[go: up one dir, main page]

CN114447002A - Optical detection device - Google Patents

Optical detection device Download PDF

Info

Publication number
CN114447002A
CN114447002A CN202011223674.XA CN202011223674A CN114447002A CN 114447002 A CN114447002 A CN 114447002A CN 202011223674 A CN202011223674 A CN 202011223674A CN 114447002 A CN114447002 A CN 114447002A
Authority
CN
China
Prior art keywords
layer
charge storage
storage element
electrode
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011223674.XA
Other languages
Chinese (zh)
Inventor
林信宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruisheng Optoelectronics Co ltd
Original Assignee
Ruisheng Optoelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruisheng Optoelectronics Co ltd filed Critical Ruisheng Optoelectronics Co ltd
Priority to CN202011223674.XA priority Critical patent/CN114447002A/en
Publication of CN114447002A publication Critical patent/CN114447002A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/18Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
    • H10F39/189X-ray, gamma-ray or corpuscular radiation imagers
    • H10F39/1898Indirect radiation image sensors, e.g. using luminescent members
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/103Integrated devices the at least one element covered by H10F30/00 having potential barriers, e.g. integrated devices comprising photodiodes or phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/803Pixels having integrated switching, control, storage or amplification elements
    • H10F39/8033Photosensitive area
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/803Pixels having integrated switching, control, storage or amplification elements
    • H10F39/8037Pixels having integrated switching, control, storage or amplification elements the integrated elements comprising a transistor

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明提供一种光检测装置包括晶体管及电荷存储元件。晶体管包括栅极、源极与漏极。电荷存储元件电性连接于晶体管且包括上电极与下电极。晶体管的源极及漏极与电荷存储元件的下电极由一半导体层所形成。

Figure 202011223674

The present invention provides a light detection device comprising a transistor and a charge storage element. A transistor includes a gate, a source and a drain. The charge storage element is electrically connected to the transistor and includes an upper electrode and a lower electrode. The source and drain electrodes of the transistor and the lower electrode of the charge storage element are formed by a semiconductor layer.

Figure 202011223674

Description

光检测装置Light detection device

技术领域technical field

本发明涉及一种光检测装置,尤其涉及一种具有晶体管与电荷存储元件的光检测装置。The present invention relates to a light detection device, in particular to a light detection device with a transistor and a charge storage element.

背景技术Background technique

随着光检测装置的发展,人类对光检测装置的品质或效能要求逐渐提高,光检测装置通常使用薄膜晶体管作为开关元件,而薄膜晶体管的性能会影响光检测装置效能。故对于如何提高光检测装置的检测效能或降低制造流程或成本已成为现今业界的关注的议题。With the development of photodetection devices, human beings have gradually higher requirements on the quality or performance of photodetection devices. Photodetection devices usually use thin film transistors as switching elements, and the performance of the thin film transistors will affect the performance of the photodetection device. Therefore, how to improve the detection performance of the optical detection device or reduce the manufacturing process or cost has become a topic of concern in the industry today.

发明内容SUMMARY OF THE INVENTION

本公开的光检测装置包括晶体管及电荷存储元件。晶体管包括栅极、源极与漏极。电荷存储元件电性连接于晶体管且包括上电极与下电极。晶体管的源极及漏极与电荷存储元件的下电极由一半导体层所形成。The light detection device of the present disclosure includes a transistor and a charge storage element. A transistor includes a gate, a source and a drain. The charge storage element is electrically connected to the transistor and includes an upper electrode and a lower electrode. The source and drain electrodes of the transistor and the lower electrode of the charge storage element are formed by a semiconductor layer.

本公开的光检测装置中以相同的半导体层实现晶体管与电荷存储元件,而有助于缩减制作步骤、简化结构设计及降低成本。In the photodetection device of the present disclosure, the transistor and the charge storage element are implemented with the same semiconductor layer, which helps to reduce the fabrication steps, simplify the structure design and reduce the cost.

附图说明Description of drawings

图1为本公开一实施例的光检测装置的上视示意图;FIG. 1 is a schematic top view of a light detection device according to an embodiment of the disclosure;

图2为图1的光检测装置沿A-B-C-D线的剖面示意图;2 is a schematic cross-sectional view of the light detection device of FIG. 1 along the line A-B-C-D;

图3为图1的光检测装置100中的接垫PD1的一实施例的剖面示意图;FIG. 3 is a schematic cross-sectional view of an embodiment of the pad PD1 in the photodetection device 100 of FIG. 1 ;

图4为本公开另一实施例的光检测装置的上视示意图;4 is a schematic top view of a light detection device according to another embodiment of the disclosure;

图5为图4的光检测装置沿E-F-G-H线的剖面示意图;5 is a schematic cross-sectional view of the light detection device of FIG. 4 along the line E-F-G-H;

图6为图4的光检测装置200中的接垫PD1的一实施例的剖面示意图;FIG. 6 is a schematic cross-sectional view of an embodiment of the pad PD1 in the light detection device 200 of FIG. 4;

图7为本公开另一实施例的光检测装置的剖面示意图;7 is a schematic cross-sectional view of a light detection device according to another embodiment of the disclosure;

图8为本公开另一实施例的光检测装置的上视示意图;8 is a schematic top view of a light detection device according to another embodiment of the disclosure;

图9为图8的光检测装置沿I-J-K-L线的剖面示意图;9 is a schematic cross-sectional view of the light detection device of FIG. 8 along the line I-J-K-L;

图10为图8的光检测装置200中的接垫PD2的一实施例的剖面示意图;10 is a schematic cross-sectional view of an embodiment of the pad PD2 in the light detection device 200 of FIG. 8;

图11为本公开的光检测装置的局部等效电路示意图。FIG. 11 is a schematic partial equivalent circuit diagram of the light detection device of the present disclosure.

具体实施方式Detailed ways

现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals are used in the drawings and description to refer to the same or like parts.

下文结合具体实施例和附图对本公开的内容进行详细描述,且为了使本公开的内容更加清楚和易懂,下文各附图为可能为简化的示意图,且其中的元件可能并非按比例绘制。并且,附图中的各元件的数量与尺寸仅为示意,并非用于限制本公开的范围。The present disclosure is described in detail below with reference to specific embodiments and the accompanying drawings, which may be simplified schematic diagrams and elements may not be drawn to scale in order to make the disclosure more clear and understandable. Also, the number and size of each element in the accompanying drawings are for illustration only, and are not intended to limit the scope of the present disclosure.

本公开通篇说明书与所附的权利要求中会使用某些词汇来指称特定元件。本领域技术人员应理解,电子设备制造商可能会以不同的名称来指称相同的元件,且本文并未意图区分那些功能相同但名称不同的元件。当在本说明书中使用术语"包括"、"包括"和/或"具有"时,其指定了所述特征、区域、步骤、操作和/或元件的存在,但并不排除一个或多个其他特征、区域、步骤、操作、元件和/或其组合的存在或增加。Certain terms may be used throughout the present disclosure and the appended claims to refer to specific elements. Those skilled in the art will understand that electronic device manufacturers may refer to the same elements by different names, and it is not intended herein to distinguish those elements that have the same function but have different names. When the terms "comprising", "including" and/or "having" are used in this specification, they designate the presence of said feature, region, step, operation and/or element, but do not exclude one or more other The presence or addition of features, regions, steps, operations, elements and/or combinations thereof.

当诸如层或区域的元件被称为在另一元件(或其变型)"上"或延伸到另一元件"上"时,它可以直接在另一元件上或直接延伸到另一元件上,或者两者之间还可以存在插入的元件。另一方面,当称一元件"直接在"另一元件(或其变型)上或者"直接"延伸到另一元件"上"时,两者间不存在插入元件。并且,当一元件被称作"耦接"到另一元件(或其变型)时,它可以直接连接到另一元件或通过一或多个元件间接地连接(例如电性连接)到另一元件。When an element such as a layer or region is referred to as being "on" or extending "on" another element (or variations thereof), it can be directly on or extending directly onto the other element, Alternatively, there may also be intervening elements in between. On the other hand, when an element is referred to as being "directly on" another element (or a variation thereof) or extending "directly" onto another element, there are no intervening elements present. Also, when an element is referred to as being "coupled" to another element (or variations thereof), it can be directly connected to the other element or indirectly (eg, electrically connected) to the other element through one or more elements element.

于文中,“约”、“实质上”的用语通常表示在一给定值或范围的10%内,或5%内、或3%之内、或2%之内、或1%之内、或0.5%之内。在此给定的数量为大约的数量,亦即在没有特定说明“约”、“实质上”的情况下,仍可隐含“约”、“实质上”的含义。此外,用语“范围介于第一数值及第二数值之间”表示所述范围包括第一数值、第二数值以及它们之间的其它数值。In the text, the terms "about" and "substantially" usually mean within 10%, or within 5%, or within 3%, or within 2%, or within 1%, of a given value or range. or within 0.5%. The quantity given here is an approximate quantity, that is, the meanings of "about" and "substantially" can still be implied if "about" and "substantially" are not specifically stated. Furthermore, the phrase "a range between a first value and a second value" means that the range includes the first value, the second value, and other values therebetween.

能理解的是,虽然在此可使用用语“第一”、“第二”等来叙述各种元件、层和/或部份,这些元件、层和/或部份不应被这些用语限定,且这些用语仅是用来区别不同的元件、层和/或部份。因此,以下讨论的一第一元件、层和/或部份可在不偏离本公开一些实施例的教示的情况下被称为一第二元件、层和/或部份。另外,为了简洁起见,在说明书中亦可不使用“第一”、“第二”等用语来区别不同元件。在不违背后附申请专利范围所界定的范围的情况下,申请专利范围所记载的第一元件和/或第二元件可解读为说明书中符合叙述的任何元件。It will be understood that, although the terms "first", "second", etc. may be used herein to describe various elements, layers and/or sections, these elements, layers and/or sections should not be limited by these terms, And these terms are only used to distinguish different elements, layers and/or sections. Thus, a first element, layer and/or section discussed below could be termed a second element, layer and/or section without departing from the teachings of some embodiments of the present disclosure. In addition, for the sake of brevity, terms such as "first" and "second" may not be used in the description to distinguish different elements. Without departing from the scope defined by the appended claims, the recitation of a first element and/or a second element in the claims can be construed as any element recited in the specification.

在本公开中,厚度、长度与宽度的量测方式可采用光学显微镜量测而得,厚度则可以由电子显微镜中的剖面影像量测而得,但不以此为限。另外,任两个用来比较的数值或方向,可存在着一定的误差。若第一值等于第二值,其隐含着第一值与第二值之间可存在着约10%的误差;若第一方向垂直于第二方向,则第一方向与第二方向之间的角度可介于80度至100度之间;若第一方向平行于第二方向,则第一方向与第二方向之间的角度可介于0度至10度之间。In the present disclosure, the measurement methods of thickness, length and width can be measured by using an optical microscope, and the thickness can be measured by a cross-sectional image in an electron microscope, but not limited thereto. In addition, any two values or directions used for comparison may have certain errors. If the first value is equal to the second value, it implies that there may be an error of about 10% between the first value and the second value; if the first direction is perpendicular to the second direction, the difference between the first direction and the second direction The angle between them may be between 80 degrees and 100 degrees; if the first direction is parallel to the second direction, the angle between the first direction and the second direction may be between 0 degrees and 10 degrees.

除非另外定义,在此使用的全部用语(包括技术及科学用语)具有与此篇公开本领域技术人员所通常理解的相同涵义。能理解的是这些用语,例如在通常使用的字典中定义的用语,应被解读成具有一与相关技术及本公开的背景或上下文一致的意思,而不应以一理想化或过度正式的方式解读,除非在此特别定义。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art of this disclosure. It is to be understood that these terms, such as those defined in commonly used dictionaries, should be interpreted to have a meaning consistent with the relevant art and the context or context of this disclosure and not in an idealized or overly formal manner Interpretation, unless specifically defined herein.

须说明的是,下文中不同实施例所提供的技术方案可相互替换、组合或混合使用,以在未违反本公开精神的情况下构成另一实施例。It should be noted that the technical solutions provided by the different embodiments hereinafter can be replaced, combined or used in combination, so as to constitute another embodiment without violating the spirit of the present disclosure.

图1为本公开一实施例的光检测装置的上视示意图。光检测装置100包括一基板SB,扫描线SL、读取线RL及偏置线CL(bias line)设于基板SB上。检测装置100可通过多个扫描线SL及多个读取线RL定义出多个检测单元SR1。基板SB具有检测区R1及位于检测区R1旁的周边区R2,检测单元SR1设置于基板SB上且位于检测区R1中,接垫PD1设置于基板SB上且位于周边区R2。为了清晰,图1中仅示出一个检测单元SR1及三个接垫PD1,但不以此为限。基板SB上可设置有多个检测单元SR1,且多个检测单元SR1可以阵列排列或其他的排列方式分布于检测区R1中。在图1中,光检测装置的检测单元SR1可包括晶体管SR1A及电荷存储元件SR1B,电荷存储元件SR1B电性连接于晶体管SR1A。晶体管SR1A包括栅极132、源极112与漏极114,电荷存储元件SR1B包括上电极150与下电极116,栅极132电连接至扫描线SL,源极112与漏极114的一者电连接至读取线RL,源极112与漏极114的另一者电连接至电荷存储元件SR1B(例如下电极116)。电荷存储元件SR1B(例如上电极150),可电连接偏置线CL,但不以此为限。FIG. 1 is a schematic top view of a light detection device according to an embodiment of the disclosure. The light detection device 100 includes a substrate SB, and the scanning lines SL, the reading lines RL, and the bias lines CL (bias lines) are disposed on the substrate SB. The detection device 100 may define a plurality of detection units SR1 through a plurality of scan lines SL and a plurality of read lines RL. The substrate SB has a detection area R1 and a peripheral area R2 beside the detection area R1. The detection unit SR1 is disposed on the substrate SB and located in the detection area R1, and the pad PD1 is disposed on the substrate SB and located in the peripheral area R2. For clarity, only one detection unit SR1 and three pads PD1 are shown in FIG. 1 , but not limited thereto. A plurality of detection units SR1 may be disposed on the substrate SB, and the plurality of detection units SR1 may be arranged in an array or distributed in the detection area R1 in other arrangements. In FIG. 1 , the detection unit SR1 of the photodetection device may include a transistor SR1A and a charge storage element SR1B, and the charge storage element SR1B is electrically connected to the transistor SR1A. The transistor SR1A includes a gate 132 , a source 112 and a drain 114 , the charge storage element SR1B includes an upper electrode 150 and a lower electrode 116 , the gate 132 is electrically connected to the scan line SL, and one of the source 112 and the drain 114 is electrically connected To read line RL, the other of source 112 and drain 114 is electrically connected to charge storage element SR1B (eg, lower electrode 116). The charge storage element SR1B (eg, the upper electrode 150 ) can be electrically connected to the bias line CL, but not limited thereto.

图2为图1的光检测装置沿A-B-C-D线的剖面示意图。具体来说,光检测装置100包括设置于基板SB上的多个膜层,此些膜层包括依序制作于基板SB上的半导体层110、绝缘层120、金属层130、感光层140、上电极150、绝缘层160、平坦层170、金属层180及保护层190,但不限于此。上述多个膜层的层叠中可选择性插入其他层别或移除上述层别中的至少一者。另外,光检测装置100可选择性的包括光转换层PC1,光转换层PC1可设于保护层190上且覆盖基板SB,但不限于此。FIG. 2 is a schematic cross-sectional view of the light detection device of FIG. 1 along the line A-B-C-D. Specifically, the light detection device 100 includes a plurality of film layers disposed on the substrate SB, and the film layers include a semiconductor layer 110 , an insulating layer 120 , a metal layer 130 , a photosensitive layer 140 , an upper The electrode 150 , the insulating layer 160 , the flat layer 170 , the metal layer 180 and the protective layer 190 , but not limited thereto. In the stacking of the above-mentioned multiple film layers, other layers may be selectively inserted or at least one of the above-mentioned layers may be removed. In addition, the light detection device 100 may optionally include a light conversion layer PC1, and the light conversion layer PC1 may be disposed on the protective layer 190 and cover the substrate SB, but is not limited thereto.

在一些实施例,半导体层110可设置于基板SB上,半导体层110例如可制作出源极112、漏极114、下电极116与通道118。换言之,晶体管SR1A的源极112和/或漏极114与电荷存储元件SR1B的下电极116由一半导体层110所形成。在一些实施例,晶体管SR1A具有通道118,通道118设置于源极112及漏极114之间,通道118、源极112及漏极114与通道118同层。在一些实施例,源极112、漏极114、下电极116和/或通道118例如是彼此相连,但不限于此。在一些实施例,晶体管SR1A的栅极132设置于通道118上。换句话说,通道118可定义为与栅极132于基板SB的法线方向上重叠的半导体层110的部分。如图2所示,源极112、漏极114可分别定义为连接于通道118的两侧的半导体层110的部分。下电极116可定义为与感光层140于基板SB的法线方向上重叠的半导体层110的部分。下电极116可属于电荷存储元件SR1B的一部分。通道118、源极112及漏极114可属于晶体管SR1A的一部分。In some embodiments, the semiconductor layer 110 may be disposed on the substrate SB. For example, the semiconductor layer 110 may form the source electrode 112 , the drain electrode 114 , the lower electrode 116 and the channel 118 . In other words, the source electrode 112 and/or the drain electrode 114 of the transistor SR1A and the lower electrode 116 of the charge storage element SR1B are formed by a semiconductor layer 110 . In some embodiments, the transistor SR1A has a channel 118 disposed between the source 112 and the drain 114 , and the channel 118 , the source 112 and the drain 114 are in the same layer as the channel 118 . In some embodiments, the source electrode 112 , the drain electrode 114 , the lower electrode 116 and/or the channel 118 are connected to each other, for example, but not limited thereto. In some embodiments, gate 132 of transistor SR1A is disposed on channel 118 . In other words, the channel 118 may be defined as the portion of the semiconductor layer 110 that overlaps the gate 132 in the direction normal to the substrate SB. As shown in FIG. 2 , the source electrode 112 and the drain electrode 114 may be respectively defined as parts of the semiconductor layer 110 connected to both sides of the channel 118 . The lower electrode 116 may be defined as a portion of the semiconductor layer 110 that overlaps the photosensitive layer 140 in the normal direction of the substrate SB. The lower electrode 116 may be part of the charge storage element SR1B. Channel 118, source 112 and drain 114 may be part of transistor SR1A.

在一些实施例中,半导体层110的材料包括高载子迁移率的半导体材料,例如包括金属氧化物半导体或其他氧化物半导。In some embodiments, the material of the semiconductor layer 110 includes a semiconductor material with high carrier mobility, for example including a metal oxide semiconductor or other oxide semiconductors.

在一些实施例中,绝缘层120可设置于半导体层110上且于基板SB的法线方向上重叠通道118,但不限于此。在一些实施例中,金属层130可设置于绝缘层120上,金属层130可包括栅极132和/或扫描线SL(如图1所示),栅极132例如由扫描线SL延伸出且重叠通道118的一部分金属层130。在一些实施例中,绝缘层120可设置于通道118与栅极132之间,作为栅极132绝缘层。在一些实施例中,绝缘层120的材料包括氧化硅、氮化硅、氮氧化硅或上述材料的组合,但不限于此。In some embodiments, the insulating layer 120 may be disposed on the semiconductor layer 110 and overlap the channel 118 in the normal direction of the substrate SB, but is not limited thereto. In some embodiments, the metal layer 130 may be disposed on the insulating layer 120, and the metal layer 130 may include a gate electrode 132 and/or a scan line SL (as shown in FIG. 1), the gate electrode 132 extending from the scan line SL, for example, and A portion of metal layer 130 overlaps via 118 . In some embodiments, the insulating layer 120 may be disposed between the channel 118 and the gate 132 as an insulating layer for the gate 132 . In some embodiments, the material of the insulating layer 120 includes silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof, but is not limited thereto.

在一些实施例中,金属层130可通过显影蚀刻工艺将金属层130图案化成图1所示的栅极132。半导体层110中被栅极132遮蔽的区域即为通道118。在一些实施例中,绝缘层120与金属层130可采用相同的图案化步骤或使用同一道光罩来图案化。因此,于上视方向上,绝缘层120的轮廓可大致对应或切齐金属层130的轮廓,但不以此为限。In some embodiments, the metal layer 130 may be patterned into the gate electrode 132 shown in FIG. 1 through a development etching process. The area of the semiconductor layer 110 shielded by the gate 132 is the channel 118 . In some embodiments, the insulating layer 120 and the metal layer 130 can be patterned using the same patterning step or using the same mask. Therefore, in the top-view direction, the outline of the insulating layer 120 may roughly correspond to or be aligned with the outline of the metal layer 130 , but not limited thereto.

在一些实施例中,电荷存储元件SR1B包括感光层140、下电极116及上电极150,感光层140设置在下电极116上,上电极150设置于感光层140上,但不限于此。换句话说,感光层140可设置于下电极116与上电极150之间。在其他实施例(未示出),感光层140与下电极116之间或感光层140与上电极150之间可选择性插入其他层别。在一些实施例中,电荷存储元件SR1B可邻近于晶体管SR1A设置且彼此电连接,电荷存储元件SR1B的感光层140未与晶体管SR1A于基板SB的法线方向上重叠,但不限于此。在一些实施例中,晶体管SR1A(例如漏极114)与电荷存储元件SR1B(例如下电极116)电连接,晶体管SR1A可用以驱动电荷存储元件SR1B。在一些实施例中,检测单元SR1可选择性包括其他晶体管(未示出)。In some embodiments, the charge storage element SR1B includes a photosensitive layer 140 , a lower electrode 116 and an upper electrode 150 , the photosensitive layer 140 is disposed on the lower electrode 116 , and the upper electrode 150 is disposed on the photosensitive layer 140 , but not limited thereto. In other words, the photosensitive layer 140 may be disposed between the lower electrode 116 and the upper electrode 150 . In other embodiments (not shown), other layers may be selectively interposed between the photosensitive layer 140 and the lower electrode 116 or between the photosensitive layer 140 and the upper electrode 150 . In some embodiments, the charge storage element SR1B may be disposed adjacent to the transistor SR1A and electrically connected to each other, and the photosensitive layer 140 of the charge storage element SR1B does not overlap the transistor SR1A in the normal direction of the substrate SB, but is not limited thereto. In some embodiments, transistor SR1A (eg, drain 114 ) is electrically connected to charge storage element SR1B (eg, lower electrode 116 ), which may be used to drive charge storage element SR1B. In some embodiments, the detection unit SR1 may selectively include other transistors (not shown).

在一些实施例中,感光层140的材料包括半导体材料。在一些实施例中,制作感光层140的半导体材料不同于制作半导体层110的半导体材料,但不限于此。举例而言,感光层140的材料包括硅、锗、砷化铟镓、硫化铅或其他类似的半导体材料,但不限于此。在一些实施例中,感光层140例如用以将光转换成电流或电压讯号。在一些实施例中,感光层140可包括光电二极管。在一些实施例中,感光层140可通过沉积方式,例如化学气相沉积(CVD),形成于半导体层110上。在沉积感光层140或后续其它层别的过程时,因气体(例如氢气或其他气体)可能影响半导体层110,使半导体层110中的载子量改变(例如变多),而提高半导体层110的导电性。详细来说,不同的半导体层110部份上是否有其它层别(例如栅极132)遮蔽可能会影响其被气体影响的程度,故半导体层110中未被栅极132所遮蔽(即未与栅极132重叠)的部分(例如源极112、漏极114和/或下电极116)的导电性与被栅极132所遮蔽的部分(例如通道118)的导电性不同。举例而言,源极112、漏极114和/或下电极116的导电性可高于通道118的导电性,而通道118因导电性较低而具有半导体特性以实现通道的作用。通过上述制程环境中的气体对半导体特性的影响,使源极112、漏极114、下电极116与通道118虽然由相同的半导体层的材料所制作,但可在不需额外的处理(例如掺杂其他成分)下即具有不同导电性质,使半导体层110的不同部分可分别作为不同元件,减少制程流程或制造成本。In some embodiments, the material of the photosensitive layer 140 includes a semiconductor material. In some embodiments, the semiconductor material for forming the photosensitive layer 140 is different from the semiconductor material for forming the semiconductor layer 110 , but not limited thereto. For example, the material of the photosensitive layer 140 includes silicon, germanium, indium gallium arsenide, lead sulfide or other similar semiconductor materials, but is not limited thereto. In some embodiments, the photosensitive layer 140 is used to convert light into current or voltage signals, for example. In some embodiments, the photosensitive layer 140 may include a photodiode. In some embodiments, the photosensitive layer 140 may be formed on the semiconductor layer 110 by a deposition method, such as chemical vapor deposition (CVD). During the process of depositing the photosensitive layer 140 or other subsequent layers, the gas (such as hydrogen or other gases) may affect the semiconductor layer 110 , so that the amount of carriers in the semiconductor layer 110 changes (for example, increases), thereby improving the semiconductor layer 110 conductivity. In detail, whether there are other layers (such as the gate 132 ) shielding different parts of the semiconductor layer 110 may affect the degree to which they are affected by the gas, so the semiconductor layer 110 is not shielded by the gate 132 (that is, not shielded from the gate 132 ) Portions of gate 132 (eg, source 112 , drain 114 , and/or bottom electrode 116 ) that overlap) have a different conductivity than portions shadowed by gate 132 (eg, channel 118 ). For example, the conductivity of the source electrode 112 , the drain electrode 114 and/or the lower electrode 116 may be higher than that of the channel 118 , and the channel 118 has semiconductor properties due to its lower conductivity to realize the function of the channel. Through the influence of the gas in the above-mentioned process environment on the semiconductor characteristics, although the source electrode 112, the drain electrode 114, the lower electrode 116 and the channel 118 are made of the same material of the semiconductor layer, they can be made without additional processing (such as doping The semiconductor layer 110 has different conductive properties under the presence of other components), so that different parts of the semiconductor layer 110 can be used as different components respectively, thereby reducing the process flow or manufacturing cost.

在一些实施例中,上电极150的材料例如包括透明导电材料,感光层140可接收穿过上电极150的光线,并产生光电效应而产生载子。在一些实施例中,当R1A未被开启下,感光层140中因光电效所产生的载子(电子、空穴)可暂时存储在电荷存储元件SR1B中,感光层140、上电极150与下电极116例如共同构成电荷存储元件SR1B。In some embodiments, the material of the upper electrode 150 includes, for example, a transparent conductive material, and the photosensitive layer 140 can receive light passing through the upper electrode 150 and generate photoelectric effect to generate carriers. In some embodiments, when R1A is not turned on, the carriers (electrons, holes) generated by the photoelectric effect in the photosensitive layer 140 can be temporarily stored in the charge storage element SR1B, the photosensitive layer 140 , the upper electrode 150 and the lower The electrodes 116 collectively constitute, for example, the charge storage element SR1B.

在一些实施例中,绝缘层160可设置于或覆盖于存储元件SR1B(例如上电极150)上。在一些实施例中,绝缘层160可接触半导体层110中未被栅极132和/或感光层140遮蔽的部分,例如源极112与漏极114。在一些实施例中,绝缘层160可覆盖电荷存储元件SR1B及晶体管SR1A。在一些实施例中,平坦层170可设置于绝缘层160上,绝缘层160可覆盖晶体管SR1A与电荷存储元件SR1B。在一些实施例中,平坦层170可降低晶体管SR1A与电荷存储元件SR1B所造成的高度差,达到平坦化作用,以利后续其它的层别制作。In some embodiments, the insulating layer 160 may be disposed on or cover the storage element SR1B (eg, the upper electrode 150 ). In some embodiments, the insulating layer 160 may contact portions of the semiconductor layer 110 that are not shielded by the gate electrode 132 and/or the photosensitive layer 140 , such as the source electrode 112 and the drain electrode 114 . In some embodiments, insulating layer 160 may cover charge storage element SR1B and transistor SR1A. In some embodiments, the planarization layer 170 may be disposed on the insulating layer 160, and the insulating layer 160 may cover the transistor SR1A and the charge storage element SR1B. In some embodiments, the planarization layer 170 can reduce the height difference caused by the transistor SR1A and the charge storage element SR1B, so as to achieve a planarization effect, so as to facilitate the subsequent fabrication of other layers.

在一些实施例中,绝缘层160可经由图案化制程而具有通孔V1和/或通孔V2,通孔V1的位置可对应或重叠于电荷存储元件SR1B的上电极150,通孔V2的位置可对应或重叠于晶体管SR1A的源极112。在一些实施例中,平坦层170可经由另一图案化制程而具有通孔V3和/或通孔V4,通孔V3可对应或重叠于通孔V1,通孔V4可对应或重叠于通孔V2。在一些实施例中,通孔V3的尺寸可大于通孔V1,通孔V4的尺寸可大于通孔V2。在一些实施例中,通孔V1与通孔V3可露出部份上电极150,此被露出的部份上电极150可与偏置线CL电连接。在一些实施例中,通孔V2与通孔V4可露出部份的源极112,此被露出的部份源极112可与读取线RL电连接。In some embodiments, the insulating layer 160 may have a via V1 and/or a via V2 through a patterning process, the location of the via V1 may correspond to or overlap with the upper electrode 150 of the charge storage element SR1B, and the location of the via V2 It may correspond to or overlap with the source 112 of the transistor SR1A. In some embodiments, the planarization layer 170 may have vias V3 and/or V4 through another patterning process, the vias V3 may correspond to or overlap with the vias V1, and the vias V4 may correspond to or overlap with the vias v2. In some embodiments, the size of the via hole V3 may be larger than that of the via hole V1, and the size of the via hole V4 may be larger than that of the via hole V2. In some embodiments, the through hole V1 and the through hole V3 may expose part of the upper electrode 150 , and the exposed part of the upper electrode 150 may be electrically connected to the bias line CL. In some embodiments, the through hole V2 and the through hole V4 can expose a part of the source electrode 112 , and the exposed part of the source electrode 112 can be electrically connected to the read line RL.

详细来说,将平坦层170经图案化制程后,可设置金属层180于平坦层170上,金属层180包括读取线RL与偏置线CL。在一些实施例中,偏置线CL可经由通孔V1和/或通孔V3电连接至电荷存储元件SR1B的上电极150,读取线RL可经由通孔V2和/或通孔V4电连接至源极112。在一些实施例中,金属层180的材料与金属层130的材料可相同或不同。在一些实施例中,金属层180与金属层130可包括单层或复合层。在一些实施例中,保护层190可设置于金属层180上,用以保护设于保护层190下的层别。在一些实施例中,保护层190、绝缘层120与绝缘层160的材料可包括氧化硅、氮化硅、氮氧化硅或其他类似的绝缘材料,但不限于此。在一些实施例中,光转换层PC1可设置于保护层190上,或光转换层PC1可设置于电荷存储元件SR1B和/或晶体管SR1A上。在一些实施例中,于基板SB的法线方向上,光转换层PC1至少重叠电荷存储元件SR1B。在一些实施例中,于基板SB的法线方向上,光转换层PC1可重叠于电荷存储元件SR1B和/或晶体管SR1A。在一些实施例中,光转换层PC1可覆盖基板SB。在一些实施例中,光转换层PC1可将接收到的光转换成不同波长的光,也就是说,光转换层PC1例如是光-光转换层。举例而言,光转换层PC1可包括闪烁体、荧光材料、滤光材料、量子点材料、其它材料或上述的组合,但不限于此。在一些实施例中,光转换层PC1的材料可搭配电荷存储元件SR1B中感光层140的光学特性及光检测装置100的应用方式而选择。举例而言,感光层140在可见光下可产生光电效应,光检测装置100的检测光例如包括非可见光(例如X光、紫外光、红外光等),故光转换层PC1可选用将非可见光转换成可见光的材料。举例而言,应用于X光检测时,光转换层PC1可选用闪烁体,闪烁体包括碘化铯(Cesium Iodide;CsI)与氧化钆(Gd2O2 S)或其它合适的材料,但不以此为限。在其他实施例中,感光层140选用对特定波长有较敏感的反应的材料,光转换层PC1可选用可将入射光转换成此该特定波长光的材料,但不限于此。在一些实施例中,光检测装置为X光检测装置。在一些实施例中,光检测装置100可省略光转换层PC1,感光层140可对入射的光线产生光电效应,以进行感测。Specifically, after the planarization layer 170 is subjected to a patterning process, a metal layer 180 can be disposed on the planarization layer 170 , and the metal layer 180 includes a read line RL and a bias line CL. In some embodiments, the bias line CL may be electrically connected to the upper electrode 150 of the charge storage element SR1B via via V1 and/or via V3, and the read line RL may be electrically connected via via V2 and/or via V4 to the source 112 . In some embodiments, the material of the metal layer 180 and the material of the metal layer 130 may be the same or different. In some embodiments, the metal layer 180 and the metal layer 130 may comprise a single layer or a composite layer. In some embodiments, the protective layer 190 may be disposed on the metal layer 180 to protect the layers disposed under the protective layer 190 . In some embodiments, the materials of the protective layer 190 , the insulating layer 120 and the insulating layer 160 may include silicon oxide, silicon nitride, silicon oxynitride or other similar insulating materials, but are not limited thereto. In some embodiments, the light conversion layer PC1 may be disposed on the protective layer 190, or the light conversion layer PC1 may be disposed on the charge storage element SR1B and/or the transistor SR1A. In some embodiments, in the normal direction of the substrate SB, the light conversion layer PC1 overlaps at least the charge storage element SR1B. In some embodiments, the light conversion layer PC1 may overlap the charge storage element SR1B and/or the transistor SR1A in the normal direction of the substrate SB. In some embodiments, the light conversion layer PC1 may cover the substrate SB. In some embodiments, the light conversion layer PC1 can convert the received light into light of different wavelengths, that is, the light conversion layer PC1 is, for example, a light-to-light conversion layer. For example, the light conversion layer PC1 may include a scintillator, a fluorescent material, a filter material, a quantum dot material, other materials, or a combination of the above, but is not limited thereto. In some embodiments, the material of the light conversion layer PC1 can be selected according to the optical properties of the photosensitive layer 140 in the charge storage element SR1B and the application of the light detection device 100 . For example, the photosensitive layer 140 can generate a photoelectric effect under visible light, and the detection light of the light detection device 100 includes, for example, invisible light (such as X-ray, ultraviolet light, infrared light, etc.), so the light conversion layer PC1 can be selected to convert the invisible light materials into visible light. For example, when applied to X-ray detection, a scintillator can be selected for the light conversion layer PC1, and the scintillator includes cesium iodide (Cesium Iodide; CsI) and gadolinium oxide (Gd2O2S) or other suitable materials, but not limit. In other embodiments, the photosensitive layer 140 can be selected from a material that is more sensitive to a specific wavelength, and the light conversion layer PC1 can be selected from a material that can convert the incident light into the specific wavelength, but it is not limited thereto. In some embodiments, the light detection device is an X-ray detection device. In some embodiments, the photo detection device 100 may omit the light conversion layer PC1, and the photosensitive layer 140 may generate a photoelectric effect on incident light for sensing.

图3为图1的光检测装置100中的接垫PD1的一实施例的剖面示意图。图1与图3所示的接垫PD1设置于周边区R2,接垫PD1可用于连接至外部的电路,例如驱动电路。驱动电路包括软性电路板、硬性电路板或晶片(IC)等,但不限于此。在一些实施例中,接垫PD1可包括设置于绝缘层120上的子部134、设置于子部134上的子部182和/或设置于子部182上的连接部180’,但不限于此。图3以三层导电层堆叠而成的接垫结构来说明,但不以此为限。在一些实施例中,接垫PD1中可选择性移除上述子部的其中一者,或是在上述些子部中插入其它子部。FIG. 3 is a schematic cross-sectional view of an embodiment of the pad PD1 in the photodetection device 100 of FIG. 1 . The pads PD1 shown in FIG. 1 and FIG. 3 are disposed in the peripheral region R2 , and the pads PD1 can be used to connect to external circuits, such as driving circuits. The driving circuit includes, but is not limited to, a flexible circuit board, a rigid circuit board, or a chip (IC). In some embodiments, the pad PD1 may include the sub-portion 134 provided on the insulating layer 120 , the sub-portion 182 provided on the sub-portion 134 , and/or the connection portion 180 ′ provided on the sub-portion 182 , but not limited to this. FIG. 3 illustrates a pad structure formed by stacking three conductive layers, but it is not limited thereto. In some embodiments, one of the above-mentioned sub-sections may be selectively removed from the pad PD1, or other sub-sections may be inserted into the above-mentioned sub-sections.

在一些实施例中,子部134可属于金属层130的一部分。在一些实施例中,子部134、扫描线SL和/或栅极132可由同一金属材料层经图案化而获得,但不限于此。在一些实施例中,子部182可属于金属层180的一部分。在一些实施例中,子部182、偏置线CL和/或读取线RL可由同一金属材料层经图案化而获得,但不限于此。在一些实施例中,子部134可设置于绝缘层120上,绝缘层160设置于子部134与子部182之间,连接部180’例如与子部182接触而电连接。在一些实施例中,保护层190设置于子部182及连接部180’上。在一些实施例中,绝缘层160可具有通孔V5,通孔V5可露出部份的子部134,子部182和/或连接部180’可设置在绝缘层160的通孔V5中,使子部134与子部182彼此电连接。在一些实施例中,保护层190具有通孔V6,通孔V6可对应于通孔V5上,通孔V6可露出部份连接部180’,故外部电路的导通件(未示出)可与被通孔V6所露出部份连接部180’接触而电连接。在一些实施例中,上述的光转换层PC1例如未重叠于接垫PD1,接垫PD1可露出以与外部的电路(未示出)电连接。In some embodiments, subsection 134 may be part of metal layer 130 . In some embodiments, the sub-sections 134 , the scan lines SL and/or the gates 132 may be obtained by patterning the same metal material layer, but not limited thereto. In some embodiments, subsection 182 may be part of metal layer 180 . In some embodiments, the subsection 182, the bias line CL and/or the read line RL may be obtained by patterning the same metal material layer, but not limited thereto. In some embodiments, the sub-portion 134 may be disposed on the insulating layer 120, the insulating layer 160 may be disposed between the sub-portion 134 and the sub-portion 182, and the connecting portion 180', for example, is in contact with the sub-portion 182 for electrical connection. In some embodiments, the protective layer 190 is disposed on the sub-portion 182 and the connecting portion 180'. In some embodiments, the insulating layer 160 may have a through hole V5 that may expose a portion of the sub-portion 134 , and the sub-portion 182 and/or the connecting portion 180 ′ may be disposed in the through hole V5 of the insulating layer 160 , so that the Subsection 134 and subsection 182 are electrically connected to each other. In some embodiments, the protective layer 190 has a through hole V6, the through hole V6 may correspond to the through hole V5, and the through hole V6 may expose a part of the connecting portion 180', so that the conduction member (not shown) of the external circuit can be It is in contact with the connecting portion 180 ′ exposed by the through hole V6 to be electrically connected. In some embodiments, the above-mentioned light conversion layer PC1 is not overlapped with the pad PD1, for example, and the pad PD1 can be exposed to be electrically connected to an external circuit (not shown).

在一些实施例中,如图1与图2所示,光检测装置100包括晶体管SR1A与电荷存储元件SR1B,且述晶体管SR1A的源极112及漏极114与电荷存储元件SR1B的下电极116由半导体层110所形成。在一些实施例中,光感测元件100的源极112、漏极114、下电极116与通道118可使用同一道光罩图案化而成,有助于简化光检测装置100的结构、简化制作流程或减少光罩使用数量,进而节省制作成本。In some embodiments, as shown in FIGS. 1 and 2 , the photodetection device 100 includes a transistor SR1A and a charge storage element SR1B, and the source 112 and drain 114 of the transistor SR1A and the lower electrode 116 of the charge storage element SR1B are formed by The semiconductor layer 110 is formed. In some embodiments, the source electrode 112 , the drain electrode 114 , the lower electrode 116 and the channel 118 of the light sensing element 100 can be patterned using the same mask, which helps to simplify the structure of the light sensing device 100 and the manufacturing process. Or reduce the number of photomasks used, thereby saving production costs.

图4为本公开另一实施例的光检测装置的上视示意图,而图5为图4的光检测装置沿E-F-G-H线的剖面示意图。在图4与图5中,光检测装置200,相似于图1与图2所示的光检测装置100,两实施例中相同的元件符号用于表示相同的构件。光检测装置200与光检测装置100的差异处主要为,光检测装置200还包括绝缘层260(如图5所示),绝缘层260例如设置于半导体层110及金属层130上,绝缘层260可部份位于感光层140与半导体层110(下电极116)之间。绝缘层260可例如经由图案化而具有通孔V7,通孔V7可露出部份的半导体层110(下电极116),感光层140可部份设于通孔V7中与下电极116接触而电连接。FIG. 4 is a schematic top view of a light detection device according to another embodiment of the disclosure, and FIG. 5 is a schematic cross-sectional view of the light detection device of FIG. 4 taken along the line E-F-G-H. In FIGS. 4 and 5 , the light detection device 200 is similar to the light detection device 100 shown in FIGS. 1 and 2 , and the same reference numerals in the two embodiments are used to denote the same components. The main difference between the optical detection device 200 and the optical detection device 100 is that the optical detection device 200 further includes an insulating layer 260 (as shown in FIG. 5 ). It may be partially located between the photosensitive layer 140 and the semiconductor layer 110 (the lower electrode 116 ). The insulating layer 260 can be patterned to have a through hole V7, the through hole V7 can expose part of the semiconductor layer 110 (the lower electrode 116), and the photosensitive layer 140 can be partially disposed in the through hole V7 in contact with the lower electrode 116 to electrically connect.

详细来说,构成光检测装置200的膜层包括半导体层110、绝缘层120、金属层130、绝缘层260、感光层140、上电极150、绝缘层160、平坦层170、金属层180和/或保护层190,但不限于此。上述层别的设置关系、作用、材料、特性等可参照前述实施例的描述而不另重述。图5中的光检测装置200省略前述的光转换层PC1,光检测装置200可选择性包括光转换层PC1。In detail, the film layers constituting the light detection device 200 include a semiconductor layer 110, an insulating layer 120, a metal layer 130, an insulating layer 260, a photosensitive layer 140, an upper electrode 150, an insulating layer 160, a flat layer 170, a metal layer 180 and/ or the protective layer 190, but not limited thereto. For the arrangement relationship, function, material, characteristic, etc. of the above-mentioned layers, reference may be made to the description of the foregoing embodiments and will not be repeated. The light detection device 200 in FIG. 5 omits the aforementioned light conversion layer PC1, and the light detection device 200 may selectively include the light conversion layer PC1.

光检测装置200与光检测装置100相似,其源极112、漏极114、下电极116与通道118可由半导体层110所形成,而源极112、漏极114、下电极116与通道118的定义方式如上。The photodetection device 200 is similar to the photodetection device 100 , the source electrode 112 , the drain electrode 114 , the lower electrode 116 and the channel 118 can be formed by the semiconductor layer 110 , and the source electrode 112 , the drain electrode 114 , the lower electrode 116 and the channel 118 are defined The method is as above.

在一些实施例中,光检测装置200的绝缘层260可覆盖栅极132和/或部份半导体层110,绝缘层260可在制作栅极132之后且制作感光层140之前制作,但不限于此。详细来说,栅极132(及金属层130)制作完成之后,可形成绝缘层260,并将绝缘层260图案化,使绝缘层260具有通孔V7和/或通孔V8。之后,将感光层140与上电极150依序形成于下电极116上以完成电荷存储元件SR1B,感光层140例如经由通孔V7与下电极116电连接。接着,将绝缘层160、平坦层170、金属层180和/或保护层190形成于基板SB上以完成光检测装置200,但不限于此。在一些实施例中,金属层130与感光层140之间因设置绝缘层260,绝缘层260可覆盖大部份的半导体层110,使于制作感光层140的过程中,金属层130与大部分的半导体层110因被绝缘层260所覆盖而被保护,有助于降低金属层130和/或半导体层110受到损坏而提升制作良率。In some embodiments, the insulating layer 260 of the light detection device 200 may cover the gate electrode 132 and/or part of the semiconductor layer 110 , and the insulating layer 260 may be fabricated after fabricating the gate electrode 132 and before fabricating the photosensitive layer 140 , but not limited thereto . In detail, after the gate 132 (and the metal layer 130 ) is fabricated, the insulating layer 260 may be formed, and the insulating layer 260 may be patterned so that the insulating layer 260 has the via V7 and/or the via V8 . After that, the photosensitive layer 140 and the upper electrode 150 are sequentially formed on the lower electrode 116 to complete the charge storage element SR1B. The photosensitive layer 140 is electrically connected to the lower electrode 116 through the via V7, for example. Next, the insulating layer 160 , the flat layer 170 , the metal layer 180 and/or the protective layer 190 are formed on the substrate SB to complete the light detection device 200 , but not limited thereto. In some embodiments, since the insulating layer 260 is disposed between the metal layer 130 and the photosensitive layer 140 , the insulating layer 260 can cover most of the semiconductor layer 110 , so that in the process of fabricating the photosensitive layer 140 , the metal layer 130 and most of the The semiconductor layer 110 is protected by being covered by the insulating layer 260 , which helps to reduce damage to the metal layer 130 and/or the semiconductor layer 110 and improve the fabrication yield.

图6为图4的光检测装置200中的接垫PD1的一实施例的剖面示意图。图4与图6所示的接垫PD1设置于周边区R2。光检测装置200中的接垫PD1与光检测装置100中的接垫PD1结构相似,其差异在检测装置200中的接垫PD1的子部134与子部182之间可设置绝缘层260及绝缘层160,且绝缘层260可位于子部134与绝缘层160之间。在一些实施例中,绝缘层260可具有通孔V9,通孔V9可大致对应或重叠于绝缘层160中的通孔V5,通孔V9与通孔V5可露出部份的子部134,子部182可设置于通孔V5与通孔V9中而与子部134电连接。在一些实施例中,绝缘层260的通孔V9与绝缘层160的通孔V5可例如于相同的图案化制程所形成,即例如使用相同的光罩制程所形成,但不限于此。在一些实施例中,通孔V9的边与通孔V5的边可大致切齐,但不限于此。FIG. 6 is a schematic cross-sectional view of an embodiment of the pad PD1 in the photodetection device 200 of FIG. 4 . The pads PD1 shown in FIGS. 4 and 6 are disposed in the peripheral region R2. The pad PD1 in the photodetection device 200 is similar in structure to the pad PD1 in the photodetection device 100 , and the difference is that an insulating layer 260 and an insulating layer can be provided between the sub-section 134 and the sub-section 182 of the pad PD1 in the detection device 200 . layer 160 , and the insulating layer 260 may be located between the subsection 134 and the insulating layer 160 . In some embodiments, the insulating layer 260 may have a through hole V9. The through hole V9 may substantially correspond to or overlap with the through hole V5 in the insulating layer 160. The through hole V9 and the through hole V5 may expose a part of the sub-portion 134. The portion 182 may be disposed in the via V5 and the via V9 to be electrically connected to the sub-portion 134 . In some embodiments, the through holes V9 of the insulating layer 260 and the through holes V5 of the insulating layer 160 may be formed in the same patterning process, for example, using the same masking process, but not limited thereto. In some embodiments, the sides of the through holes V9 and the sides of the through holes V5 may be substantially flush, but not limited thereto.

图7为本公开另一实施例的光检测装置的剖面示意图。图7的光检测装置300大致相同于图5的光检测装置200,两者的主要差异在,光检测装置300的绝缘层360取代光检测装置200的绝缘层260。在图7中,绝缘层360可不具有如图5的绝缘层260的通孔V7,因此感光层140与下电极116之间因被绝缘层360分隔开而彼此未接触。如此,上电极150、感光层140、绝缘层360与下电极116可以构成金氧半穿隧二极管(MIS)结构,但不以此为限。7 is a schematic cross-sectional view of a light detection device according to another embodiment of the disclosure. The light detection device 300 of FIG. 7 is substantially the same as the light detection device 200 of FIG. In FIG. 7 , the insulating layer 360 may not have the through hole V7 like the insulating layer 260 in FIG. 5 , so the photosensitive layer 140 and the lower electrode 116 are separated from each other by the insulating layer 360 and are not in contact with each other. In this way, the upper electrode 150 , the photosensitive layer 140 , the insulating layer 360 and the lower electrode 116 may form a metal oxide semi-tunneling diode (MIS) structure, but not limited thereto.

图8为本公开另一实施例的光检测装置的上视示意图。在图8中,光检测装置400包括检测单元SR2及接垫PD2,检测单元SR2设置于基板SB上且位于检测区R1中,接垫PD2设置于基板SB上且位于周边区R2。为了清晰,图8中仅示出一个检测单元SR2及三个接垫PD2,但不以此为限。在图8中,检测单元SR2可包括晶体管SR2A及电荷存储元件SR2B。FIG. 8 is a schematic top view of a light detection device according to another embodiment of the disclosure. In FIG. 8 , the photodetection device 400 includes a detection unit SR2 and a pad PD2 . The detection unit SR2 is disposed on the substrate SB and located in the detection area R1 , and the pad PD2 is disposed on the substrate SB and located in the peripheral area R2 . For clarity, only one detection unit SR2 and three pads PD2 are shown in FIG. 8 , but not limited thereto. In FIG. 8, the detection unit SR2 may include a transistor SR2A and a charge storage element SR2B.

图9为图8的光检测装置沿I-J-K-L线的剖面示意图。具体来说,光检测装置400包括设置于基板SB上的多个膜层,多个膜层包括依序制作于基板SB上的半导体层110、绝缘层120、金属层130、绝缘层440、上电极450、金属层460、绝缘层470、平坦层480、多个第一电极490(例如电荷收集电极)、多个光转换层PC2和/或多个第二电极491。在一些实施例中,第一电极490、光转换层PC2及第二电极491例如形成一光转换元件LCE。FIG. 9 is a schematic cross-sectional view of the light detection device of FIG. 8 taken along the line I-J-K-L. Specifically, the light detection device 400 includes a plurality of film layers disposed on the substrate SB, and the plurality of film layers include the semiconductor layer 110, the insulating layer 120, the metal layer 130, the insulating layer 440, the upper Electrodes 450 , metal layers 460 , insulating layers 470 , planarization layers 480 , a plurality of first electrodes 490 (eg, charge collection electrodes), a plurality of light conversion layers PC2 , and/or a plurality of second electrodes 491 . In some embodiments, the first electrode 490, the light conversion layer PC2 and the second electrode 491, for example, form a light conversion element LCE.

应理解的是,图8及图9仅示出一个检测单元SR2,此检测单元SR2中包括一个光转换元件LCE,但不限于此,其他的检测单元中亦可包括所对应的光转换元件LCE。在一些实施例中,不同检测单元SR2中的光转换元件LCE例如分别有个别的第一电极490且彼此为连接,不同检测单元SR2中的光转换元件LCE的光转换层PC2譬如彼此连接而形成一体,不同检测单元SR2中的光转换元件LCE的第二电极491譬如彼此连接而形成一体,但不限于此。It should be understood that FIG. 8 and FIG. 9 only show one detection unit SR2, and this detection unit SR2 includes a light conversion element LCE, but is not limited to this, and other detection units may also include the corresponding light conversion element LCE. . In some embodiments, the light conversion elements LCE in different detection units SR2 have respective first electrodes 490 and are connected to each other, for example, the light conversion layers PC2 of the light conversion elements LCE in different detection units SR2 are formed by being connected to each other, for example Integral, for example, the second electrodes 491 of the light conversion elements LCE in different detection units SR2 are connected to each other to form an integral body, but not limited to this.

换句话说,此些第二电极491例如由一无图案化的导电层所形成,而此无图案化的导电层可对应或位于多个检测单元SR2中。此些光转换层PC2例如由一无图案化的光转换材料层所形成,而此无图案化的光转换材料层可对应或位于多个检测单元SR2中。在一些实施例中,光转换元件LCE可重叠电荷存储元件SR2B。在一些实施例中,光转换层PC2(或光转换材料层)的材料包括非晶硒(a-Se)等光导电材料(photoconductor),但不以此为限。在一些实施例中,光转换层PC2(或光转换材料层)例如通过蒸镀的方式所形成,但不限于此。需注意的是,图8中省略了光转换元件LCE中的光转换层PC2和/或第二电极491。在一些实施例中,第二电极491包括透明导电层,使光可穿过第二电极491以被光转换层PC2所接收。关于光转换元件LCE的操作方式绘于后续做叙述。光检测装置400的晶体管SR2A架构大致与晶体管SR1A相似。光检测装置400的源极112、漏极114、下电极116与通道118可由半导体层110所形成。栅极132、通道118、源极112与漏极114可构成晶体管SR2A。半导体层110、绝缘层120与金属层130的结构、材料、制作方法、设置关系可参照前述实施例,而不在此重述。In other words, the second electrodes 491 are formed by, for example, a non-patterned conductive layer, and the non-patterned conductive layer may correspond to or be located in the plurality of detection units SR2. The light conversion layers PC2 are formed of, for example, an unpatterned light conversion material layer, and the unpatterned light conversion material layer may correspond to or be located in the plurality of detection units SR2. In some embodiments, light converting element LCE may overlap charge storage element SR2B. In some embodiments, the material of the light conversion layer PC2 (or the light conversion material layer) includes a photoconductor such as amorphous selenium (a-Se), but is not limited thereto. In some embodiments, the light conversion layer PC2 (or the light conversion material layer) is formed by, for example, evaporation, but is not limited thereto. It should be noted that the light conversion layer PC2 and/or the second electrode 491 in the light conversion element LCE are omitted in FIG. 8 . In some embodiments, the second electrode 491 includes a transparent conductive layer so that light can pass through the second electrode 491 to be received by the light conversion layer PC2. The operation of the light conversion element LCE will be described later. The structure of the transistor SR2A of the light detection device 400 is substantially similar to that of the transistor SR1A. The source electrode 112 , the drain electrode 114 , the lower electrode 116 and the channel 118 of the light detection device 400 may be formed by the semiconductor layer 110 . The gate 132, the channel 118, the source 112 and the drain 114 may constitute the transistor SR2A. The structures, materials, fabrication methods, and arrangement relationships of the semiconductor layer 110 , the insulating layer 120 , and the metal layer 130 may refer to the foregoing embodiments, and will not be repeated here.

在一些实施例中,绝缘层440可覆盖栅极132及一部分的半导体层110。绝缘层440可经图案化而具有通孔V10和/或通孔V11。通孔V10可对应于半导体层110的漏极114,通孔V11可对应于半导体层110的源极112,但不限于此。通过通孔V10与通孔V11,使源极112的至少一部分与漏极114的至少一部分不被绝缘层440所覆盖,以利后续其它层别经由通孔V10与通孔V11与源极112及漏极114电连接。在一些实施例中,电荷存储元件SR2B的上电极450可设置于绝缘层440上,于基板SB的法线方向上,上电极450可重叠电荷存储元件SR2B的下电极116。电荷存储元件SR2B包括下电极116(部份的半导体层110)、上电极450及绝缘层440,绝缘层440可设置于上电极450与下电极116之间并将上电极450与下电极116彼此分隔,如此,绝缘层440设置于上电极450与下电极116之间而构成电容结构,此电容结构作为电荷存储元件SR2B,但不限于此,在此种实施例下,下电极116例如定义为与上电极450重叠的半导体层110的部分。在一些实施例中,绝缘层440的材料包括氧化硅、氮化硅、氮氧化硅或其组合,但不以此为限。绝缘层440的材料可依据电荷存储元件SR2B需求的电荷存储能力而决定。在一些实施例中,金属层460可包括设置于上电极450上的偏置线CL及设置于源极112上的读取线RL。偏置线CL可接触上电极450而彼此电连接,或偏置线CL可未经通孔接触上电极450。读取线RL可设于绝缘层440的通孔V11中与源极112电连接。In some embodiments, the insulating layer 440 may cover the gate 132 and a portion of the semiconductor layer 110 . The insulating layer 440 may be patterned to have vias V10 and/or vias V11. The through hole V10 may correspond to the drain electrode 114 of the semiconductor layer 110, and the through hole V11 may correspond to the source electrode 112 of the semiconductor layer 110, but not limited thereto. Through the through holes V10 and V11, at least a part of the source electrode 112 and at least a part of the drain electrode 114 are not covered by the insulating layer 440, so that other layers can pass through the through holes V10 and V11 and the source electrode 112 and the source electrode 112 and The drain 114 is electrically connected. In some embodiments, the upper electrode 450 of the charge storage element SR2B may be disposed on the insulating layer 440, and in the normal direction of the substrate SB, the upper electrode 450 may overlap the lower electrode 116 of the charge storage element SR2B. The charge storage element SR2B includes a lower electrode 116 (a part of the semiconductor layer 110 ), an upper electrode 450 and an insulating layer 440 . The insulating layer 440 may be disposed between the upper electrode 450 and the lower electrode 116 and connect the upper electrode 450 and the lower electrode 116 to each other. In this way, the insulating layer 440 is disposed between the upper electrode 450 and the lower electrode 116 to form a capacitance structure, and the capacitance structure serves as the charge storage element SR2B, but is not limited to this. In this embodiment, the lower electrode 116 is defined as, for example, A portion of the semiconductor layer 110 overlapping the upper electrode 450 . In some embodiments, the material of the insulating layer 440 includes silicon oxide, silicon nitride, silicon oxynitride or a combination thereof, but is not limited thereto. The material of the insulating layer 440 may be determined according to the required charge storage capacity of the charge storage element SR2B. In some embodiments, the metal layer 460 may include a bias line CL disposed on the upper electrode 450 and a read line RL disposed on the source electrode 112 . The bias lines CL may contact the upper electrodes 450 to be electrically connected to each other, or the bias lines CL may contact the upper electrodes 450 without via holes. The read line RL may be provided in the through hole V11 of the insulating layer 440 to be electrically connected to the source electrode 112 .

在一些实施例中,绝缘层470可设置或覆盖于金属层460、上电极450及绝缘层440上。绝缘层470可经图案化而具有通孔V12。通孔V12可大致对应或重叠于绝缘层440中的通孔V10,通孔V12及通孔V10可露出部份的半导体层110(例如漏极114),使第一电极490可与半导体层110(例如漏极114)电连接。In some embodiments, the insulating layer 470 may be disposed or covered on the metal layer 460 , the upper electrode 450 and the insulating layer 440 . The insulating layer 470 may be patterned to have vias V12. The through hole V12 may substantially correspond to or overlap with the through hole V10 in the insulating layer 440 . The through hole V12 and the through hole V10 may expose part of the semiconductor layer 110 (eg, the drain electrode 114 ), so that the first electrode 490 and the semiconductor layer 110 may be exposed. (eg drain 114) is electrically connected.

在一些实施例中,绝缘层470的材料可与绝缘层440的材料相同或不同。在一些实施例中,平坦层480设置于绝缘层470上,以减缓晶体管SR2A与电荷存储元件SR2B所造成的高度差,达到平坦化作用。平坦层480可具有通孔V13,通孔V13可大致对应或重叠于通孔V10和/或通孔V12。在一些实施例中,通孔V13的可尺寸可小于通孔V10及通孔V12,及部分的平坦层480可例如位于通孔V10和/或通孔V12中,但不限于此。在一些实施例中,通孔V10及通孔V12可经由相同的图案化制程所形成,但不限于此。In some embodiments, the material of insulating layer 470 may be the same as or different from the material of insulating layer 440 . In some embodiments, the planarization layer 480 is disposed on the insulating layer 470 to reduce the height difference caused by the transistor SR2A and the charge storage element SR2B to achieve planarization. The flat layer 480 may have a via V13, which may substantially correspond to or overlap with the via V10 and/or the via V12. In some embodiments, the vias V13 may be smaller in size than vias V10 and V12, and a portion of the planarization layer 480 may be located in vias V10 and/or V12, for example, but not limited thereto. In some embodiments, the via V10 and the via V12 may be formed through the same patterning process, but not limited thereto.

在一些实施例中,第一电极490设置于平坦层480上,第一电极490经由通孔V13、通孔V12和/或通孔V10与漏极114电连接。在一些实施例中,第一电极490的材料可包括透明导电材料,但不以此为限。In some embodiments, the first electrode 490 is disposed on the flat layer 480 , and the first electrode 490 is electrically connected to the drain electrode 114 through the via V13 , the via V12 and/or the via V10 . In some embodiments, the material of the first electrode 490 may include a transparent conductive material, but is not limited thereto.

在一些实施例中,如上所述第一电极490、光转换层PC2及第二电极491例如形成光转换元件LCE。第一电极490可设置于一个检测单元SR2中且与所对应的晶体管SR2A和/或电荷存储元件SR2B电连接。在一些实施例中,通过将光转换元件LCE的第一电极490及第二电极491分别施加不同电压而产生电场,使光转换层PC2将所接收的光转换成载子(电子、空穴),由于第一电极490与半导体层110电连接,例如第一电极490经由通孔V13、通孔V12和/或通孔V10与半导体层110电连接,故此些载子可例如经由第一电极490及半导体层110传至所对应的电荷存储元件SR2B中而暂时存储,但不限于此。另外,因晶体管SR2A的漏极114与电荷存储元件SR2B的下电极116电连接,故当晶体管SR2A开启后,暂时存储于电荷存储元件SR2B的载子可经由读取线RL被读取,从而实现光检测的作用,但不限于此。In some embodiments, the first electrode 490 , the light conversion layer PC2 and the second electrode 491 as described above, for example, form the light conversion element LCE. The first electrode 490 may be disposed in one detection unit SR2 and electrically connected to the corresponding transistor SR2A and/or the charge storage element SR2B. In some embodiments, an electric field is generated by applying different voltages to the first electrode 490 and the second electrode 491 of the light conversion element LCE, so that the light conversion layer PC2 converts the received light into carriers (electrons, holes) , since the first electrode 490 is electrically connected to the semiconductor layer 110 , for example, the first electrode 490 is electrically connected to the semiconductor layer 110 via the via V13 , the via V12 and/or the via V10 , so these carriers can be electrically connected via, for example, the first electrode 490 And the semiconductor layer 110 is transferred to the corresponding charge storage element SR2B for temporary storage, but not limited to this. In addition, since the drain 114 of the transistor SR2A is electrically connected to the lower electrode 116 of the charge storage element SR2B, when the transistor SR2A is turned on, the carriers temporarily stored in the charge storage element SR2B can be read through the read line RL, thereby realizing The role of light detection, but not limited to this.

图10为图8的光检测装置200中接垫PD2的一实施例的剖面示意图。图8与图10所示的接垫PD2设置于周边区R2,且可用于连接至外部的电路,例如驱动电路。接垫PD2可包括子部134、子部462及连接部492。子部462设置于子部134上,连接部492设置于子部462上且与子部462接触而彼此电连接。图10以三层导电层堆叠而成的接垫结构来说明,但不以此为限。在一些实施例中,子部134与子部462的其中一者可省略,或此些子部中可插入其它子部。FIG. 10 is a schematic cross-sectional view of an embodiment of the pad PD2 in the photodetection device 200 of FIG. 8 . The pads PD2 shown in FIG. 8 and FIG. 10 are disposed in the peripheral region R2 and can be used to connect to external circuits, such as driving circuits. The pad PD2 may include the sub-portion 134 , the sub-portion 462 and the connection portion 492 . The sub-portion 462 is provided on the sub-portion 134 , and the connecting portion 492 is provided on the sub-portion 462 and is in contact with the sub-portion 462 to be electrically connected to each other. FIG. 10 illustrates a pad structure formed by stacking three conductive layers, but it is not limited thereto. In some embodiments, one of subsection 134 and subsection 462 may be omitted, or other subsections may be inserted into such subsections.

在一些实施例中,子部134属于金属层130的一部分。在一些实施例中,子部134、扫描线SL和/或栅极132可以由同一金属材料层图案化而获得,但不限于此。在一些实施例中,子部462属于金属层460的一部分。在一些实施例中,子部462、偏置线CL和/或读取线RL可以由同一金属材料层图案化而获得,但不限于此。在一些实施例中,连接部492可与图9中的第一电极490为相同层,即连接部492与图9中的第一电极490具有相同材料或可在相同制作步骤中制作完成。在一些实施例中,子部134设置于绝缘层120上,绝缘层440设置于子部134与子部462之间,绝缘层440可具有通孔V14,通孔V14可露出部份的子部134,子部462可设置于通孔V14中与子部134接触以电连接。在一些实施例中,绝缘层470设置于子部462与连接部492之间,且绝缘层470具有通孔V15,通孔V15可露出部份的子部462,连接部492可设置于通孔V15中与子部462接触以电连接。在一些实施例中,光转换层PC2和/或第二电极491例如未重叠于接垫PD2,使接垫PD2可以露出以与外部的电路(未示出)电连接。In some embodiments, subsection 134 is part of metal layer 130 . In some embodiments, the sub-sections 134 , the scan lines SL and/or the gates 132 may be obtained by patterning the same metal material layer, but not limited thereto. In some embodiments, subsection 462 is part of metal layer 460 . In some embodiments, the subsection 462, the bias line CL and/or the read line RL may be obtained by patterning the same metal material layer, but not limited thereto. In some embodiments, the connection portion 492 may be the same layer as the first electrode 490 in FIG. 9 , that is, the connection portion 492 and the first electrode 490 in FIG. 9 have the same material or may be fabricated in the same fabrication step. In some embodiments, the sub-portion 134 is disposed on the insulating layer 120, the insulating layer 440 is disposed between the sub-portion 134 and the sub-portion 462, the insulating layer 440 may have a through hole V14, and the through hole V14 may expose part of the sub-portion 134, the sub-portion 462 may be disposed in the through hole V14 in contact with the sub-portion 134 for electrical connection. In some embodiments, the insulating layer 470 is disposed between the sub-portion 462 and the connecting portion 492 , and the insulating layer 470 has a through hole V15 that can expose part of the sub-portion 462 , and the connecting portion 492 can be disposed in the through hole V15 is in contact with subsection 462 for electrical connection. In some embodiments, the light conversion layer PC2 and/or the second electrode 491 are not overlapped with the pad PD2, for example, so that the pad PD2 can be exposed for electrical connection with an external circuit (not shown).

图8与图9所示的光检测装置400包括晶体管SR2A与电荷存储元件SR2B。晶体管SR2A的源极112及漏极114与电荷存储元件SR2B的下电极116由半导体层110所形成。晶体管SR2A的通道118、源极112及漏极114同层。因此,单一层半导体层110的不同部份可分别用于作为多种元件,有助于结构的简化、制作步骤的减少,或降低制作成本。The photodetection device 400 shown in FIGS. 8 and 9 includes a transistor SR2A and a charge storage element SR2B. The source electrode 112 and the drain electrode 114 of the transistor SR2A and the lower electrode 116 of the charge storage element SR2B are formed by the semiconductor layer 110 . The channel 118 , the source 112 and the drain 114 of the transistor SR2A are in the same layer. Therefore, different parts of the single-layer semiconductor layer 110 can be respectively used for various components, which facilitates the simplification of the structure, the reduction of the manufacturing steps, or the reduction of the manufacturing cost.

图11为本公开的光检测装置的局部等效电路示意图。如图11所示,此等效电路示意图可例如为光检测装置400的简易的等效电路示意图,其实际的等效电路可能会根据需求连接其他的电子元件(例如晶体管、电容,但不限于此)。举例来说,光检测装置400的检测单元SR2可包括晶体管SR2A及电荷存储元件SR2B,电荷存储元件SR2B电性连接于晶体管SR2A。晶体管SR2A的栅极132电连接至扫描线SL,源极112与漏极114的一者电连接至读取线RL,源极112与漏极114的另一者电连接至电荷存储元件SR2B。电荷存储元件SR2B可电连接偏置线CL,但不以此为限。于光检测装置400中,因包括电容结构的电荷存储元件SR2B(参考图9),故光检测装置400例如还包括光转换元件LCE,光转换元件LCE例如连接于晶体管SR2A和/或电荷存储元件SR2B。另外,举另一实施例(未示出),若为光检测装置100(如图1),图11的检测单元SR2可取代为检测单元SR1,电荷存储元件SR2B可取代为电荷存储元件SR1B,但须注意的是,于光检测装置100中可不需有如图11的光转换元件LCE。FIG. 11 is a schematic partial equivalent circuit diagram of the light detection device of the present disclosure. As shown in FIG. 11 , the equivalent circuit diagram can be, for example, a simple equivalent circuit diagram of the light detection device 400 , and the actual equivalent circuit may be connected to other electronic components (such as transistors, capacitors, but not limited to) according to requirements. this). For example, the detection unit SR2 of the photodetection device 400 may include a transistor SR2A and a charge storage element SR2B, and the charge storage element SR2B is electrically connected to the transistor SR2A. The gate 132 of the transistor SR2A is electrically connected to the scan line SL, one of the source 112 and the drain 114 is electrically connected to the read line RL, and the other of the source 112 and the drain 114 is electrically connected to the charge storage element SR2B. The charge storage element SR2B may be electrically connected to the bias line CL, but not limited thereto. In the photodetection device 400, since the charge storage element SR2B (refer to FIG. 9) with a capacitance structure is included, the photodetection device 400 further includes, for example, a light conversion element LCE, which is connected to, for example, the transistor SR2A and/or the charge storage element. SR2B. In addition, for another embodiment (not shown), in the case of the photodetection device 100 (as shown in FIG. 1 ), the detection unit SR2 in FIG. 11 can be replaced by the detection unit SR1 , the charge storage element SR2B can be replaced by the charge storage element SR1B, However, it should be noted that the light conversion element LCE as shown in FIG. 11 may not be required in the light detection device 100 .

综上所述,本公开的光检测装置中以相同的半导体层实现晶体管与电荷存储元件,而有助于缩减制作步骤、简化结构设计及降低成本。To sum up, in the photodetection device of the present disclosure, the transistor and the charge storage element are implemented with the same semiconductor layer, which helps to reduce the fabrication steps, simplify the structure design and reduce the cost.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.

Claims (10)

1. A light detection device, comprising:
a transistor including a gate, a source, and a drain; and
a charge storage element electrically connected to the transistor and including an upper electrode and a lower electrode;
wherein the source and drain of the transistor and a lower electrode of the charge storage element are formed from a semiconductor layer.
2. The light detecting device of claim 1, wherein the transistor comprises a channel disposed between the source and the drain, wherein the channel, the source and the drain are in the same layer.
3. The light detection device of claim 2, wherein the gate is disposed on the channel.
4. The light detection device according to claim 1, wherein a material of the semiconductor layer includes a metal oxide.
5. The light detection device of claim 1, wherein the light detection device is an X-ray detection device.
6. The photodetection device according to claim 1, wherein the charge storage element comprises a photosensitive layer which is provided between the lower electrode and the upper electrode, and a material of the photosensitive layer is different from that of the semiconductor layer.
7. The photodetection device according to claim 6, characterized in that the material of the photosensitive layer comprises a semiconductor material of silicon, germanium, indium gallium arsenide, lead sulfide.
8. The light detecting device according to claim 1, wherein the source, the drain, and a lower electrode of the charge storage element are connected to each other.
9. The light detecting device according to claim 1, wherein the charge storage element includes an insulating layer provided between the upper electrode and the lower electrode.
10. The light detecting device according to claim 1, further comprising a light conversion layer provided on the charge storage element and overlapping the charge storage element.
CN202011223674.XA 2020-11-05 2020-11-05 Optical detection device Pending CN114447002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011223674.XA CN114447002A (en) 2020-11-05 2020-11-05 Optical detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011223674.XA CN114447002A (en) 2020-11-05 2020-11-05 Optical detection device

Publications (1)

Publication Number Publication Date
CN114447002A true CN114447002A (en) 2022-05-06

Family

ID=81360820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011223674.XA Pending CN114447002A (en) 2020-11-05 2020-11-05 Optical detection device

Country Status (1)

Country Link
CN (1) CN114447002A (en)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333772A (en) * 1993-03-25 1994-12-02 Matsushita Electric Ind Co Ltd Thin film capacitor and manufacture thereof
JP2003258227A (en) * 2002-02-27 2003-09-12 Canon Inc Radiation detector and its fabricating method
CN1474595A (en) * 2002-08-09 2004-02-11 ������������ʽ���� Apparatus and method for imaging images using radiation
CN1925162A (en) * 2005-08-31 2007-03-07 佳能株式会社 Radiation detecting apparatus, radiation imaging apparatus and radiation imaging system
CN101375397A (en) * 2006-01-27 2009-02-25 佳能株式会社 Imaging equipment and radiation imaging equipment
CN101997010A (en) * 2009-08-11 2011-03-30 元太科技工业股份有限公司 Digital X-ray detection panel and manufacturing method thereof
KR20110067818A (en) * 2009-12-15 2011-06-22 엘지디스플레이 주식회사 Xerox substrate and manufacturing method
CN102403329A (en) * 2011-11-01 2012-04-04 上海奕瑞影像科技有限公司 Low-temperature polysilicon thin film transistor detector and preparation method thereof
CN102593183A (en) * 2011-01-07 2012-07-18 元太科技工业股份有限公司 Thin film transistor structure and manufacturing method thereof
CN102629610A (en) * 2012-03-27 2012-08-08 北京京东方光电科技有限公司 Array substrate of X-ray detection device and manufacturing method thereof
CN103390626A (en) * 2012-05-08 2013-11-13 佳能株式会社 Detection device, detection system, and method of manufacturing detection device
CN104681627A (en) * 2015-03-10 2015-06-03 京东方科技集团股份有限公司 Array substrate, thin-film transistor and manufacturing methods thereof as well as display device
US20150171135A1 (en) * 2012-01-30 2015-06-18 Rayence Co., Ltd. Radiation detecting panel
CN105243361A (en) * 2015-07-31 2016-01-13 友达光电股份有限公司 Optical detection device and manufacturing method thereof
CN107623011A (en) * 2017-10-12 2018-01-23 友达光电股份有限公司 Thin film transistor array substrate for X-ray detector and X-ray detector
CN109031393A (en) * 2017-06-09 2018-12-18 京东方科技集团股份有限公司 Photodetection circuit and photodetector
CN109801935A (en) * 2019-01-31 2019-05-24 京东方科技集团股份有限公司 Optical detection panel and preparation method thereof, display device
KR20190073203A (en) * 2017-12-18 2019-06-26 엘지디스플레이 주식회사 Array substrate for digital x-ray detector, digital x-ray detector including the same and the manufacturing method thereof
CN110021615A (en) * 2017-12-05 2019-07-16 乐金显示有限公司 Array substrate, digital x-ray detector and its manufacturing method including it
CN110047859A (en) * 2019-04-24 2019-07-23 北京京东方传感技术有限公司 Sensor and preparation method thereof
CN111106140A (en) * 2019-12-24 2020-05-05 厦门天马微电子有限公司 Sensor and method of making the same
CN111202536A (en) * 2018-11-21 2020-05-29 京东方科技集团股份有限公司 Radiation detector, method for manufacturing the same, and electronic device

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333772A (en) * 1993-03-25 1994-12-02 Matsushita Electric Ind Co Ltd Thin film capacitor and manufacture thereof
JP2003258227A (en) * 2002-02-27 2003-09-12 Canon Inc Radiation detector and its fabricating method
CN1474595A (en) * 2002-08-09 2004-02-11 ������������ʽ���� Apparatus and method for imaging images using radiation
CN1925162A (en) * 2005-08-31 2007-03-07 佳能株式会社 Radiation detecting apparatus, radiation imaging apparatus and radiation imaging system
CN101375397A (en) * 2006-01-27 2009-02-25 佳能株式会社 Imaging equipment and radiation imaging equipment
CN101997010A (en) * 2009-08-11 2011-03-30 元太科技工业股份有限公司 Digital X-ray detection panel and manufacturing method thereof
KR20110067818A (en) * 2009-12-15 2011-06-22 엘지디스플레이 주식회사 Xerox substrate and manufacturing method
CN102593183A (en) * 2011-01-07 2012-07-18 元太科技工业股份有限公司 Thin film transistor structure and manufacturing method thereof
CN102403329A (en) * 2011-11-01 2012-04-04 上海奕瑞影像科技有限公司 Low-temperature polysilicon thin film transistor detector and preparation method thereof
US20150171135A1 (en) * 2012-01-30 2015-06-18 Rayence Co., Ltd. Radiation detecting panel
CN102629610A (en) * 2012-03-27 2012-08-08 北京京东方光电科技有限公司 Array substrate of X-ray detection device and manufacturing method thereof
CN103390626A (en) * 2012-05-08 2013-11-13 佳能株式会社 Detection device, detection system, and method of manufacturing detection device
CN104681627A (en) * 2015-03-10 2015-06-03 京东方科技集团股份有限公司 Array substrate, thin-film transistor and manufacturing methods thereof as well as display device
CN105243361A (en) * 2015-07-31 2016-01-13 友达光电股份有限公司 Optical detection device and manufacturing method thereof
CN109031393A (en) * 2017-06-09 2018-12-18 京东方科技集团股份有限公司 Photodetection circuit and photodetector
CN107623011A (en) * 2017-10-12 2018-01-23 友达光电股份有限公司 Thin film transistor array substrate for X-ray detector and X-ray detector
CN110021615A (en) * 2017-12-05 2019-07-16 乐金显示有限公司 Array substrate, digital x-ray detector and its manufacturing method including it
KR20190073203A (en) * 2017-12-18 2019-06-26 엘지디스플레이 주식회사 Array substrate for digital x-ray detector, digital x-ray detector including the same and the manufacturing method thereof
CN111202536A (en) * 2018-11-21 2020-05-29 京东方科技集团股份有限公司 Radiation detector, method for manufacturing the same, and electronic device
CN109801935A (en) * 2019-01-31 2019-05-24 京东方科技集团股份有限公司 Optical detection panel and preparation method thereof, display device
CN110047859A (en) * 2019-04-24 2019-07-23 北京京东方传感技术有限公司 Sensor and preparation method thereof
CN111106140A (en) * 2019-12-24 2020-05-05 厦门天马微电子有限公司 Sensor and method of making the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
(美)S.SUZANNENIELSEN: "《食品分析》(第3版)", 1 July 2012, 中国轻工业出版社, pages: 424 *
刘玉荣: "碳材料在超级电容器中的应用", 30 January 2013, 国防工业出版社, pages: 31 *

Similar Documents

Publication Publication Date Title
CN102096089B (en) Detect photodiode and the manufacture method thereof of X ray
US7902512B1 (en) Coplanar high fill factor pixel architecture
KR101977422B1 (en) High charge capacity pixel, pixel architecture, photoelectric conversion apparatus, radiation image pickup system and methods for same
US8541750B2 (en) X-ray detector and fabrication method thereof
CN110021615B (en) Array substrate, digital X-ray detector including the same, and method of manufacturing the same
WO2011016897A1 (en) Image sensor pixel structure employing a shared floating diffusion
CN111129045A (en) Digital X-ray detector and thin film transistor array substrate therefor
WO2016163347A1 (en) Photosensor substrate
CN110034134B (en) Array substrate for X-ray detector and X-ray detector including the same
US11011665B2 (en) Thin film transistor array substrate for high-resolution digital X-ray detector and high-resolution digital X-ray detector including the same
CN101494256B (en) X-ray sensor and manufacturing method thereof
CN113711362B (en) Image sensor array device including thin film transistor and organic photodiode
CN114447002A (en) Optical detection device
TWI744072B (en) Photo detector
CN109786399B (en) Detection device
KR20190028195A (en) Array substrate for x-ray detector, x-ray detector including the same and the manufacturing method thereof
CN111987112B (en) Radiation sensing apparatus
CN101697052A (en) Active component array motherboard and manufacturing method thereof
TWI823522B (en) Light sensing device and method for making light sensing device
CN114823745B (en) X-ray apparatus
TWI877948B (en) Semiconductor device and manufactoring method thereof
US20250081655A1 (en) Light-sensitive matrix-array detector and process for producing the lightsensitive detector
CN115911070A (en) Photosensitive element substrate and manufacturing method thereof
CN114078886A (en) Sensing substrate and electronic device
JPS62158360A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination