CN114459024B - Flame synthesis burner capable of realizing axial and tangential combined rotational flow flexible adjustment - Google Patents
Flame synthesis burner capable of realizing axial and tangential combined rotational flow flexible adjustment Download PDFInfo
- Publication number
- CN114459024B CN114459024B CN202210129593.6A CN202210129593A CN114459024B CN 114459024 B CN114459024 B CN 114459024B CN 202210129593 A CN202210129593 A CN 202210129593A CN 114459024 B CN114459024 B CN 114459024B
- Authority
- CN
- China
- Prior art keywords
- axial
- tangential
- air
- flow
- inlet pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 54
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 53
- 238000002156 mixing Methods 0.000 claims abstract description 238
- 238000004891 communication Methods 0.000 claims abstract description 37
- 239000000446 fuel Substances 0.000 claims abstract description 32
- 239000002243 precursor Substances 0.000 claims description 33
- 238000009434 installation Methods 0.000 claims description 20
- 238000000926 separation method Methods 0.000 claims description 14
- 238000010008 shearing Methods 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims 6
- 239000007789 gas Substances 0.000 description 25
- 238000002485 combustion reaction Methods 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 13
- 239000007788 liquid Substances 0.000 description 10
- 239000011858 nanopowder Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 5
- 238000004581 coalescence Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004323 axial length Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- -1 nitrate or acetate) Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/10—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
- F23D11/101—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
- F23D11/102—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber
- F23D11/103—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber with means creating a swirl inside the mixing chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/38—Nozzles; Cleaning devices therefor
- F23D11/383—Nozzles; Cleaning devices therefor with swirl means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/40—Mixing tubes or chambers; Burner heads
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
技术领域technical field
本发明涉及纳米材料合成技术领域,特别是涉及可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器。The invention relates to the technical field of nanomaterial synthesis, in particular to a flame synthesis burner capable of flexibly adjusting axial and tangential combined swirl flow.
背景技术Background technique
纳米材料具有粒径小、比表面积大等特点,且其在光学和电学方面具有优异性能,故而在诸多领域取得了较为广泛的应用。目前,纳米颗粒合成主要采用化学合成和火焰合成的方法,与化学合成方法相比,采用火焰合成法所得到的纳米颗粒具有一步合成、纯度高、颗粒物粒径可控性好等特点,在纳米粉体材料的合成方面具有广阔的应用前景。Nanomaterials have the characteristics of small particle size, large specific surface area, etc., and they have excellent optical and electrical properties, so they have been widely used in many fields. At present, the synthesis of nanoparticles mainly adopts the methods of chemical synthesis and flame synthesis. Compared with the chemical synthesis method, the nanoparticles obtained by the flame synthesis method have the characteristics of one-step synthesis, high purity, and good particle size controllability. The synthesis of powder materials has broad application prospects.
在各类型火焰合成燃烧技术中,燃烧器是火焰合成的关键设备。在旋流火焰合成燃烧器中,气流的旋流特性及旋流构建方式对纳米粉体颗粒物的形态具有很大影响。然而,在目前的旋流火焰合成燃烧器中,需要通过调整旋流叶片角度来实现对入射气流旋流特性及旋流强度的调节,整个装置的结构较为复杂,需要外接执行器才能实现对旋流叶片角度的连续性调节。因此,需要开发同样具备高灵活调控性且结构较为简单的旋流火焰合成燃烧器结构。Among various flame synthesis combustion technologies, the burner is the key equipment for flame synthesis. In the swirling flame synthesis burner, the swirling characteristics of the gas flow and the swirling construction method have a great influence on the shape of the nano-powder particles. However, in the current swirling flame synthesis burner, it is necessary to adjust the angle of the swirling blades to adjust the swirling characteristics and swirling intensity of the incident airflow. Continuous adjustment of flow vane angle. Therefore, it is necessary to develop a swirl flame synthesis burner structure that also has high flexibility and controllability and a relatively simple structure.
发明内容Contents of the invention
基于此,本发明提出一种可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器,通过调整顺流气与逆流气两股气流的流量比,可以实现对轴向气流混合腔及切向气流混合腔内气流的旋流方向和旋流强度进行连续性灵活调节,提升所构建的高温回流区动态调整能力,从而实现对合成纳米颗粒物的粒径、形态和晶相的灵活调控,并提高火焰合成纳米颗粒物的产量和生产效率。此外,该可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器无需设置旋流叶片、外接执行器等较为复杂的结构,整体结构更加简单,制造成本与难度均更低。Based on this, the present invention proposes a flame synthesizing burner that can realize the flexible adjustment of axial and tangential combined swirling flow. The swirl direction and swirl intensity of the airflow in the tangential airflow mixing chamber can be continuously and flexibly adjusted to improve the dynamic adjustment ability of the high-temperature reflow zone constructed, so as to realize the flexible regulation of the particle size, shape and crystal phase of the synthesized nanoparticles. And improve the yield and production efficiency of the flame synthesis of nanoparticles. In addition, the flame synthesizing burner that can realize the flexible adjustment of axial and tangential combined swirl does not need to install more complicated structures such as swirl blades and external actuators, the overall structure is simpler, and the manufacturing cost and difficulty are lower.
可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器,包括:Flame synthesis burners that can realize flexible adjustment of axial and tangential combined swirl flow, including:
轴向气流混合段,轴向气流混合段的内部设有轴向气流混合腔,所述轴向气流混合腔内安装有旋流雾化器,燃料能够经所述旋流雾化器雾化后喷出,所述轴向气流混合段上安装有与所述轴向气流混合腔连通的轴向顺流进气管与轴向逆流进气管,所述轴向顺流进气管的轴向、所述轴向逆流进气管的轴向均与所述轴向气流混合段的外周面相切,且所述轴向顺流进气管与所述轴向气流混合腔的连通位置、所述轴向逆流进气管与所述轴向气流混合腔的连通位置沿所述轴向气流混合段的轴向错开,经所述轴向顺流进气管流入所述轴向气流混合腔的空气形成绕所述旋流雾化器螺旋前进的轴向顺流气,经所述轴向逆流进气管流入所述轴向气流混合腔的空气形成绕所述旋流雾化器螺旋前进的轴向逆流气,所述轴向顺流气与所述轴向逆流气的旋向相反,所述轴向顺流进气管内的空气流量与所述轴向逆流进气管内的空气流量的流量比在100%:0%至0%:100%之间变化。Axial airflow mixing section. An axial airflow mixing chamber is arranged inside the axial airflow mixing section. A swirl atomizer is installed in the axial airflow mixing chamber, and the fuel can be atomized by the swirl atomizer. The axial flow air inlet pipe and the axial counterflow air inlet pipe communicated with the axial air flow mixing chamber are installed on the axial air flow mixing section, the axial direction of the axial flow air inlet pipe, the The axial direction of the axial counterflow inlet pipe is tangent to the outer peripheral surface of the axial airflow mixing section, and the communication position between the axial forward flow inlet pipe and the axial airflow mixing chamber, the axial counterflow inlet pipe The communication position with the axial airflow mixing chamber is staggered along the axial direction of the axial airflow mixing section, and the air flowing into the axial airflow mixing chamber through the axial forward flow inlet pipe forms a swirling mist around the The axial co-flow air that advances spirally in the nebulizer, the air that flows into the axial air flow mixing chamber through the axial counter-flow inlet pipe forms the axial counter-flow air that advances helically around the swirl atomizer, and the axial co-flow air The direction of rotation of the flow air is opposite to that of the axial counterflow air, and the flow ratio of the air flow in the axial forward flow intake pipe to the air flow in the axial counterflow intake pipe is 100%: 0% to 0%: Varies between 100%.
在其中一个实施例中,还包括切向气流混合段,所述切向气流混合段套设于所述轴向气流混合段的开口端的外部,所述切向气流混合段包括呈环状的切向气流混合腔,所述切向气流混合段上安装有与所述切向气流混合腔连通的切向顺流进气管与切向逆流进气管,所述切向顺流进气管的轴向、所述切向逆流进气管的轴向均与所述切向气流混合段的外周面相切,且所述切向顺流进气管与所述切向气流混合腔的连通位置、所述切向逆流进气管与所述切向气流混合腔的连通位置沿所述切向气流混合段的轴向错开,经所述切向顺流进气管流入所述切向气流混合腔的空气螺旋前进形成环绕所述开口端的切向顺流气,经所述切向逆流进气管流入所述切向气流混合腔的空气螺旋前进形成环绕所述开口端的切向逆流气,所述切向顺流气与所述切向逆流气的旋向相反,且沿所述轴向气流混合段的径向,所述切向顺流气与所述切向逆流气位于所述轴向顺流气与所述轴向逆流气的外侧,所述切向顺流进气管内的空气流量与所述切向逆流进气管内的空气流量的流量比在100%:0%至0%:100%之间变化。In one of the embodiments, it further includes a tangential airflow mixing section, the tangential airflow mixing section is sleeved outside the opening end of the axial airflow mixing section, and the tangential airflow mixing section includes an annular cut To the airflow mixing chamber, the tangential airflow mixing section is equipped with a tangential forward flow inlet pipe and a tangential counterflow air inlet pipe communicating with the tangential airflow mixing chamber, the axial direction of the tangential forward flow inlet pipe, The axial direction of the tangential counterflow inlet pipe is tangent to the outer peripheral surface of the tangential airflow mixing section, and the communication position between the tangential forward flow inlet pipe and the tangential airflow mixing chamber, the tangential counterflow The communication position between the air intake pipe and the tangential air flow mixing chamber is staggered along the axial direction of the tangential air flow mixing section, and the air flowing into the tangential air flow mixing chamber through the tangential downstream air inlet pipe spirals forward to form a circle around the The tangential co-flow air at the opening end, the air flowing into the tangential air flow mixing chamber through the tangential counter-flow air inlet pipe spirals forward to form the tangential counter-flow air surrounding the opening end, the tangential co-flow air and the tangential air flow The counter-flow air has the opposite rotation direction, and along the radial direction of the axial air-flow mixing section, the tangential co-flow air and the tangential counter-flow air are located outside the axial co-flow air and the axial counter-flow air, The flow ratio of the air flow in the tangential forward flow intake pipe to the air flow in the tangential reverse flow intake pipe varies between 100%:0% and 0%:100%.
在其中一个实施例中,所述切向气流混合段包括呈环状的侧板以及与所述侧板的端部连接的端板,所述侧板内部中空以形成所述切向气流混合腔,所述端板内部中空以形成与所述切向气流混合腔连通的切向气流出口环,所述端板上设有与所述切向气流出口环连通的缺口,所述切向顺流气与所述切向逆流气沿所述切向气流出口环的周向流动并经所述缺口流出所述可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器。In one of the embodiments, the tangential airflow mixing section includes an annular side plate and an end plate connected to the end of the side plate, and the inside of the side plate is hollow to form the tangential airflow mixing chamber , the inside of the end plate is hollow to form a tangential air flow outlet ring communicating with the tangential air flow mixing chamber, the end plate is provided with a gap communicating with the tangential air flow outlet ring, the tangential co-flow air The tangential counterflow gas flows along the circumference of the tangential gas flow outlet ring and flows out of the flame synthesis burner that can realize flexible adjustment of axial and tangential combined swirl through the gap.
在其中一个实施例中,还包括呈环状且两端开口的气流分隔段,所述侧板与所述端板限定出第一安装腔,所述气流分隔段安装于所述第一安装腔的腔壁,所述气流分隔段包括第二安装腔,所述开口端伸入所述第二安装腔,经所述开口端喷出的气流与燃料穿过所述缺口朝外喷出。In one of the embodiments, it further includes a ring-shaped air flow separation section with two ends open, the side plate and the end plate define a first installation cavity, and the air flow separation section is installed in the first installation cavity The wall of the chamber, the air flow partition section includes a second installation chamber, the opening end extends into the second installation chamber, and the air flow and fuel ejected through the opening end are ejected outward through the gap.
在其中一个实施例中,沿所述轴向气流混合段的轴向,所述气流分隔段的外端与所述轴向气流混合段的外端之间存在高度差。In one embodiment, along the axial direction of the axial airflow mixing section, there is a height difference between the outer end of the airflow dividing section and the outer end of the axial airflow mixing section.
在其中一个实施例中,沿所述轴向气流混合段的径向,所述轴向顺流进气管与所述轴向气流混合腔的连通位置、所述轴向逆流进气管与所述轴向气流混合腔的连通位置分别位于所述轴向气流混合段的两端;以及/或者,In one of the embodiments, along the radial direction of the axial airflow mixing section, the communication position between the axial forward flow inlet pipe and the axial airflow mixing chamber, the axial reverse flow inlet pipe and the shaft The communication positions to the airflow mixing chamber are respectively located at both ends of the axial airflow mixing section; and/or,
沿所述切向气流混合段的径向,所述切向顺流进气管与所述切向气流混合腔的连通位置、所述切向逆流进气管与所述切向气流混合腔的连通位置分别位于所述切向气流混合段的两端。Along the radial direction of the tangential airflow mixing section, the communication position between the tangential forward flow inlet pipe and the tangential airflow mixing chamber, and the communication position between the tangential counterflow air inlet pipe and the tangential airflow mixing chamber They are respectively located at both ends of the tangential airflow mixing section.
在其中一个实施例中,还包括镂空旋流盘,所述镂空旋流盘安装于所述开口端,所述旋流雾化器穿过所述镂空旋流盘的中心孔朝外伸出,所述旋流雾化器上设有多个沿自身周向间隔排布的通孔,沿所述镂空旋流盘的径向,所述通孔位于所述中心孔的外侧,所述轴向顺流气与所述轴向逆流气经所述通孔喷出。In one of the embodiments, it further includes a hollow swirl disk, the hollow swirl disk is installed on the opening end, and the swirl atomizer protrudes outward through the central hole of the hollow swirl disk, The swirl atomizer is provided with a plurality of through holes arranged at intervals along its circumferential direction. Along the radial direction of the hollow swirl disc, the through holes are located outside the central hole, and the axial The co-current air and the axially counter-current air are ejected through the through holes.
在其中一个实施例中,所述旋流雾化器包括雾化喷嘴与主体部,所述轴向气流混合段包括位于所述开口端的对侧的封闭端,所述主体部穿过所述封闭端伸入所述轴向气流混合腔并插入所述中心孔,且所述主体部固定连接于所述封闭端,所述雾化喷嘴抵持于所述镂空旋流盘上背离所述轴向气流混合腔的一侧,所述雾化喷嘴与所述主体部固定连接,燃料能够经所述主体部流入,并经所述雾化喷嘴喷出。In one of the embodiments, the swirl atomizer includes an atomizing nozzle and a main body, the axial air flow mixing section includes a closed end opposite to the open end, and the main body passes through the closed end. The end extends into the axial air flow mixing chamber and is inserted into the central hole, and the main body part is fixedly connected to the closed end, and the atomizing nozzle is supported on the hollow swirl disc away from the axial direction. On one side of the airflow mixing chamber, the atomizing nozzle is fixedly connected with the main body, fuel can flow in through the main body, and be sprayed out through the atomizing nozzle.
在其中一个实施例中,所述轴向顺流进气管的轴向、所述轴向逆流进气管的轴向均相对于所述轴向气流混合段的端面倾斜,沿所述轴向顺流进气管内的气流流向,所述轴向顺流进气管与所述轴向气流混合段的气流流出口的间距逐渐减小,沿所述轴向逆流进气管内的气流流向,所述轴向逆流进气管与所述气流流出口的间距逐渐减小。In one of the embodiments, the axial direction of the axial forward flow inlet pipe and the axial direction of the axial reverse flow inlet pipe are both inclined relative to the end face of the axial air flow mixing section, and the axial direction along the axial direction The air flow direction in the air intake pipe, the distance between the axial flow air intake pipe and the air flow outlet of the axial air flow mixing section gradually decreases, and the air flow direction in the axial counterflow air intake pipe, the axial direction The distance between the reverse flow inlet pipe and the airflow outlet gradually decreases.
在其中一个实施例中,所述旋流雾化器的内部设有沿所述轴向气流混合段的轴向延伸的前驱物中心管与外层剪切气管,所述前驱物中心管的出口与所述外层剪切气管的出口均与所述雾化喷嘴连通,所述外层剪切气管套设于所述前驱物中心管的外部,经所述雾化喷嘴喷出的空气包裹于燃料的外部。In one of the embodiments, the interior of the swirl atomizer is provided with a precursor central tube and an outer layer shear gas tube extending axially along the axial flow mixing section, and the outlet of the precursor central tube The outlet of the outer layer shearing air pipe is connected with the atomizing nozzle, the outer layer shearing air pipe is sleeved outside the central tube of the precursor, and the air ejected through the atomizing nozzle is wrapped in the Fuel outside.
上述可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器,经轴向顺流进气管流入轴向气流混合腔的空气形成绕旋流雾化器螺旋前进的轴向顺流气,经轴向逆流进气管流入轴向气流混合腔的空气形成绕旋流雾化器螺旋前进的轴向逆流气,轴向顺流气与轴向逆流气的旋向相反,当轴向顺流进气管内的空气流量与轴向逆流进气管内的空气流量的流量比在100%:0%至0%:100%之间变化时,轴向气流混合腔内轴向顺流气与轴向逆流气的流量占比随之发生变化。当轴向顺流气的流量较大而占主导时,轴向气流混合腔内的气流呈顺时针螺旋前进,且轴向顺流气的流量越大,轴向气流混合腔内的顺时针气流的旋流强度越大;当轴向逆流气的流量较大而占主导时,轴向气流混合腔内的气流呈逆时针螺旋前进,且轴向逆流气的流量越大,轴向气流混合腔内的逆时针气流的旋流强度越大。当轴向逆流气流量与轴向顺流气流量间的流量比在100%:0%至0%:100%间逐渐增大过程中,将使轴向气流混合段100内部的逆时针旋转气流旋流强度逐渐减小,逐渐转变为沿着轴向直流气流流动,而后产生顺时针的旋转气流,并且其旋流强度逐渐增大。通过调整顺流气与逆流气两股气流的流量比,可以对轴向气流混合腔及切向气流混合腔内气流的旋流方向和旋流强度进行连续性灵活调节,从而较为灵活的调节纳米粉体颗粒物合成过程。此外,该可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器在进行调节时,无需设置旋流叶片、外接执行器等较为复杂的结构,整体结构更加简单,制造成本与难度均更低。The above-mentioned flame synthesis burner that can realize the flexible adjustment of axial and tangential combined swirl flow, the air flowing into the axial flow mixing chamber through the axial flow inlet pipe forms the axial flow air that spirals around the swirl atomizer, The air flowing into the axial airflow mixing chamber through the axial counterflow air inlet pipe forms the axial counterflow air that spirals around the swirl atomizer. When the flow ratio of the air flow in the air flow and the air flow in the axial counterflow intake pipe changes between 100%:0% and 0%:100%, the ratio of the axial forward flow air and the axial counterflow air in the axial airflow mixing chamber The proportion of traffic changes accordingly. When the flow rate of axially downstream air is large and dominant, the airflow in the axial airflow mixing chamber advances in a clockwise spiral, and the greater the flow rate of axially downstream air, the greater the flow rate of the clockwise airflow in the axial airflow mixing chamber. The greater the flow intensity is; when the flow rate of the axial counterflow air is large and dominant, the airflow in the axial airflow mixing chamber advances in a counterclockwise spiral, and the greater the flow rate of the axial counterflow air, the greater the flow rate in the axial airflow mixing chamber. The swirl strength of the counterclockwise airflow is greater. When the flow ratio between the axial counter-flow air flow and the axial co-flow air flow gradually increases from 100%:0% to 0%:100%, the counterclockwise rotating air flow inside the axial air
(1)相比于常规在雾化前驱物的周围布置值班火焰的技术方案(通常使用CH4或天然气燃烧构建值班火焰),本发明通过结构及配风设计,可在完全依靠雾化液体燃料的自身燃烧放热及合理耦合周围环形旋流风的燃烧组织方式下,实现旋流火焰合成燃烧器的自维持燃烧;(1) Compared with the conventional technical scheme of arranging duty flames around the atomized precursor (usually using CH4 or natural gas combustion to build duty flames), the present invention can completely rely on atomized liquid fuels through structure and air distribution design. The self-sustaining combustion of the swirling flame synthesis burner is realized under the self-combustion heat release and the reasonable coupling of the surrounding annular swirl wind combustion organization;
(2)在中心雾化前驱物的周向,由内至外,依次布置了轴向旋流风和切向旋流风,且轴向旋流风与切向旋流风中间间隔有气流分隔段,确保对高温火焰场的轴向分布及径向分布尺寸及位置的灵活调节,达到对纳米粉体颗粒物成核、聚并及烧结过程的快速有效调节,实现有效控制合成纳米颗粒物的粒径、形态和晶相;(2) In the circumferential direction of the central atomized precursor, from the inside to the outside, the axial swirl wind and the tangential swirl wind are arranged in sequence, and there is an air separation section between the axial swirl wind and the tangential swirl wind to ensure the The flexible adjustment of the axial distribution and radial distribution size and position of the high-temperature flame field can achieve rapid and effective adjustment of the nucleation, coalescence and sintering process of nano-powder particles, and realize effective control of the particle size, shape and crystallinity of the synthesized nanoparticles. Mutually;
(3)本发明中所构建的轴向旋流风和切向旋流风,均可通过调整顺流气与逆流气两股气流间的风量比来对气流的旋流方向和旋流强度进行连续性在线灵活调节,增加了对纳米粉体颗粒物合成过程的灵活调节措施;(3) The axial swirl wind and the tangential swirl wind constructed in the present invention can continuously carry out on-line swirl direction and swirl intensity of the airflow by adjusting the air volume ratio between the two streams of downstream air and countercurrent air. Flexible adjustment, adding flexible adjustment measures to the synthesis process of nano-powder particles;
(4)本发明所述的雾化火焰合成燃烧器结构简单,便于设计加工、制造成本低,有利于提高单只雾化火焰合成燃烧器的粉体材料合成产量,促进雾化旋流火焰合成技术的规模化推广应用。(4) The atomized flame synthesis burner of the present invention has a simple structure, is convenient for design and processing, and has low manufacturing cost, which is conducive to improving the powder material synthesis output of a single atomization flame synthesis burner and promoting atomization swirl flame synthesis Large-scale promotion and application of technology.
附图说明Description of drawings
图1为本发明一实施例中的可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器的整体结构示意图;Figure 1 is a schematic diagram of the overall structure of a flame-combining burner capable of flexibly adjusting axial and tangential combined swirls in an embodiment of the present invention;
图2为图1中可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器的俯视图;Figure 2 is a top view of the flame synthesis burner that can realize the flexible adjustment of axial and tangential combined swirl in Figure 1;
图3为图2中B-B处的剖视图;Fig. 3 is the sectional view of B-B place among Fig. 2;
图4为图1中A-A处的剖视图;Fig. 4 is the sectional view of A-A place among Fig. 1;
图5为图1中可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器的镂空旋流盘的结构示意图;Fig. 5 is a structural schematic diagram of the hollow swirl disc of the flame synthesis burner that can realize the flexible adjustment of axial and tangential combined swirl in Fig. 1;
图6为构建逆时针旋流气流时的气流流动示意图;Fig. 6 is the airflow flow schematic diagram when constructing counterclockwise swirl airflow;
图7为构建顺时针旋流气流时的气流流动示意图;Fig. 7 is the airflow flow schematic diagram when constructing the clockwise swirling airflow;
图8为图1中可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器的气流流向与火焰分布示意图;Fig. 8 is a schematic diagram of the airflow direction and flame distribution of the flame synthesis burner that can realize the flexible adjustment of axial and tangential combined swirl in Fig. 1;
图9为图1中可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器的尺寸示意图。Fig. 9 is a schematic diagram of the size of the flame synthesis burner in Fig. 1 that can realize the flexible adjustment of axial and tangential combined swirl.
附图标记:Reference signs:
轴向气流混合段100、轴向气流混合腔110;Axial
切向气流混合段200、切向气流混合腔210、切向气流出口环220、侧板230、端板240、缺口241;Tangential
轴向顺流进气管310、轴向逆流进气管320、切向顺流进气管330、切向逆流进气管340;Axial forward flow
旋流雾化器400、雾化喷嘴410、主体部420、前驱物中心管421、外层剪切气管422;
气流分隔段500、第二安装腔510;The
镂空旋流盘600、通孔610、中心孔620;
前驱物入口管710、剪切气入口管720。
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention can be implemented in many other ways different from those described here, and those skilled in the art can make similar improvements without departing from the connotation of the present invention, so the present invention is not limited by the specific embodiments disclosed below.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", "Axial" , "radial", "circumferential" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the referred device or Elements must have certain orientations, be constructed and operate in certain orientations, and therefore should not be construed as limitations on the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components or the interaction relationship between two components, unless otherwise specified limit. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch. Moreover, "above", "above" and "above" the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "beneath" and "beneath" the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。It should be noted that when an element is referred to as being “fixed on” or “disposed on” another element, it may be directly on the other element or there may be an intervening element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or intervening elements may also be present. As used herein, the terms "vertical", "horizontal", "upper", "lower", "left", "right" and similar expressions are for the purpose of illustration only and are not intended to represent the only embodiments.
参阅图1至图3,以及图8,本发明一实施例提供的可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器包括轴向气流混合段100,轴向气流混合段100的内部设有轴向气流混合腔110,轴向气流混合腔110内安装有旋流雾化器400,燃料能够经旋流雾化器400雾化后喷出,轴向气流混合段100上安装有与轴向气流混合腔110连通的轴向顺流进气管310与轴向逆流进气管320,轴向顺流进气管310的轴向、轴向逆流进气管320的轴向均与轴向气流混合段100的外周面相切,且轴向顺流进气管310与轴向气流混合腔110的连通位置、轴向逆流进气管320与轴向气流混合腔110的连通位置沿轴向气流混合段100的轴向错开,经轴向顺流进气管310流入轴向气流混合腔110的空气形成绕旋流雾化器400螺旋前进的轴向顺流气,经轴向逆流进气管320流入轴向气流混合腔110的空气形成绕旋流雾化器400螺旋前进的轴向逆流气,轴向顺流气与轴向逆流气的旋向相反,轴向顺流进气管310内的空气流量与轴向逆流进气管320内的空气流量的流量比在100%:0%至0%:100%之间变化。Referring to Fig. 1 to Fig. 3, and Fig. 8, the flame synthesis burner that can realize the flexible adjustment of axial and tangential combined swirl provided by an embodiment of the present invention includes an axial
具体地,轴向气流混合段100的外形呈圆柱状,轴向气流混合段100的内部中空以形成轴向气流混合腔110,轴向气流混合段100的一端为封闭端,另一端为开口端。在附图所示视角下,上下方向即为轴向气流混合段100的轴向,轴向气流混合段100的底端为封闭端,顶端为开口端。旋流雾化器400同轴安装于轴向气流混合腔110的中心位置。液体燃料(例如醇基液体燃料)经旋流雾化器400雾化形成小液滴状并朝上喷出。轴向顺流进气管310与轴向逆流进气管320安装于轴向气流混合段100上靠近封闭端的位置。轴向顺流进气管310与轴向逆流进气管320可以呈空心圆柱状,也可以呈空心长方体等形状。当为空心长方体状时,其轴向即为长方体的长度方向。轴向顺流进气管310与轴向气流混合腔110的连通位置、轴向逆流进气管320与轴向气流混合腔110的连通位置沿轴向气流混合段100的轴向错开,以防止轴向顺流气与轴向逆流气相撞而无法按预期方向与速度流动。在附图所示实施例中,轴向顺流进气管310位于轴向逆流进气管320的上方,在其他实施例中,也可以将轴向逆流进气管320设置于轴向顺流进气管310的上方。空气经轴向顺流进气管310与轴向逆流进气管320流入轴向气流混合腔110后,将形成两股环绕旋流雾化器400的螺旋状朝上前进的旋流风,其中一股为顺时针螺旋前进的轴向顺流气,另一股为逆时针螺旋前进的轴向逆流气。Specifically, the shape of the axial
当轴向顺流进气管310内的空气流量与轴向逆流进气管320内的空气流量的流量比在100%:0%至0%:100%之间变化时,轴向气流混合腔110内轴向顺流气与轴向逆流气的流量占比随之发生变化。当轴向顺流气的流量较大而占主导时,轴向气流混合腔110内的气流呈顺时针螺旋前进,且轴向顺流气的流量越大,轴向气流混合腔110内的顺时针气流的旋流强度越大;当轴向逆流气的流量较大而占主导时,轴向气流混合腔110内的气流呈逆时针螺旋前进,且轴向逆流气的流量越大,轴向气流混合腔110内的逆时针气流的旋流强度越大。当轴向逆流气流量与轴向顺流气的流量比在100%:0%至0%:100%间逐渐增大过程中,将使轴向气流混合段100内部的逆时针旋转气流旋流强度逐渐减小,逐渐转变为沿着轴向直流气流流动,而后产生顺时针的旋转气流,并且其旋流强度逐渐增大。通过调整顺流气与逆流气两股气流的流量比,可以对轴向气流混合腔110内气流的旋流方向和旋流强度进行连续性灵活调节,从而较为灵活的调节纳米粉体颗粒物合成过程。此外,该可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器在进行调节时,无需设置旋流叶片、外接执行器等较为复杂的结构,整体结构更加简单,制造成本与难度均更低。When the flow ratio of the air flow in the axial forward
旋流风螺旋前进到达轴向气流混合段100的顶端,并朝外喷出。旋流风环绕旋流雾化器400外圈,经旋流雾化器400喷出的燃料将位于旋流风的内部。在高温点火热源的作用下,燃料(例如醇基液体燃料)将会发生燃烧放热,并使得溶解于燃料中的前驱物盐(硝酸盐或醋酸盐等盐类)发生热解,从而生成氧化物纳米颗粒。在雾化前驱物的周围形成的旋流风一方面可以为燃料的持续燃烧补充氧量,一方面旋流风的内圈形成的低压区将会促进燃料燃烧时产生的高温烟气的回流,从而在旋流风的内圈也即燃料燃烧区域形成高温回流区,有助于保持燃料燃烧区域的高温状态,提高火焰温度,稳定燃烧火焰及高温区的分布,从而促进燃烧过程中所形成的纳米氧化物颗粒的成核、聚并和烧结长大过程,使纳米粉体颗粒物的合成产量与质量有所提高。The swirling wind spirally advances to the top of the axial
参阅图1至图3,以及图8,在一些实施例中,还包括切向气流混合段200,切向气流混合段200套设于轴向气流混合段100的开口端的外部,切向气流混合段200包括呈环状的切向气流混合腔210,切向气流混合段200上安装有与切向气流混合腔210连通的切向顺流进气管330与切向逆流进气管340,切向顺流进气管330的轴向、切向逆流进气管340的轴向均与切向气流混合段200的外周面相切,且切向顺流进气管330与切向气流混合腔210的连通位置、切向逆流进气管340与切向气流混合腔210的连通位置沿切向气流混合段200的轴向错开,经切向顺流进气管330流入切向气流混合腔210的空气螺旋前进形成环绕开口端的切向顺流气,经切向逆流进气管340流入切向气流混合腔210的空气螺旋前进形成环绕开口端的切向逆流气,切向顺流气与切向逆流气的旋向相反,且沿轴向气流混合段100的径向,切向顺流气与切向逆流气位于轴向顺流气与轴向逆流气的外侧,切向顺流进气管330内的空气流量与切向逆流进气管340内的空气流量的流量比在100%:0%至0%:100%之间变化。Referring to Figures 1 to 3, and Figure 8, in some embodiments, a tangential
具体地,切向气流混合段200呈一端开口另一端封闭的空心圆柱状,且切向气流混合段200的内部中空。切向顺流进气管330与切向逆流进气管340安装于切向气流混合段200上靠近底端的位置。切向顺流进气管330与切向逆流进气管340可以呈空心圆柱状,也可以呈空心长方体等形状。当为空心长方体状时,其切向即为长方体的长度方向。切向顺流进气管330与切向气流混合腔210的连通位置、切向逆流进气管340与切向气流混合腔210的连通位置沿切向气流混合段200的轴向错开,以防止切向顺流气与切向逆流气相撞而无法按预期方向与速度流动。在附图所示实施例中,切向顺流进气管330位于切向逆流进气管340的上方,在其他实施例中,也可以将切向逆流进气管340设置于切向顺流进气管330的上方。空气经切向顺流进气管330与切向逆流进气管340流入切向气流混合腔210后,将形成两股螺旋状朝上前进的旋流风,其中一股为顺时针螺旋前进的切向顺流气,另一股为逆时针螺旋前进的切向逆流气。Specifically, the tangential
当切向顺流进气管330内的空气流量与切向逆流进气管340内的空气流量的流量比在100%:0%至0%:100%之间变化时,切向气流混合腔210内切向顺流气与切向逆流气的流量占比随之发生变化。当切向顺流气的流量较大而占主导时,切向气流混合腔210内的气流呈顺时针螺旋前进,且切向顺流气的流量越大,切向气流混合腔210内的顺时针气流的旋流强度越大;当切向逆流气的流量较大而占主导时,切向气流混合腔210内的气流呈逆时针螺旋前进,且切向逆流气的流量越大,切向气流混合腔210内的逆时针气流的旋流强度越大。当切向逆流气流量与切向顺流气的流量比在100%:0%至0%:100%间逐渐增大过程中,将使切向气流混合段200内部的逆时针旋转气流旋流强度逐渐减小,逐渐转变为沿着轴向直流气流流动,而后产生顺时针的旋转气流,并且其旋流强度逐渐增大。通过调整顺流气与逆流气两股气流的流量比,可以对切向气流混合腔210内气流的旋流方向和旋流强度进行连续性灵活调节,从而较为灵活的调节纳米粉体颗粒物合成过程。切向旋流风环绕于从轴向气流混合腔110的顶端喷出的轴向旋流风的外侧,从而形成双层旋流风,对燃烧区的氧量分级补充,且更易于形成中心的低压区,从而有利于提高整体周向旋流风构建高温回流区的能力,提高雾化合成火焰的自维持燃烧能力,并提高火焰的稳定性。When the flow ratio of the air flow in the tangential forward
参阅图3与图8,在一些实施例中,切向气流混合段200包括呈环状的侧板230以及与侧板230的端部连接的端板240,侧板230内部中空以形成切向气流混合腔210,端板240内部中空以形成与切向气流混合腔210连通的切向气流出口环220,端板240上设有与切向气流出口环220连通的缺口241,切向顺流气与切向逆流气沿切向气流出口环220的周向流动并经缺口241流出可实现轴向、切向组合性旋流灵活调节的火焰合成燃烧器。具体地,切向顺流进气管330、切向逆流进气管340均安装于侧板230的外周面。端板240连接于侧板230的顶端,端板240的中心位置设有沿自身轴向贯通的缺口241,以使得端板240的内腔呈环形,以形成切向气流出口环220。流入切向气流混合腔210的切向顺流气与切向逆流气混合后,将形成以流量占比更高的气流为主导的切向旋流风。切向旋流风自切向气流混合腔210流入切向气流出口环220,并从切向气流出口环220的内圈处的缺口241处朝外喷出。当切向旋流风在切向气流出口环220内流动时,将会环绕于从轴向气流混合段100顶端喷出的轴向旋流风的外侧,从而构建双层旋流风。3 and 8, in some embodiments, the tangential
参阅图3与图8,在一些实施例中,还包括呈环状且两端开口的气流分隔段500,侧板230与端板240限定出第一安装腔,气流分隔段500安装于第一安装腔的腔壁,气流分隔段500包括第二安装腔510,开口端伸入第二安装腔510,经开口端喷出的气流与燃料穿过缺口241朝外喷出。具体地,侧板230与端板240的内侧形成柱状的第一安装腔,气流分隔段500的外侧壁贴合于侧板230的内侧壁,气流分隔段500的端壁贴合于端板240的内壁。气流分隔段500的顶端与底端均呈开口状,内部中空以形成第二安装腔510。轴向气流混合段100的顶端从下朝上伸入第二安装腔510内,轴向气流混合段100的外侧壁贴合于气流分隔段500的内侧壁。气流分隔段500可以通过卡接、螺纹紧固件连接等方式固定于轴向气流混合段100与切向气流混合段200之间。通过设置在轴向气流混合段100与切向气流混合段200之间设置气流分隔段500,可以增大内外两层旋流风的径向间距,尽量将内外两层旋流风隔开,使两层旋流风不易混在一起相互干扰。Referring to FIG. 3 and FIG. 8 , in some embodiments, it also includes an annular
参阅图3、图8与图9,在一些实施例中,沿轴向气流混合段100的轴向,气流分隔段500的外端与轴向气流混合段100的外端之间存在高度差。具体地,气流分隔段500的顶端与轴向气流混合段100的顶端之间存在高度差H1。燃料从旋流雾化器400的顶端朝上喷出后被点燃形成火焰,在该高度差范围内,从轴向气流混合段100的顶端朝上喷出的轴向旋流风可以稳定的环绕于火焰外圈,待到达缺口241处,切向旋流风再加入,形成两层旋流风,以免两层旋流风相互之间相互干扰而无法按照预期速度与流向流动。优选地,在一些实施例中,0.2H≤H1≤0.6H,其中H为切向气流混合段200的轴向长度,满足该数值范围时,可以尽量保证装置具有较小的轴向尺寸,同时使从轴向气流混合段100的顶端朝上喷出的轴向旋流风可以稳定的环绕于火焰外圈。Referring to FIG. 3 , FIG. 8 and FIG. 9 , in some embodiments, along the axial direction of the axial
参阅图2与图4、图6与图7,在一些实施例中,沿轴向气流混合段100的径向,轴向顺流进气管310与轴向气流混合腔110的连通位置、轴向逆流进气管320与轴向气流混合腔110的连通位置分别位于轴向气流混合段100的两端;以及/或者,Referring to FIG. 2 and FIG. 4 , FIG. 6 and FIG. 7 , in some embodiments, along the radial direction of the axial
沿切向气流混合段200的径向,切向顺流进气管330与切向气流混合腔210的连通位置、切向逆流进气管340与切向气流混合腔210的连通位置分别位于切向气流混合段200的两端。Along the radial direction of the tangential
具体地,轴向顺流进气管310位于轴向逆流进气管320的正对一侧。轴向顺流进气管310与轴向气流混合腔110的连通位置位于图4视角下的下端,轴向逆流进气管320与轴向气流混合腔110的连通位置位于图4视角下的上端。将两个连通位置分别设置于沿径向的两端时,两个连通位置之间的间距最大,各自流入的气流不易相互干扰。类似地,在图2视角下,切向顺流进气管330位于切向逆流进气管340的正对一侧。切向顺流进气管330与切向气流混合腔210的连通位置位于下端,切向逆流进气管340与切向气流混合腔210的连通位置位于上端。当然,除了图示位置,也可以是其他位置,例如分别位于左端和右端。Specifically, the axial forward
参阅图2、图3、图5与图8,在一些实施例中,还包括镂空旋流盘600,镂空旋流盘600安装于开口端,旋流雾化器400穿过镂空旋流盘600的中心孔620朝外伸出,旋流雾化器400上设有多个沿自身周向间隔排布的通孔610,沿镂空旋流盘600的径向,通孔610位于中心孔620的外侧,轴向顺流气与轴向逆流气经通孔610喷出。具体地,镂空旋流盘600安装于轴向气流混合段100的顶端开口处,且其外径与轴向气流混合段100的内径相等,镂空旋流盘600将轴向气流混合段100的顶端开口封堵,镂空旋流盘600外侧壁抵持于轴向气流混合腔110的腔体侧壁以实现对镂空旋流盘600的径向限位。镂空旋流盘600的中心位置设置有沿自身轴向贯通的中心孔620,旋流雾化器400自下朝上经中心孔620朝外伸出。多个通孔610环绕于中心孔620设置,且多个通孔均匀间隔排布。到达轴向气流混合段100顶端的轴向旋流风可以经各个通孔610朝上喷出。附图所示实施例中,通孔610呈扇形,沿旋流雾化器400的径向且朝外的方向上,通孔610的周向尺寸逐渐增大。当然,在另一些实施例中,通孔610也可以设置为其他形状,例如圆形、椭圆形、长方形等。由于通孔610处无遮挡部件,可以使轴向旋流气顺利流通,减少对旋转气流的阻挡。Referring to Fig. 2, Fig. 3, Fig. 5 and Fig. 8, in some embodiments, a
参阅图3与图8,在一些实施例中,旋流雾化器400包括雾化喷嘴410与主体部420,轴向气流混合段100包括位于开口端的对侧的封闭端,主体部420穿过封闭端伸入轴向气流混合腔110并插入中心孔620,且主体部420固定连接于封闭端,雾化喷嘴410抵持于镂空旋流盘600上背离轴向气流混合腔110的一侧,雾化喷嘴410与主体部420固定连接,燃料能够经主体部420流入,并经雾化喷嘴410喷出。具体地,轴向气流混合段100的封闭端的中心位置设置有安装孔,主体部420呈杆状,自下朝上穿过该安装孔,并固定于封闭端。具体地,可以在主体部420露出于轴向气流混合段100以外的部分的外周面设置外螺纹,螺母旋紧于外螺纹直至螺母抵持于轴向气流混合段100的封闭端的外端面,从而将主体部420固定安装于轴向气流混合段100的封闭端。当然,在其他实施例中,也可以通过卡接等方式实现固定安装。主体部420的顶端穿过中心孔620,并与位于镂空旋流盘600的上方的雾化喷嘴410固定连接,例如,可以通过螺钉实现固定,或者,也可以通过卡接固定。燃料流经主体部420的内部,朝上流动而流入雾化喷嘴410,并经雾化喷嘴410朝上喷出。3 and 8, in some embodiments, the
参阅图1与图3,在一些实施例中,轴向顺流进气管310的轴向、轴向逆流进气管320的轴向均相对于轴向气流混合段100的端面倾斜,沿轴向顺流进气管310内的气流流向,轴向顺流进气管310与轴向气流混合段100的气流流出口的间距逐渐减小,沿轴向逆流进气管320内的气流流向,轴向逆流进气管320与气流流出口的间距逐渐减小。具体地,沿气流在轴向顺流进气管310内的流动方向,轴向顺流进气管310朝上倾斜。沿气流在轴向逆流进气管320内的流动方向,轴向逆流进气管320朝上倾斜。如此设置可以使轴向顺流气与轴向逆流气在初始阶段即具有朝上的流动速度,从而更易于朝上流动。优选地,在一些实施例中,5°≤α≤20°,其中α为轴向顺流进气管310的轴向与轴向气流混合段100端面(也就是水平方向)的夹角,也为轴向逆流进气管320的轴向与轴向气流混合段100端面(也就是水平方向)的夹角。类似地,沿气流在切向顺流进气管330内的流动方向,切向顺流进气管330朝上倾斜。沿气流在切向逆流进气管340内的流动方向,切向逆流进气管340朝上倾斜。当然,在一些实施例中,也可以将轴向顺流进气管310、轴向逆流进气管320、切向顺流进气管330、切向逆流进气管340均设置为水平。Referring to FIG. 1 and FIG. 3 , in some embodiments, the axial direction of the axial forward flow
参阅图,在一些实施例中,旋流雾化器400的内部设有沿轴向气流混合段100的轴向延伸的前驱物中心管421与外层剪切气管422,前驱物中心管421的出口与外层剪切气管422的出口均与雾化喷嘴410连通,外层剪切气管422套设于前驱物中心管421的外部,经雾化喷嘴410喷出的空气包裹于燃料的外部。具体地,外层剪切气管422与剪切气入口管720连通,前驱物中心管421与前驱物入口管710连通。前驱物入口管710与剪切气入口管720均穿过轴向气流混合段100的侧壁伸入轴向气流混合腔110内,并各自连接于主体部420上对应位置。空气经剪切气入口管720流入外层剪切气管422,并流入雾化喷嘴410。前驱物经前驱物入口管710流入前驱物中心管421,并流入雾化喷嘴410。在雾化喷嘴410内,前驱物被空气包裹而高速喷出。在喷出过程中,空气将会对前驱物进行剪切破碎,使前驱物发生雾化,液态的前驱物破碎成粒径更小的液滴,从而更易于燃烧充分。优选地,雾化喷嘴410呈空心锥形,其内腔的径向尺寸从下至上逐渐减小,燃料经前驱物中心管421流入雾化喷嘴410的锥形内腔,同时空气也经外层剪切气管422流入雾化喷嘴410的锥形内腔。通过限定雾化喷嘴410的内腔为锥形,可以使空气喷出时的角度能尽量朝向位于中心位置的燃料,从而加剧对液体燃料的剪切破碎,使其雾化效果更好。Referring to the figure, in some embodiments, the interior of the
参阅图3、图8与图9,在一些实施例中,5°≤α≤20°;1.5d≤h≤3d;1.1d≤D2≤1.5d;1.1D2≤D1≤1.2D2;0.5D2≤H≤0.9D2;0.2H≤H1≤0.6H。其中,α为轴向顺流进气管310的轴向与轴向气流混合段100端面的夹角,也为轴向逆流进气管320的轴向与轴向气流混合段100端面的夹角。H1为端板240与轴向气流混合段100的顶端之间存在的高度差,H为切向气流混合段200的轴向长度。d为轴向气流混合段100的内径,h为轴向气流混合段100内轴向气流混合腔110的轴向长度。D1为切向气流混合段200的内径,D2为气流分隔段500的外径。当满足上述数值范围时,燃烧器能够实现较优的合成效果,有利于纳米氧化物颗粒的成核、聚并和烧结长大过程。Referring to FIG. 3 , FIG. 8 and FIG. 9 , in some embodiments, 5°≤α≤20°; 1.5d≤h≤3d; 1.1d≤D 2 ≤1.5d; 1.1D 2 ≤D 1 ≤1.2D 2 ; 0.5D 2 ≤ H ≤ 0.9D 2 ; 0.2H ≤ H 1 ≤ 0.6H. Wherein, α is the angle between the axial direction of the axial forward flow
参阅图3与图8,本发明的液体燃料自维持燃烧火焰合成燃烧器在燃烧过程中主要有4股气流和液流参与火焰合成纳米粉体颗粒物的过程,具体包括:轴向旋流风、切向旋流风、前驱物、剪切气。其中,轴向旋流风同时由轴向逆流气和轴向顺流气两股气流耦合组成,切向旋流风同时由切向逆流气和切向顺流气两股气流耦合组成,具体为:Referring to Fig. 3 and Fig. 8, the liquid fuel self-sustaining combustion flame synthesis burner of the present invention mainly has 4 streams of air flow and liquid flow to participate in the process of flame synthesis of nano-powder particles in the combustion process, specifically including: axial swirling wind, cutting Swirl wind, precursor, shear gas. Among them, the axial swirl wind is composed of two airflow couplings of axial counterflow air and axial downflow air, and the tangential swirl wind is composed of two airflow couplings of tangential counterflow air and tangential downflow air at the same time, specifically:
轴向旋流风,包括轴向逆流气由轴向逆流进气管320喷入,同时,轴向顺流气由轴向顺流进气管310喷入,而后两股气流共同沿着不同的高度和位置高速喷入到轴向气流混合段100的内部,由于二者之间产生的旋转气流方向不同,当轴向顺流气的入射动量大于轴向逆流气的入射动量时,轴向顺流气在轴向气流混合段100的顺时针旋转将占据主导作用,并在轴向气流混合段100的上端产生顺时针旋流气流流动,而当轴向顺流气的入射动量小于轴向逆流气的入射动量时,此时,轴向逆流气在轴向气流混合段100的逆时针旋转将占据主导作用,并在轴向气流混合段100的上端产生逆时针旋流气流流动。在这个过程中,当轴向逆流气流量与轴向顺流气的流量比在100%:0%至0%:100%间逐渐增大过程中,将使轴向气流混合段100内部的逆时针旋转气流旋流强度逐渐减小,逐渐转变为沿着轴向直流气流流动,而后产生顺时针的旋转气流,并且其旋流强度逐渐增大。而后具有一定旋流强度的气流由位于上部的通孔610喷出。Axial swirling air, including axial counterflow air, is injected through the axial
切向旋流风,包括切向逆流气由切向逆流进气管340喷入,同时,切向顺流气由切向顺流进气管330喷入,而后两股气流共同沿着不同的高度和位置高速喷入到切向气流混合段200的内部,由于二者之间产生的旋转气流方向不同,当切向顺流气的入射动量大于切向逆流气的入射动量时,切向顺流气在切向气流混合段200内部的顺时针旋转将占据主导作用,并在切向气流混合段200的上端产生顺时针旋流气流流动,而当切向顺流气的入射动量小于切向逆流气的入射动量时,此时,切向逆流气在切向气流混合段200内部的逆时针旋转将占据主导作用,并在切向气流混合段200的上端产生逆时针旋流气流流动。在这个过程中,当切向逆流气流量与切向顺流气的流量比在100%:0%至0%:100%间逐渐增大过程中,将使切向气流混合段200内部的逆时针旋转气流旋流强度逐渐减小,逐渐转变为沿着轴向直流气流流动,而后产生顺时针的旋转气流,并且其旋流强度逐渐增大。而后具有一定旋流强度的切向气流由切向气流出口环220的内侧出口高速喷出。The tangential swirling wind, including the tangential counter-flow air, is injected through the tangential counter-flow
前驱物,主要为液体燃料(例如醇基液体燃料)和前驱物盐(硝酸盐或醋酸盐等盐类)的混合液,在外接增压泵的作用下,经由前驱物入口管710进入前驱物中心管421,并由雾化喷嘴410喷出。The precursor is mainly a mixture of liquid fuel (such as alcohol-based liquid fuel) and precursor salt (salts such as nitrate or acetate), and enters the precursor through the
剪切气,主要为空气流,在外接增压风机的作用下,经由剪切气入口管720进入外层剪切气管422,并由雾化喷嘴410高速喷出。The shearing gas, mainly air flow, enters the outer layer shearing
首先,相比于常规在雾化前驱物的周围布置值班火焰的技术方案(通常使用CH4或天然气燃烧构建值班火焰),本发明通过结构及配风设计,可在完全依靠雾化液体燃料的自身燃烧放热及合理耦合周围环形旋流风的燃烧组织方式下,实现旋流火焰合成燃烧器的自维持燃烧;First of all, compared with the conventional technical scheme of arranging duty flames around atomized precursors (usually using CH4 or natural gas to burn to build duty flames), the present invention can be used in the environment completely relying on atomized liquid fuels through structure and air distribution design. The self-sustaining combustion of the swirl flame synthesis burner is realized under the combustion organization mode of self-combustion heat release and reasonable coupling with the surrounding annular swirl wind;
其次,在中心雾化前驱物的周向,由内至外,依次布置了轴向旋流风和切向旋流风,且轴向旋流风与切向旋流风中间间隔有气流分隔段,确保对高温火焰场的轴向分布及径向分布尺寸及位置的灵活调节,达到对纳米粉体颗粒物成核、聚并及烧结过程的快速有效调节,实现有效控制合成纳米颗粒物的粒径、形态和晶相;Secondly, in the circumferential direction of the central atomized precursor, from the inside to the outside, the axial swirl wind and the tangential swirl wind are arranged in sequence, and there is an air separation section between the axial swirl wind and the tangential swirl wind to ensure the high temperature The axial distribution of the flame field and the flexible adjustment of the size and position of the radial distribution can achieve rapid and effective adjustment of the nucleation, coalescence and sintering process of nano-powder particles, and realize effective control of the particle size, shape and crystal phase of the synthesized nanoparticles ;
再次,本发明中所构建的轴向旋流风和切向旋流风,均可通过调整顺流气与逆流气两股气流间的风量比来对气流的旋流方向和旋流强度进行连续性在线灵活调节,增加了对纳米粉体颗粒物合成过程的灵活调节措施;Again, both the axial swirl wind and the tangential swirl wind constructed in the present invention can continuously and flexibly adjust the swirl direction and swirl intensity of the airflow by adjusting the air volume ratio between the forward flow air and the counterflow air flow. Adjustment, adding flexible adjustment measures to the synthesis process of nano-powder particles;
再次,本发明所述的雾化火焰合成燃烧器结构简单,便于设计加工、制造成本低,有利于提高单只雾化火焰合成燃烧器的粉体材料合成产量,促进雾化旋流火焰合成技术的规模化推广应用。Again, the atomized flame synthesis burner of the present invention has a simple structure, is convenient for design and processing, and has low manufacturing cost, which is conducive to improving the powder material synthesis output of a single atomization flame synthesis burner and promoting the atomization swirl flame synthesis technology. large-scale promotion and application.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210129593.6A CN114459024B (en) | 2022-02-11 | 2022-02-11 | Flame synthesis burner capable of realizing axial and tangential combined rotational flow flexible adjustment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210129593.6A CN114459024B (en) | 2022-02-11 | 2022-02-11 | Flame synthesis burner capable of realizing axial and tangential combined rotational flow flexible adjustment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114459024A CN114459024A (en) | 2022-05-10 |
CN114459024B true CN114459024B (en) | 2023-05-23 |
Family
ID=81413871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210129593.6A Active CN114459024B (en) | 2022-02-11 | 2022-02-11 | Flame synthesis burner capable of realizing axial and tangential combined rotational flow flexible adjustment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114459024B (en) |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2249585A5 (en) * | 1973-10-26 | 1975-05-23 | Gaz De France | High-temp. gas burner for cupolas - uses low-press. gas and permits partial replacement of coke by gas |
US4245980A (en) * | 1978-06-19 | 1981-01-20 | John Zink Company | Burner for reduced NOx emission and control of flame spread and length |
DE3813222A1 (en) * | 1988-04-20 | 1989-11-02 | Kleinewefers Energie Umwelt | DEVICE FOR SUPPLYING EXHAUST AIR AND / OR COMBUSTION AIR TO A BURNER OR A COMBUSTION CHAMBER |
JP3888619B2 (en) * | 2001-12-25 | 2007-03-07 | 独立行政法人 宇宙航空研究開発機構 | Gas turbine combustor premixing device |
EP1669747A1 (en) * | 2004-12-09 | 2006-06-14 | ETH Zürich | Formation of highly porous gas-sensing layers by deposition of nanoparticles produced by flame spray pyrolysis |
FR2999975B1 (en) * | 2012-12-20 | 2015-02-27 | Michelin & Cie | METALLIC REINFORCEMENT READY FOR USE WHOSE SURFACE IS PROVIDED WITH METAL SULFIDE NANOPARTICLES |
FI20146177A (en) * | 2014-12-31 | 2016-07-01 | Teknologian Tutkimuskeskus Vtt Oy | Process for the preparation of catalytic nano coating |
CN105627317B (en) * | 2015-12-31 | 2018-07-10 | 北京理工大学 | Rapidly mixing tubulose flame burner with axial jet |
CN105738139B (en) * | 2016-02-06 | 2018-09-04 | 中国科学院工程热物理研究所 | Burner and burn test method |
CN107036100B (en) * | 2017-05-31 | 2019-02-22 | 北京理工大学 | Axial-cut multi-swirling gas-liquid-solid multiphase flow burner with expansion section |
CN107511123B (en) * | 2017-09-29 | 2023-04-14 | 清华大学 | An Atomized Flame Nanoparticle Synthesis System Based on Multi-Swirl Enhanced Mixing |
CN109708148B (en) * | 2019-01-11 | 2021-01-29 | 东方电气集团东方汽轮机有限公司 | Gas turbine combustor doublestage radial swirler |
CN112503524B (en) * | 2020-12-17 | 2024-07-26 | 华中科技大学 | Burner for synthesizing nano particles by flame |
CN113464941B (en) * | 2021-06-25 | 2024-05-31 | 清华大学 | Low-carbon cyclone burner with flexibly adjustable flame diameter |
-
2022
- 2022-02-11 CN CN202210129593.6A patent/CN114459024B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114459024A (en) | 2022-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110465257B (en) | Nanoparticle swirl flame atomization doping synthesis system and synthesis method thereof | |
US5511375A (en) | Dual fuel mixer for gas turbine combustor | |
CN100436945C (en) | Fuel pre-evaporation and premix perforated pipe | |
CN201503015U (en) | Adjustable spiral bubble atomizing nozzle | |
CN105041539B (en) | A kind of Multi-stage spiral combination type air atomizing fuel nozzle device and its control method | |
CN101435585A (en) | Gas turbine combined type fuel evaporating and atomizing combustion apparatus | |
CN112264209B (en) | A spiral tube air atomizing nozzle | |
CN211755033U (en) | Nanoparticle rotational flow flame atomization doping synthesis system | |
CN104560210A (en) | Coal water slurry atomizing nozzle and gasification furnace with same | |
CN207745881U (en) | It is a kind of to strengthen mixed atomization flame nano particle synthesis system based on more eddy flows | |
US4364522A (en) | High intensity air blast fuel nozzle | |
CN107511123B (en) | An Atomized Flame Nanoparticle Synthesis System Based on Multi-Swirl Enhanced Mixing | |
CN114459024B (en) | Flame synthesis burner capable of realizing axial and tangential combined rotational flow flexible adjustment | |
CN109140500A (en) | A kind of nozzle of combustion chamber, combustion chamber and miniature gas turbine | |
CN114046537A (en) | Combined premixing nozzle of microminiature gas turbine | |
CN104611065B (en) | Double-swirling pulverized coal spray nozzle for dry powder gasifier | |
CN105217599B (en) | A system and method for synthesizing carbon nanotubes | |
CN201272783Y (en) | Combined startup burner for powder coal gasification furnace | |
CN114534634B (en) | Liquid fuel self-sustaining combustion flame synthesis burner | |
CN204417439U (en) | Dry powder gasification furnace double-cyclone coal nozzle | |
CN215892445U (en) | Fuel nozzle for realizing premixed combustion and diffusion combustion | |
CN112254125B (en) | A swirling pressure atomizing nozzle | |
CN208222510U (en) | A kind of double fuel air-swirl burner | |
CN208205007U (en) | A kind of gas-liquid combustible combustion device | |
CN112902229A (en) | Combustion chamber evaporating pipe structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |