CN114463259A - Calculation method, device and equipment of dual-energy subtraction parameters and storage medium - Google Patents
Calculation method, device and equipment of dual-energy subtraction parameters and storage medium Download PDFInfo
- Publication number
- CN114463259A CN114463259A CN202111594066.4A CN202111594066A CN114463259A CN 114463259 A CN114463259 A CN 114463259A CN 202111594066 A CN202111594066 A CN 202111594066A CN 114463259 A CN114463259 A CN 114463259A
- Authority
- CN
- China
- Prior art keywords
- image
- energy
- subtraction
- region
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 title claims description 26
- 210000004872 soft tissue Anatomy 0.000 claims abstract description 68
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 61
- 238000012545 processing Methods 0.000 claims abstract description 49
- 230000000694 effects Effects 0.000 claims abstract description 15
- 238000001914 filtration Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 17
- 230000009977 dual effect Effects 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000010845 search algorithm Methods 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20092—Interactive image processing based on input by user
- G06T2207/20104—Interactive definition of region of interest [ROI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30008—Bone
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
技术领域technical field
本申请涉及图像处理技术领域,特别是一种双能减影参数的计算方法、装置、设备及存储介质。The present application relates to the technical field of image processing, and in particular, to a method, device, device and storage medium for calculating dual-energy subtraction parameters.
背景技术Background technique
现如今随着医疗影像技术的发展和普及,双能X射线摄影技术得到了越来越广泛的应用,双能减影(Dual-Energy Subtraction)是根据人体组织对高低能X射线的不同衰减特性,以X射线衰减物理模型为基础,借助数字图像处理技术,实现人体软组织和骨骼的影像分离。由于相对常规X线摄片,双能X线摄片耗时更长,同时,减影结果也常常受各种因素干扰,导致减影精度得不到保障,从而在一定程度上限制了该技术的临床普及。在双能X线摄片中,图像后处理是高耗时的主要环节,其中减影参数的搜索是导致处理效率低下的重要原因。Nowadays, with the development and popularization of medical imaging technology, dual-energy X-ray photography technology has been widely used. Dual-Energy Subtraction is based on the different attenuation characteristics of high and low energy X-rays by human tissue , based on the physical model of X-ray attenuation, with the help of digital image processing technology, to achieve image separation of human soft tissue and bone. Compared with conventional X-rays, dual-energy X-rays take longer, and at the same time, the subtraction results are often disturbed by various factors, resulting in the inability to guarantee the subtraction accuracy, which limits the technology to a certain extent. clinical popularity. In dual-energy X-ray radiography, image post-processing is a major time-consuming process, and the search for subtraction parameters is an important reason for low processing efficiency.
然而,搜索到的近似相关专利,《Method and Apparatus to AutomaticallyDetermine Tissue Cancellation Parameters in X-Ray Dual Energy Imaging》,申请人:GE Medical Systems Global Technology Company。该专利方案主要思想是在预设减影参数范围内最小化减影图像梯度,以获取软组织减影参数,然后根据软组织和骨骼减影参数的经验关系,确定骨骼减影参数。该方案在梯度计算中没有剔除非组织区域,导致这些区域信息干扰并影响计算结果准确性。此外,虽然该方案中已将图像缩小了数倍,但由于需要对每一个像素点都进行最优减影参数统计,因此效率偏低。《双能减影参数的估算方法及计算机可读存储介质》,申请人:深圳市安健科技股份有限公司。该专利方案主要思想是通过改变减影参数,最小化软组织点集方差以确定骨骼减影参数,同时最小化软组织点集与骨组织点集之间灰度差以确定软组织减影参数。该方法无论在计算方差还是灰度差中,都使用的是绝对灰度值,然而双能减影图像的灰度值存在归一化问题,使用绝对灰度值有较大误差风险。另外,基于骨骼点集和软组织点集间灰度差最小化判定最优软组织减影参数,从实验结果来看,效果并不是很理想,数值计算结果与视觉直观结果存在较明显差异。However, the searched closely related patent, "Method and Apparatus to Automatically Determine Tissue Cancellation Parameters in X-Ray Dual Energy Imaging", applicant: GE Medical Systems Global Technology Company. The main idea of the patented solution is to minimize the gradient of the subtracted image within the preset subtraction parameter range to obtain the soft tissue subtraction parameters, and then determine the bone subtraction parameters according to the empirical relationship between the soft tissue and the bone subtraction parameters. This scheme does not eliminate unorganized regions in the gradient calculation, which leads to the interference of information in these regions and affects the accuracy of the calculation results. In addition, although the image has been reduced several times in this scheme, the efficiency is low due to the need to perform optimal subtraction parameter statistics for each pixel point. "Estimation method of dual-energy subtraction parameters and computer-readable storage medium", applicant: Shenzhen Anjian Technology Co., Ltd. The main idea of the patented solution is to minimize the variance of the soft tissue point set to determine the bone subtraction parameters by changing the subtraction parameters, and at the same time minimize the grayscale difference between the soft tissue point set and the bone tissue point set to determine the soft tissue subtraction parameters. This method uses the absolute gray value in both the calculation of variance and gray difference. However, the gray value of the dual-energy subtraction image has a normalization problem, and the use of absolute gray value has a large error risk. In addition, the optimal soft tissue subtraction parameters are determined based on the minimization of the grayscale difference between the skeleton point set and the soft tissue point set. From the experimental results, the effect is not very satisfactory, and there are obvious differences between the numerical calculation results and the visual intuitive results.
目前,双能减影参数主要有人工搜索和计算机全自动搜索两种搜索方式。一种是人工搜索,即用户手动调整减影参数,实时阅片,直至获得最佳减影效果,同时确定最佳减影参数,人工搜索方式实现简单,精度较高,但操作繁琐,耗时费力,临床体验不佳。另一种是计算机全自动搜索,由计算机根据某种准则完全自动进行,不断搜索直到获得最佳减影参数,计算机全自动方式无需人工介入,省时省力,更利于临床应用。但是目前常用搜索方法普遍存在精度不足问题,数值计算结果与视觉直观结果存在较明显差异,搜索结果往往不是很理想,常常需要手动微调才能获得最终精确结果。At present, the parameters of dual-energy subtraction mainly include manual search and computer automatic search. One is manual search, that is, the user manually adjusts the subtraction parameters, reads the film in real time until the best subtraction effect is obtained, and at the same time determines the best subtraction parameters. The manual search method is simple to implement and has high precision, but the operation is cumbersome and time-consuming. Laborious, poor clinical experience. The other is the computer automatic search, which is completely automatically carried out by the computer according to certain criteria, and continues to search until the optimal subtraction parameters are obtained. However, the current commonly used search methods generally have the problem of insufficient precision. There are obvious differences between the numerical calculation results and the visual intuitive results. The search results are often not very ideal, and manual fine-tuning is often required to obtain the final accurate results.
发明内容SUMMARY OF THE INVENTION
鉴于所述问题,提出了本申请以便提供克服所述问题或者至少部分地解决所述问题的一种双能减影参数的计算方法、装置、设备及存储介质。In view of the problems, the present application is proposed to provide a method, apparatus, device and storage medium for calculating dual energy subtraction parameters that overcome the problems or at least partially solve the problems.
为了解决上述问题,本申请公开了一种双能减影参数的计算方法,应用于计算双能X线医学图像中阴影区域的软组织减影参数和骨骼减影参数,其中,所述双能X线医学图像包括高能图像和低能图像,包括步骤:In order to solve the above problems, the present application discloses a method for calculating dual energy subtraction parameters, which is applied to calculate the soft tissue subtraction parameters and bone subtraction parameters of the shadow area in dual energy X-ray medical images, wherein the dual energy X-ray Line medical images include high-energy images and low-energy images, including steps:
获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;Obtain the target dual-energy X-ray medical image, and perform registration processing on the target high-energy image and the target low-energy image;
依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;Determine the area to be measured according to the position of the maximum value of the gradient amplitude image of the preset area in the target low-energy image after registration processing, and determine the high-energy sub-image block corresponding to the area to be measured in the target high-energy image and a low-energy sub-image block corresponding to the region to be measured in the target low-energy image;
依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;According to the high-energy sub-image block and the low-energy sub-image block, determine the subtraction image corresponding to each pixel in the area to be measured, and determine the standard deviation and mean value of the subtraction image, according to the subtraction image The standard deviation and mean value of generating the relative standard deviation corresponding to each pixel in the area to be tested;
依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。The soft tissue subtraction parameter and the bone subtraction parameter are determined according to the minimum value of the relative standard deviation.
进一步地,所述依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块的步骤,包括:Further, the region to be measured is determined according to the position of the maximum value of the gradient amplitude image of the preset region in the low-energy image of the target after the registration process, and it is determined that the high-energy image of the target corresponds to the region to be measured. The step of the high-energy sub-image block and the low-energy sub-image block corresponding to the area to be measured in the target low-energy image, including:
确定配准处理后的所述目标低能图像中预设区域的位置,并依据预设区域内的像素生成所述梯度幅值图像;determining the position of the preset area in the target low-energy image after registration processing, and generating the gradient magnitude image according to the pixels in the preset area;
获取所述梯度幅值图像最大值的位置,并依据在所述目标低能图像中所述预设区域的位置对所述梯度幅值图像最大值的位置进行转换确定目标位置,以所述目标位置的邻域位置设置为待测区域;Obtain the position of the maximum value of the gradient amplitude image, and convert the position of the maximum value of the gradient amplitude image according to the position of the preset area in the target low-energy image to determine the target position, and use the target position The neighborhood position of is set as the area to be tested;
依据所述待测区域的位置,确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块。According to the position of the area to be measured, a high-energy sub-image block corresponding to the area to be measured in the target high-energy image and a low-energy sub-image block corresponding to the area to be measured in the low-energy image of the target are determined.
进一步地,所述确定配准处理后的所述目标低能图像中预设区域的位置,并依据预设区域内的像素生成所述梯度幅值图像的步骤,包括:Further, the step of determining the position of a preset area in the target low-energy image after registration processing, and generating the gradient magnitude image according to the pixels in the preset area, includes:
确定配准处理后的所述目标低能图像中预设区域的位置;determining the position of the preset area in the target low-energy image after registration processing;
将所述目标低能图像中预设区域的像素进行低通滤波处理;Perform low-pass filtering processing on the pixels of the preset area in the target low-energy image;
依据进行低通滤波处理后的预设区域内的像素生成所述梯度幅值图像。The gradient magnitude image is generated according to the pixels in the preset area after low-pass filtering.
进一步地,所述依据进行低通滤波处理后的预设区域内的像素生成所述梯度幅值图像的步骤,包括:Further, the step of generating the gradient magnitude image according to the pixels in the preset area after low-pass filtering processing includes:
确定进行低通滤波处理后的预设区域内的像素梯度的x分量和y分量;determining the x-component and the y-component of the pixel gradient in the preset region after the low-pass filtering process;
依据预设区域内的像素梯度的x分量和y分量生成所述梯度幅值图像。The gradient magnitude image is generated according to the x-component and the y-component of the pixel gradient in the preset area.
进一步地,所述依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差的步骤,包括:Further, the subtraction image corresponding to each pixel in the area to be measured is determined according to the high-energy sub-image block and the low-energy sub-image block, and the standard deviation and mean value of the subtraction image are determined, according to The step of generating the relative standard deviation corresponding to each pixel in the region to be measured from the standard deviation and mean of the subtracted image includes:
依据骨与软组织对X线光子的能量衰减方式和光电吸收效应的差异,并结合所述待测区域内每个像素对应的高能子图像块与低能子图像块的比值确定所述待测区域内每个像素对应的减影图像;According to the difference in the energy attenuation mode and photoelectric absorption effect of bone and soft tissue on X-ray photons, and combined with the ratio of the high-energy sub-image block and the low-energy sub-image block corresponding to each pixel in the to-be-measured area to determine the area to be measured. The subtraction image corresponding to each pixel;
确定出所述所述待测区域内每个像素对应的减影图像的标准差和均值;determining the standard deviation and mean of the subtracted image corresponding to each pixel in the region to be tested;
依据所述待测区域内每个像素对应的减影图像的标准差与均值的比值生成所述待测区域内每个像素对应的相对标准差。The relative standard deviation corresponding to each pixel in the to-be-measured area is generated according to the ratio of the standard deviation of the subtracted image corresponding to each pixel in the to-be-measured area to the mean value.
进一步地,所述依据所述相对标准差的最小值确定软组织减影参数,并依据所述软组织减影参数确定骨骼减影参数的步骤,包括:Further, the steps of determining soft tissue subtraction parameters according to the minimum value of the relative standard deviation, and determining bone subtraction parameters according to the soft tissue subtraction parameters, include:
依据所述相对标准差的最小值对应的减影参数确定为软组织减影参数;Determining the subtraction parameter corresponding to the minimum value of the relative standard deviation as the soft tissue subtraction parameter;
依据所述软组织减影参数和预设权重确定骨骼减影参数。The bone subtraction parameter is determined according to the soft tissue subtraction parameter and the preset weight.
进一步地,所述依据所述软组织减影参数和预设权重确定骨骼减影参数的步骤,包括:Further, the step of determining the bone subtraction parameters according to the soft tissue subtraction parameters and the preset weights includes:
依据所述软组织减影参数与预设权重的和确定骨骼减影参数;其中,所述预设权重的数值为0.25。The bone subtraction parameter is determined according to the sum of the soft tissue subtraction parameter and the preset weight; wherein the value of the preset weight is 0.25.
一种双能减影参数的计算装置,应用于计算双能X线医学图像中阴影区域的软组织减影参数和骨骼减影参数,其中,所述双能X线医学图像包括高能图像和低能图像,包括:A computing device for dual energy subtraction parameters, which is applied to calculate soft tissue subtraction parameters and bone subtraction parameters in shadow areas in dual energy X-ray medical images, wherein the dual energy X-ray medical images include high-energy images and low-energy images ,include:
配准模块,用于获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;The registration module is used to obtain the target dual-energy X-ray medical image, and perform registration processing on the target high-energy image and the target low-energy image;
确定模块,用于依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;A determination module, configured to determine the area to be measured according to the position of the maximum value of the gradient amplitude image of the preset area in the low-energy image of the target after registration processing, and determine the area to be measured in the high-energy image of the target corresponding to the area to be measured The high-energy sub-image block and the low-energy sub-image block corresponding to the area to be measured in the target low-energy image;
计算模块,用于依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;A calculation module, configured to determine the subtraction image corresponding to each pixel in the area to be measured according to the high-energy sub-image block and the low-energy sub-image block, and determine the standard deviation and mean value of the subtraction image, according to The standard deviation and mean of the subtracted image generate the relative standard deviation corresponding to each pixel in the area to be measured;
输出模块,用于依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。An output module, configured to determine the soft tissue subtraction parameter and the bone subtraction parameter according to the minimum value of the relative standard deviation.
一种计算机设备,包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的一种双能减影参数的计算方法的步骤。A computer device, comprising a processor, a memory, and a computer program stored on the memory and capable of running on the processor, the computer program being executed by the processor to achieve the above-mentioned dual-energy The steps of the calculation method of the subtraction parameters.
一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的一种双能减影参数的计算方法的步骤。A computer-readable storage medium stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the steps of the above-mentioned method for calculating a dual-energy subtraction parameter.
本申请具有以下优点:This application has the following advantages:
在本申请的实施例中,通过获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。本申请通过从低能图像中提取包含骨骼边缘的预设大小的矩形区域,以此为感兴趣区(ROI),即待测区域,计算不同像素下减影图像中该ROI区域的相对标准差,取最小相对标准差对应的减影参数为软组织减影参数,然后根据骨骼和软组织减影参数的经验关系,确定骨骼减影参数;本申请ROI的确定不涉及复杂的特征提取,实际用于计算的图像ROI远小于图像尺寸,大大提升了算法效率,从原理上使得算法具有较好的鲁棒性和较低的计算开销,易于实现,为临床快速获取准确的双能减影结果提供了保障,为进一步影像学诊断打下基础;此外,相对标准差曲线通常具有良好的凸性质,确保了搜索算法可以获得一个较稳定的最优值,以相对标准差基于骨骼边缘可见度为判定准则,判定结果更符合人眼直观结果,效果较为良好,基本可以实现一次性满足临床要求而无需人工微调。In the embodiment of the present application, by acquiring the target dual-energy X-ray medical image, and performing registration processing on the target high-energy image and the target low-energy image; The position of the maximum value of the value image determines the area to be measured, and determines the high-energy sub-image block corresponding to the area to be measured in the high-energy image of the target and the low-energy sub-image corresponding to the area to be measured in the low-energy image of the target block; determine the subtraction image corresponding to each pixel in the area to be measured according to the high-energy sub-image block and the low-energy sub-image block, and determine the standard deviation and mean value of the subtraction image, according to the subtraction image The relative standard deviation corresponding to each pixel in the region to be measured is generated by the standard deviation and mean value of the shadow image; the soft tissue subtraction parameter and the bone subtraction parameter are determined according to the minimum value of the relative standard deviation. In the present application, by extracting a rectangular area with a preset size including the edge of the bone from the low-energy image, and using this as a region of interest (ROI), that is, the area to be measured, the relative standard deviation of the ROI area in the subtraction image under different pixels is calculated, Take the subtraction parameter corresponding to the minimum relative standard deviation as the soft tissue subtraction parameter, and then determine the bone subtraction parameter according to the empirical relationship between the bone and the soft tissue subtraction parameter; the determination of the ROI in this application does not involve complex feature extraction, and is actually used for calculation. The ROI of the image is much smaller than the image size, which greatly improves the efficiency of the algorithm. In principle, the algorithm has better robustness and lower computational overhead, which is easy to implement and provides a guarantee for the clinical rapid acquisition of accurate dual-energy subtraction results. , to lay a foundation for further imaging diagnosis; in addition, the relative standard deviation curve usually has a good convexity, which ensures that the search algorithm can obtain a relatively stable optimal value. It is more in line with the intuitive results of the human eye, and the effect is relatively good, and it can basically meet the clinical requirements at one time without manual fine-tuning.
附图说明Description of drawings
为了更清楚地说明本申请的技术方案,下面将对本申请的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the present application more clearly, the following briefly introduces the drawings used in the description of the present application. Obviously, the drawings in the following description are only some embodiments of the present application, which are of great significance to the art. For those of ordinary skill, other drawings can also be obtained from these drawings without creative labor.
图1是本申请一实施例提供的一种双能减影参数的计算方法的步骤流程图;1 is a flow chart of steps of a method for calculating dual-energy subtraction parameters provided by an embodiment of the present application;
图2是本申请一实施例提供的一种双能减影参数的计算方法的步骤流程图;2 is a flowchart of steps of a method for calculating dual-energy subtraction parameters provided by an embodiment of the present application;
图3是本申请一实施例提供的一种双能减影参数的计算方法的相对标准差曲线示意图;3 is a schematic diagram of a relative standard deviation curve of a method for calculating a dual-energy subtraction parameter provided by an embodiment of the present application;
图4是本申请一实施例提供的一种双能减影参数的计算方法的效果图;4 is an effect diagram of a method for calculating a dual-energy subtraction parameter provided by an embodiment of the present application;
图5是本申请一实施例提供的一种双能减影参数的计算装置的结构框图;5 is a structural block diagram of a device for calculating dual-energy subtraction parameters provided by an embodiment of the present application;
图6是本申请一实施例提供的一种双能减影参数的计算方法的计算机设备的结构示意图。FIG. 6 is a schematic structural diagram of a computer device for a method for calculating dual-energy subtraction parameters provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本申请的所述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the objects, features and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and specific embodiments. Obviously, the described embodiments are some, but not all, embodiments of the present application. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
本申请的核心构思之处在于,通过获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。The core idea of the present application is that, by acquiring the target dual-energy X-ray medical image, the target high-energy image and the target low-energy image are registered; The position of the maximum value of the amplitude image determines the area to be measured, and determines the high-energy sub-image block corresponding to the area to be measured in the high-energy image of the target and the low-energy sub-image block corresponding to the area to be measured in the low-energy image of the target Image block; determine the subtraction image corresponding to each pixel in the area to be measured according to the high-energy sub-image block and the low-energy sub-image block, and determine the standard deviation and mean value of the subtraction image, according to the The standard deviation and mean of the subtracted images generate the relative standard deviation corresponding to each pixel in the area to be measured; the soft tissue subtraction parameter and the bone subtraction parameter are determined according to the minimum value of the relative standard deviation.
需要说明的是,在本申请任一实施例中,数字图像由二维的元素组成,每一个元素具有一个特定的位置(x,y)和幅值f(x,y),这些元素被称为像素。边缘是指一组相连的像素的集合,这些像素周围灰度具有显著变化的部分,该部分的灰度剖面一般可以看作是一个阶跃,即从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值,图像的边缘部分集中了图像的大部分信息,边缘是像素值快速变化的地方,其包含了图像上目标物体的主要信息。It should be noted that, in any embodiment of the present application, the digital image is composed of two-dimensional elements, each element has a specific position (x, y) and amplitude f (x, y), these elements are called for pixels. The edge refers to a set of connected pixels, and the gray scale around these pixels has a significant change. If it changes sharply to another gray value with a large difference in gray level, the edge part of the image concentrates most of the information of the image, and the edge is the place where the pixel value changes rapidly, which contains the main information of the target object on the image.
参照图1-2,示出了本申请一实施例提供的一种双能减影参数的计算方法的步骤流程图,应用于计算双能X线医学图像中阴影区域的软组织减影参数和骨骼减影参数,其中,所述双能X线医学图像包括高能图像和低能图像;包括步骤:1-2, a flowchart of steps of a method for calculating dual energy subtraction parameters provided by an embodiment of the present application is shown, which is applied to the calculation of soft tissue subtraction parameters and bones in shadow areas in dual energy X-ray medical images. Subtraction parameters, wherein the dual-energy X-ray medical image includes a high-energy image and a low-energy image; including the steps:
S110、获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;S110, acquiring the target dual-energy X-ray medical image, and performing registration processing on the target high-energy image and the target low-energy image;
S120、依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;S120. Determine a region to be measured according to the position of the maximum value of the gradient amplitude image of a preset region in the low-energy image of the target after registration processing, and determine the high-energy quantum corresponding to the region to be measured in the high-energy image of the target an image block and a low-energy sub-image block corresponding to the region to be measured in the target low-energy image;
S130、依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;S130. Determine a subtraction image corresponding to each pixel in the to-be-measured area according to the high-energy sub-image block and the low-energy sub-image block, and determine the standard deviation and mean of the subtraction image, and determine the subtraction image according to the subtraction image. The standard deviation and mean of the shadow image generate the relative standard deviation corresponding to each pixel in the area to be measured;
S140、依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。S140. Determine a soft tissue subtraction parameter and a bone subtraction parameter according to the minimum value of the relative standard deviation.
在本申请的实施例中,通过获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。本申请通过从低能图像中提取包含骨骼边缘的预设大小的矩形区域,以此为感兴趣区(ROI),即待测区域,计算不同像素下减影图像中该ROI区域的相对标准差,取最小相对标准差对应的减影参数为软组织减影参数,然后根据骨骼和软组织减影参数的经验关系,确定骨骼减影参数;本申请ROI的确定不涉及复杂的特征提取,实际用于计算的图像ROI远小于图像尺寸,大大提升了算法效率,从原理上使得算法具有较好的鲁棒性和较低的计算开销,易于实现,为临床快速获取准确的双能减影结果提供了保障,为进一步影像学诊断打下基础;此外,相对标准差曲线通常具有良好的凸性质,确保了搜索算法可以获得一个较稳定的最优值,以相对标准差基于骨骼边缘可见度为判定准则,判定结果更符合人眼直观结果,效果较为良好,基本可以实现一次性满足临床要求而无需人工微调。In the embodiment of the present application, by acquiring the target dual-energy X-ray medical image, and performing registration processing on the target high-energy image and the target low-energy image; The position of the maximum value of the value image determines the area to be measured, and determines the high-energy sub-image block corresponding to the area to be measured in the high-energy image of the target and the low-energy sub-image corresponding to the area to be measured in the low-energy image of the target block; determine the subtraction image corresponding to each pixel in the area to be measured according to the high-energy sub-image block and the low-energy sub-image block, and determine the standard deviation and mean value of the subtraction image, according to the subtraction image The relative standard deviation corresponding to each pixel in the region to be measured is generated by the standard deviation and mean value of the shadow image; the soft tissue subtraction parameter and the bone subtraction parameter are determined according to the minimum value of the relative standard deviation. In the present application, by extracting a rectangular area with a preset size including the edge of the bone from the low-energy image, and using this as a region of interest (ROI), that is, the area to be measured, the relative standard deviation of the ROI area in the subtraction image under different pixels is calculated, Take the subtraction parameter corresponding to the minimum relative standard deviation as the soft tissue subtraction parameter, and then determine the bone subtraction parameter according to the empirical relationship between the bone and the soft tissue subtraction parameter; the determination of the ROI in this application does not involve complex feature extraction, and is actually used for calculation. The ROI of the image is much smaller than the image size, which greatly improves the efficiency of the algorithm. In principle, the algorithm has better robustness and lower computational overhead, which is easy to implement and provides a guarantee for the clinical rapid acquisition of accurate dual-energy subtraction results. , to lay the foundation for further imaging diagnosis; in addition, the relative standard deviation curve usually has a good convexity, which ensures that the search algorithm can obtain a more stable optimal value. It is more in line with the intuitive results of the human eye, and the effect is relatively good, and it can basically meet the clinical requirements at one time without manual fine-tuning.
下面,将对本示例性实施例中一种双能减影参数的计算方法作进一步地说明。Next, a method for calculating a dual-energy subtraction parameter in this exemplary embodiment will be further described.
如所述步骤S110所述,获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理。As described in step S110, the target dual-energy X-ray medical image is acquired, and the target high-energy image and the target low-energy image are registered.
在本发明一实施例中,可以结合下列描述进一步说明步骤S110所述“获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理”的具体过程。In an embodiment of the present invention, the specific process of "acquiring a target dual-energy X-ray medical image and registering a target high-energy image and a target low-energy image" described in step S110 can be further described with reference to the following description.
在本申请一实施例中,获取目标双能X线医学图像,对目标高能图像和目标低能图像进行配准处理,确保两幅图像中相同坐标处对应于组织中的同一点。In an embodiment of the present application, the target dual-energy X-ray medical image is acquired, and the target high-energy image and the target low-energy image are registered to ensure that the same coordinates in the two images correspond to the same point in the tissue.
需要说明的是,配准是指同一区域内以不同成像手段所获得的不同图像图形的地理坐标的匹配,图像配准就是将不同时间、不同传感器(成像设备)或不同条件下获取的两幅或多幅图像进行匹配、叠加的过程;配准的过程如下:首先对两幅图像进行特征提取得到特征点;通过进行相似性度量找到匹配的特征点对;然后通过匹配的特征点对得到图像空间坐标变换参数;最后由坐标变换参数进行图像配准。It should be noted that registration refers to the matching of geographic coordinates of different images obtained by different imaging methods in the same area. The process of matching and superimposing multiple images; the process of registration is as follows: first, extract feature points from two images to obtain feature points; find matching feature point pairs by similarity measurement; then obtain an image by matching feature point pairs Spatial coordinate transformation parameters; finally, the image registration is performed by the coordinate transformation parameters.
如所述步骤S120所述,依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块。As described in step S120, the region to be tested is determined according to the position of the maximum value of the gradient amplitude image of the preset region in the target low-energy image after registration processing, and the difference between the target high-energy image and the to-be-measured image is determined. A high-energy sub-image block corresponding to the measurement area and a low-energy sub-image block corresponding to the to-be-measured area in the target low-energy image.
在本申请一实施例中,可以结合下列描述进一步说明步骤S120所述“依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块”的具体过程。In an embodiment of the present application, the step S120 may be further described in conjunction with the following description: “determine the region to be tested according to the position of the maximum value of the gradient amplitude image of the preset region in the target low-energy image after registration processing, and determine The specific process of generating high-energy sub-image blocks corresponding to the area to be measured in the target high-energy image and low-energy sub-image blocks corresponding to the area to be measured in the target low-energy image”.
如下列步骤所述,确定配准处理后的所述目标低能图像中预设区域的位置,并依据预设区域内的像素生成所述梯度幅值图像;As described in the following steps, the position of the preset area in the target low-energy image after registration processing is determined, and the gradient magnitude image is generated according to the pixels in the preset area;
如下列步骤所述,获取所述梯度幅值图像最大值的位置,并依据在所述目标低能图像中所述预设区域的位置对所述梯度幅值图像最大值的位置进行转换确定目标位置,以所述目标位置的邻域位置设置为待测区域;As described in the following steps, the position of the maximum value of the gradient magnitude image is obtained, and the position of the maximum value of the gradient magnitude image is converted according to the position of the preset region in the target low-energy image to determine the target position , the neighborhood position of the target position is set as the area to be measured;
如下列步骤所述,依据所述待测区域的位置,确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块。As described in the following steps, according to the position of the area to be measured, a high-energy sub-image block corresponding to the area to be measured in the high-energy image of the target and a sub-image block corresponding to the area to be measured in the low-energy image of the target are determined. Low energy sub-image blocks.
在本申请一实施例中,确定配准处理后的所述目标低能图像中预设区域的位置;将所述目标低能图像中预设区域的像素进行低通滤波处理消除噪声影响;确定进行低通滤波处理后的预设区域内的像素梯度的x分量和y分量;依据预设区域内的像素梯度的x分量和y分量生成所述梯度幅值图像。In an embodiment of the present application, the position of the preset area in the target low-energy image after registration processing is determined; the pixels of the preset area in the target low-energy image are subjected to low-pass filtering processing to eliminate the influence of noise; The x-component and the y-component of the pixel gradient in the preset area after filtering; the gradient magnitude image is generated according to the x-component and the y-component of the pixel gradient in the preset area.
需要说明的是,低通滤波是一种过滤方式,规则为低频信号能正常通过,而超过设定临界值的高频信号则被阻隔、减弱;但是阻隔、减弱的幅度则会依据不同的频率以及不同的滤波目的而改变,在数字图像处理领域,从频域看,低通滤波可以对图像进行平滑降噪处理。It should be noted that low-pass filtering is a filtering method. The rule is that low-frequency signals can pass normally, while high-frequency signals that exceed the set threshold are blocked and weakened; however, the magnitude of the blocking and weakening will depend on different frequencies. As well as different filtering purposes, in the field of digital image processing, from the frequency domain, low-pass filtering can smooth and denoise images.
在一具体实现中,根据摄片部位,从配准处理后的所述目标低能图像的诊断区提取一块子区域确定为预设区域R1(预设区域的大小可取300*300),对预设区域R1的像素进行低通滤波处理消除噪声影响;确定进行低通滤波处理后的预设区域内的像素梯度的x分量和y分量;依据预设区域内的像素梯度的x分量和y分量生成所述梯度幅值图像g;获取所述梯度幅值图像最大值的位置坐标p1,并根据预设区域R1在目标低能图像中的位置,将所述梯度幅值图像最大值的位置坐标p1转换为目标低能图像中的目标位置的坐标p2,然后以目标位置的坐标p2为中心,取其50*50的邻域位置设置为感兴趣区R2,感兴趣区R2即为待测区域;依据所述待测区域的位置,分别在目标高能图像和目标低能图像中提取与所述待测区域对应的高能子图像块R2H和低能子图像块R2L。梯度幅值图像g的计算公式如下:In a specific implementation, according to the location of the film, a sub-region is extracted from the diagnostic region of the target low-energy image after registration processing and determined as a preset region R1 (the size of the preset region can be 300*300), The pixels of the region R1 are subjected to low-pass filtering to eliminate the influence of noise; the x-component and the y-component of the pixel gradient in the preset region after the low-pass filtering process are determined; and the x-component and the y-component of the pixel gradient in the preset region are generated. the gradient amplitude image g; obtain the position coordinate p1 of the maximum value of the gradient amplitude image, and convert the position coordinate p1 of the maximum value of the gradient amplitude image according to the position of the preset region R1 in the target low-energy image is the coordinate p2 of the target position in the low-energy image of the target, and then takes the coordinate p2 of the target position as the center, and takes its 50*50 neighborhood position as the region of interest R2, and the region of interest R2 is the area to be measured; According to the position of the area to be measured, the high-energy sub-image block R 2H and the low-energy sub-image block R 2L corresponding to the area to be measured are extracted from the target high-energy image and the target low-energy image respectively. The calculation formula of the gradient magnitude image g is as follows:
g=|gx|+|gy|g=|g x |+|g y |
式中gx和gy分别为梯度的x和y分量。where g x and g y are the x and y components of the gradient, respectively.
需要说明的是,低能图像的骨骼对比度通常优于高能图像,更利于边缘提取,故从配准处理后的所述目标低能图像的诊断区提取一块子区域确定为预设区域R1,预设区域R1的位置可根据摄片部位并基于临床影像科医生的经验确定;以最常拍摄的胸部正位片为例,通常从两肺叶中偏上位置提取一块子区域确定为预设区域R1。梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值;所述梯度幅值为梯度的模,图像梯度表示的是图像变化的速度,反映了图像的边缘信息。对于图像的边缘部分,其灰度值变化较大,梯度值也较大;对于图像中较平滑的部分,其灰度值变化较小,梯度值也较小。为了检测边缘,需要检测图像中的不连续性,可以使用图像梯度来检测不连续性。It should be noted that the bone contrast of low-energy images is usually better than that of high-energy images, which is more conducive to edge extraction. Therefore, a sub-area is extracted from the diagnostic area of the target low-energy image after registration processing and determined as the preset area R1. The position of R1 can be determined according to the imaging site and based on the experience of clinical radiologists; taking the most frequently photographed chest radiograph as an example, a sub-region is usually extracted from the upper position of the two lung lobes to determine the preset region R1. The original meaning of the gradient is a vector (vector), indicating that the directional derivative of a function at this point obtains the maximum value along the direction; the gradient magnitude is the modulus of the gradient, and the image gradient represents the speed of image change, reflecting the the edge information of the image. For the edge part of the image, the gray value changes greatly, and the gradient value is also large; for the smoother part of the image, the gray value changes less, and the gradient value is also small. In order to detect edges, it is necessary to detect discontinuities in the image, and image gradients can be used to detect discontinuities.
如所述步骤S130所述,依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差。As described in step S130, a subtraction image corresponding to each pixel in the area to be measured is determined according to the high-energy sub-image block and the low-energy sub-image block, and the standard deviation sum of the subtraction image is determined The mean value, the relative standard deviation corresponding to each pixel in the area to be measured is generated according to the standard deviation and mean value of the subtracted image.
在本申请一实施例中,可以结合下列描述进一步说明步骤S130所述“依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差”的具体过程。In an embodiment of the present application, the step S130 of “determining the subtraction image corresponding to each pixel in the region to be measured according to the high-energy sub-image block and the low-energy sub-image block, and The specific process of determining the standard deviation and mean value of the subtraction image, and generating the relative standard deviation corresponding to each pixel in the area to be measured according to the standard deviation and mean value of the subtraction image.
如下列步骤所述,依据骨与软组织对X线光子的能量衰减方式和光电吸收效应的差异,并结合所述待测区域内每个像素对应的高能子图像块与低能子图像块的比值确定所述待测区域内每个像素对应的减影图像;As described in the following steps, according to the difference in the energy attenuation mode and photoelectric absorption effect of bone and soft tissue on X-ray photons, and in combination with the ratio of the high-energy sub-image block to the low-energy sub-image block corresponding to each pixel in the region to be measured the subtraction image corresponding to each pixel in the area to be tested;
如下列步骤所述,确定出所述所述待测区域内每个像素对应的减影图像的标准差和均值;As described in the following steps, determine the standard deviation and mean value of the subtraction image corresponding to each pixel in the to-be-measured area;
如下列步骤所述,依据所述待测区域内每个像素对应的减影图像的标准差与均值的比值生成所述待测区域内每个像素对应的相对标准差。As described in the following steps, the relative standard deviation corresponding to each pixel in the to-be-measured area is generated according to the ratio of the standard deviation of the subtracted image corresponding to each pixel in the to-be-measured area to the mean value.
在一具体实现中,根据骨与软组织对X线光子的能量衰减方式和光电吸收效应的差异,并结合所述待测区域内每个像素对应的高能子图像块R2H和低能子图像块R2L的比值确定所述待测区域内每个像素对应的减影图像RDES,确定出所述所述待测区域内每个像素对应的减影图像RDES的标准差STD和均值AVG,依据所述待测区域内每个像素对应的减影图像RDES的标准差STD与均值AVG的比值生成所述待测区域内每个像素对应的相对标准差relative-std。In a specific implementation, according to the difference in the energy attenuation mode and photoelectric absorption effect of bone and soft tissue on X-ray photons, combined with the high-energy sub-image block R 2H and the low-energy sub-image block R corresponding to each pixel in the region to be measured The ratio of 2L determines the subtraction image R DES corresponding to each pixel in the area to be measured, and determines the standard deviation STD and mean AVG of the subtraction image R DES corresponding to each pixel in the area to be measured, according to The ratio of the standard deviation STD of the subtraction image R DES corresponding to each pixel in the area to be measured to the mean AVG generates the relative standard deviation relative-std corresponding to each pixel in the area to be measured.
在本申请一实施例中,减影图像RDES的计算公式如下:In an embodiment of the present application, the calculation formula of the subtracted image R DES is as follows:
式中x、y为像素坐标,w为减影参数。令w以步长0.01在区间[0.2,0.7]变化,可获得一个减影图像序列。where x and y are the pixel coordinates, and w is the subtraction parameter. Let w vary in the interval [0.2, 0.7] with a step size of 0.01, and a subtraction image sequence can be obtained.
参照图3,示出了本申请一实施例提供的一种双能减影参数的计算方法的相对标准差曲线示意图,根据相对标准差relative-std的计算公式,对减影图像序列中的每一幅减影图像RDES进行计算,每个减影参数对应一幅减影图像,从而对应一个相对标准差,由此可得相对标准差曲线图。其相对标准差曲线通常具有良好的凸性质,确保了搜索算法可以获得一个较稳定的最优值。相对标准差relative-std的计算公式如下:Referring to FIG. 3 , a schematic diagram of a relative standard deviation curve of a method for calculating dual-energy subtraction parameters provided by an embodiment of the present application is shown. A subtraction image R DES is calculated, and each subtraction parameter corresponds to a subtraction image, and thus corresponds to a relative standard deviation, thereby obtaining a relative standard deviation curve. Its relative standard deviation curve usually has good convex properties, which ensures that the search algorithm can obtain a relatively stable optimal value. The formula for calculating the relative standard deviation relative-std is as follows:
如所述步骤S140所述,依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。As described in step S140, the soft tissue subtraction parameter and the bone subtraction parameter are determined according to the minimum value of the relative standard deviation.
在本申请一实施例中,可以结合下列描述进一步说明步骤S140所述“依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数”的具体过程。In an embodiment of the present application, the specific process of "determining soft tissue subtraction parameters and bone subtraction parameters according to the minimum value of the relative standard deviation" in step S140 may be further described with reference to the following description.
如下列步骤所述,依据所述相对标准差的最小值对应的减影参数确定为软组织减影参数;As described in the following steps, the subtraction parameter corresponding to the minimum value of the relative standard deviation is determined as the soft tissue subtraction parameter;
如下列步骤所述,依据所述软组织减影参数和预设权重确定骨骼减影参数。As described in the following steps, bone subtraction parameters are determined according to the soft tissue subtraction parameters and preset weights.
在一具体实现中,根据上述计算的相对标准差,以最小相对标准差对应的减影参数,作为软组织减影参数wS,再根据大量实验统计的数据确定预设权重,所述预设权重的数值为0.25,依据所述软组织减影参数wS与预设权重的和确定骨骼减影参数wB。In a specific implementation, according to the relative standard deviation calculated above, the subtraction parameter corresponding to the minimum relative standard deviation is used as the soft tissue subtraction parameter w S , and then the preset weight is determined according to the statistical data of a large number of experiments. is 0.25, and the bone subtraction parameter w B is determined according to the sum of the soft tissue subtraction parameter w S and the preset weight.
需要说明的是,最小相对标准差反应了可见度最弱的骨骼边缘,其对应的减影结果作为软组织图像符合视觉直观,故依据所述相对标准差的最小值确定软组织减影参数。根据大量实验统计的软组织减影参数wS与骨骼减影参数wB的关系如下:It should be noted that the minimum relative standard deviation reflects the bone edge with the weakest visibility, and the corresponding subtraction result is visually intuitive as a soft tissue image, so the soft tissue subtraction parameter is determined according to the minimum relative standard deviation. The relationship between the soft tissue subtraction parameter w S and the bone subtraction parameter w B calculated according to a large number of experiments is as follows:
wB=wS+0.25w B = w S +0.25
根据上述软组织减影参数wS与骨骼减影参数wB的关系,结合已确定的软组织减影参数,可确定骨骼减影参数。According to the relationship between the soft tissue subtraction parameter w S and the bone subtraction parameter w B , and in combination with the determined soft tissue subtraction parameters, the bone subtraction parameter can be determined.
参照图4,示出了本申请一实施例提供的一种双能减影参数的计算方法的效果图。从左到右依次为标准图像、软组织图像和骨骼图像。Referring to FIG. 4 , an effect diagram of a method for calculating a dual-energy subtraction parameter provided by an embodiment of the present application is shown. From left to right are standard images, soft tissue images, and bone images.
在本申请一实施例中,依照上述所述方法对拍摄的胸部正位片进行处理,获取胸部正位片的双能X线医学图像,对其高能图像和低能图像进行配准处理,确保两幅图像中相同坐标处对应于组织中的同一点;从配准处理后的低能图像的诊断区提取一块子区域确定为预设区域R1(预设区域的大小为300*300),对预设区域R1的像素进行低通滤波处理消除噪声影响,确定进行低通滤波处理后的预设区域内的像素梯度的x分量和y分量;依据预设区域内的像素梯度的x分量和y分量生成所述梯度幅值图像g;获取所述梯度幅值图像最大值的位置坐标p1,并根据预设区域R1在低能图像中的位置,将所述梯度幅值图像最大值的位置坐标p1转换为低能图像中的目标位置的坐标p2,然后以目标位置的坐标p2为中心,取其50*50的邻域位置设置为感兴趣区R2,感兴趣区R2即为待测区域;依据所述待测区域的位置,分别在目标高能图像和目标低能图像中提取与所述待测区域对应的高能子图像块R2H和低能子图像块R2L;根据骨与软组织对X线光子的能量衰减方式和光电吸收效应的差异,并结合所述待测区域内每个像素对应的高能子图像块R2H和低能子图像块R2L的比值确定所述待测区域内每个像素对应的减影图像RDES,确定出所述所述待测区域内每个像素对应的减影图像RDES的标准差STD和均值AVG,依据所述待测区域内每个像素对应的减影图像RDES的标准差STD与均值AVG的比值生成所述待测区域内每个像素对应的相对标准差relative-std;最小相对标准差对应的减影参数为0.43,故软组织减影参数wS为0.43,骨骼减影参数wB为0.68。In an embodiment of the present application, the taken chest anteroposterior film is processed according to the above-mentioned method, the dual-energy X-ray medical image of the chest anteroposterior film is obtained, and the high-energy image and the low-energy image are registered to ensure that the two The same coordinates in the images correspond to the same point in the tissue; a sub-region is extracted from the diagnostic region of the low-energy image after registration processing and determined as the preset region R1 (the size of the preset region is 300*300). The pixels of the region R1 are subjected to low-pass filtering to eliminate the influence of noise, and the x-component and the y-component of the pixel gradient in the preset region after the low-pass filtering process are determined; the gradient magnitude image g; obtain the position coordinate p1 of the maximum value of the gradient magnitude image, and convert the position coordinate p1 of the maximum value of the gradient magnitude image into The coordinate p2 of the target position in the low-energy image, and then taking the coordinate p2 of the target position as the center, the 50*50 neighborhood position is set as the region of interest R2, and the region of interest R2 is the region to be measured; The position of the measurement area, respectively extract the high-energy sub-image block R 2H and the low-energy sub-image block R 2L corresponding to the area to be measured in the target high-energy image and the target low-energy image; and photoelectric absorption effect, and combine the ratio of the high-energy sub-image block R 2H and the low-energy sub-image block R 2L corresponding to each pixel in the area to be measured to determine the subtraction image corresponding to each pixel in the area to be measured R DES , determine the standard deviation STD and mean AVG of the subtraction image R DES corresponding to each pixel in the area to be measured, according to the standard of the subtraction image R DES corresponding to each pixel in the area to be measured The ratio of the difference STD to the mean AVG generates the relative standard deviation relative-std corresponding to each pixel in the area to be measured; the subtraction parameter corresponding to the minimum relative standard deviation is 0.43, so the soft tissue subtraction parameter w S is 0.43, and the bone subtraction parameter is 0.43. The shadow parameter w B is 0.68.
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。As for the apparatus embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and reference may be made to the partial description of the method embodiment for related parts.
参照图5,示出了本申请一实施例提供的一种双能减影参数的计算装置的结构框图;上述双能减影参数的计算装置,应用于计算双能X线医学图像中阴影区域的软组织减影参数和骨骼减影参数,其中,所述双能X线医学图像包括高能图像和低能图像,具体包括:Referring to FIG. 5 , a structural block diagram of a dual-energy subtraction parameter calculation device provided by an embodiment of the present application is shown; the above-mentioned dual-energy subtraction parameter calculation device is applied to calculate the shadow area in dual-energy X-ray medical images The soft tissue subtraction parameters and bone subtraction parameters, wherein, the dual-energy X-ray medical images include high-energy images and low-energy images, specifically including:
配准模块510,用于获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;The
确定模块520,用于依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;The
计算模块530,用于依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;The
输出模块540,用于依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。The
在本申请一实施例中,所述确定模块520,包括:In an embodiment of the present application, the determining
计算梯度幅值子模块,用于确定配准处理后的所述目标低能图像中预设区域的位置,并依据预设区域内的像素生成所述梯度幅值图像;a gradient amplitude calculation submodule, used for determining the position of a preset area in the target low-energy image after registration processing, and generating the gradient amplitude image according to the pixels in the preset area;
确定待测区域子模块,获取所述梯度幅值图像最大值的位置,并依据在所述目标低能图像中所述预设区域的位置对所述梯度幅值图像最大值的位置进行转换确定目标位置,以所述目标位置的邻域位置设置为待测区域;Determine the area to be measured sub-module, obtain the position of the maximum value of the gradient amplitude image, and convert the position of the maximum value of the gradient amplitude image according to the position of the preset area in the target low-energy image to determine the target position, and the neighborhood position of the target position is set as the area to be measured;
确定子图像块子模块,依据所述待测区域的位置,确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块。Determine sub-image block sub-module, according to the position of the area to be measured, determine the high-energy sub-image block corresponding to the area to be measured in the high-energy image of the target and the low-energy image of the target corresponding to the area to be measured. of low-energy sub-image blocks.
在本申请一实施例中,所述计算梯度幅值子模块,包括:In an embodiment of the present application, the gradient magnitude calculation submodule includes:
确定预设区域子模块,用于确定配准处理后的所述目标低能图像中预设区域的位置;a sub-module for determining a preset area, which is used to determine the position of the preset area in the low-energy image of the target after registration processing;
低通滤波子模块,用于将所述目标低能图像中预设区域的像素进行低通滤波处理;a low-pass filtering sub-module, configured to perform low-pass filtering processing on the pixels of the preset area in the target low-energy image;
生成子模块,用于依据进行低通滤波处理后的预设区域内的像素生成所述梯度幅值图像。The generating sub-module is configured to generate the gradient magnitude image according to the pixels in the preset area after the low-pass filtering process.
在本申请一实施例中,所述生成子模块,包括:In an embodiment of the present application, the generating submodule includes:
第一生成子模块,用于确定进行低通滤波处理后的预设区域内的像素梯度的x分量和y分量;The first generation submodule is used to determine the x-component and the y-component of the pixel gradient in the preset area after the low-pass filtering process;
第二生成子模块,用于依据预设区域内的像素梯度的x分量和y分量生成所述梯度幅值图像。The second generating sub-module is configured to generate the gradient magnitude image according to the x component and the y component of the pixel gradient in the preset area.
在本申请一实施例中,所述计算模块530,包括:In an embodiment of the present application, the
第一计算子模块,用于依据骨与软组织对X线光子的能量衰减方式和光电吸收效应的差异,并结合所述待测区域内每个像素对应的高能子图像块与低能子图像块的比值确定所述待测区域内每个像素对应的减影图像;The first calculation sub-module is used for combining the high-energy sub-image block and the low-energy sub-image block corresponding to each pixel in the region to be measured according to the difference of the energy attenuation mode and photoelectric absorption effect of bone and soft tissue on X-ray photons. The ratio determines the subtraction image corresponding to each pixel in the to-be-measured area;
第二计算子模块,用于确定出所述所述待测区域内每个像素对应的减影图像的标准差和均值;a second calculation submodule, configured to determine the standard deviation and mean of the subtracted image corresponding to each pixel in the region to be measured;
第三计算子模块,用于依据所述待测区域内每个像素对应的减影图像的标准差与均值的比值生成所述待测区域内每个像素对应的相对标准差。The third calculation sub-module is configured to generate the relative standard deviation corresponding to each pixel in the area to be measured according to the ratio of the standard deviation of the subtracted image corresponding to each pixel in the area to be measured to the mean value.
在本申请一实施例中,所述输出模块540,包括:In an embodiment of the present application, the
第一输出子模块,用于依据所述相对标准差的最小值对应的减影参数确定为软组织减影参数;a first output submodule, configured to determine a soft tissue subtraction parameter according to the subtraction parameter corresponding to the minimum value of the relative standard deviation;
第二输出子模块,用于依据所述软组织减影参数和预设权重确定骨骼减影参数。The second output sub-module is configured to determine the bone subtraction parameter according to the soft tissue subtraction parameter and the preset weight.
在本申请一实施例中,所述第二输出子模块,包括:In an embodiment of the present application, the second output sub-module includes:
确定骨骼减影参数子模块,用于依据所述软组织减影参数与预设权重的和确定骨骼减影参数;其中,所述预设权重的数值为0.25。A submodule for determining bone subtraction parameters, configured to determine the bone subtraction parameters according to the sum of the soft tissue subtraction parameters and a preset weight; wherein the value of the preset weight is 0.25.
参照图6,示出了本申请一实施例提供的一种双能减影参数的计算方法的计算机设备的结构示意图,具体可以包括如下:Referring to FIG. 6 , a schematic structural diagram of a computer device for a method for calculating dual-energy subtraction parameters provided by an embodiment of the present application is shown, which may specifically include the following:
上述计算机设备12以通用计算设备的形式表现,计算机设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。The
总线18表示几类总线18结构中的一种或多种,包括存储器总线18或者存储器控制器,外围总线18,图形加速端口,处理器或者使用多种总线18结构中的任意总线18结构的局域总线18。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线18,微通道体系结构(MAC)总线18,增强型ISA总线18、音视频电子标准协会(VESA)局域总线18以及外围组件互连(PCI)总线18。The
计算机设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被计算机设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。计算机设备12可以进一步包括其他移动/不可移动的、易失性/非易失性计算机体统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其他光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质界面与总线18相连。存储器可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块42,这些程序模块42被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器中,这样的程序模块42包括——但不限于——操作系统、一个或者多个应用程序、其他程序模块42以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本发明所描述的实施例中的功能和/或方法。A program/
计算机设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24、摄像头等)通信,还可与一个或者多个使得操作人员能与该计算机设备12交互的设备通信,和/或与使得该计算机设备12能与一个或多个其他计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)界面22进行。并且,计算机设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(LAN)),广域网(WAN)和/或公共网络(例如因特网)通信。如图所示,网络适配器20通过总线18与计算机设备12的其他模块通信。应当明白,尽管图3中未示出,可以结合计算机设备12使用其他硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元16、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统34等。The
处理单元16通过运行存储在系统存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的一种自适应识别束光器矩形边框的方法。The
也即,上述处理单元16执行上述程序时实现:包括步骤:获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。本申请通过从低能图像中提取包含骨骼边缘的预设大小的矩形区域,以此为感兴趣区(ROI),即待测区域,计算不同像素下减影图像中该ROI区域的相对标准差,取最小相对标准差对应的减影参数为软组织减影参数,然后根据骨骼和软组织减影参数的经验关系,确定骨骼减影参数;本申请ROI的确定不涉及复杂的特征提取,实际用于计算的图像ROI远小于图像尺寸,大大提升了算法效率,从原理上使得算法具有较好的鲁棒性和较低的计算开销,易于实现,为临床快速获取准确的双能减影结果提供了保障,为进一步影像学诊断打下基础;此外,相对标准差曲线通常具有良好的凸性质,确保了搜索算法可以获得一个较稳定的最优值,以相对标准差基于骨骼边缘可见度为判定准则,判定结果更符合人眼直观结果,效果较为良好,基本可以实现一次性满足临床要求而无需人工微调。That is, when the above-mentioned
在本申请实施例中,本申请还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请所有实施例提供的一种双能减影参数的计算方法:In the embodiments of the present application, the present application further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, realizes a dual-energy subtraction parameter as provided by all the embodiments of the present application. Calculation method:
也即,给程序被处理器执行时实现:包括步骤:获取目标双能X线医学图像,并将目标高能图像和目标低能图像进行配准处理;依据配准处理后的所述目标低能图像中预设区域的梯度幅值图像最大值的位置确定待测区域,并确定出所述目标高能图像中与所述待测区域对应的高能子图像块和所述目标低能图像中与所述待测区域对应的低能子图像块;依据所述高能子图像块和所述低能子图像块确定所述待测区域内每个像素对应的减影图像,并确定出所述减影图像的标准差和均值,依据所述减影图像的标准差和均值生成所述待测区域内每个像素对应的相对标准差;依据所述相对标准差的最小值确定软组织减影参数和骨骼减影参数。本申请通过从低能图像中提取包含骨骼边缘的预设大小的矩形区域,以此为感兴趣区(ROI),即待测区域,计算不同像素下减影图像中该ROI区域的相对标准差,取最小相对标准差对应的减影参数为软组织减影参数,然后根据骨骼和软组织减影参数的经验关系,确定骨骼减影参数;本申请ROI的确定不涉及复杂的特征提取,实际用于计算的图像ROI远小于图像尺寸,大大提升了算法效率,从原理上使得算法具有较好的鲁棒性和较低的计算开销,易于实现,为临床快速获取准确的双能减影结果提供了保障,为进一步影像学诊断打下基础;此外,相对标准差曲线通常具有良好的凸性质,确保了搜索算法可以获得一个较稳定的最优值,以相对标准差基于骨骼边缘可见度为判定准则,判定结果更符合人眼直观结果,效果较为良好,基本可以实现一次性满足临床要求而无需人工微调。That is to say, when the program is executed by the processor, it is realized: including the steps of: acquiring the target dual-energy X-ray medical image, and performing registration processing on the target high-energy image and the target low-energy image; The position of the maximum value of the gradient amplitude image in the preset area determines the area to be measured, and determines the high-energy sub-image block corresponding to the area to be measured in the high-energy image of the target and the low-energy image of the target that is the same as the area to be measured. The low-energy sub-image block corresponding to the area; according to the high-energy sub-image block and the low-energy sub-image block, the subtraction image corresponding to each pixel in the area to be measured is determined, and the standard deviation sum of the subtraction image is determined. The mean value, the relative standard deviation corresponding to each pixel in the area to be measured is generated according to the standard deviation and mean value of the subtracted image; the soft tissue subtraction parameter and the bone subtraction parameter are determined according to the minimum value of the relative standard deviation. In the present application, by extracting a rectangular area with a preset size including the edge of the bone from the low-energy image, and using this as a region of interest (ROI), that is, the area to be measured, the relative standard deviation of the ROI area in the subtraction image under different pixels is calculated, Take the subtraction parameter corresponding to the minimum relative standard deviation as the soft tissue subtraction parameter, and then determine the bone subtraction parameter according to the empirical relationship between the bone and the soft tissue subtraction parameter; the determination of the ROI in this application does not involve complex feature extraction, and is actually used for calculation. The ROI of the image is much smaller than the image size, which greatly improves the efficiency of the algorithm. In principle, the algorithm has better robustness and lower computational overhead, which is easy to implement and provides a guarantee for the clinical rapid acquisition of accurate dual-energy subtraction results. , to lay a foundation for further imaging diagnosis; in addition, the relative standard deviation curve usually has a good convexity, which ensures that the search algorithm can obtain a relatively stable optimal value. It is more in line with the intuitive results of the human eye, and the effect is relatively good, and it can basically meet the clinical requirements at one time without manual fine-tuning.
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。Any combination of one or more computer-readable media may be employed. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. The computer readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (a non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable Programmable Read Only Memory (EPROM or flash memory), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In this document, a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言——诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。程序代码可以完全地在操作人员计算机上执行、部分地在操作人员计算机上执行、作为一个独立的软件包执行、部分在操作人员计算机上部分在远程计算机上执行或者完全在远程计算机或者服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到操作人员计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。Computer program code for carrying out operations of the present invention may be written in one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional Procedural programming language - such as the "C" language or similar programming language. The program code may execute entirely on the operator's computer, partly on the operator's computer, as a stand-alone software package, partly on the operator's computer and partly on a remote computer or entirely on the remote computer or server . In the case of a remote computer, the remote computer may be connected to the operator's computer through any kind of network, including a local area network (LAN) or wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider) to connect via the Internet). The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments may be referred to each other.
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。Although the preferred embodiments of the embodiments of the present application have been described, those skilled in the art may make additional changes and modifications to these embodiments once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiments as well as all changes and modifications that fall within the scope of the embodiments of the present application.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or that there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, article or terminal device that includes a list of elements includes not only those elements, but also a non-exclusive list of elements. other elements, or also include elements inherent to such a process, method, article or terminal equipment. Without further limitation, an element defined by the phrase "comprises a..." does not preclude the presence of additional identical elements in the process, method, article or terminal device comprising said element.
以上对本申请所提供的一种双能减影参数的计算方法、装置、设备及存储介质,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。A method, device, device and storage medium for calculating dual-energy subtraction parameters provided by the present application have been described above in detail. In this paper, specific examples are used to illustrate the principles and implementations of the present application. The above embodiments The description is only used to help understand the method of the present application and its core idea; meanwhile, for those of ordinary skill in the art, according to the idea of the present application, there will be changes in the specific embodiments and application scope. The contents of this specification should not be construed as limiting the application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111594066.4A CN114463259A (en) | 2021-12-23 | 2021-12-23 | Calculation method, device and equipment of dual-energy subtraction parameters and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111594066.4A CN114463259A (en) | 2021-12-23 | 2021-12-23 | Calculation method, device and equipment of dual-energy subtraction parameters and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114463259A true CN114463259A (en) | 2022-05-10 |
Family
ID=81406908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111594066.4A Pending CN114463259A (en) | 2021-12-23 | 2021-12-23 | Calculation method, device and equipment of dual-energy subtraction parameters and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114463259A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140219423A1 (en) * | 2011-09-12 | 2014-08-07 | Agfa Healthcare Nv | Calibration free dual energy radiography method |
CN106296613A (en) * | 2016-08-15 | 2017-01-04 | 南京普爱医疗设备股份有限公司 | A kind of Dual Energy Subtraction method based on DR machine |
CN107507169A (en) * | 2017-07-28 | 2017-12-22 | 深圳市安健科技股份有限公司 | The evaluation method and computer-readable recording medium of dual energy subtraction parameter |
CN112927274A (en) * | 2021-02-02 | 2021-06-08 | 深圳蓝韵医学影像有限公司 | Dual-energy subtraction image registration method, device and equipment and readable storage medium |
US20210267563A1 (en) * | 2018-06-15 | 2021-09-02 | Dalhousie University | Methods and apparatus for dual energy x-ray imaging |
-
2021
- 2021-12-23 CN CN202111594066.4A patent/CN114463259A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140219423A1 (en) * | 2011-09-12 | 2014-08-07 | Agfa Healthcare Nv | Calibration free dual energy radiography method |
CN106296613A (en) * | 2016-08-15 | 2017-01-04 | 南京普爱医疗设备股份有限公司 | A kind of Dual Energy Subtraction method based on DR machine |
CN107507169A (en) * | 2017-07-28 | 2017-12-22 | 深圳市安健科技股份有限公司 | The evaluation method and computer-readable recording medium of dual energy subtraction parameter |
US20210267563A1 (en) * | 2018-06-15 | 2021-09-02 | Dalhousie University | Methods and apparatus for dual energy x-ray imaging |
CN112927274A (en) * | 2021-02-02 | 2021-06-08 | 深圳蓝韵医学影像有限公司 | Dual-energy subtraction image registration method, device and equipment and readable storage medium |
Non-Patent Citations (2)
Title |
---|
KATHARINA MARTINI, ET AL: "Diagnostic accuracy and added value of dualenergy subtraction radiography compared to standard conventional radiography using computed tomography as standard of reference", 《PLOS ONE》, 16 March 2017 (2017-03-16), pages 1 - 11 * |
郑伟;康朝红;: "基于梯度的低对比度X线图像分割方法", 通信技术, no. 01, 10 January 2009 (2009-01-10), pages 302 - 304 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6985371B2 (en) | Computer-aided detection using multiple images from different views of interest to improve detection accuracy | |
CN111145238B (en) | Three-dimensional reconstruction method, device and terminal equipment of monocular endoscopic images | |
JP6031464B2 (en) | Keyframe selection for parallel tracking and mapping | |
JP5749735B2 (en) | Bone suppression in X-ray radiographs | |
CN107886508B (en) | Differential subtraction method and medical image processing method and system | |
JP5722502B2 (en) | Planar mapping and tracking for mobile devices | |
JP6356784B2 (en) | Apparatus and method for radiance transfer sampling for augmented reality | |
WO2022205611A1 (en) | Image matching method and apparatus, and device and storage medium | |
CN110176010B (en) | Image detection method, device, equipment and storage medium | |
CN110930438B (en) | Image registration method, device, electronic equipment and storage medium | |
CN110458827A (en) | Detection method, device, equipment and the medium of medical image bad point | |
WO2023169281A1 (en) | Image registration method and apparatus, storage medium, and electronic device | |
CN115439453A (en) | Vertebral body positioning method and device, electronic equipment and storage medium | |
WO2024051018A1 (en) | Pet parameter image enhancement method and apparatus, device, and storage medium | |
US9867586B2 (en) | Stereo X-ray tube based suppression of outside body high contrast objects | |
CN112150600A (en) | Volume reconstruction image generation method, device and system and storage medium | |
CN110866873A (en) | Highlight elimination method and device for endoscope image | |
CN113902932A (en) | Feature extraction method, visual positioning method and device, medium and electronic equipment | |
CN114463259A (en) | Calculation method, device and equipment of dual-energy subtraction parameters and storage medium | |
CN114266799B (en) | Method and device for identifying frame of light beam device, computer equipment and storage medium | |
US20230260144A1 (en) | Method and apparatus for determining image depth information, electronic device, and media | |
CN113538649B (en) | A super-resolution three-dimensional texture reconstruction method, device and equipment | |
Guyon et al. | VETOT, volume estimation and tracking over time: Framework and validation | |
WO2022127318A1 (en) | Scanning positioning method and apparatus, storage medium and electronic device | |
CN115937262A (en) | Calibration method and device, electronic equipment and computer readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |