CN114448442A - Analog-to-digital converter and analog-to-digital conversion method - Google Patents
Analog-to-digital converter and analog-to-digital conversion method Download PDFInfo
- Publication number
- CN114448442A CN114448442A CN202210041532.4A CN202210041532A CN114448442A CN 114448442 A CN114448442 A CN 114448442A CN 202210041532 A CN202210041532 A CN 202210041532A CN 114448442 A CN114448442 A CN 114448442A
- Authority
- CN
- China
- Prior art keywords
- signal
- analog
- bit
- output signal
- historical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
- H03M3/494—Sampling or signal conditioning arrangements specially adapted for delta-sigma type analogue/digital conversion systems
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/368—Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/412—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
- H03M3/422—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本申请公开了一种模数转换器及模数转换方法。该模数转换器包括:模拟加法器,对模拟输入信号和反馈信号执行减法操作,以获得误差信号;积分器,对误差信号进行积分运算,以获得积分信号;量化器,对模拟输入信号和积分信号的和进行量化处理,以输出N位的量化信号;增量调制器,根据历史数值将N位的量化信号转换为M位的输出信号,M和N均为非零自然数,且M大于N;以及数模转换器,连接在增量调制器和模拟加法器之间,用于将M位的输出信号转换为模拟的反馈信号后发送至模拟加法器。该模数转换器可以同时兼顾装置稳定性和高信噪比的要求。
The present application discloses an analog-to-digital converter and an analog-to-digital conversion method. The analog-to-digital converter includes: an analog adder, which performs a subtraction operation on the analog input signal and the feedback signal to obtain an error signal; an integrator, which performs an integrating operation on the error signal to obtain an integrated signal; The sum of the integral signals is quantized to output an N-bit quantized signal; the delta modulator converts the N-bit quantized signal into an M-bit output signal according to historical values, where M and N are both non-zero natural numbers, and M is greater than N; and a digital-to-analog converter, connected between the delta modulator and the analog adder, for converting the M-bit output signal into an analog feedback signal and then sending it to the analog adder. The analog-to-digital converter can take into account the requirements of device stability and high signal-to-noise ratio at the same time.
Description
技术领域technical field
本发明涉及电子电路技术领域,更具体地,涉及一种模数转换器及模数转换方法。The present invention relates to the technical field of electronic circuits, and more particularly, to an analog-to-digital converter and an analog-to-digital conversion method.
背景技术Background technique
随着数字电子技术的迅速发展,各种数字设备,特别是各种处理器的应用日益广泛,几乎渗透到国民经济的所有领域之中。处理器只能够对数字信号进行处理,处理的结果还是数字量。而自然界中的变量往往是连续变化的模拟量,例如力,位移,速度等。这些模拟量先要经过传感器变成电压或者电流信号,然后再转换成数字量,才能够送往处理器进行处理,这就需要模拟数字转换器,即模数转换器(ADC)。模数转换器具有非常重要的地位,几十年来对模数转换器的改进一直是信号处理领域的重点。With the rapid development of digital electronic technology, the application of various digital devices, especially various processors, has become more and more extensive, and has penetrated into almost all fields of the national economy. The processor can only process digital signals, and the result of the processing is still a digital quantity. The variables in nature are often analog quantities that change continuously, such as force, displacement, velocity, etc. These analog quantities must first be converted into voltage or current signals by sensors, and then converted into digital quantities before they can be sent to the processor for processing, which requires an analog-to-digital converter, that is, an analog-to-digital converter (ADC). The analog-to-digital converter has a very important position, and the improvement of the analog-to-digital converter has been the focus of the signal processing field for decades.
传统的线性脉冲编码调制(PCM)ADC受到了制造工艺的限制,无法达到很高的分辨率。但基于Delta-Sigma调制技术的ADC可以在现有工艺下实现高分辨率(大于16位),同时由于结构简单,所以易于实现。低成本高性能使得Delta-Sigma调制技术得到了广泛的应用。Traditional linear pulse code modulation (PCM) ADCs are limited by the manufacturing process and cannot achieve very high resolution. However, the ADC based on Delta-Sigma modulation technology can achieve high resolution (greater than 16 bits) under the existing process, and at the same time, it is easy to implement due to its simple structure. Low cost and high performance make Delta-Sigma modulation technology widely used.
传统的Delta-Sigma调制器,可以有多个积分器。如两个积分器串联,那么就称为二阶Delta-Sigma调制器。不同阶数的调制器,对于噪声整型(Noise-Shaping)具有不同的作用,阶数越高,噪声整型效果越好。不过阶数越高设计的难度越大,调制器整体的稳定性降低。Traditional Delta-Sigma modulators can have multiple integrators. If two integrators are connected in series, it is called a second-order Delta-Sigma modulator. Modulators of different orders have different effects on noise-shaping. The higher the order, the better the noise-shaping effect. However, the higher the order, the more difficult it is to design, and the overall stability of the modulator decreases.
多位的模数转换器量化与多位的数模转换器反馈可以提升信号在带宽内的信噪比,从而避免使用过多阶数而带来的复杂性。然而多位的模数转换器量化器与多位反馈的数模转换器的设计的线性度也直接影响到整个系统的性能。Multi-bit analog-to-digital converter quantization and multi-bit digital-to-analog converter feedback can improve the signal-to-noise ratio of the signal within the bandwidth, thereby avoiding the complexity of using too many orders. However, the linearity of the design of the multi-bit analog-to-digital converter quantizer and the multi-bit feedback digital-to-analog converter also directly affects the performance of the whole system.
因此,期望提供一种改进的模数装换装置,以减少调制器的阶数,保持装置的稳定性,同时满足高信噪比设计的要求。Therefore, it is desirable to provide an improved analog-to-digital switching device to reduce the order of the modulator, maintain the stability of the device, and meet the requirements of high signal-to-noise ratio design.
发明内容SUMMARY OF THE INVENTION
鉴于上述问题,本发明的目的在于提供一种模数转换器及模数转换方法,从而同时兼顾稳定性和高信噪比的要求。In view of the above problems, the purpose of the present invention is to provide an analog-to-digital converter and an analog-to-digital conversion method, so as to take into account the requirements of stability and high signal-to-noise ratio at the same time.
根据本发明的一方面,提供一种模数转换器,包括:According to an aspect of the present invention, an analog-to-digital converter is provided, comprising:
模拟加法器,对模拟输入信号和反馈信号执行减法操作,以获得误差信号;An analog adder that performs a subtraction operation on the analog input signal and the feedback signal to obtain an error signal;
积分器,对所述误差信号进行积分运算,以获得积分信号;an integrator, which performs an integral operation on the error signal to obtain an integral signal;
量化器,对所述模拟输入信号和所述积分信号的和进行量化处理,以输出N位的量化信号;a quantizer, which performs quantization processing on the sum of the analog input signal and the integral signal to output a quantized signal of N bits;
增量调制器,根据历史数值将所述N位的量化信号转换为M位的输出信号,M和N均为非零自然数,且M大于N;以及a delta modulator, converting the N-bit quantized signal into an M-bit output signal according to historical values, where M and N are both non-zero natural numbers, and M is greater than N; and
数模转换器,连接在所述增量调制器和所述模拟加法器之间,用于将所述M位的输出信号转换为模拟的反馈信号后发送至所述模拟加法器。A digital-to-analog converter, connected between the delta modulator and the analog adder, is used for converting the M-bit output signal into an analog feedback signal and then sending it to the analog adder.
可选的,所述增量调制器包括:Optionally, the delta modulator includes:
存储模块,用于存储至少一个历史周期中得到的所述M位的输出信号,以及存储至少一个历史周期的N位的量化信号,并根据至少一个历史周期中得到的所述M位的输出信号和当前周期中的所述N位的量化信号,判断所述当前周期中的所述N位的量化信号的边界,获得所述当前周期中增量的边界值,所述历史周期是在所述当前周期之前的周期;A storage module for storing the M-bit output signal obtained in at least one historical period, and storing the N-bit quantized signal of at least one historical period, and according to the M-bit output signal obtained in at least one historical period and the N-bit quantized signal in the current cycle, determine the boundary of the N-bit quantized signal in the current cycle, and obtain the incremental boundary value in the current cycle, and the historical cycle is in the current cycle. the period before the current period;
数据处理模块,对所述存储模块获得的所述边界值进行量化处理;以及a data processing module, performing quantization processing on the boundary value obtained by the storage module; and
累加模块,用于将所述当前周期中的所述N位的量化信号,至少一个历史周期的N位的量化信号和进行量化处理后的所述边界值进行累加,以获得所述M位的输出信号。可选的,所述增量调制器还包括:The accumulation module is used to accumulate the N-bit quantized signal in the current cycle, the N-bit quantized signal of at least one historical period and the boundary value after quantization processing to obtain the M-bit quantized signal. output signal. Optionally, the delta modulator further includes:
量化越界处理模块,连接至所述累加模块,用于在所述累加模块执行累加之后,判断所述M位的输出信号是否越界,若越界,则将所述述M位的输出信号进行越界处理之后反馈给所述累加模块,由所述累加模块输出所述M位的输出信号,若未越界,则输出所述M位的输出信号。A quantization out-of-bounds processing module, connected to the accumulation module, for judging whether the M-bit output signal is out-of-bounds after the accumulation module performs accumulation, and if it is out-of-bounds, then the M-bit output signal is subjected to out-of-bounds processing Then, it is fed back to the accumulating module, and the accumulating module outputs the M-bit output signal, and if the limit is not exceeded, the M-bit output signal is output.
可选的,所述积分器包括至少一个积分模块,以对所述误差信号进行至少一次积分运算,Optionally, the integrator includes at least one integration module to perform at least one integration operation on the error signal,
当所述积分模块的数量为多个时,多个所述积分模块依次串联连接,以对所述误差信号进行多次积分运算,从而得到所述积分信号。When the number of the integration modules is multiple, the integration modules are sequentially connected in series to perform multiple integration operations on the error signal, thereby obtaining the integration signal.
可选的,所述积分器包括两个积分模块,从而形成二阶调制器结构,N为4,M为12。Optionally, the integrator includes two integration modules, thereby forming a second-order modulator structure, where N is 4 and M is 12.
根据本发明的第二方面,提供一种模数转换方法,包括:According to a second aspect of the present invention, an analog-to-digital conversion method is provided, comprising:
对模拟输入信号和反馈信号执行减法操作,以获得误差信号;perform a subtraction operation on the analog input signal and the feedback signal to obtain an error signal;
对所述误差信号进行积分运算,以获得积分信号;performing an integral operation on the error signal to obtain an integral signal;
对所述模拟输入信号和所述积分信号的和进行量化处理,以输出N位的量化信号;quantizing the sum of the analog input signal and the integral signal to output a quantized signal of N bits;
根据历史数值将所述N位的量化信号转换为M位的输出信号,M和N均为非零自然数,且M大于N;以及Converting the N-bit quantized signal into an M-bit output signal according to historical values, where both M and N are non-zero natural numbers, and M is greater than N; and
将所述M位的输出信号转换为模拟的反馈信号。The M-bit output signal is converted into an analog feedback signal.
可选的,根据历史数值将所述N位的量化信号转换为M位的输出信号包括:Optionally, converting the N-bit quantized signal into an M-bit output signal according to historical values includes:
根据至少一个历史周期中得到的所述M位的输出信号和当前周期中的所述N位的量化信号,判断所述当前周期中的所述N位的量化信号的边界,获得所述当前周期中增量的边界值,所述历史周期是在所述当前周期之前的周期;According to the M-bit output signal obtained in at least one historical period and the N-bit quantized signal in the current period, determine the boundary of the N-bit quantized signal in the current period, and obtain the current period Boundary value of medium increment, the historical period is the period before the current period;
判断所述当前周期中的所述N位的量化信号的边界,并对所述边界值进行量化处理;以及Judging the boundary of the N-bit quantized signal in the current cycle, and performing quantization processing on the boundary value; and
将所述当前周期中的所述N位的量化信号,至少一个历史周期的N位的量化信号和进行量化处理后的所述边界值进行累加,以获得所述M位的输出信号。Accumulate the N-bit quantized signal in the current cycle, the N-bit quantized signal of at least one historical cycle, and the quantized boundary value to obtain the M-bit output signal.
可选的,还包括:Optionally, also include:
在执行累加之后,判断所述M位的输出信号是否越界,若越界,则将所述述M位的输出信号进行越界处理之后,重新执行将所述当前周期中的所述N位的量化信号和进行量化处理后的所述边界值进行累加的步骤,以获得所述M位的输出信号,若未越界,则输出所述M位的输出信号。After the accumulation is performed, it is judged whether the output signal of the M bits is out of bounds, and if it is out of bounds, the output signal of the M bits is subjected to out-of-bounds processing, and then the quantization signal of the N bits in the current cycle is re-executed. and the step of accumulating the boundary value after the quantization process to obtain the M-bit output signal, and if the boundary value is not exceeded, the M-bit output signal is output.
可选的,对所述误差信号进行多次积分运算,从而得到所述积分信号。Optionally, multiple integral operations are performed on the error signal to obtain the integral signal.
可选的,对所述误差信号进行两次积分运算,将N设置为4,将M设置为12。Optionally, two integral operations are performed on the error signal, N is set to 4, and M is set to 12.
本发明提供的模数转换器及模数转换方法,利用增量调制器预测N-bit单位量化步长之内的细致分辨率,并将其反馈给模数转换器,从而提高模数转换器的整体性能指标,在保证器件高性能的同时,简化了电路,保证了装置的稳定性,同时满足高信噪比设计的要求。The analog-to-digital converter and the analog-to-digital conversion method provided by the invention utilize the incremental modulator to predict the fine resolution within the N-bit unit quantization step size, and feed it back to the analog-to-digital converter, thereby improving the analog-to-digital converter. The overall performance index of the device, while ensuring the high performance of the device, simplifies the circuit, ensures the stability of the device, and meets the requirements of high signal-to-noise ratio design.
附图说明Description of drawings
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present invention will become more apparent from the following description of embodiments of the present invention with reference to the accompanying drawings, in which:
图1示出了传统的Delta-Sigma调制器的结构原理图;Fig. 1 shows the structural schematic diagram of the traditional Delta-Sigma modulator;
图2示出了传统的1阶1-BIT Delta-Sigma调制器的示意图;Figure 2 shows a schematic diagram of a conventional 1st-order 1-BIT Delta-Sigma modulator;
图3示出了传统的2阶1-BIT Delta-Sigma调制器的示意图;Figure 3 shows a schematic diagram of a conventional second-order 1-BIT Delta-Sigma modulator;
图4示出了传统的3阶5-BIT Delta-Sigma调制器的示意图;Figure 4 shows a schematic diagram of a conventional 3rd order 5-BIT Delta-Sigma modulator;
图5示出了根据本发明实施例的模数转换器的示意图;5 shows a schematic diagram of an analog-to-digital converter according to an embodiment of the present invention;
图6示出了根据本发明实施例的增量调制器的框图;6 shows a block diagram of a delta modulator according to an embodiment of the present invention;
图7示出了根据本发明实施例的模数转换器的量化示意图;7 shows a schematic diagram of quantization of an analog-to-digital converter according to an embodiment of the present invention;
图8示出了根据本发明实施例的模数转换方法的流程图;8 shows a flowchart of an analog-to-digital conversion method according to an embodiment of the present invention;
图9示出了根据本发明实施例的增量调制过程的流程图。FIG. 9 shows a flowchart of a delta modulation process according to an embodiment of the present invention.
具体实施方式Detailed ways
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。The present invention will be described in more detail below with reference to the accompanying drawings. In the various figures, like elements are designated by like reference numerals. For the sake of clarity, various parts in the figures have not been drawn to scale. Additionally, some well-known parts may not be shown in the drawings.
应理解,本申请实施例中的A与B连接/耦接,表示A与B可以串联连接或并联连接,或者A与B通过其他的器件,本申请实施例对此不作限定。It should be understood that A and B are connected/coupled in the embodiments of the present application, indicating that A and B can be connected in series or in parallel, or A and B pass through other devices, which are not limited in the embodiments of the present application.
模数转换器是把经过与标准量(或参考量)比较处理后的模拟量转换成以二进制数值表示的离散信号的转换器,简称ADC或A/D转换器。The analog-to-digital converter is a converter that converts the analog quantity after being compared with the standard quantity (or reference quantity) into a discrete signal represented by a binary value, referred to as ADC or A/D converter.
模数转换器的一个重要参数是转换的精度,通常用输出的数字信号的位数(BIT)的多少表示。转换器能够准确输出的数字信号的位数越多,表示转换器能够分辨输入信号的能力越强,转换器的性能也就越好。模数转换通常要经过采样、保持、量化及编码4个过程,其中,量化是将模拟信号量程分成许多离散量级,并确定输入信号所属的量级。An important parameter of the analog-to-digital converter is the conversion accuracy, which is usually expressed in the number of bits (BIT) of the output digital signal. The more bits of the digital signal that the converter can output accurately, the stronger the ability of the converter to distinguish the input signal, and the better the performance of the converter. Analog-to-digital conversion usually goes through four processes of sampling, holding, quantization and encoding. Among them, quantization divides the analog signal range into many discrete magnitudes and determines the magnitude of the input signal.
基于Delta-Sigma调制技术的模数转换器可以在传统工艺下实现高分辨率,因此,Delta-Sigma调制器是模数转换器中的一个重要部件。The analog-to-digital converter based on Delta-Sigma modulation technology can achieve high resolution under the traditional process. Therefore, the Delta-Sigma modulator is an important part of the analog-to-digital converter.
图1示出了传统的Delta-Sigma调制器的结构原理图。图1为传统的Delta-Sigma调制器的结构原理图。该Delta-Sigma调制器100包括模拟加法器102、积分器106、量化器108、反馈电路104及数字滤波器110。其中量化器108将模拟信号Vin转换为1位数字流,一般使用锁存比较器实现;反馈电路104将1位数字流转换为模拟信号。Figure 1 shows a schematic diagram of the structure of a traditional Delta-Sigma modulator. Figure 1 is a schematic diagram of the structure of a traditional Delta-Sigma modulator. The Delta-
Delta-Sigma调制器的作用是将输入模拟信号Vin转换为由-1和1构成的串行数据。输出串行数据经过反馈电路104的放大后,与输入模拟信号Vin作差,误差信号送入积分器106进行积分累加,积分器106的输出再送入量化器108产生新的1位数据流。当采样频率足够大时,Delta-Sigma调制器100输出的1位数据流的平均值就等于输入信号的平均值,即1位数字流y(n)包含了输入信号的所有信息。The role of the Delta-Sigma modulator is to convert the input analog signal Vin into serial data consisting of -1 and 1. After the output serial data is amplified by the
图2示出了传统的1阶1-BIT Delta-Sigma调制器的示意图。图2所示的1阶1-BITDelta-Sigma调制器200与图1所示的Delta-Sigma调制器100相类似,该Delta-Sigma调制器200包括模拟加法器202、积分器206、量化器208、反馈电路204及数字滤波器210,具体的,量化器108采用锁存比较器实现,该锁存比较器为1-BIT模数转换器,反馈电路204为1-BIT模数转换器。Figure 2 shows a schematic diagram of a conventional 1st order 1-BIT Delta-Sigma modulator. The first-order 1-BIT Delta-
传统的Delta-Sigma调制器,可以包括多个积分器(图2中为1个),如两个积分器串联,那么就称为2阶Delta-Sigma调制器。不同阶数的调制器,对于噪声整型(Noise-Shaping)具有不同的作用,阶数越高,噪声整型效果越好。然而,阶数越高,电路设计的难度越大,调制器整体的稳定性降低。图3示出了传统的2阶1-BIT Delta-Sigma调制器的示意图。该Delta-Sigma调制器300包括第一模拟加法器301、第二模拟加法器302、第一积分器305、第二积分器306、量化器308、反馈电路304及数字滤波器310。A traditional Delta-Sigma modulator may include multiple integrators (one in Figure 2), such as two integrators connected in series, it is called a second-order Delta-Sigma modulator. Modulators of different orders have different effects on noise-shaping. The higher the order, the better the noise-shaping effect. However, the higher the order, the more difficult the circuit design is, and the overall stability of the modulator decreases. Figure 3 shows a schematic diagram of a conventional 2nd order 1-BIT Delta-Sigma modulator. The Delta-
同时1-BIT的Delta-Sigma调制器的传统是使用1-BITADC以及1-DAC作为反馈通路。当然也可以选择多位(Multi-Bit)的ADC和DAC进行量化和反馈,图4示出了传统的3阶5-BITDelta-Sigma调制器的示意图。该3阶5-BITDelta-Sigma调制器400包括第一模拟加法器401、第二模拟加法器403、第二模拟加法器405、第一积分器402、第二积分器404、第二积分器406、量化器407以及反馈电路408。At the same time, the tradition of 1-BIT's Delta-Sigma modulator is to use 1-BITADC and 1-DAC as a feedback path. Of course, multi-bit (Multi-Bit) ADCs and DACs can also be selected for quantization and feedback. Figure 4 shows a schematic diagram of a traditional third-order 5-BITDelta-Sigma modulator. The third-order 5-BITDelta-
然而,本申请的发明人发现,多位的ADC量化器与多位反馈DAC的设计的线性度会直接影响到整个系统的性能。为此,提供了一种改进的模数转换器及模数转换方法,以兼顾装置稳定性和高信噪比的要求。However, the inventor of the present application found that the linearity of the design of the multi-bit ADC quantizer and the multi-bit feedback DAC will directly affect the performance of the entire system. To this end, an improved analog-to-digital converter and an analog-to-digital conversion method are provided to take into account the requirements of device stability and high signal-to-noise ratio.
下面将结合附图对本申请提供的模数转换器及模数转换方法的实施例进行描述。Embodiments of the analog-to-digital converter and the analog-to-digital conversion method provided by the present application will be described below with reference to the accompanying drawings.
图5示出了根据本发明实施例的模数转换器的示意图。图6示出了根据本发明实施例的增量调制器的框图。图7示出了根据本发明实施例的模数转换器的量化示意图。FIG. 5 shows a schematic diagram of an analog-to-digital converter according to an embodiment of the present invention. 6 shows a block diagram of a delta modulator according to an embodiment of the present invention. FIG. 7 shows a schematic diagram of quantization of an analog-to-digital converter according to an embodiment of the present invention.
如图5所示,模数转换器500包括模拟加法器510、积分器520、量化器530、增量调制器540以及数模转换器550。As shown in FIG. 5 , the analog-to-
模拟加法器510的输入端接收模拟输入信号和反馈信号,用于对模拟输入信号和反馈信号执行减法操作,以得到误差信号。The input terminal of the analog adder 510 receives the analog input signal and the feedback signal, and is used for performing a subtraction operation on the analog input signal and the feedback signal to obtain an error signal.
积分器520连接至模拟加法器510的输出端,用于对误差信号进行积分运算,以得到积分信号。可选的,积分器520包括多个积分模块521,各个积分模块521串联连接,以对误差信号进行多次积分运算,从而得到积分信号。例如,积分器520包括两个积分模块521,以形成二阶调制器结构。The
量化器530对模拟输入信号和积分信号的和进行量化处理,以输出N位的量化信号。例如,量化器530连接至模拟加法器511的输出端,模拟加法器511的输入端分别连接至积分器520的输出端和模拟输入信号,量化器530将模拟输入信号和积分信号的和与参考电平进行比较,以输出N位的量化信号,参考电平例如是参考地电平,即零电平。The
增量调制器540与量化器530的输出端相连,并根据历史数值将N位的量化信号转换为M位的输出信号,M和N均为非零自然数,且M大于N。即,数模转换器550的高N-BIT是量化器530量化的值(即ADC量化值),而低M-N Bit是通过增量调制器540进行自适应预测得到的量化值(即DAC量化值),因此在模数转换器的量化区间内,能够输出更加精细的输出信号,具体请参见如图7所示的量化示意图,其中ADC量化值指量化器530输出的量化值,DAC量化值指增量调制器540预测的量化值。The
在一些示例性的实施例中,积分器520包括两个积分模块521,从而形成二阶调制器结构。实验发现,在二阶调制器结构中,若将N设置为4,M设置为12,可以得到良好的性能指标,兼顾装置的良好稳定性和高信噪比。In some exemplary embodiments,
数模转换器550的一端与增量调制器540的输出相连,另一端连接模拟加法器510,用于将M位的输出信号转换为模拟的反馈信号后输送至模拟加法器510。One end of the digital-to-
作为一个示例,如图6所示,增量调制器540包括:存储模块541、数据处理模块542和累加模块543。As an example, as shown in FIG. 6 , the
存储模块541用于存储至少一个历史周期中得到的M位的输出信号,以及存储至少一个历史周期的N位的量化信号,存储模块541在当前周期中将各个历史周期中的M位的输出信号作为历史数值,根据至少一个历史周期中得到的M位的输出信号和当前周期中的N位的量化信号,判断当前周期中的N位的量化信号的边界,并获得当前周期中增量的边界值,历史周期是在当前周期之前的周期。增量是指根据历史数据预测到的M-N位的数据。The
数据处理模块542用于对存储模块获得的边界值进行量化处理。The
累加模块543用于将当前周期中的N位的量化信号,至少一个历史周期的N位的量化信号和进行量化处理后的边界值进行累加,以获得M位的输出信号。The
在该示例中,增量调制器540还包括量化越界处理模块544,量化越界处理模块544连接至累加模块543,用于在累加模块543执行累加之后,判断M位的输出信号是否越界,若越界,则将述M位的输出信号进行越界处理之后反馈给累加模块543,由累加模块543输出M位的输出信号,若未越界,则输出M位的输出信号。In this example, the
上文描述了本发明实施例的模数转换器的一些示例,然而本发明实施例不限于此,还可能存在其他方式的扩展和变形。Some examples of the analog-to-digital converter of the embodiment of the present invention are described above, however, the embodiment of the present invention is not limited thereto, and there may also be extensions and modifications in other manners.
例如,前述的模数转换器可以为分立器件,也可以作为一个电路单元。在另一些实现方式中,前述的斜坡信号产生电路可以被封装在某器件中。For example, the aforementioned analog-to-digital converter may be a discrete device, or may be used as a circuit unit. In other implementations, the aforementioned ramp signal generating circuit may be packaged in a device.
同时,本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的结构和方法,可以使用不同的配置方法或调节方法对每个结构或该结构的合理变形来实现所描述的功能,但是这种实现不应认为超出本申请的范围。并且,应理解,本申请实施例中前述的图的放大各个部件之间的连接关系为示意性举例,并不对本申请实施例造成任何限制。At the same time, those of ordinary skill in the art can realize that, with regard to the structures and methods of each example described in conjunction with the embodiments disclosed herein, different configuration methods or adjustment methods can be used to implement each structure or a reasonable deformation of the structure to achieve all the structures and methods. described functionality, but such an implementation should not be considered beyond the scope of this application. Moreover, it should be understood that the connection relationships between the enlarged components in the foregoing embodiments of the present application are schematic examples, and do not impose any limitations on the embodiments of the present application.
图8示出了根据本发明实施例的模数转换方法的流程图。图8所示的这个流程图只是示例,不应当不适当地限制权利要求书的范围。本领域的技术人员会知道许多变化、替代和修改。例如,图8所示的各种步骤可被添加、去除、替代、重新布置和重复。FIG. 8 shows a flowchart of an analog-to-digital conversion method according to an embodiment of the present invention. This flowchart shown in Figure 8 is only an example and should not unduly limit the scope of the claims. Numerous variations, substitutions and modifications will be apparent to those skilled in the art. For example, the various steps shown in FIG. 8 may be added, removed, replaced, rearranged and repeated.
在步骤S101中,对模拟输入信号和反馈信号执行减法操作,以获得误差信号。In step S101, a subtraction operation is performed on the analog input signal and the feedback signal to obtain an error signal.
在步骤S102中,对误差信号进行积分运算,以获得积分信号。可选的,对误差信号进行多次积分运算,从而得到积分信号。In step S102, integral operation is performed on the error signal to obtain an integral signal. Optionally, multiple integral operations are performed on the error signal to obtain an integral signal.
在步骤S103中,对模拟输入信号和积分信号的和进行量化处理,以输出N位的量化信号。In step S103, a quantization process is performed on the sum of the analog input signal and the integrated signal to output an N-bit quantized signal.
在步骤S104中,根据历史数值将N位的量化信号转换为M位的输出信号,M和N均为非零自然数,且M大于N。该步骤可被称为“增量调制过程”。In step S104, the N-bit quantized signal is converted into an M-bit output signal according to the historical value, where both M and N are non-zero natural numbers, and M is greater than N. This step may be referred to as a "delta modulation process".
可选的,对误差信号进行两次积分运算,将N设置为4,将M设置为12。Optionally, two integral operations are performed on the error signal, N is set to 4, and M is set to 12.
在步骤S105中,将M位的输出信号转换为模拟的反馈信号。In step S105, the M-bit output signal is converted into an analog feedback signal.
图9示出了根据本发明实施例的增量调制过程的流程图。FIG. 9 shows a flowchart of a delta modulation process according to an embodiment of the present invention.
在步骤S1041中,根据至少一个历史周期中得到的M位的输出信号,和当前周期中的N位的量化信号,判断当前周期中的N位的量化信号的边界,获得当前周期中增量的边界值,历史周期是在当前周期之前的周期。在该示例中,将N设置为4,将M设置为12,则当前周期中的N位的量化信号可分为单位量、2x单位量、4x单位量和8x单位量。In step S1041, according to the M-bit output signal obtained in at least one historical period, and the N-bit quantized signal in the current period, determine the boundary of the N-bit quantized signal in the current period, and obtain the incremental value of the current period. Boundary value, the historical period is the period before the current period. In this example, if N is set to 4 and M is set to 12, the N-bit quantized signal in the current cycle can be divided into unit amount, 2x unit amount, 4x unit amount and 8x unit amount.
在步骤S1042中,对增量的边界值进行量化处理。增量是指根据历史数据预测到的M-N位的数据。In step S1042, quantization processing is performed on the boundary value of the increment. Increment refers to M-N bits of data predicted based on historical data.
在步骤S1043中,将当前周期中的N位的量化信号,至少一个历史周期的N位的量化信号和进行量化处理后的边界值进行累加,以获得M位的输出信号。In step S1043, the N-bit quantized signal in the current cycle, the N-bit quantized signal of at least one historical cycle, and the boundary value after quantization processing are accumulated to obtain an M-bit output signal.
在步骤S1044中,可选的,在执行累加之后,判断M位的输出信号是否越界,若越界,则将述M位的输出信号进行越界处理之后重复执行步骤S1043,以输出M位的输出信号,若未越界,则输出M位的输出信号。In step S1044, optionally, after the accumulation is performed, it is determined whether the output signal of M bits is out of bounds, if it is out of bounds, then step S1043 is repeatedly executed after the output signal of M bits is out of bounds to output the output signal of M bits , if not out of bounds, the output signal of M bits is output.
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as first and second are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。Embodiments in accordance with the present invention are described above, but these embodiments do not exhaust all the details and do not limit the invention to only the specific embodiments described. Obviously, many modifications and variations are possible in light of the above description. This specification selects and specifically describes these embodiments in order to better explain the principle and practical application of the present invention, so that those skilled in the art can make good use of the present invention and modifications based on the present invention. The present invention is to be limited only by the claims and their full scope and equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210041532.4A CN114448442A (en) | 2022-01-14 | 2022-01-14 | Analog-to-digital converter and analog-to-digital conversion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210041532.4A CN114448442A (en) | 2022-01-14 | 2022-01-14 | Analog-to-digital converter and analog-to-digital conversion method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114448442A true CN114448442A (en) | 2022-05-06 |
Family
ID=81367335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210041532.4A Pending CN114448442A (en) | 2022-01-14 | 2022-01-14 | Analog-to-digital converter and analog-to-digital conversion method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114448442A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117879615A (en) * | 2023-12-05 | 2024-04-12 | 北京大学深圳研究生院 | Analog-to-digital converter, processing method, device and medium thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386928A (en) * | 2008-09-01 | 2012-03-21 | 联发科技股份有限公司 | Dynamic component matching method and continuous-time sigma-delta modulator using this method |
CN104883190A (en) * | 2014-02-28 | 2015-09-02 | 北京卓锐微技术有限公司 | High precision ADC with adaptive delta modulation |
US20190253069A1 (en) * | 2018-02-09 | 2019-08-15 | The Regents Of The University Of California | Predictive digital autoranging analog-to-digital converter |
CN112805923A (en) * | 2018-10-03 | 2021-05-14 | 微软技术许可有限责任公司 | Continuous-time sigma-delta analog-to-digital converter |
-
2022
- 2022-01-14 CN CN202210041532.4A patent/CN114448442A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386928A (en) * | 2008-09-01 | 2012-03-21 | 联发科技股份有限公司 | Dynamic component matching method and continuous-time sigma-delta modulator using this method |
CN104883190A (en) * | 2014-02-28 | 2015-09-02 | 北京卓锐微技术有限公司 | High precision ADC with adaptive delta modulation |
US20190253069A1 (en) * | 2018-02-09 | 2019-08-15 | The Regents Of The University Of California | Predictive digital autoranging analog-to-digital converter |
CN112805923A (en) * | 2018-10-03 | 2021-05-14 | 微软技术许可有限责任公司 | Continuous-time sigma-delta analog-to-digital converter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117879615A (en) * | 2023-12-05 | 2024-04-12 | 北京大学深圳研究生院 | Analog-to-digital converter, processing method, device and medium thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107465412B (en) | Delta-Sigma Modulator, Analog-to-Digital Converter, and Signal Conversion Method | |
US8344921B2 (en) | Sigma-delta modulator with SAR ADC and truncater having order lower than order of integrator and related sigma-delta modulation method | |
KR101651140B1 (en) | Method and apparatus for dithering in multi-bit sigma-delta analog-to-digital converters | |
US5329282A (en) | Multi-bit sigma-delta analog-to-digital converter with reduced sensitivity to DAC nonlinearities | |
US7432841B1 (en) | Delta-sigma analog-to-digital converter with pipelined multi-bit quantization | |
US7324032B2 (en) | Method of matching dynamic elements and multi-bit data converter | |
CN207677711U (en) | Integrated circuit with built-in self-test circuit for testing the analog-to-digital converter circuit | |
CN110022157B (en) | Signal processing device and delta-sigma modulator | |
Kester | Adc architectures iii: Sigma-delta adc basics | |
CN102882528B (en) | Sigma-delta modulator | |
CN109889203B (en) | Semiconductor device and method of operating the same | |
JPH03500478A (en) | Digital correction circuit for data converter | |
WO2025055229A1 (en) | Analog-to-digital converter and terminal device | |
WO2018109992A1 (en) | Delta-sigma modulator, electronic apparatus and method for controlling delta-sigma modulator | |
CN114448442A (en) | Analog-to-digital converter and analog-to-digital conversion method | |
CN107113005B (en) | Efficient dithering techniques for sigma-delta analog-to-digital converters | |
Kosonocky et al. | Analog-to-digital conversion architectures | |
Mohamed et al. | FIR feedback in continuous-time incremental sigma-delta ADCs | |
Janssen et al. | Basics of sigma-delta modulation | |
JPH04129334A (en) | Digital sigma-delta modulator | |
Prefasi et al. | Second-order multi-bit ΣΔ ADC using a pulse-width modulated DAC and an integrating quantizer | |
RoyChowdhury et al. | Verilog modeling of 24 bit stereo DAC using multibit SDM | |
Guicquero et al. | Incremental Delta Sigma Modulation with Dynamic Weighted Integration | |
CN116366067B (en) | Analog-to-digital converter and operation method thereof | |
CN116346134A (en) | Analog-to-digital converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20250528 Address after: 215000 Jiangsu Province Suzhou City Industrial Park Dongdangtian Lane 9# Applicant after: SUZHOU NOVOSENSE MICROELECTRONICS Co.,Ltd. Country or region after: China Address before: 100015 b3005, 3rd floor, building 21, 2 Wanhong West Street, xibajianfang, dongzhimenwai, Chaoyang District, Beijing Applicant before: Haojun Technology (Beijing) Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right |