[go: up one dir, main page]

CN114447135B - Solar cell and preparation method thereof - Google Patents

Solar cell and preparation method thereof Download PDF

Info

Publication number
CN114447135B
CN114447135B CN202210108969.5A CN202210108969A CN114447135B CN 114447135 B CN114447135 B CN 114447135B CN 202210108969 A CN202210108969 A CN 202210108969A CN 114447135 B CN114447135 B CN 114447135B
Authority
CN
China
Prior art keywords
layer
silicon
amorphous silicon
silicon layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210108969.5A
Other languages
Chinese (zh)
Other versions
CN114447135A (en
Inventor
卢海江
汝小宁
杨召荣
杨少华
曲铭浩
徐希翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Longi Solar Technology Co Ltd
Original Assignee
Xian Longi Solar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Longi Solar Technology Co Ltd filed Critical Xian Longi Solar Technology Co Ltd
Priority to CN202210108969.5A priority Critical patent/CN114447135B/en
Publication of CN114447135A publication Critical patent/CN114447135A/en
Application granted granted Critical
Publication of CN114447135B publication Critical patent/CN114447135B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • H10F71/1224The active layers comprising only Group IV materials comprising microcrystalline silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/128Annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/129Passivating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The application discloses a solar cell which comprises a microcrystalline silicon layer, a silicon dioxide layer, a silicon substrate layer, an intrinsic amorphous silicon layer and a doped amorphous silicon layer which are sequentially stacked from bottom to top. The application provides a solar cell and a preparation method thereof, wherein the back surface of a silicon substrate layer is passivated by adopting a SiO 2 film, and doped amorphous silicon is induced to be crystallized into microcrystalline silicon with high doping concentration by adopting a method of inducing crystallization by adopting metals Al, au or Ag and the like which form a co-dissolved system with silicon; the intrinsic amorphous silicon may also be simultaneously p-doped and crystallized. The preparation method can effectively improve the doping efficiency of the film, thereby effectively improving the photoelectric conversion efficiency of the solar cell.

Description

一种太阳能电池及其制备方法A solar cell and a method for preparing the same

技术领域Technical Field

本申请涉及太阳能电池技术领域,具体涉及一种太阳能电池及其制备方法。The present application relates to the technical field of solar cells, and in particular to a solar cell and a method for preparing the same.

背景技术Background Art

随着PERC电池越来越接近效率极限,整个光伏界都聚焦在了异质结这这种高效太阳能电池,目前异质结电池取得的最高效率是25.54%。但是异质结电池由于a-Si:H薄膜的有效掺杂较低,导致PN结的内建电场及和TCO的接触电阻较大,导致光电流导出受限,很大程度上影响了太阳能电池的FF和Jsc。As PERC cells are getting closer to their efficiency limits, the entire photovoltaic industry has focused on high-efficiency solar cells such as heterojunctions. Currently, the highest efficiency achieved by heterojunction cells is 25.54%. However, due to the low effective doping of a-Si:H thin films in heterojunction cells, the built-in electric field of the PN junction and the contact resistance with TCO are large, resulting in limited photocurrent extraction, which greatly affects the FF and Jsc of solar cells.

发明内容Summary of the invention

针对上述问题,本申请提出了一种太阳能电池及其制备方法,所述硅基底层背面采用SiO2薄膜钝化,并采用与硅形成共溶体系的金属Al、Au或Ag等诱导晶化的方法,将原p型非晶硅(p-a-Si:H)转化为p型微晶硅(p-μc-Si:H),可以有效提高p层薄膜的掺杂效率,从而有效提升太阳能电池的光电转换效率。也可以对本征非晶硅(i-a-Si:H)同时进行p型掺杂和诱导晶化,转化为p型微晶硅(p-μc-Si:H)。也可以对n型非晶硅(n-a-Si:H)诱导晶化转化为n型微晶硅(n-μc-Si:H)。In view of the above problems, the present application proposes a solar cell and a method for preparing the same, wherein the back of the silicon substrate layer is passivated with a SiO2 thin film, and a method of inducing crystallization using metals such as Al, Au or Ag that form a symmetric system with silicon is used to convert the original p-type amorphous silicon (pa-Si:H) into p-type microcrystalline silicon (p-μc-Si:H), which can effectively improve the doping efficiency of the p-layer thin film, thereby effectively improving the photoelectric conversion efficiency of the solar cell. Intrinsic amorphous silicon (ia-Si:H) can also be p-doped and induced to crystallize at the same time to convert it into p-type microcrystalline silicon (p-μc-Si:H). N-type amorphous silicon (na-Si:H) can also be induced to crystallize and converted into n-type microcrystalline silicon (n-μc-Si:H).

本申请提供一种太阳能电池,包括从下到上依次层叠设置的微晶硅层、二氧化硅层、硅基底层、本征非晶硅层以及掺杂非晶硅层。The present application provides a solar cell, comprising a microcrystalline silicon layer, a silicon dioxide layer, a silicon base layer, an intrinsic amorphous silicon layer and a doped amorphous silicon layer which are sequentially stacked from bottom to top.

进一步地,所述硅基底层为n型晶体硅或p型晶体硅,优选为n型晶体硅。Furthermore, the silicon base layer is n-type crystalline silicon or p-type crystalline silicon, preferably n-type crystalline silicon.

进一步地,所述微晶硅层为p型微晶硅层或n型微晶硅层,优选厚度为5-30nm。Furthermore, the microcrystalline silicon layer is a p-type microcrystalline silicon layer or an n-type microcrystalline silicon layer, and preferably has a thickness of 5-30 nm.

进一步地,所述掺杂非晶硅层为n型非晶硅层或p型非晶硅层,优选厚度为5-15nm。Furthermore, the doped amorphous silicon layer is an n-type amorphous silicon layer or a p-type amorphous silicon layer, and preferably has a thickness of 5-15 nm.

进一步地,所述二氧化硅层的厚度为0.5-2nm。Furthermore, the thickness of the silicon dioxide layer is 0.5-2 nm.

进一步地,在所述微晶硅层背离所述二氧化硅层的一侧表面设置有第二透明导电层,在所述非晶硅层背离所述本征非晶硅层的一侧表面设置有第一透明导电层;在所述第一透明导电层背离所述非晶硅层的一侧表面设置有第一金属电极,在所述第二透明导电层背离所述微晶硅层的一侧表面设置有第二金属电极。Furthermore, a second transparent conductive layer is arranged on the surface of the microcrystalline silicon layer on the side away from the silicon dioxide layer, and a first transparent conductive layer is arranged on the surface of the amorphous silicon layer on the side away from the intrinsic amorphous silicon layer; a first metal electrode is arranged on the surface of the first transparent conductive layer on the side away from the amorphous silicon layer, and a second metal electrode is arranged on the surface of the second transparent conductive layer on the side away from the microcrystalline silicon layer.

本申请提供一种太阳能电池的制备方法,包括如下步骤:The present application provides a method for preparing a solar cell, comprising the following steps:

提供硅基底层;providing a silicon base layer;

在所述硅基底层的一侧表面沉积二氧化硅层;Depositing a silicon dioxide layer on one side surface of the silicon base layer;

在所述二氧化硅层背离所述硅基底层的一侧沉积待晶化非晶硅层;Depositing an amorphous silicon layer to be crystallized on a side of the silicon dioxide layer away from the silicon base layer;

在所述待晶化非晶硅背离所述二氧化硅层的一侧表面沉积金属薄膜,然后进行退火,使得所述待晶化非晶硅层转化为微晶硅层;Depositing a metal film on the surface of the amorphous silicon to be crystallized away from the silicon dioxide layer, and then annealing, so that the amorphous silicon layer to be crystallized is converted into a microcrystalline silicon layer;

在所述硅基底层背离所述二氧化硅层的一侧表面沉积本征非晶硅层;Depositing an intrinsic amorphous silicon layer on a surface of the silicon base layer facing away from the silicon dioxide layer;

在所述本征非晶硅层背离所述硅基底层的一侧表面沉积掺杂非晶硅层。A doped amorphous silicon layer is deposited on a surface of the intrinsic amorphous silicon layer facing away from the silicon base layer.

进一步地,所述金属薄膜选自铝膜、金膜或银膜中的一种或两种以上。Furthermore, the metal film is selected from one or more of aluminum film, gold film or silver film.

进一步地,通过蒸镀或磁控溅射在所述非晶硅层上沉积所述金属薄膜,然后在氮气保护下进行退火,优选所述退火温度为300-500℃,进一步优选退火时间为1-3h。Furthermore, the metal film is deposited on the amorphous silicon layer by evaporation or magnetron sputtering, and then annealed under nitrogen protection. Preferably, the annealing temperature is 300-500° C., and more preferably, the annealing time is 1-3 hours.

进一步地,所述金属薄膜的厚度为10-20nm。Furthermore, the thickness of the metal film is 10-20 nm.

进一步地,退火结束后采用酸性洗液将所述微晶硅层表面残留的金属洗掉。Furthermore, after the annealing is completed, an acidic cleaning solution is used to wash away the metal remaining on the surface of the microcrystalline silicon layer.

进一步地,所述太阳能电池为前述太阳能电池。Furthermore, the solar cell is the aforementioned solar cell.

本申请提供的太阳能电池,所述硅基底层背面采用二氧化硅层钝化,并采用与硅形成共溶体系的金属Al、Au或Ag等诱导晶化的方法,将原p型非晶硅(p-a-Si:H)层转化为p型微晶硅(p-μc-Si:H)层,可以有效提高p微晶硅层的掺杂效率,从而有效提升太阳能电池的光电转换效率;也可以将n型非晶硅(n-a-Si:H)层转化为n型微晶硅(n-μc-Si:H)层。此外,金属Al与硅形成共溶同时进行p型掺杂和诱导晶化形成将本征非晶硅(i-a-Si:H)层转化为p型微晶硅(p-μc-Si:H)层。The solar cell provided by the present application is characterized in that the back of the silicon substrate layer is passivated by a silicon dioxide layer, and a method of inducing crystallization by using metals such as Al, Au or Ag that form a symmetric system with silicon is used to convert the original p-type amorphous silicon (p-a-Si:H) layer into a p-type microcrystalline silicon (p-μc-Si:H) layer, which can effectively improve the doping efficiency of the p-microcrystalline silicon layer, thereby effectively improving the photoelectric conversion efficiency of the solar cell; and the n-type amorphous silicon (n-a-Si:H) layer can also be converted into an n-type microcrystalline silicon (n-μc-Si:H) layer. In addition, metal Al forms a symmetric system with silicon and simultaneously performs p-type doping and induces crystallization to convert the intrinsic amorphous silicon (i-a-Si:H) layer into a p-type microcrystalline silicon (p-μc-Si:H) layer.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

附图用于更好地理解本申请,不构成对本申请的不当限定。其中:The accompanying drawings are used to better understand the present application and do not constitute an improper limitation on the present application.

图1为本申请提供的太阳能电池的结构示意图;FIG1 is a schematic diagram of the structure of a solar cell provided by the present application;

图2为本申请对比例提供的太阳能电池的结构示意图。FIG. 2 is a schematic diagram of the structure of a solar cell provided in a comparative example of the present application.

附图标记说明Description of Reference Numerals

1-第一金属电极,2-第一透明导电层,3-n型非晶硅层,4-第一本征非晶硅层,5-硅基底层,6-二氧化硅层,6’-第二本征非晶硅层,7-p型微晶硅层,8-第二透明导电层,9-第二金属电极。1-first metal electrode, 2-first transparent conductive layer, 3-n-type amorphous silicon layer, 4-first intrinsic amorphous silicon layer, 5-silicon base layer, 6-silicon dioxide layer, 6'-second intrinsic amorphous silicon layer, 7-p-type microcrystalline silicon layer, 8-second transparent conductive layer, 9-second metal electrode.

具体实施方式DETAILED DESCRIPTION

以下对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。在本申请中上下位置依据光线入射方向而定,光线入射处为上。The following is a description of exemplary embodiments of the present application, including various details of the embodiments of the present application to facilitate understanding, which should be considered as merely exemplary. Therefore, it should be recognized by those of ordinary skill in the art that various changes and modifications can be made to the embodiments described herein without departing from the scope and spirit of the present application. Similarly, for clarity and conciseness, the description of well-known functions and structures is omitted in the following description. In the present application, the upper and lower positions are determined according to the incident direction of the light, and the place where the light is incident is the upper part.

本申请提供一种太阳能电池,包括从下到上依次层叠设置的微晶硅层、二氧化硅层、硅基底层、本征非晶硅层以及非晶硅层。The present application provides a solar cell, comprising a microcrystalline silicon layer, a silicon dioxide layer, a silicon base layer, an intrinsic amorphous silicon layer and an amorphous silicon layer which are sequentially stacked from bottom to top.

具体地,所述硅基底层为n型晶体硅或p型晶体硅,优选为n型晶体硅,例如可以为n型单晶硅或n型多晶硅。Specifically, the silicon base layer is n-type crystalline silicon or p-type crystalline silicon, preferably n-type crystalline silicon, for example, n-type single crystal silicon or n-type polycrystalline silicon.

具体地,所述微晶硅层为p型微晶硅层或n型微晶硅层,其厚度为5-30nm。例如可以为5nm、6nm、7nm、8nm、9nm、10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm、20nm、21nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm或30nm。Specifically, the microcrystalline silicon layer is a p-type microcrystalline silicon layer or an n-type microcrystalline silicon layer, and has a thickness of 5-30 nm, for example, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm or 30 nm.

具体地,所述非晶硅层可以为n型非晶硅层或p型非晶硅层或本征非晶硅层,其厚度为5-15nm。例如可以为5nm、6nm、7nm、8nm、9nm、10nm、11nm、12nm、13nm、14nm或15nm。Specifically, the amorphous silicon layer may be an n-type amorphous silicon layer, a p-type amorphous silicon layer, or an intrinsic amorphous silicon layer, and its thickness is 5-15 nm, for example, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, or 15 nm.

具体地,所述二氧化硅层的厚度为0.5-2nm,例如可以为0.5nm、0.6nm、0.7nm、0.8nm、0.9nm、1nm、1.1nm、1.2nm、1.3nm、1.4nm、1.5nm、1.6nm、1.7nm、1.8nm、1.9nm或2nm。Specifically, the thickness of the silicon dioxide layer is 0.5-2 nm, for example, it can be 0.5 nm, 0.6 nm, 0.7 nm, 0.8 nm, 0.9 nm, 1 nm, 1.1 nm, 1.2 nm, 1.3 nm, 1.4 nm, 1.5 nm, 1.6 nm, 1.7 nm, 1.8 nm, 1.9 nm or 2 nm.

所述二氧化硅层既可以作为钝化层也可以作为阻挡层。The silicon dioxide layer can serve as both a passivation layer and a barrier layer.

具体地,如图1所示,所述太阳能电池包括从下到上依次层叠设置的第二透明导电层、p型微晶硅层、二氧化硅层、硅基底层、本征非晶硅层(第一本征非晶硅层)、n型非晶硅层以及第一透明导电层。在所述第一透明导电层背离所述n型非晶硅层的一侧表面设置有第一金属电极,在所述第二透明导电层背离所述p型微晶硅层的一侧表面设置有第二金属电极。Specifically, as shown in FIG1 , the solar cell includes a second transparent conductive layer, a p-type microcrystalline silicon layer, a silicon dioxide layer, a silicon base layer, an intrinsic amorphous silicon layer (a first intrinsic amorphous silicon layer), an n-type amorphous silicon layer, and a first transparent conductive layer stacked in sequence from bottom to top. A first metal electrode is disposed on a surface of the first transparent conductive layer facing away from the n-type amorphous silicon layer, and a second metal electrode is disposed on a surface of the second transparent conductive layer facing away from the p-type microcrystalline silicon layer.

所述第一透明导电层以及第二透明导电层的厚度均可以为70-100nm,例如可以为70nm、75nm、80nm、85nm、90nm、95nm或100nm。The thickness of the first transparent conductive layer and the second transparent conductive layer may be 70-100 nm, for example, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm or 100 nm.

所述第一金属电极以及第二金属电极均可以为铝电极或银电极。The first metal electrode and the second metal electrode can both be aluminum electrodes or silver electrodes.

本申请还提供一种太阳能电池的制备方法,包括如下步骤:The present application also provides a method for preparing a solar cell, comprising the following steps:

步骤一:提供硅基底层;Step 1: providing a silicon base layer;

步骤二:在所述硅基底层的一侧表面沉积二氧化硅层;Step 2: depositing a silicon dioxide layer on one side of the silicon substrate layer;

步骤三:在所述二氧化硅层背离所述硅基底层的一侧沉积非晶硅层;Step 3: depositing an amorphous silicon layer on a side of the silicon dioxide layer away from the silicon base layer;

步骤四:在所述非晶硅层背离所述二氧化硅层的一侧表面沉积金属薄膜,然后进行退火,使得所述非晶硅层转化为微晶硅层;Step 4: depositing a metal film on a surface of the amorphous silicon layer facing away from the silicon dioxide layer, and then annealing the amorphous silicon layer to transform the amorphous silicon layer into a microcrystalline silicon layer;

步骤五:在所述硅基底层背离所述二氧化硅层的一侧表面沉积本征非晶硅层;Step 5: depositing an intrinsic amorphous silicon layer on a surface of the silicon base layer facing away from the silicon dioxide layer;

步骤六:在所述本征非晶硅层背离所述硅基底层的一侧表面沉积非晶硅层。Step six: depositing an amorphous silicon layer on the surface of the intrinsic amorphous silicon layer on a side away from the silicon base layer.

在步骤一中,对硅片进行表面制绒并清洗形成硅基底层。In step one, the surface of the silicon wafer is textured and cleaned to form a silicon base layer.

具体地,首先用碱液和制绒添加剂进行硅片制绒,然后,采用RCA标准清洗方法(目前普遍使用的湿式化学清洗法,1965年美国新泽西州普林斯顿RCA实验室提出)对硅片进行表面清洗,清除表面污染杂质。最后,用1%的氢氟酸溶液去除表面氧化层。Specifically, the silicon wafer is first textured with alkali solution and a texturing additive, and then the surface of the silicon wafer is cleaned using the RCA standard cleaning method (a commonly used wet chemical cleaning method proposed by the RCA laboratory in Princeton, New Jersey, USA in 1965) to remove surface contaminants. Finally, a 1% hydrofluoric acid solution is used to remove the surface oxide layer.

所述硅片为n型双面抛光的直拉单晶硅片,厚度为150~300μm,电阻率为0.1~5Ω·cm,少子寿命大于1000μs。The silicon wafer is an n-type double-sided polished CZ single crystal silicon wafer with a thickness of 150-300 μm, a resistivity of 0.1-5 Ω·cm, and a minority carrier lifetime greater than 1000 μs.

在步骤二中,通过热氧化的方法在所述硅基底层的一侧表面沉积一层二氧化硅层。In step 2, a silicon dioxide layer is deposited on one side of the silicon base layer by thermal oxidation.

在步骤四中,通过蒸镀或磁控溅射在所述非晶硅层上沉积所述金属薄膜,然后在氮气保护下进行退火,所述退火温度为300-500℃,退火时间为1-3h,退火结束后采用酸性洗液(酸性洗液可以为HCl溶液)将所述微晶硅层表面残留的金属洗掉。In step four, the metal film is deposited on the amorphous silicon layer by evaporation or magnetron sputtering, and then annealed under nitrogen protection. The annealing temperature is 300-500°C and the annealing time is 1-3h. After the annealing, an acidic washing solution (the acidic washing solution can be an HCl solution) is used to wash away the metal remaining on the surface of the microcrystalline silicon layer.

所述二氧化硅层可以阻挡金属进入所述硅基底层中,并且二氧化硅层还可以钝化所述硅基底层。The silicon dioxide layer can block metal from entering the silicon base layer, and the silicon dioxide layer can also passivate the silicon base layer.

所述金属薄膜选自铝膜、金膜或银膜中的一种或两种以上。The metal film is selected from one or more of aluminum film, gold film or silver film.

所述金属薄膜的厚度为10-20nm,例如可以为10nm、12nm、14nm、16nm、18nm或20nm。The thickness of the metal film is 10-20 nm, for example, 10 nm, 12 nm, 14 nm, 16 nm, 18 nm or 20 nm.

所述方法还包括:The method further comprises:

步骤七:在所述非晶硅层层背离所述本征非晶硅层的一侧表面以及在所述微晶硅层背离所述二氧化硅层沉积第一透明导电层以及第二透明导电层。Step seven: depositing a first transparent conductive layer and a second transparent conductive layer on a surface of the amorphous silicon layer facing away from the intrinsic amorphous silicon layer and on a surface of the microcrystalline silicon layer facing away from the silicon dioxide layer.

步骤八:在所述第一透明导电层以及第二透明导电层上分别沉积第一金属电极以及第二金属电极。Step eight: depositing a first metal electrode and a second metal electrode on the first transparent conductive layer and the second transparent conductive layer respectively.

本申请还提供一种太阳能电池的制备方法,包括如下步骤:The present application also provides a method for preparing a solar cell, comprising the following steps:

步骤一:提供硅基底层;Step 1: providing a silicon base layer;

具体地,对硅片进行表面制绒并清洗形成硅基底层。Specifically, the surface of the silicon wafer is textured and cleaned to form a silicon base layer.

进一步具体地,首先用碱液和制绒添加剂进行硅片制绒,然后,采用RCA标准清洗方法(目前普遍使用的湿式化学清洗法,1965年美国新泽西州普林斯顿RCA实验室提出)对硅片进行表面清洗,清除表面污染杂质。最后,用1%的氢氟酸溶液去除表面氧化层。Specifically, the silicon wafer is first textured with alkali solution and a texturing additive, and then the surface of the silicon wafer is cleaned using the RCA standard cleaning method (a commonly used wet chemical cleaning method proposed by the RCA laboratory in Princeton, New Jersey, USA in 1965) to remove surface contaminants. Finally, a 1% hydrofluoric acid solution is used to remove the surface oxide layer.

所述硅片为n型双面抛光的直拉单晶硅片,厚度为150~300μm,电阻率为0.1~5Ω·cm,少子寿命大于1000μs。The silicon wafer is an n-type double-sided polished CZ single crystal silicon wafer with a thickness of 150-300 μm, a resistivity of 0.1-5 Ω·cm, and a minority carrier lifetime greater than 1000 μs.

步骤二:在所述硅基底层的一侧表面沉积二氧化硅层;Step 2: depositing a silicon dioxide layer on one side of the silicon substrate layer;

具体地,通过热氧化的方法在所述硅基底层的一侧表面沉积一层二氧化硅层。Specifically, a silicon dioxide layer is deposited on one side surface of the silicon base layer by a thermal oxidation method.

步骤三:在所述二氧化硅层背离所述硅基底层的一侧沉积待晶化非晶硅层;Step 3: depositing an amorphous silicon layer to be crystallized on a side of the silicon dioxide layer away from the silicon base layer;

步骤四:在所述非晶硅层背离所述二氧化硅层的一侧表面沉积金属薄膜,然后进行退火,使得所述待晶化非晶硅层转化为微晶硅层;Step 4: depositing a metal film on the surface of the amorphous silicon layer on the side away from the silicon dioxide layer, and then annealing, so that the amorphous silicon layer to be crystallized is converted into a microcrystalline silicon layer;

具体地,通过蒸镀或磁控溅射在所述非晶硅层上沉积所述金属薄膜,然后在氮气保护下进行退火,所述退火温度为300-500℃,退火时间为1-3h,退火结束后采用酸性洗液(酸性洗液可以为HCl溶液)将所述微晶硅层表面残留的金属洗掉。Specifically, the metal film is deposited on the amorphous silicon layer by evaporation or magnetron sputtering, and then annealed under nitrogen protection, the annealing temperature is 300-500°C, the annealing time is 1-3h, and after the annealing, the metal remaining on the surface of the microcrystalline silicon layer is washed away with an acidic washing solution (the acidic washing solution can be an HCl solution).

所述二氧化硅层可以阻挡金属进入所述硅基底层中,并且二氧化硅层还可以钝化所述硅基底层。The silicon dioxide layer can block metal from entering the silicon base layer, and the silicon dioxide layer can also passivate the silicon base layer.

所述金属薄膜选自铝膜、金膜或银膜中的一种或两种以上。The metal film is selected from one or more of aluminum film, gold film or silver film.

所述金属薄膜的厚度为10-20nm,例如可以为10nm、12nm、14nm、16nm、18nm或20nm。The thickness of the metal film is 10-20 nm, for example, 10 nm, 12 nm, 14 nm, 16 nm, 18 nm or 20 nm.

步骤五:在所述硅基底层背离所述二氧化硅层的一侧表面沉积本征非晶硅层;Step 5: depositing an intrinsic amorphous silicon layer on a surface of the silicon base layer facing away from the silicon dioxide layer;

步骤六:在所述本征非晶硅层背离所述硅基底层的一侧表面沉积掺杂非晶硅层。Step six: depositing a doped amorphous silicon layer on a surface of the intrinsic amorphous silicon layer facing away from the silicon base layer.

步骤七:在所述掺杂非晶硅层层背离所述本征非晶硅层的一侧表面以及在所述微晶硅层背离所述二氧化硅层沉积第一透明导电层以及第二透明导电层。Step seven: depositing a first transparent conductive layer and a second transparent conductive layer on a surface of the doped amorphous silicon layer away from the intrinsic amorphous silicon layer and on a surface of the microcrystalline silicon layer away from the silicon dioxide layer.

步骤八:在所述第一透明导电层以及第二透明导电层上分别沉积第一金属电极以及第二金属电极。Step eight: depositing a first metal electrode and a second metal electrode on the first transparent conductive layer and the second transparent conductive layer respectively.

实施例Example

下述实施例中所使用的实验方法如无特殊要求,均为常规方法。The experimental methods used in the following examples are all conventional methods unless otherwise specified.

下述实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。Unless otherwise specified, the materials and reagents used in the following examples can be obtained from commercial sources.

实施例1Example 1

本实施例的太阳能电池,其制备方法包括如下步骤:The solar cell of this embodiment, its preparation method comprises the following steps:

步骤一:首先,使用2%KOH和IPA混合溶液进行n型晶体硅片(n型双面抛光的直拉单晶硅片,厚度为150μm,电阻率为0.3Ω·cm,少子寿命1000μs。)制绒,温度为83℃,然后,采用RCA标准清洗方法对n型晶体硅片进行表面清洗,清除表面污染杂质,最后,采用1%的氢氟酸溶液去除表面氧化层,得到硅基底层5。Step 1: First, use a 2% KOH and IPA mixed solution to texturize an n-type crystalline silicon wafer (n-type double-sided polished CZ single crystal silicon wafer, with a thickness of 150μm, a resistivity of 0.3Ω·cm, and a minority carrier lifetime of 1000μs) at 83°C. Then, use the RCA standard cleaning method to clean the surface of the n-type crystalline silicon wafer to remove surface contaminants. Finally, use a 1% hydrofluoric acid solution to remove the surface oxide layer to obtain a silicon base layer 5.

步骤二:通过热氧化的方法在所述硅基底层的一侧表面生长一层1.2nm厚的二氧化硅层6,反应气体为O2,压力为200Pa,衬底温度为950℃。Step 2: A 1.2 nm thick silicon dioxide layer 6 is grown on one side of the silicon substrate layer by thermal oxidation, the reaction gas is O 2 , the pressure is 200 Pa, and the substrate temperature is 950°C.

步骤三:在二氧化硅层6背离所述硅基底层5的一侧表面沉积一层p型掺硼非晶硅层,其厚度为25nm,反应气体为SiH4、H2和B2H6,H2/SiH4=10,B2H6/SiH4=0.02。电源功率密度为0.027W/cm2,压力为80Pa,衬底温度为200℃。Step 3: Deposit a p-type boron-doped amorphous silicon layer with a thickness of 25 nm on the surface of the silicon dioxide layer 6 facing away from the silicon base layer 5. The reaction gases are SiH 4 , H 2 and B 2 H 6 , H 2 /SiH 4 = 10, B 2 H 6 /SiH 4 = 0.02. The power density is 0.027 W/cm 2 , the pressure is 80 Pa, and the substrate temperature is 200°C.

步骤四:采用蒸镀方法,采用高纯Al(6N),加热电流15A在p型掺硼非晶硅层背离所述二氧化硅层6的一侧表面沉积一层厚度为15nm金属Al薄膜。Step 4: using an evaporation method, using high-purity Al (6N), and a heating current of 15A, a 15nm thick metal Al film is deposited on the surface of the p-type boron-doped amorphous silicon layer away from the silicon dioxide layer 6 .

步骤五:将步骤四获得的产品在氮气保护下退火处理,温度为500℃,时间1小时,使p型掺硼非晶硅层发生相变,转化成p型掺硼微晶硅层。然后采用HCl溶液将其表面的残余金属Al清洗掉。Step 5: The product obtained in step 4 is annealed under nitrogen protection at a temperature of 500°C for 1 hour to make the p-type boron-doped amorphous silicon layer undergo a phase change and transform into a p-type boron-doped microcrystalline silicon layer. Then, the residual metal Al on the surface is cleaned with HCl solution.

步骤六:在所述硅基底层背离所述二氧化硅层6的一侧表面采用PECVD方法沉积一层厚度为7nm的第一本征非晶硅层4,反应气体为SiH4和H2,其中H2/SiH4=5,电源功率密度为0.020W/cm2,压力为100Pa,衬底温度为200℃。Step 6: Deposit a first intrinsic amorphous silicon layer 4 with a thickness of 7 nm on the surface of the silicon base layer away from the silicon dioxide layer 6 by PECVD method, the reaction gases are SiH4 and H2 , wherein H2 / SiH4 =5, the power density is 0.020W/ cm2 , the pressure is 100Pa, and the substrate temperature is 200℃.

步骤七:在所述第一本征非晶硅层4背离所述硅基底层的一侧表面,通过PECVD方法沉积一层10nm的n型掺磷非晶硅层,反应气体为SiH4、H2和PH3,H2/SiH4=10,PH3/SiH4=0.03,电源功率密度为0.13W/cm2,压力为200Pa,衬底温度为200℃。Step 7: On the surface of the first intrinsic amorphous silicon layer 4 facing away from the silicon base layer, a 10 nm n-type phosphorus-doped amorphous silicon layer is deposited by a PECVD method, the reaction gases are SiH 4 , H 2 and PH 3 , H 2 /SiH 4 =10, PH 3 /SiH 4 =0.03, the power density of the power supply is 0.13 W/cm 2 , the pressure is 200 Pa, and the substrate temperature is 200°C.

步骤八:充入Ar和O2,O2/Ar=0.025,压力0.5Pa,衬底温度为室温,在所述n型掺磷非晶硅层背离所述第一本征非晶硅层4的一侧表面以及在所述p型掺硼微晶硅层背离所述二氧化硅层6沉积厚度均为75nm第一透明导电层(ITO(In:Sn=90:10))2以及第二透明导电层(ITO(In:Sn=90:10))8。Step eight: filling with Ar and O 2 , O 2 /Ar=0.025, pressure 0.5 Pa, substrate temperature is room temperature, and depositing a first transparent conductive layer (ITO (In: Sn=90:10)) 2 and a second transparent conductive layer (ITO (In: Sn=90:10)) 8 with a thickness of 75 nm on the surface of the n-type phosphorus-doped amorphous silicon layer away from the first intrinsic amorphous silicon layer 4 and on the p-type boron-doped microcrystalline silicon layer away from the silicon dioxide layer 6.

步骤九:在所述第一透明导电层以及第二透明导电层上均通过丝网印刷银电极1和9。Step nine: silver electrodes 1 and 9 are screen-printed on the first transparent conductive layer and the second transparent conductive layer.

本实施例的太阳能电池性能如表1以及表2。The performance of the solar cell of this embodiment is shown in Table 1 and Table 2.

实施例2Example 2

本实施例的太阳能电池,其制备方法包括如下步骤:The solar cell of this embodiment, its preparation method comprises the following steps:

步骤一:首先,使用2%KOH和IPA混合溶液进行n型晶体硅片(n型双面抛光的直拉单晶硅片,厚度为150μm,电阻率为0.3Ω·cm,少子寿命1000μs。)制绒,温度为83℃,然后,采用RCA标准清洗方法对n型晶体硅片进行表面清洗,清除表面污染杂质,最后,采用1%的氢氟酸溶液去除表面氧化层,得到硅基底层5。Step 1: First, use a 2% KOH and IPA mixed solution to texturize an n-type crystalline silicon wafer (n-type double-sided polished CZ single crystal silicon wafer, with a thickness of 150μm, a resistivity of 0.3Ω·cm, and a minority carrier lifetime of 1000μs) at 83°C. Then, use the RCA standard cleaning method to clean the surface of the n-type crystalline silicon wafer to remove surface contaminants. Finally, use a 1% hydrofluoric acid solution to remove the surface oxide layer to obtain a silicon base layer 5.

步骤二:通过热氧化的方法在所述硅基底层的一侧表面生长一层1.2nm厚的二氧化硅层6,反应气体为O2,压力为200Pa,衬底温度为950℃。Step 2: A 1.2 nm thick silicon dioxide layer 6 is grown on one side of the silicon substrate layer by thermal oxidation, the reaction gas is O 2 , the pressure is 200 Pa, and the substrate temperature is 950°C.

步骤三:在二氧化硅层6背离所述硅基底层5的一侧表面沉积一层本征非晶硅层,其厚度为25nm,反应气体为反应气体为SiH4、H2,H2/SiH4=10,电源功率密度为0.027W/cm2,压力为80Pa,衬底温度为200℃。Step 3: depositing an intrinsic amorphous silicon layer with a thickness of 25 nm on the surface of the silicon dioxide layer 6 facing away from the silicon base layer 5, with the reaction gases being SiH 4 and H 2 , H 2 /SiH 4 = 10, the power density being 0.027 W/cm 2 , the pressure being 80 Pa, and the substrate temperature being 200°C.

步骤四:采用蒸镀方法,采用高纯Al(6N),加热电流15A在所述本征非晶硅层背离所述二氧化硅层6的一侧表面沉积一层厚度为18nm金属Al薄膜。Step 4: using an evaporation method, using high-purity Al (6N), and a heating current of 15A to deposit a 18 nm thick metal Al film on the surface of the intrinsic amorphous silicon layer away from the silicon dioxide layer 6 .

步骤五:将步骤四获得的产品在氮气保护下退火处理,温度为500℃,时间1小时,使本征非晶硅层发生Al掺杂和相变,转化成p型掺铝微晶硅层。然后采用HCl溶液将其表面的残余金属Al清洗掉。Step 5: The product obtained in step 4 is annealed under nitrogen protection at a temperature of 500°C for 1 hour to allow the intrinsic amorphous silicon layer to undergo Al doping and phase transition and be converted into a p-type aluminum-doped microcrystalline silicon layer. The residual metal Al on the surface is then cleaned with HCl solution.

步骤六:在所述硅基底层背离所述二氧化硅层6的一侧表面采用PECVD方法沉积一层厚度为7nm的第一本征非晶硅层4,反应气体为SiH4和H2,其中H2/SiH4=5,电源功率密度为0.020W/cm2,压力为100Pa,衬底温度为200℃。Step 6: Deposit a first intrinsic amorphous silicon layer 4 with a thickness of 7 nm on the surface of the silicon base layer away from the silicon dioxide layer 6 by PECVD method, the reaction gases are SiH4 and H2 , wherein H2 / SiH4 =5, the power density is 0.020W/ cm2 , the pressure is 100Pa, and the substrate temperature is 200℃.

步骤七:在所述第一本征非晶硅层4背离所述硅基底层5的一侧表面,通过PECVD方法沉积一层10nm的n型掺磷非晶硅层,反应气体为SiH4、H2和PH3,H2/SiH4=10,PH3/SiH4=0.03,电源功率密度为0.13W/cm2,压力为200Pa,衬底温度为200℃。Step 7: On the surface of the first intrinsic amorphous silicon layer 4 facing away from the silicon base layer 5, a 10 nm n-type phosphorus-doped amorphous silicon layer is deposited by a PECVD method, the reaction gases are SiH 4 , H 2 and PH 3 , H 2 /SiH 4 =10, PH 3 /SiH 4 =0.03, the power density of the power supply is 0.13 W/cm 2 , the pressure is 200 Pa, and the substrate temperature is 200°C.

步骤八:充入Ar和O2,O2/Ar=0.025,压力0.5Pa,衬底温度为室温,在所述n型掺磷非晶硅层背离所述第一本征非晶硅层4的一侧表面以及在所述p型掺铝微晶硅层7背离所述二氧化硅层6沉积厚度均为75nm第一透明导电层(ITO(In:Sn=90:10))2以及第二透明导电层(ITO(In:Sn=90:10))8。Step eight: filling with Ar and O 2 , O 2 /Ar=0.025, pressure 0.5 Pa, substrate temperature is room temperature, and depositing a first transparent conductive layer (ITO (In: Sn=90:10)) 2 and a second transparent conductive layer (ITO (In: Sn=90:10)) 8 with a thickness of 75 nm on the surface of the n-type phosphorus-doped amorphous silicon layer away from the first intrinsic amorphous silicon layer 4 and on the p-type aluminum-doped microcrystalline silicon layer 7 away from the silicon dioxide layer 6.

步骤九:在所述第一透明导电层8以及第二透明导电层2上均通过丝网印刷银电极1和9。Step nine: silver electrodes 1 and 9 are printed on the first transparent conductive layer 8 and the second transparent conductive layer 2 by screen printing.

本实施例的太阳能电池如表1。The solar cell of this embodiment is shown in Table 1.

对比例1Comparative Example 1

本实施例的太阳能电池,如图2,其制备方法包括如下步骤:The solar cell of this embodiment, as shown in FIG2 , has a preparation method comprising the following steps:

步骤一:首先,使用2%KOH和IPA混合溶液进行n型晶体硅片5(n型双面抛光的直拉单晶硅片,厚度为150μm,电阻率为0.3Ω·cm,少子寿命1000μs。)制绒,温度为83℃,然后,采用RCA标准清洗方法对n型晶体硅片进行表面清洗,清除表面污染杂质,最后,采用1%的氢氟酸溶液去除表面氧化层,得到硅基底层。Step 1: First, use a 2% KOH and IPA mixed solution to texturize an n-type crystalline silicon wafer 5 (n-type double-sided polished CZ single crystal silicon wafer, with a thickness of 150 μm, a resistivity of 0.3 Ω·cm, and a minority carrier lifetime of 1000 μs) at a temperature of 83°C. Then, use the RCA standard cleaning method to clean the surface of the n-type crystalline silicon wafer to remove surface contaminants. Finally, use a 1% hydrofluoric acid solution to remove the surface oxide layer to obtain a silicon base layer.

步骤二:在所述硅基底层的一侧表面采用PECVD方法沉积一层厚度为10nm的第二本征非晶硅层6’,反应气体为SiH4和H2,其中H2/SiH4=5,电源功率密度为0.020W/cm2,压力为100Pa,衬底温度为200℃。Step 2: Deposit a second intrinsic amorphous silicon layer 6' with a thickness of 10 nm on one side surface of the silicon substrate layer by PECVD method, the reaction gases are SiH4 and H2 , wherein H2 / SiH4 =5, the power density is 0.020W/ cm2 , the pressure is 100Pa, and the substrate temperature is 200℃.

步骤三:在第二本征非晶硅层6’背离所述硅基底层5的一侧表面沉积一层p型掺硼非晶硅层,其厚度为10nm,反应气体为SiH4、H2和B2H6,H2/SiH4=10,B2H6/SiH4=0.02。电源功率密度为0.027W/cm2,压力为80Pa,衬底温度为200℃。Step 3: deposit a p-type boron-doped amorphous silicon layer with a thickness of 10 nm on the surface of the second intrinsic amorphous silicon layer 6' away from the silicon base layer 5, the reaction gas is SiH4 , H2 and B2H6 , H2 / SiH4 = 10 , B2H6 / SiH4 = 0.02. The power density is 0.027W/ cm2 , the pressure is 80Pa, and the substrate temperature is 200℃.

步骤四:在所述硅基底层背离所述第二本征非晶硅层6’的一侧表面采用PECVD方法沉积一层厚度为7nm的第一本征非晶硅层4,反应气体为SiH4和H2,其中H2/SiH4=5,电源功率密度为0.020W/cm2,压力为100Pa,衬底温度为200℃。Step 4: Deposit a first intrinsic amorphous silicon layer 4 with a thickness of 7 nm on the surface of the silicon base layer away from the second intrinsic amorphous silicon layer 6' by PECVD method, the reaction gases are SiH4 and H2 , wherein H2 / SiH4 =5, the power density is 0.020W/ cm2 , the pressure is 100Pa, and the substrate temperature is 200℃.

步骤五:在所述第一本征非晶硅层4背离所述硅基底层的一侧表面,通过PECVD方法沉积一层10nm的n型掺磷非晶硅层,反应气体为SiH4、H2和PH3,H2/SiH4=10,PH3/SiH4=0.03,电源功率密度为0.13W/cm2,压力为200Pa,衬底温度为200℃。Step 5: On the surface of the first intrinsic amorphous silicon layer 4 facing away from the silicon base layer, a 10 nm n-type phosphorus-doped amorphous silicon layer is deposited by a PECVD method, the reaction gases are SiH 4 , H 2 and PH 3 , H 2 /SiH 4 =10, PH 3 /SiH 4 =0.03, the power density of the power supply is 0.13 W/cm 2 , the pressure is 200 Pa, and the substrate temperature is 200°C.

步骤六:充入Ar和O2,O2/Ar=0.025,压力0.5Pa,衬底温度为室温,在所述n型掺磷非晶硅层3背离所述第一本征非晶硅层4的一侧表面以及在所述p型掺硼非晶硅层背离所述第二本征非晶硅层6’的一侧表面沉积厚度均为75nm第一透明导电层(ITO(In:Sn=90:10))2以及第二透明导电层(ITO(In:Sn=90:10))8。Step 6: Filling with Ar and O 2 , O 2 /Ar=0.025, pressure 0.5 Pa, substrate temperature is room temperature, depositing a first transparent conductive layer (ITO (In: Sn=90:10)) 2 and a second transparent conductive layer (ITO (In: Sn=90:10)) 8 with a thickness of 75 nm on the surface of the n-type phosphorus-doped amorphous silicon layer 3 away from the first intrinsic amorphous silicon layer 4 and on the surface of the p-type boron-doped amorphous silicon layer away from the second intrinsic amorphous silicon layer 6 '.

步骤七:在所述第一透明导电层以及第二透明导电层上均通过丝网印刷银电极1和9。Step seven: silver electrodes 1 and 9 are screen-printed on the first transparent conductive layer and the second transparent conductive layer.

本实施例的太阳能电池性能如表1以及表2。The performance of the solar cell of this embodiment is shown in Table 1 and Table 2.

对比例2Comparative Example 2

对比例2与实施例1的区别仅在在于,p型掺硼微晶硅层的制备方法,在对比例2中采用PECVD方法直接在所述二氧化硅层上形成p型掺硼微晶硅层。本对比例的太阳能电池性能如表1以及表2。The difference between Comparative Example 2 and Example 1 is that the p-type boron-doped microcrystalline silicon layer is prepared by directly forming the p-type boron-doped microcrystalline silicon layer on the silicon dioxide layer using the PECVD method in Comparative Example 2. The solar cell performance of this comparative example is shown in Tables 1 and 2.

表1Table 1

表2为各实施例以及对比例的的性能参数Table 2 shows the performance parameters of each embodiment and comparative example.

平均Eff/%Average Eff/% 平均Voc/mVAverage Voc/mV 平均Jsc/mA/cm2 Average Jsc/mA/ cm2 平均FF/%Average FF/% 暗电导S/cmDark conductivity S/cm 晶态比%Crystalline ratio% 实施例1Example 1 24.1724.17 741.2741.2 39.339.3 83.483.4 1E0-1E21E0-1E2 50%-70%50%-70% 实施例2Example 2 23.9423.94 740.5740.5 39.239.2 82.582.5 1E0-1E21E0-1E2 50%-70%50%-70% 对比例1Comparative Example 1 23.4323.43 739739 39.139.1 81.181.1 1E(-4)-1E(-2)1E(-4)-1E(-2) 0%0% 对比例2Comparative Example 2 23.8423.84 740740 39.239.2 82.282.2 1E(-2)-1E01E(-2)-1E0 20%-40%20%-40%

小结:本申请采用了二氧化硅背面钝化工艺,保证了异质结界面的钝化稳定性,其次采用了金属Al膜诱导制备p型微晶硅层的方法,制备了一种融合Topcon技术的杂化异质结电池;这样不仅保证了对c-Si界面的良好钝化,另一方面制备了高掺杂度、高晶态比的p型微晶硅层,在保证界面钝化完好的情况下,有效的提高了p型微晶硅层的掺杂浓度,可以有效的提高电池效率。Summary: This application adopts a silicon dioxide back passivation process to ensure the passivation stability of the heterojunction interface. Secondly, a metal Al film-induced preparation method of a p-type microcrystalline silicon layer is adopted to prepare a hybrid heterojunction battery integrating Topcon technology. This not only ensures good passivation of the c-Si interface, but also prepares a p-type microcrystalline silicon layer with a high doping degree and a high crystallinity ratio. While ensuring that the interface passivation is intact, the doping concentration of the p-type microcrystalline silicon layer is effectively increased, which can effectively improve the battery efficiency.

尽管以上结合对本申请的实施方案进行了描述,但本申请并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本申请权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本申请保护之列。Although the embodiments of the present application are described above, the present application is not limited to the above specific embodiments and application fields, and the above specific embodiments are merely illustrative and instructive, rather than restrictive. A person of ordinary skill in the art can make many forms under the guidance of this specification and without departing from the scope of protection of the claims of the present application, all of which belong to the protection of the present application.

Claims (12)

1.一种太阳能电池,其特征在于,包括从下到上依次层叠设置的微晶硅层、二氧化硅层、硅基底层、本征非晶硅层以及掺杂非晶硅层;1. A solar cell, characterized in that it comprises a microcrystalline silicon layer, a silicon dioxide layer, a silicon base layer, an intrinsic amorphous silicon layer and a doped amorphous silicon layer stacked in sequence from bottom to top; 所述太阳能电池的制备方法,包括如下步骤:The method for preparing the solar cell comprises the following steps: 提供硅基底层;providing a silicon base layer; 在所述硅基底层的一侧表面沉积二氧化硅层;Depositing a silicon dioxide layer on one side surface of the silicon base layer; 在所述二氧化硅层背离所述硅基底层的一侧沉积待晶化非晶硅层;Depositing an amorphous silicon layer to be crystallized on a side of the silicon dioxide layer away from the silicon base layer; 在所述待晶化非晶硅层背离所述二氧化硅层的一侧表面沉积金属薄膜,然后进行退火,使得所述待晶化非晶硅层转化为微晶硅层;Depositing a metal film on a surface of the amorphous silicon layer to be crystallized away from the silicon dioxide layer, and then annealing the amorphous silicon layer to be crystallized to transform it into a microcrystalline silicon layer; 在所述硅基底层背离所述二氧化硅层的一侧表面沉积本征非晶硅层;Depositing an intrinsic amorphous silicon layer on a surface of the silicon base layer facing away from the silicon dioxide layer; 在所述本征非晶硅层背离所述硅基底层的一侧表面沉积掺杂非晶硅层;Depositing a doped amorphous silicon layer on a surface of the intrinsic amorphous silicon layer facing away from the silicon base layer; 通过蒸镀或磁控溅射在所述待晶化非晶硅层上沉积所述金属薄膜,然后进行退火,所述退火温度为300-500℃。The metal film is deposited on the amorphous silicon layer to be crystallized by evaporation or magnetron sputtering, and then annealed at a temperature of 300-500°C. 2.根据权利要求1所述的太阳能电池,其特征在于,所述硅基底层为n型晶体硅或p型晶体硅。2 . The solar cell according to claim 1 , wherein the silicon substrate layer is n-type crystalline silicon or p-type crystalline silicon. 3.根据权利要求1所述的太阳能电池,其特征在于,所述微晶硅层为p型微晶硅层或n型微晶硅层,厚度为5-30nm。3 . The solar cell according to claim 1 , wherein the microcrystalline silicon layer is a p-type microcrystalline silicon layer or an n-type microcrystalline silicon layer, and has a thickness of 5-30 nm. 4.根据权利要求1所述的太阳能电池,其特征在于,所述掺杂非晶硅层为n型非晶硅层或p型非晶硅层,厚度为5-15nm。4 . The solar cell according to claim 1 , wherein the doped amorphous silicon layer is an n-type amorphous silicon layer or a p-type amorphous silicon layer, and has a thickness of 5-15 nm. 5.根据权利要求1所述的太阳能电池,其特征在于,所述二氧化硅层的厚度为0.5-2nm。5 . The solar cell according to claim 1 , wherein the thickness of the silicon dioxide layer is 0.5-2 nm. 6.根据权利要求1所述的太阳能电池,其特征在于,在所述微晶硅层背离所述二氧化硅层的一侧表面设置有第二透明导电层,在所述掺杂非晶硅层背离所述本征非晶硅层的一侧表面设置有第一透明导电层;在所述第一透明导电层背离所述掺杂非晶硅层的一侧表面设置有第一金属电极,在所述第二透明导电层背离所述微晶硅层的一侧表面设置有第二金属电极。6. The solar cell according to claim 1 is characterized in that a second transparent conductive layer is arranged on a surface of the microcrystalline silicon layer on a side away from the silicon dioxide layer, and a first transparent conductive layer is arranged on a surface of the doped amorphous silicon layer on a side away from the intrinsic amorphous silicon layer; a first metal electrode is arranged on a surface of the first transparent conductive layer on a side away from the doped amorphous silicon layer, and a second metal electrode is arranged on a surface of the second transparent conductive layer on a side away from the microcrystalline silicon layer. 7.一种太阳能电池的制备方法,其特征在于,包括如下步骤:7. A method for preparing a solar cell, characterized in that it comprises the following steps: 提供硅基底层;providing a silicon base layer; 在所述硅基底层的一侧表面沉积二氧化硅层;Depositing a silicon dioxide layer on one side surface of the silicon base layer; 在所述二氧化硅层背离所述硅基底层的一侧沉积待晶化非晶硅层;Depositing an amorphous silicon layer to be crystallized on a side of the silicon dioxide layer away from the silicon base layer; 在所述待晶化非晶硅层背离所述二氧化硅层的一侧表面沉积金属薄膜,然后进行退火,使得所述待晶化非晶硅层转化为微晶硅层;Depositing a metal film on a surface of the amorphous silicon layer to be crystallized away from the silicon dioxide layer, and then annealing the amorphous silicon layer to be crystallized to transform it into a microcrystalline silicon layer; 在所述硅基底层背离所述二氧化硅层的一侧表面沉积本征非晶硅层;Depositing an intrinsic amorphous silicon layer on a surface of the silicon base layer facing away from the silicon dioxide layer; 在所述本征非晶硅层背离所述硅基底层的一侧表面沉积掺杂非晶硅层;Depositing a doped amorphous silicon layer on a surface of the intrinsic amorphous silicon layer facing away from the silicon base layer; 通过蒸镀或磁控溅射在所述待晶化非晶硅层上沉积所述金属薄膜,然后进行退火,所述退火温度为300-500℃。The metal film is deposited on the amorphous silicon layer to be crystallized by evaporation or magnetron sputtering, and then annealed at a temperature of 300-500°C. 8.根据权利要求7所述的制备方法,其特征在于,所述待晶化非晶硅层为本征非晶硅层、n型非晶硅层或p型非晶硅层。8 . The preparation method according to claim 7 , wherein the amorphous silicon layer to be crystallized is an intrinsic amorphous silicon layer, an n-type amorphous silicon layer or a p-type amorphous silicon layer. 9.根据权利要求7所述的制备方法,其特征在于,所述金属薄膜选自铝膜、金膜或银膜中的一种或两种以上。9 . The preparation method according to claim 7 , wherein the metal film is selected from one or more of aluminum film, gold film or silver film. 10.根据权利要求7所述的制备方法,其特征在于,在氮气保护下进行退火,所述退火时间为1-3h,金属薄膜的厚度为10-20nm。10. The preparation method according to claim 7, characterized in that annealing is performed under nitrogen protection, the annealing time is 1-3 hours, and the thickness of the metal film is 10-20 nm. 11.根据权利要求7所述的制备方法,其特征在于,退火结束后采用酸性洗液将所述微晶硅层表面残留的金属洗掉。11 . The preparation method according to claim 7 , characterized in that after the annealing is completed, an acidic washing solution is used to wash away the metal remaining on the surface of the microcrystalline silicon layer. 12.根据权利要求7-11任一项所述的制备方法,其特征在于,所述太阳能电池为权利要求1-6任一项所述的太阳能电池。12. The preparation method according to any one of claims 7 to 11, characterized in that the solar cell is the solar cell according to any one of claims 1 to 6.
CN202210108969.5A 2022-01-28 2022-01-28 Solar cell and preparation method thereof Active CN114447135B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210108969.5A CN114447135B (en) 2022-01-28 2022-01-28 Solar cell and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210108969.5A CN114447135B (en) 2022-01-28 2022-01-28 Solar cell and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114447135A CN114447135A (en) 2022-05-06
CN114447135B true CN114447135B (en) 2024-09-06

Family

ID=81371928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210108969.5A Active CN114447135B (en) 2022-01-28 2022-01-28 Solar cell and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114447135B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823935B (en) * 2022-05-16 2024-05-03 东方日升新能源股份有限公司 Heterojunction battery and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060768A (en) * 2013-01-17 2013-04-24 云南师范大学 Low-temperature rapid crystallization method for amorphous silicon film
CN110911505A (en) * 2019-12-19 2020-03-24 通威太阳能(眉山)有限公司 Heterojunction solar cell and method of making the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222703A (en) * 2011-06-21 2011-10-19 中国科学院上海技术物理研究所 Hetero-junction-structured crystalline silicon solar cell with intrinsic layer and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060768A (en) * 2013-01-17 2013-04-24 云南师范大学 Low-temperature rapid crystallization method for amorphous silicon film
CN110911505A (en) * 2019-12-19 2020-03-24 通威太阳能(眉山)有限公司 Heterojunction solar cell and method of making the same

Also Published As

Publication number Publication date
CN114447135A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
CN109346536B (en) A contact passivation crystalline silicon solar cell structure and preparation method
CN109216509B (en) Preparation method of interdigital back contact heterojunction solar cell
CN105322043B (en) It is a kind of can two-sided entering light crystal silicon solar battery and preparation method thereof
CN210926046U (en) Solar cell
CN114975691A (en) Passivated contact solar cell with selective emitter and preparation method, assembly and system thereof
CN105810779B (en) A kind of preparation method of PERC solar cells
CN110690301A (en) Double-junction laminated battery and preparation method thereof
CN112820793A (en) Solar cell and preparation method thereof
CN114497290A (en) Manufacturing method of back contact heterojunction solar cell
CN106876490B (en) High-conversion-efficiency PID-resistant N-type crystalline silicon double-sided battery and preparation method thereof
CN111416011B (en) P-type PERC crystalline silicon solar cell and preparation method thereof
CN115020508A (en) A kind of full back contact solar cell and its manufacturing method
CN114005908A (en) Solar cell and preparation method thereof
JP2013165160A (en) Method for manufacturing solar cell, and solar cell
CN117423763A (en) Solar cell, preparation method thereof and solar cell module
CN114864740A (en) A kind of double-sided local passivation contact solar cell and fabrication method thereof
CN115084314A (en) IBC solar cell preparation method of TOPCon passivation contact structure
CN117790632B (en) Solar crystalline silicon cell and preparation method thereof
CN112838132A (en) A solar cell stack passivation structure and preparation method thereof
JP2024112278A (en) Solar Cell
CN113224210A (en) Preparation method of P-type IBC battery
CN114447135B (en) Solar cell and preparation method thereof
CN202210522U (en) Back contact heterojunction solar cell structure based on P-type silicon wafer
CN113921649A (en) Preparation method of silicon-based heterojunction solar cell
CN111584685A (en) A new type of solar cell and its preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant