentioned n high-voltage DC circuits, n is 3). When the DC output module 4 is powered off, the coil 306 no longer generates a magnetic field after the power is turned off. At this time, the moving iron core 319 will move downward under the action of gravitational potential energy, so that the contact bridge 316 moves away from the DC output static contact 308 and the DC output static contact 309, and the moving contact 317 is separated from the DC output static contact 308 (i.e. disconnected), and the moving contact 303 is separated from the DC output static contact 309 (i.e. the DC output terminal 307 and the DC output terminal 301 are disconnected), thereby disconnecting the DC circuit formed by the DC output module 4 and the DC input module 5a (i.e. the first high-voltage DC circuit of the above three high-voltage DC circuits). It should be noted that the working principle of the conduction or disconnection of other high-voltage DC circuits in the above three high-voltage DC circuits can refer to the working principle of the conduction or disconnection of the above first high-voltage DC circuit, which will not be repeated below.

在一些可行的实施方式中,上述三进一出独立控制的常开接触器的俯视图可以如上述图16所示,塑料壳体316(即第一塑料壳体71a)和塑料壳体314(即第一塑料壳体71b)相对设置于直流输出静触头308(即直流输出静触头210a)的两侧;塑料壳体317(即第二塑料壳体81a)和塑料壳体318(即第二塑料壳体81b)相对设置于直流输出静触头309(即直流输入静触头110a)的两侧;灭弧栅315(即第一灭弧栅51n+1)还设置有排气孔313(即第一排气孔514n+1),灭弧栅311(即第二灭弧栅51a)还设置有排气孔319(即第一排气孔510a)。在断开上述4路高压直流电路中的第一路高压直流电路的过程中,灭弧栅315可对动触头317与直流输出静触头308断开时产生的电弧进行灭弧,排气孔319可对动触头303与直流输出静触头309断开时产生的电弧进行灭弧,从而通过分开设置灭弧栅对不同方向的电弧进行灭弧,避免了电弧对吹导致的短路风险,并且这种灭弧栅的放置方式可降低常开接触器的整体高度;排气孔313和排气孔319可将电弧伴随产生的高热气体排出,塑料外壳302上预留的第二排气孔(图中未示出)可将排气孔313和排气孔319排出的高热气体排出塑料外壳302,从而保护塑料外壳302不被烧坏,适用性更强。In some feasible embodiments, the top view of the above-mentioned three-input and one-output independently controlled normally open contactor can be as shown in Figure 16 above, the plastic shell 316 (i.e., the first plastic shell 71a) and the plastic shell 314 (i.e., the first plastic shell 71b) are relatively arranged on both sides of the DC output static contact 308 (i.e., the DC output static contact 210a); the plastic shell 317 (i.e., the second plastic shell 81a) and the plastic shell 318 (i.e., the second plastic shell 81b) are relatively arranged on both sides of the DC output static contact 309 (i.e., the DC input static contact 110a); the arc extinguishing grid 315 (i.e., the first arc extinguishing grid 51n+1) is also provided with an exhaust hole 313 (i.e., the first exhaust hole 514n+1), and the arc extinguishing grid 311 (i.e., the second arc extinguishing grid 51a) is also provided with an exhaust hole 319 (i.e., the first exhaust hole 510a). In the process of disconnecting the first high-voltage DC circuit among the above-mentioned four high-voltage DC circuits, the arc extinguishing grid 315 can extinguish the arc generated when the moving contact 317 is disconnected from the DC output static contact 308, and the exhaust hole 319 can extinguish the arc generated when the moving contact 303 is disconnected from the DC output static contact 309, so that arcs in different directions are extinguished by separately setting arc extinguishing grids, thereby avoiding the risk of short circuit caused by arc blowing, and the placement of this arc extinguishing grid can reduce the overall height of the normally open contactor; the exhaust holes 313 and the exhaust holes 319 can discharge the high-temperature gas generated by the arc, and the second exhaust hole (not shown in the figure) reserved on the plastic shell 302 can discharge the high-temperature gas discharged from the exhaust holes 313 and the exhaust holes 319 out of the plastic shell 302, thereby protecting the plastic shell 302 from being burned, and having stronger applicability.

其中,上述图16所示的俯视图可直接显示:塑料外壳302,直流输出端子307,直流输出静触头308及其相邻设置的直流输出静触头和相对设置的直流输出静触头(即3个直流输出静触头);直流输出端子301及其相邻设置的直流输出端子和相对设置的直流输出端子(即3个直流输入端子),直流输出静触头309及其相邻设置的直流输出静触头和相对设置的直流输出静触头(即3个直流输入静触头);灭弧栅315及其相对设置的灭弧栅(即2个第一灭弧栅),灭弧栅311及其相邻设置的灭弧栅和相对设置的灭弧栅(即3个第二灭弧栅),其中,2个第一灭弧栅和3个第二灭弧栅可构成5个灭弧栅;直流输出静触头308两侧的塑料壳体316和塑料壳体314,3个直流输出静触头中其它两个直流输出静触头两侧的2个塑料壳体(即4个第一塑料壳体),其中,塑料壳体316、塑料壳体314和4个第一塑料壳体构成6个第一塑料壳体;以及直流输出静触头309两侧的塑料壳体317和塑料壳体318,3个直流输出静触头中其它两个直流输入静触头两侧的2个塑料壳体(即4个第二塑料壳体),其中,塑料壳体317、塑料壳体318和4个第二塑料壳体构成6个第二塑料壳体。为方便描述,下面将以塑料壳体316、塑料壳体314、塑料壳体317和塑料壳体318为例进行说明。Among them, the top view shown in the above-mentioned Figure 16 can directly show: the plastic housing 302, the DC output terminal 307, the DC output static contact 308 and its adjacent DC output static contact and the opposite DC output static contact (i.e., three DC output static contacts); the DC output terminal 301 and its adjacent DC output terminal and the opposite DC output terminal (i.e., three DC input terminals), the DC output static contact 309 and its adjacent DC output static contact and the opposite DC output static contact (i.e., three DC input static contacts); the arc extinguishing grid 315 and its opposite arc extinguishing grid (i.e., two first arc extinguishing grids), the arc extinguishing grid 311 and its adjacent arc extinguishing grid and the opposite arc extinguishing grid (i.e., three second arc extinguishing grids), Among them, the two first arc extinguishing grids and the three second arc extinguishing grids can constitute five arc extinguishing grids; the plastic shell 316 and the plastic shell 314 on both sides of the DC output static contact 308, the two plastic shells on both sides of the other two DC output static contacts among the three DC output static contacts (i.e., four first plastic shells), wherein the plastic shell 316, the plastic shell 314 and the four first plastic shells constitute six first plastic shells; and the plastic shell 317 and the plastic shell 318 on both sides of the DC output static contact 309, the two plastic shells on both sides of the other two DC input static contacts among the three DC output static contacts (i.e., four second plastic shells), wherein the plastic shell 317, the plastic shell 318 and the four second plastic shells constitute six second plastic shells. For the convenience of description, the following will be described by taking the plastic shell 316, the plastic shell 314, the plastic shell 317 and the plastic shell 318 as examples.

在一些可行的实施方式中,上述塑料壳体316和塑料壳体314内均嵌入有磁块(即第一磁块),且塑料壳体316和塑料壳体314中的磁块平行设置,塑料壳体316和塑料壳体314中的磁块的放置方式遵从左手定则。其中,上述塑料壳体316和塑料壳体314中的磁块产生的磁场力可共同作用将动触头317与直流输出静触头309分离时产生的电弧吹向灭弧栅315,使得灭弧栅315对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图16所示的6个第一塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体316和塑料壳体314的结构及其工作原理,以下不再赘述。上述塑料壳体317和塑料壳体318内嵌入有磁块(即第二磁块),且塑料壳体317和塑料壳体318中的磁块平行设置,塑料壳体317和塑料壳体318中的磁块的放置方式遵从左手定则。其中,塑料壳体317和塑料壳体318中的磁块产生的磁场力可共同作用将动触头303与直流输出静触头309分离时产生的电弧吹向灭弧栅311,使得灭弧栅311对该电弧进行分割灭弧,进一步提升了灭弧栅的灭弧效率,适用性更强。需要说明的是,上述图16所示的6个第二塑料壳体中的其它塑料壳体的结构及其工作原理可参见上述塑料壳体317和塑料壳体318的结构及其工作原理,以下不再赘述。In some feasible embodiments, magnetic blocks (i.e., first magnetic blocks) are embedded in the plastic shell 316 and the plastic shell 314, and the magnetic blocks in the plastic shell 316 and the plastic shell 314 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 316 and the plastic shell 314 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 316 and the plastic shell 314 can work together to blow the arc generated when the moving contact 317 is separated from the DC output static contact 309 to the arc extinguishing grid 315, so that the arc extinguishing grid 315 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the six first plastic shells shown in Figure 16 can refer to the structure and working principle of the plastic shell 316 and the plastic shell 314, and will not be repeated below. A magnetic block (i.e., a second magnetic block) is embedded in the plastic shell 317 and the plastic shell 318, and the magnetic blocks in the plastic shell 317 and the plastic shell 318 are arranged in parallel, and the placement of the magnetic blocks in the plastic shell 317 and the plastic shell 318 complies with the left-hand rule. Among them, the magnetic field force generated by the magnetic blocks in the plastic shell 317 and the plastic shell 318 can work together to blow the arc generated when the moving contact 303 is separated from the DC output static contact 309 to the arc extinguishing grid 311, so that the arc extinguishing grid 311 divides the arc and extinguishes the arc, further improving the arc extinguishing efficiency of the arc extinguishing grid, and making it more applicable. It should be noted that the structure and working principle of the other plastic shells in the six second plastic shells shown in Figure 16 can refer to the structure and working principle of the plastic shell 317 and the plastic shell 318, and will not be repeated below.

在一些可行的实施方式中,在直流接触器1b为常闭接触器的情况下,上述电磁装置31a至电磁装置31n中的任意一个电磁装置,在电流由直流输入模块5a至直流输入模块5n中的任意一个直流输入模块流向直流输出模块4(即任意一个电磁装置中的线圈通电)时,控制触桥41a至触桥41n中的任意一个触桥向远离直流输出静触头210a至直流输出静触头210n中的任意一个直流输出静触头和直流输入端子11a至直流输入端子11n中任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头分离、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头分离,这时已断开上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制上述n路高压直流电路断开的目的。可选的,任意一个电磁装置还可在任意一个直流输入模块断电(即任意一个电磁装置中的线圈断电)时,控制任意一个触桥向任意一个直流输出静触头和任意一个直流输入端子的直流输入静触头的方向运动,从而使得任意一个触桥的第一动触头与任意一个直流输出静触头接触、且任意一个触桥的第二动触头与任意一个直流输入端子的直流输入静触头接触,这时已导通上述n路高压直流电路中的任意一路高压直流电路,进而可实现独立控制n路高压直流电路导通的目的。In some feasible embodiments, when the DC contactor 1b is a normally closed contactor, any one of the electromagnetic devices 31a to 31n controls any one of the contact bridges 41a to 41n to move in a direction away from any one of the DC output static contacts 210a to 210n and the DC input static contact of any one of the DC input terminals 11a to 11n when current flows from any one of the DC input modules 5a to 5n to the DC output module 4 (i.e., the coil in any one of the electromagnetic devices is energized), so that the first moving contact of any one of the contact bridges is separated from any one of the DC output static contacts, and the second moving contact of any one of the contact bridges is separated from the DC input static contact of any one of the DC input terminals. At this time, any one of the n high-voltage DC circuits is disconnected, thereby achieving the purpose of independently controlling the disconnection of the n high-voltage DC circuits. Optionally, when any DC input module is powered off (i.e., the coil in any electromagnetic device is powered off), any electromagnetic device can control any contact bridge to move toward any DC output static contact and any DC input static contact of any DC input terminal, so that the first moving contact of any contact bridge contacts with any DC output static contact, and the second moving contact of any contact bridge contacts with the DC input static contact of any DC input terminal. At this time, any one of the n high-voltage DC circuits mentioned above is turned on, thereby achieving the purpose of independently controlling the conduction of the n high-voltage DC circuits.

由此可见,该常闭接触器可实现独立控制n路高压直流电路导通或者断开的目的,可靠性更高;另外,不需要设置辅助触点来判断接触器的开闭状态(即导通状态或者断开状态),不容易受到环境震动的影响,稳定性高且成本更低,适用性更强。由于一个直流接触器1b(如上述磁保持接触器、常开接触器或者常闭接触器)就可以导通或者断开n路高压直流电路,因此可有效节省直流接触器1b所占用的空间以及成本,安装更加方便,直流接触器1b的工作效率更高,适用性更强。It can be seen that the normally closed contactor can achieve the purpose of independently controlling the conduction or disconnection of n high-voltage DC circuits, and has higher reliability; in addition, there is no need to set auxiliary contacts to determine the open and closed state of the contactor (i.e., the conduction state or the disconnection state), and it is not easily affected by environmental vibrations, has high stability and lower cost, and is more applicable. Since a DC contactor 1b (such as the above-mentioned magnetic latching contactor, normally open contactor, or normally closed contactor) can conduct or disconnect n high-voltage DC circuits, the space and cost occupied by the DC contactor 1b can be effectively saved, the installation is more convenient, the DC contactor 1b has higher working efficiency, and is more applicable.

在本申请提供的直流接触器1b中,可通过至少两个直流输出静触头、直流输入端子(及其直流输入静触头)、电磁装置、触桥(及其动触头)、灭弧栅、嵌入第一磁块的第一塑料壳体以及嵌入第二磁块的第二塑料壳体,实现在独立控制至少两路高压直流电路导通或者断开的同时进行灭弧,从而可避免烧蚀动触头和静触头,提高了直流接触器1b的稳定性和安全性,延长了直流接触器1b的使用寿命。另外,由于一个直流接触器1b就可以导通或者断开至少两路高压直流电路,因此可有效节省直流接触器1b所占用的空间以及成本,安装更加方便,直流接触器1b的工作效率高,适用性强。In the DC contactor 1b provided in the present application, arc extinguishing can be achieved while independently controlling the conduction or disconnection of at least two high-voltage DC circuits through at least two DC output static contacts, a DC input terminal (and its DC input static contact), an electromagnetic device, a contact bridge (and its moving contact), an arc extinguishing grid, a first plastic shell embedded in a first magnetic block, and a second plastic shell embedded in a second magnetic block, thereby avoiding the ablation of the moving contact and the static contact, improving the stability and safety of the DC contactor 1b, and extending the service life of the DC contactor 1b. In addition, since a DC contactor 1b can conduct or disconnect at least two high-voltage DC circuits, the space and cost occupied by the DC contactor 1b can be effectively saved, the installation is more convenient, and the DC contactor 1b has high working efficiency and strong applicability.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed by the present invention, which should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (26)

1. The direct current contactor is characterized by comprising a direct current input terminal, at least two direct current output terminals, at least two electromagnetic devices, at least two contact bridges and at least two arc extinguishing grids, wherein one end of the direct current input terminal is provided with at least two direct current input fixed contacts, the other end of the direct current input terminal is used for being connected with a direct current input module, one end of each direct current output terminal in the at least two direct current output terminals is provided with a direct current output fixed contact, the other end of each direct current output terminal is used for being connected with a direct current output module, and each contact bridge in the at least two contact bridges is provided with a first moving contact and a second moving contact;
one electromagnetic device of the at least two electromagnetic devices is used for controlling one contact bridge of the at least two contact bridges to move, wherein the movement of any one contact bridge is used for controlling the first moving contact of any one contact bridge to contact any one of the at least two direct current input fixed contacts, the second moving contact of any one contact bridge to contact the direct current output fixed contact of any one of the at least two direct current output terminals, or controlling the first moving contact of any one contact bridge to be separated from the any one direct current input fixed contact and the second moving contact of any one contact bridge to be separated from the direct current output fixed contact of any one direct current output terminal;
Any one of the at least two arc-extinguishing grids is used for extinguishing an arc generated when the first moving contact of any one contact bridge is separated from any one direct current input fixed contact, and/or extinguishing an arc generated when the second moving contact of any one contact bridge is separated from the direct current output fixed contact of any one direct current output terminal.
2. The direct current contactor according to claim 1, wherein said any one of said arc extinguishing bars is disposed between said any one of said direct current input stationary contacts and said direct current output stationary contact of said any one of said direct current output terminals.
3. The direct current contactor according to claim 2, wherein the any one of the arc extinguishing grids comprises a first grid set, a second grid set and an insulating partition board, wherein the first grid set faces the any one of the direct current input static contacts, the second grid set faces the direct current output static contact of the any one of the direct current output terminals, and the first grid set and the second grid set are isolated by the insulating partition board.
4. The direct current contactor according to claim 3, further comprising a plurality of first plastic housings, wherein a first magnetic block is embedded in each of the plurality of first plastic housings, wherein any two first plastic housings of the plurality of first plastic housings are arranged on two sides of the any one direct current input static contact, the any two first plastic housings are arranged oppositely, and the first magnetic blocks of the any two first plastic housings are arranged in parallel;
The magnetic field force generated by the first magnetic blocks in any two first plastic shells is used for blowing an electric arc generated when the first moving contact of any one contact bridge is separated from any one direct current input fixed contact to the first grid sheet group of any one arc extinguishing grid.
5. The direct current contactor according to claim 4, wherein two first magnetic blocks vertically arranged are embedded in each first plastic housing, a magnetism isolating material is arranged at one end of each first plastic housing, where the two first magnetic blocks vertically intersect, and the two first magnetic blocks of each first plastic housing face the direct current input fixed contact adjacent to the direct current input fixed contact.
6. The direct current contactor according to any one of claims 3 to 5, further comprising a plurality of second plastic housings, wherein a second magnetic block is embedded in each of the plurality of second plastic housings, wherein any two second plastic housings of the plurality of second plastic housings are arranged on both sides of the direct current output static contact of any one direct current output terminal, and the any two second plastic housings are arranged opposite to each other, and the second magnetic blocks of the any two second plastic housings are arranged in parallel;
The magnetic field force generated by the second magnetic blocks in any two second plastic shells is used for blowing an electric arc generated when the second moving contact of any one contact bridge is separated from the direct current output static contact of any one direct current output terminal to the second grid sheet group of any one arc extinguishing grid.
7. The direct current contactor according to claim 1, wherein the at least two arc-extinguishing bars include at least one first arc-extinguishing bar and at least two second arc-extinguishing bars, any one of the at least one first arc-extinguishing bar and any one of the at least two second arc-extinguishing bars are respectively disposed at two ends of the any one contact bridge, the any one first arc-extinguishing bar is disposed between the any one contact bridge and another one of the at least two contact bridges, the any one contact bridge is disposed opposite to the another contact bridge, and the any one first arc-extinguishing bar is disposed at a side of the any one direct current input static contact toward the electromagnetic device.
8. The direct current contactor according to claim 7, further comprising a plurality of first plastic housings, wherein each of the plurality of first plastic housings is embedded with a first magnetic block, wherein any two first plastic housings of the plurality of first plastic housings are disposed on two sides of the any one direct current input static contact, and the any two first plastic housings are disposed opposite to each other, and the first magnetic blocks of the any two first plastic housings are disposed in parallel;
The magnetic field force generated by the first magnetic blocks in any two first plastic shells is used for blowing an electric arc generated when the first moving contact of any one contact bridge is separated from any one direct current input fixed contact to any one first arc extinguishing grid.
9. The direct current contactor according to claim 7 or 8, wherein the first arc extinguishing grid comprises a first grid group, a second grid group and an insulating partition board, wherein the first grid group faces the first contact bridge, the second grid group faces the second contact bridge, and the first grid group and the second grid group are isolated by the insulating partition board.
10. The direct current contactor according to claim 7 or 8, further comprising a plurality of second plastic housings, wherein a second magnetic block is embedded in each of the plurality of second plastic housings, wherein any two second plastic housings of the plurality of second plastic housings are arranged on two sides of the direct current output static contact of any one direct current output terminal, and the any two second plastic housings are arranged oppositely, and the second magnetic blocks in the any two second plastic housings are arranged in parallel;
The magnetic field force generated by the second magnetic blocks in any two second plastic shells is used for blowing an electric arc generated when the second moving contact of any one contact bridge is separated from the direct current output static contact of any one direct current output terminal to any one second arc extinguishing gate.
11. The direct current contactor according to claim 1, wherein each of said at least two arc suppressing grids is provided with a first exhaust hole;
The first exhaust hole is used for exhausting gas generated by the electric arc.
12. The direct current contactor according to claim 11, further comprising a third plastic housing, wherein the at least two electromagnetic devices, the at least two contact bridges, the at least two direct current input stationary contacts, the at least two direct current output stationary contacts of the direct current output terminals, and the at least two arc suppressing grids are all disposed within the third plastic housing, the third plastic housing being provided with a second exhaust hole;
the second exhaust hole is used for exhausting the gas exhausted by the first exhaust hole out of the third plastic shell.
13. The direct current contactor according to claim 1, wherein the direct current contactor comprises a magnetically held contactor, a normally open contactor, or a normally closed contactor.
14. The direct current contactor is characterized by comprising a direct current output terminal, at least two direct current input terminals, at least two electromagnetic devices, at least two contact bridges and at least two arc extinguishing grids, wherein one end of the direct current output terminal is provided with at least two direct current output fixed contacts, the other end of the direct current output terminal is used for being connected with a direct current output module, one end of each direct current input terminal in the at least two direct current input terminals is provided with a direct current input fixed contact, the other end of each direct current input terminal is used for being connected with the direct current input module, and each contact bridge in the at least two contact bridges is provided with a first moving contact and a second moving contact;
One electromagnetic device of the at least two electromagnetic devices is used for controlling one contact bridge of the at least two contact bridges to move, wherein the movement of any one contact bridge is used for controlling the first moving contact of any one contact bridge to contact any one of the at least two direct current output fixed contacts, the second moving contact of any one contact bridge to contact the direct current input fixed contact of any one of the at least two direct current input terminals, or controlling the first moving contact of any one contact bridge to be separated from the any one direct current output fixed contact and the second moving contact of any one contact bridge to be separated from the direct current input fixed contact of any one direct current input terminal;
Any one of the at least two arc-extinguishing grids is used for extinguishing an arc generated when the first moving contact of any one contact bridge is separated from any one direct-current output fixed contact, and/or extinguishing an arc generated when the second moving contact of any one contact bridge is separated from the direct-current input fixed contact of any one direct-current input terminal.
15. The direct current contactor according to claim 14, wherein said any one of said arc suppressing grids is disposed between said any one of said direct current output stationary contacts and said direct current input stationary contact of said any one of said direct current input terminals.
16. The direct current contactor according to claim 15, wherein the any one of the arc extinguishing grids comprises a first grid set, a second grid set and an insulating partition board, wherein the first grid set faces the any one of the direct current output static contacts, the second grid set faces the direct current input static contact of the any one of the direct current input terminals, and the first grid set and the second grid set are isolated by the insulating partition board.
17. The direct current contactor according to claim 16, further comprising a plurality of first plastic housings, wherein each of the plurality of first plastic housings is embedded with a first magnetic block, wherein two sides of the arbitrary direct current output static contact are provided with any two of the plurality of first plastic housings, and the first magnetic blocks in the arbitrary two first plastic housings are arranged in parallel;
The magnetic field force generated by the first magnetic blocks in any two first plastic shells is used for blowing an electric arc generated when the first moving contact of any one contact bridge is separated from any one direct current output fixed contact to the first grid sheet group of any one arc extinguishing grid.
18. The direct current contactor according to claim 17, wherein two first magnetic blocks vertically placed are embedded in each first plastic housing, a magnetism isolating material is disposed at one end of each first plastic housing where the two first magnetic blocks vertically intersect, and the two first magnetic blocks of each first plastic housing face the any one direct current output static contact and the adjacent direct current output static contact respectively.
19. The direct current contactor according to any one of claims 16 to 18, further comprising a plurality of second plastic housings, wherein a second magnetic block is embedded in each of the plurality of second plastic housings, wherein any two second plastic housings of the plurality of second plastic housings are arranged on both sides of the direct current input stationary contact of any one direct current input terminal, and the any two second plastic housings are arranged opposite to each other, and the second magnetic blocks of the any two second plastic housings are arranged in parallel;
the magnetic field force generated by the second magnetic blocks in any two second plastic shells is used for blowing the electric arc generated when the second moving contact of any one contact bridge is separated from the direct current input fixed contact of any one direct current input terminal to the second grid sheet group of any one arc extinguishing grid.
20. The direct current contactor of claim 14, wherein the at least two arc-extinguishing bars comprise at least one first arc-extinguishing bar and at least two second arc-extinguishing bars, wherein any one of the at least one first arc-extinguishing bar and any one of the at least two second arc-extinguishing bars are respectively disposed at two ends of the any one contact bridge, the any one first arc-extinguishing bar is disposed between the any one contact bridge and another one of the at least two contact bridges, the any one contact bridge is disposed opposite to the another contact bridge, and the any one first arc-extinguishing bar is disposed at a side of the any one direct current output static contact toward the electromagnetic device.
21. The direct current contactor according to claim 20, further comprising a plurality of first plastic housings, wherein each of the plurality of first plastic housings is embedded with a first magnetic block, wherein any two first plastic housings of the plurality of first plastic housings are disposed on two sides of the any one direct current output static contact, and the any two first plastic housings are disposed opposite to each other, and the first magnetic blocks of the any two first plastic housings are disposed in parallel;
the magnetic field force generated by the first magnetic blocks in any two first plastic shells is used for blowing an electric arc generated when the first moving contact of any one contact bridge is separated from any one direct current output fixed contact to any one first arc extinguishing grid.
22. The direct current contactor according to claim 20 or 21, wherein the first arc extinguishing grid comprises a first grid group, a second grid group and an insulating partition board, wherein the first grid group faces the first contact bridge, the second grid group faces the second contact bridge, and the first grid group and the second grid group are isolated by the insulating partition board.
23. The direct current contactor according to claim 20 or 21, further comprising a plurality of second plastic housings, wherein a second magnetic block is embedded in each of the plurality of second plastic housings, wherein any two second plastic housings of the plurality of second plastic housings are arranged on both sides of the direct current input static contact of any one direct current input terminal, and the any two second plastic housings are arranged opposite to each other, and the second magnetic blocks in the any two second plastic housings are arranged in parallel;
The magnetic field force generated by the second magnetic blocks in any two second plastic shells is used for blowing an electric arc generated when the second moving contact of any one contact bridge is separated from the direct current input fixed contact of any one direct current input terminal to any one second arc extinguishing gate.
24. The direct current contactor according to claim 14, wherein each of said at least two arc chute is provided with a first vent;
The first exhaust hole is used for exhausting gas generated by the electric arc.
25. The direct current contactor according to claim 24, further comprising a third plastic housing, wherein the at least two electromagnetic devices, the at least two contact bridges, the at least two direct current output stationary contacts, the direct current input stationary contacts of the at least two direct current input terminals, and the at least two arc suppressing grids are all disposed within the third plastic housing, the third plastic housing being provided with a second exhaust vent;
the second exhaust hole is used for exhausting the gas exhausted by the first exhaust hole out of the third plastic shell.
26. The direct current contactor according to claim 14, wherein the direct current contactor comprises a magnetically held contactor, a normally open contactor, or a normally closed contactor.
CN202210017404.6A 2022-01-07 2022-01-07 DC contactor Active CN114464502B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210017404.6A CN114464502B (en) 2022-01-07 2022-01-07 DC contactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210017404.6A CN114464502B (en) 2022-01-07 2022-01-07 DC contactor

Publications (2)

Publication Number Publication Date
CN114464502A CN114464502A (en) 2022-05-10
CN114464502B true CN114464502B (en) 2024-05-17

Family

ID=81410029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210017404.6A Active CN114464502B (en) 2022-01-07 2022-01-07 DC contactor

Country Status (1)

Country Link
CN (1) CN114464502B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098051A (en) * 2011-11-01 2013-05-20 Fuji Electric Co Ltd Electromagnetic contactor
DE102012208573A1 (en) * 2012-05-22 2013-11-28 Siemens Aktiengesellschaft Arc extinguishing device for extinguishing arc in single-interrupting protective switching device, has blowing loop producing magnetic field that drives arc between quenching plates, where loop is arranged between arc splitter stacks
CN204144166U (en) * 2014-08-09 2015-02-04 武汉长海电气科技开发有限公司 A kind of D.C. contactor
CN206789479U (en) * 2017-06-02 2017-12-22 深圳唐磁电气有限公司 A kind of magnetic operates selective branch vacuum breaker
EP3410454A1 (en) * 2017-05-31 2018-12-05 ABB Schweiz AG Electrical dc switching system
EP3428942A1 (en) * 2017-07-13 2019-01-16 Siemens Aktiengesellschaft Direct current device for eliminating arcing and electromechanical direct current switching device
CN111863538A (en) * 2020-06-24 2020-10-30 华为技术有限公司 Direct current contactor and vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098051A (en) * 2011-11-01 2013-05-20 Fuji Electric Co Ltd Electromagnetic contactor
DE102012208573A1 (en) * 2012-05-22 2013-11-28 Siemens Aktiengesellschaft Arc extinguishing device for extinguishing arc in single-interrupting protective switching device, has blowing loop producing magnetic field that drives arc between quenching plates, where loop is arranged between arc splitter stacks
CN204144166U (en) * 2014-08-09 2015-02-04 武汉长海电气科技开发有限公司 A kind of D.C. contactor
EP3410454A1 (en) * 2017-05-31 2018-12-05 ABB Schweiz AG Electrical dc switching system
CN206789479U (en) * 2017-06-02 2017-12-22 深圳唐磁电气有限公司 A kind of magnetic operates selective branch vacuum breaker
EP3428942A1 (en) * 2017-07-13 2019-01-16 Siemens Aktiengesellschaft Direct current device for eliminating arcing and electromechanical direct current switching device
CN111863538A (en) * 2020-06-24 2020-10-30 华为技术有限公司 Direct current contactor and vehicle

Also Published As

Publication number Publication date
CN114464502A (en) 2022-05-10

Similar Documents

Publication Publication Date Title
CN102893360B (en) DC switching device
US20210304995A1 (en) Switching device and method for operating a switching device
CN103515153A (en) Reliable arcing system of non-polarity high-voltage direct current contactor
CN108631013B (en) Battery system and method for its operation
CN103681037B (en) The switchgear of electric mechanical
CN114464502B (en) DC contactor
CN102262981B (en) Bipolar DC contactor
CN207233657U (en) A kind of combined type fusing contactor
CN103650086A (en) Switching device
CN110197781B (en) Structure for double break contacts with electromagnetic arc blow
CN102610456B (en) Thermomagnetic circuit breaker and controller switching equipment
CN201918324U (en) Dipolar direct-current contactor
US20220208488A1 (en) Arc-extinguishing unit structure for direct current air circuit breaker
CN210167312U (en) Sealed bipolar direct current contact device
CN218568692U (en) Contactor, energy storage system, fill electric pile and vehicle
CN204792618U (en) High voltage direct current relay
CN222440447U (en) High-voltage switching device, power converter and energy storage system
NAKA et al. “SVE135” Sealed High-Voltage Contactor Having High Overcurrent Withstand Capability
EP4177916A1 (en) A system of switching contacts with compensation of holm repulsion and switching device comprising same
Xu et al. Analysis, design, and testing of mechanical switch for the backup protection of switching network unit in fusion device
CN212990988U (en) High-voltage direct-current contactor capable of effectively performing magnetic blowout
CN219738857U (en) A contactor, energy storage system, charging pile and vehicle-mounted system
CN118156088A (en) Relay, power distribution device and charging pile
CN221176088U (en) Contactor
US20240405522A1 (en) Solution preventing permanent deformation in an arc fault event or short circuit event

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant