CN114441823A - Hall sensor, current detection device and current detection method - Google Patents
Hall sensor, current detection device and current detection method Download PDFInfo
- Publication number
- CN114441823A CN114441823A CN202210108030.9A CN202210108030A CN114441823A CN 114441823 A CN114441823 A CN 114441823A CN 202210108030 A CN202210108030 A CN 202210108030A CN 114441823 A CN114441823 A CN 114441823A
- Authority
- CN
- China
- Prior art keywords
- hall element
- current
- hall
- voltage
- hall sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 239000004020 conductor Substances 0.000 claims description 68
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 238000012937 correction Methods 0.000 claims description 33
- 238000004364 calculation method Methods 0.000 claims description 23
- 238000005070 sampling Methods 0.000 claims description 21
- 238000012360 testing method Methods 0.000 claims description 15
- 238000012935 Averaging Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 12
- 230000002452 interceptive effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/202—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0092—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
技术领域technical field
本文涉及电流检测技术,尤指一种霍尔传感器、电流检测装置及电流检测方法。This article relates to current detection technology, especially a Hall sensor, a current detection device and a current detection method.
背景技术Background technique
随着对电动汽车动力系统集成度要求的提高,作为电动汽车动力核心部件之一,逆变器(电机控制器)的功率密度要求也越来越高。作为逆变器功率回路的重要器件之一,电流传感器的设计尺寸及性能亦将严重制约其进一步提高功率密度。With the increasing requirements for the integration of electric vehicle power systems, as one of the core components of electric vehicle power, the power density requirements of inverters (motor controllers) are also getting higher and higher. As one of the important devices in the power circuit of the inverter, the design size and performance of the current sensor will also seriously restrict its further improvement of the power density.
目前市场上常用的霍尔电流传感器,除了封装方式不同导致安装方式有所不同外,尺寸大小基本由磁芯大小决定。且主流应用的电流霍尔传感器多为单气隙单芯片(霍尔元件)形式,尺寸较大,易受外界磁场干扰,比如三相之间的磁场干扰等。At present, the Hall current sensors commonly used in the market have different installation methods due to different packaging methods, and the size is basically determined by the size of the magnetic core. In addition, most of the current Hall sensors used in mainstream applications are in the form of a single air gap single chip (Hall element), which are large in size and are susceptible to external magnetic field interference, such as magnetic field interference between three phases.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题,本申请提供了一种霍尔传感器,其包括:In order to solve the above technical problems, the present application provides a Hall sensor, which includes:
第一导磁体,包括第一端以及与第一端相对的第二端;a first magnetic conductor, including a first end and a second end opposite to the first end;
第二导磁体,包括第三端以及与第三端相对的第四端;the second magnetic conductor includes a third end and a fourth end opposite to the third end;
第一霍尔元件;以及a first Hall element; and
第二霍尔元件;the second Hall element;
其中,所述第一端和所述第三端之间形成第一气隙,所述第二端和所述第四端之间形成第二气隙,所述第一导磁体和所述第二导磁体之间形成供待测电线通过的测量孔,所述第一霍尔元件设置在所述第一气隙内,所述第二霍尔元件设置在所述第二气隙内。Wherein, a first air gap is formed between the first end and the third end, a second air gap is formed between the second end and the fourth end, and the first magnetic conductor and the first A measurement hole for the wire to be tested to pass through is formed between the two magnetic conductors, the first Hall element is arranged in the first air gap, and the second Hall element is arranged in the second air gap.
在一个示意性的实施例中,所述第一导磁体和所述第二导磁体均为条形。In an exemplary embodiment, the first and second magnetic conductors are both bar-shaped.
在一个示意性的实施例中,所述第一导磁体和所述第二导磁体均为弧形结构;In an exemplary embodiment, both the first magnetic conductor and the second magnetic conductor are arc-shaped structures;
所述第一导磁体和所述第二导磁体的中部向相互背离的方向拱起。The middle portions of the first magnet conductor and the second magnet conductor are arched in a direction away from each other.
在一个示意性的实施例中,所述第一导磁体和所述第二导磁体呈面对称。In an exemplary embodiment, the first magnetic conductor and the second magnetic conductor are in plane symmetry.
在一个示意性的实施例中,所述霍尔传感器还包括壳体,所述壳体内设置有环形空腔;In an exemplary embodiment, the Hall sensor further includes a housing, and an annular cavity is provided in the housing;
所述第一导磁体、所述第二导磁体、所述第一霍尔元件和所述第二霍尔元件均设置在该环形空腔内。The first magnet conducting body, the second magnet conducting body, the first hall element and the second hall element are all arranged in the annular cavity.
在一个示意性的实施例中,所述壳体包括顶盖和底壳;In an exemplary embodiment, the housing includes a top cover and a bottom case;
所述底壳包括设置有第一通孔的底板以及设置在所述底板边缘的多块侧板;the bottom case comprises a bottom plate provided with a first through hole and a plurality of side plates arranged on the edge of the bottom plate;
所述顶盖包括设置有第二通孔的顶板以及连接于所述顶板且与所述第二通孔同轴设置的筒体;The top cover comprises a top plate provided with a second through hole and a cylinder connected to the top plate and coaxially arranged with the second through hole;
其中,所述筒体的一端伸入到所述底板的第一通孔内。Wherein, one end of the cylinder extends into the first through hole of the bottom plate.
在一个示意性的实施例中,所述壳体与所述底壳之间为卡扣连接。In an exemplary embodiment, a snap connection is formed between the casing and the bottom casing.
本申请还提出了一种电流检测装置,其包括如上所述的霍尔传感器。The present application also proposes a current detection device, which includes the above-mentioned Hall sensor.
在一个示意性的实施例中,在所述待测电线有电流通过时所述第一霍尔元件和所述第二霍尔元件输出电压信号;In an exemplary embodiment, the first Hall element and the second Hall element output a voltage signal when the wire to be tested has a current passing through it;
所述电流检测装置还包括第一计算单元,所述第一计算单元电连接于所述第一霍尔元件和所述第二霍尔元件;The current detection device further includes a first calculation unit, the first calculation unit is electrically connected to the first Hall element and the second Hall element;
第一计算单元根据以下算法计算经过待测电线的电流的电流值:The first calculation unit calculates the current value of the current passing through the wire under test according to the following algorithm:
其中,Ip为经过待测电线的电流的电流值,Vout1为第一霍尔元件输出的电压信号的电压值,Vout2为第二霍尔元件输出的电压信号的电压值,A0为磁场强度与电压之间的转换系数,γ为电流与磁场强度之间的转换系数。Among them, I p is the current value of the current passing through the wire to be tested, V out1 is the voltage value of the voltage signal output by the first Hall element, V out2 is the voltage value of the voltage signal output by the second Hall element, and A 0 is Conversion coefficient between magnetic field strength and voltage, γ is the conversion coefficient between current and magnetic field strength.
在一个示意性的实施例中,所述电流检测装置还包括第二计算单元,所述第二计算单元包括运算电路、第二模数转换模块和第二计算模块;In an exemplary embodiment, the current detection device further includes a second calculation unit, and the second calculation unit includes an arithmetic circuit, a second analog-to-digital conversion module, and a second calculation module;
所述运算电路电连接于所述第一霍尔元件和所述第二霍尔元件,在所述待测电线有电流通过时所述第一霍尔元件和所述第二霍尔元件向所述运算电路输出电压信号,所述运算电路用于对所述第一霍尔元件和所述第二霍尔元件输出的电压信号求平均以获得平均电压信号;The arithmetic circuit is electrically connected to the first Hall element and the second Hall element, and the first Hall element and the second Hall element are directed to each other when a current flows through the wire to be tested. The operation circuit outputs a voltage signal, and the operation circuit is used for averaging the voltage signals output by the first Hall element and the second Hall element to obtain an average voltage signal;
所述第二模数转换模块用于将平均电压信号的信号类别从模拟信号转换成数字信号;The second analog-to-digital conversion module is used to convert the signal type of the average voltage signal from an analog signal to a digital signal;
根据以下算法计算经过待测电线的电流的电流值:Calculate the current value of the current through the wire under test according to the following algorithm:
其中,Ip为经过待测电线的电流的电流值,V为平均电压信号的电压值,A0为磁场强度与电压之间的转换系数,γ为电流与磁场强度之间的转换系数。Among them, I p is the current value of the current passing through the wire under test, V is the voltage value of the average voltage signal, A 0 is the conversion coefficient between magnetic field strength and voltage, and γ is the conversion coefficient between current and magnetic field strength.
本申请还提出了一种电流的检测方法,所述检测方法基于如上所述的霍尔传感器实施,该检测方法包括:The present application also proposes a current detection method, the detection method is implemented based on the above Hall sensor, and the detection method includes:
获取电源采样校正系数、零点电压偏移采样系数和温漂校正系数;Obtain power supply sampling correction coefficient, zero-point voltage offset sampling coefficient and temperature drift correction coefficient;
根据以下算法计算经过待测电线的电流的第一电流值;Calculate the first current value of the current through the wire under test according to the following algorithm;
其中,I0为第一电流值,Vout1为第一霍尔元件输出的电压信号的电压值,Vout2为第二霍尔元件输出的电压信号的电压值,G为霍尔传感器敏感度系数,T为温漂校正系数,z为零点电压偏移采样系数,p电源采样校正系数;Among them, I 0 is the first current value, V out1 is the voltage value of the voltage signal output by the first Hall element, V out2 is the voltage value of the voltage signal output by the second Hall element, and G is the sensitivity coefficient of the Hall sensor , T is the temperature drift correction coefficient, z is the zero-point voltage offset sampling coefficient, and p is the power supply sampling correction coefficient;
获取软件线性误差校正系数,根据以下算法计算出待测电线的电流值:Obtain the software linear error correction coefficient, and calculate the current value of the wire under test according to the following algorithm:
Ip=l·I0 I p =l·I 0
其中,Ip为经过待测电线的电流的电流值,I0为第一电流值,l的软件线性误差校正系数。Wherein, I p is the current value of the current passing through the wire under test, I 0 is the first current value, and l is the software linearity error correction coefficient.
在本申请的技术方案中,由于第一导磁体和第二导磁体之间设置有第一气隙和第二气隙,增加了总的气隙长度,增加气隙长度可以降低残余磁通密度,提升导磁体的磁饱和点,增加导磁体利用率,在测量同样大小的电流的情况下可以减小导磁体的横截面积,即减小第一导磁体和第二导磁体的尺寸,进而能减小整个霍尔传感器的尺寸。而即便因增加气隙长度导致易受外界磁场干扰,也可通过第一霍尔元件和第二霍尔元件输出的电信号作平均来去除干扰。In the technical solution of the present application, since the first air gap and the second air gap are arranged between the first magnetic conductor and the second magnetic conductor, the total air gap length is increased, and increasing the air gap length can reduce the residual magnetic flux density , improve the magnetic saturation point of the magnet conductor, increase the utilization rate of the magnet conductor, and reduce the cross-sectional area of the magnet conductor under the condition of measuring the current of the same size, that is, reduce the size of the first magnet conductor and the second magnet conductor, and then The size of the entire Hall sensor can be reduced. Even if it is susceptible to external magnetic field interference due to increasing the length of the air gap, the interference can be removed by averaging the electrical signals output by the first Hall element and the second Hall element.
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的其他优点可通过在说明书以及附图中所描述的方案来实现和获得。Other features and advantages of the present application will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the present application. Other advantages of the present application may be realized and attained by the approaches described in the specification and drawings.
附图说明Description of drawings
附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。The accompanying drawings are used to provide an understanding of the technical solutions of the present application, and constitute a part of the specification. They are used to explain the technical solutions of the present application together with the embodiments of the present application, and do not constitute a limitation on the technical solutions of the present application.
图1为本发明实施例中的一种霍尔传感器的内部结构示意图;1 is a schematic diagram of the internal structure of a Hall sensor according to an embodiment of the present invention;
图2为本发明实施例中的一种霍尔传感器的拆解示意图;Fig. 2 is the dismantling schematic diagram of a kind of Hall sensor in the embodiment of the present invention;
图3为本发明实施例中的一种霍尔传感器的立体示意图;3 is a schematic perspective view of a Hall sensor in an embodiment of the present invention;
图4为本发明实施例中的一种霍尔传感器的俯视示意图;4 is a schematic top view of a Hall sensor in an embodiment of the present invention;
图5为本发明实施例中的一种霍尔传感器的半剖示意图;FIG. 5 is a half-section schematic diagram of a Hall sensor in an embodiment of the present invention;
图6为本发明实施例中的一种电流检测装置的连接示意图;6 is a schematic diagram of a connection of a current detection device in an embodiment of the present invention;
图7为本发明实施例中的一种电流检测装置的连接示意图。FIG. 7 is a schematic diagram of connection of a current detection device in an embodiment of the present invention.
具体实施方式Detailed ways
如图1所述,图1显示了本实施例中的霍尔传感器100的结构。该霍尔传感器100包括第一导磁体1、第二导磁体2、第一霍尔元件5和第二霍尔元件6。As described in FIG. 1 , FIG. 1 shows the structure of the
第一导磁体1和第二导磁体2均为磁通集中器。第一导磁体1和第二导磁体2可以是由硅钢片或纯铁片叠片制成,也可以是采用铁氧体磁性材料制成。第一导磁体1和第二导磁体2可以均构造为条形。Both the
第一导磁体1包括第一端11以及与第一端11相对的第二端12。第二导磁体2包括第三端21以及与第三端21相对的第四端22。第一端11的端部和第三端21的端部相向设置且相互靠近。第一端11与第三端21之间间隔设置,第一端11与第三端21之间形成第一气隙72。第二端12的端部和第四端22的端部相向设置且相互靠近。第二端12与第四端22之间间隔设置,第二端12与第四端22之间形成第二气隙73。第一导磁体1的两端分别与第二导磁体2的两端相互靠近,第一导磁体1和第二导磁体2能围合成一个大致的环形结构。在本实施例中,第一导磁体1和第二导磁体2均为弧形结构。第一导磁体1和第二导磁体2的中部向相互背离的方向拱起。第一导磁体1的中部和第二导磁体2的中部之间形成一个供待测电线通过的测量孔。该待测电线可以是连接于汽车的逆变器的直流输入端或交流输出端。The first
第一霍尔元件5和第二霍尔元件6分别设置在第一气隙72和第二气隙73中。第一霍尔元件5和第二霍尔元件6可以为同一种霍尔元件,霍尔元件是基于霍尔效应的磁传感器,利用霍尔效应来进行工作。霍尔元件包括霍尔片、电源端子和输出端子。霍尔片是一块矩形半导体单晶薄片,用于感应磁场。电源端子和输出端子均电连接于霍尔片。霍尔片通常被封装在绝缘的外壳中。电源端子用于外接直流电源。霍尔元件的额定电压可以为5V,直流电源在电源端子上加载5V的电压。输出端子用于在感应到磁场后输出与该电场的磁场强度相对应的电压信号,该电压信号通常为模拟信号。The
采用该霍尔传感器100检测通过待测电线的电流值时,将待测电线穿过第一导磁体1和第二导磁体2之间的孔中,待测电线中具有电流通过时待测电线周围形成待测磁场,第一导磁体1和第二导磁体2将该待测磁场的磁感线集中,闭合的磁感线沿着第一导磁体1和第二导磁体2形成的环形结构延伸,这些磁感线还均穿过第一霍尔元件5和第二霍尔元件6,第一霍尔元件5和第二霍尔元件6所探测到的待测磁场的磁感强度相同。而当该霍尔传感器100外侧还具有干扰磁场时,干扰磁场的磁感线穿过第一霍尔元件5和第二霍尔元件6。第一霍尔元件5和第二霍尔元件6中的一个霍尔元件被方向相同的干扰磁场的磁感线和待测磁场的磁感线穿透,受到该干扰磁场的影响,该霍尔传感器100输出的电压信号幅度增大;第一霍尔元件5和第二霍尔元件6中的另一个霍尔元件被方向相反的干扰磁场的磁感线和待测磁场的磁感线穿透,受到该干扰磁场的影响,该霍尔传感器100输出的电压信号幅度减小。将第一霍尔元件5输出的电压信号和第二霍尔元件6输出的电压信号求平均可以得到平均电压信号,该平均电压信号作为该霍尔传感器100的输出电压信号。将第一霍尔元件5输出的电压信号和第二霍尔元件6输出的电压信号求平均所获得的输出电压信号消除了干扰磁场的影响,将使得霍尔传感器100的测量精度更高。When the
具体以以图1所示的场景为例:Specifically, take the scenario shown in Figure 1 as an example:
第一霍尔元件5被方向相同的干扰磁场的磁感线和待测磁场的磁感线穿透,第一霍尔元件5输出的电压信号为:The
Vout1=A0·(Hi+H0)V out1 =A 0 ·(H i +H 0 )
其中,Vout1为第一霍尔元件5输出的电压信号的电压值,A0为电压与磁场强度的转换系数,A0由霍尔元件的特性决定,Hi为待测磁场的磁场强度,H为干扰磁场的磁场强度。Among them, V out1 is the voltage value of the voltage signal output by the
第二霍尔元件6被方向相同的干扰磁场的磁感线和待测磁场的磁感线穿透,第二霍尔元件6输出的电压信号为Vout2:The
Vout2=A0·(Hi-H0)V out2 =A 0 ·(H i -H 0 )
其中,Vout2为第二霍尔元件6输出的电压信号的电压值,A0为磁场强度与电压之间的转换系数,A0由霍尔元件的特性决定,Hi为待测磁场的磁场强度,H0为干扰磁场的磁场强度。Among them, V out2 is the voltage value of the voltage signal output by the
平均电压信号为:The average voltage signal is:
其中,V为平均电压信号的电压值,A0为磁场强度与电压之间的转换系数,A0由霍尔元件的特性决定,Hi为待测磁场的磁场强度。Among them, V is the voltage value of the average voltage signal, A 0 is the conversion coefficient between the magnetic field strength and voltage, A 0 is determined by the characteristics of the Hall element, and H i is the magnetic field strength of the magnetic field to be measured.
由此,平均电压信号的电压值V仅由电压与磁场强度的转换系数A0和待测磁场的磁场强度Hi决定消除了干扰磁场的影响。Therefore, the voltage value V of the average voltage signal is only determined by the conversion coefficient A 0 of the voltage and the magnetic field strength and the magnetic field strength Hi of the magnetic field to be measured, eliminating the influence of the disturbing magnetic field.
在本实施例中,由于设置有第一气隙72和第二气隙73,增加了总的气隙长度,增加气隙长度可以降低残余磁通密度,提升导磁体的磁饱和点,增加导磁体利用率,在测量同样大小的电流的情况下可以减小导磁体的横截面积,即减小第一导磁体1和第二导磁体2的尺寸,进而能减小整个霍尔传感器100的尺寸。而即便因增加气隙长度导致易受外界磁场干扰,也可通过第一霍尔元件6和第二霍尔元件7输出的电信号作平均来去除干扰。In this embodiment, since the
在一个示意性的实施例中,第一导磁体1和第二导磁体2呈面对称。In an exemplary embodiment, the
第一导磁体1和第二导磁体2构造为互为面对称的结构,第一气隙72和第二气隙73位于第一导磁体1和第二导磁体2之间的对称平面上,这样能进一步增强霍尔传感器100的抗干扰能力,同时也更加方便装配。The
在一个示意性的实施例中,霍尔传感器100还包括壳体8。该壳体8采用树脂材料制成。壳体8包括底壳82和顶盖81。底壳82包括底板821以及多块侧板822。底板821可以构造为大致的矩形板。底板821上设置有两个直条孔8211和第一通孔8212。直条孔8211和第一通孔8212均贯穿底板821。两个直条孔8211相互平行。两个直条孔8211分别靠近底板821的相对两边缘。第一通孔8212可以是圆孔。第一通孔8212设置在两个直条孔8211之间,并位于底板821的中部区域。多块侧板822设置在底板821的边缘,且垂直于侧板822。In an illustrative embodiment, the
顶盖81包括顶板811和筒体812。顶板811构造为平板结构。顶板811的中部设置有第二通孔8111。第二通孔8111可以是圆孔。筒体812的轴线垂直于顶板811。筒体812的一端连接于顶板811,且与第二通孔8111同轴设置。筒体812连接于第二通孔8111的边缘。顶盖81的顶板811盖合在侧板822背离底板821的一端。筒体812背离顶板811的一端伸入到第一通孔8212内。The
顶盖81和底壳82围合出一个环形空腔,第一导磁体1、第二导磁体2、第一霍尔元件5和第二霍尔元件6均设置在该环形空腔内,壳体8能保护第一导磁体1、第二导磁体2、第一霍尔元件5和第二霍尔元件6免受损坏。The
在一个示意性的实施例中,霍尔传感器100还包括多个第一连接件5和多个第二连接件6。多个第一连接件5均连接于第一导磁体1,且均从底板821的一个直条孔8211伸出壳体8。第一连接件5与第一导磁体1之间可以是焊接连接。多个第二连接件6均连接于第二导磁体2,且均从底板821的另一个直条孔8211伸出壳体8。第二连接件6与第二导磁体2之间可以是焊接连接。In an exemplary embodiment, the
第一连接件5和第二连接件6伸出壳体8的一端均用于外接安装基座,该安装基座可以是印刷电路板。这样,通过第一连接件5和第二连接件6可以将霍尔传感器100稳固地固定在安装基座上。The ends of the
在一个示意性的实施例中,顶盖81与底壳82之间采用卡扣连接。顶盖81还包括多个母扣813。多个母扣813可以是分别设置在顶板811的多个角上。In an exemplary embodiment, a snap connection is adopted between the
母扣813包括支柱8131和定位梁8132。支柱8131设置有两根。支柱8131从顶板811向底板821方向伸出。两根支柱8131间隔设置。定位梁8132的两端分别连接两根支柱8131背离顶板811的一端。定位梁8132垂直以支柱8131。The
底壳82还包括多个卡扣822。卡扣822的数量与母扣813的数量一致。多个卡扣822分别设置在底板821的交上。多个卡扣822分别与多个母扣813一一对应设置。卡扣822包括弹性部8231和挂钩部8232。弹性部8231构造为条形,从底板821向靠近顶板811方向伸出。挂钩部8232设置在弹性部8231的侧面。卡扣822的挂钩部8232钩住该卡扣822所对应的母扣813的定位梁8132,且位于该母扣813的两根支柱8131之间。The
这样,多个卡扣822分别勾住多个母扣813,从而使得顶盖81与底壳82之间实现卡扣822连接,这样更方便装配。In this way, the plurality of snaps 822 respectively hook the plurality of
本实施例还提供了一种电流检测装置1000,该电流检测装置1000包括上述霍尔传感器100和第一计算单元200。第一计算单元200包括第一模数转换模块201和第一计算模块202。第一模数转换模块201可以是模数转换电路。第一计算模块202可以是单片机或计算机。This embodiment also provides a
第一模数转换模块201电连接于霍尔传感器100的第一霍尔元件5和第二霍尔元件6。第一霍尔元件5和第二霍尔元件6将以模拟信号为载体的电压信号发送到第一模数转换模块201。第一模数转换模块201电连接于第一计算模块202,用于将第一霍尔元件5和第二霍尔元件6所发送的电压信号的信号类别从模拟信号转换为数字信号后发生给第一计算模块202。第一计算单元200根据第一霍尔元件5和第二霍尔元件6发出的电压信号计算出待测电线上的电流值。The first analog-to-
第一计算模块202根据以下算法计算经过待测电线的电流的电流值:The
其中,Ip为经过待测电线的电流的电流值,Vout1为第一霍尔元件5输出的电压信号的电压值,Vout2为第二霍尔元件6输出的电压信号的电压值,A0为磁场强度与电压之间的转换系数,γ为电流与磁场强度之间的转换系数。Among them, I p is the current value of the current passing through the wire to be tested, V out1 is the voltage value of the voltage signal output by the
磁场强度与电压之间的转换系数A0和电流与磁场强度之间的转换系数为定值,由霍尔元件的特性决定。The conversion coefficient A 0 between the magnetic field strength and the voltage and the conversion coefficient between the current and the magnetic field strength are fixed values, which are determined by the characteristics of the Hall element.
本实施例还提供了另一种电流检测装置2000,该电流检测装置2000包括上述霍尔传感器100和第二计算单元300。第二计算单元300包括运算电路301、第二模数转换模块302和第二计算模块303。第二模数转换模块302可以是模数转换电路。第二计算模块303可以是单片机或计算机。This embodiment also provides another
运算电路301电连接于霍尔传感器100的第一霍尔元件5和第二霍尔元件6。第一霍尔元件5和第二霍尔元件6将以模拟信号为载体的电压信号发送到运算电路301,运算电路301对第一霍尔元件5和第二霍尔元件6输出的电压信号求平均获得平均电压信号,并将平均电压信号发送到第二模数转换模块302。第二模数转换模块302电连接于第二计算模块303,用于将平均电压信号的信号类别从模拟信号转换为数字信号后发生给第二计算模块303。第二计算单元300根据平均电压信号计算出待测电线上的电流值。The
第二计算模块303根据以下算法计算经过待测电线的电流的电流值:The
其中,Ip为经过待测电线的电流的电流值,V为平均电压信号的电压值,A0为磁场强度与电压之间的转换系数,γ为电流与磁场强度之间的转换系数。Among them, I p is the current value of the current passing through the wire under test, V is the voltage value of the average voltage signal, A 0 is the conversion coefficient between magnetic field strength and voltage, and γ is the conversion coefficient between current and magnetic field strength.
磁场强度与电压之间的转换系数A0和电流与磁场强度之间的转换系数为定值,由霍尔元件的特性决定。The conversion coefficient A 0 between the magnetic field strength and the voltage and the conversion coefficient between the current and the magnetic field strength are fixed values, which are determined by the characteristics of the Hall element.
在一个示意性的实施例中,本实施例还提出了一种电流的检测方法,该检测方法基于上述霍尔传感器100实施,该检测方法包括:In an exemplary embodiment, this embodiment also proposes a current detection method, the detection method is implemented based on the above-mentioned
步骤S1:获取电源采样校正系数、零点电压偏移采样系数;Step S1: obtaining the power supply sampling correction coefficient and the zero-point voltage offset sampling coefficient;
电源采样校正系数用于表征电源的实际电压值与理论电压值之间的偏差。该电源为用于为霍尔传感器供电的电源。可以采用电压传感器检测电源的实际电压值,再根据该电源的理论电压值与实际电压值之间的差距计算出电源采样校正系数。例如电源采样校正系数为理论电压值与实际电压值之比。在本实施例中,电源的理论电压值为5V,则电源采样校正系数p可以采用以下算式计算:The power supply sampling correction coefficient is used to characterize the deviation between the actual voltage value of the power supply and the theoretical voltage value. This power supply is the power supply used to power the Hall sensors. A voltage sensor can be used to detect the actual voltage value of the power supply, and then the power supply sampling correction coefficient can be calculated according to the difference between the theoretical voltage value of the power supply and the actual voltage value. For example, the power sampling correction coefficient is the ratio of the theoretical voltage value to the actual voltage value. In this embodiment, the theoretical voltage value of the power supply is 5V, then the power supply sampling correction coefficient p can be calculated by the following formula:
其中,Vcc为电压传感器所检测到的电源的实际电压值。Wherein, V cc is the actual voltage value of the power supply detected by the voltage sensor.
零点电压平移采样系数用于表征霍尔传感器在待测电线无电流通过时霍尔传感器的霍尔元件输出的电压信号的实际值与理论值之间的偏差。零点电压偏移采样系数可以为该理论值与实际值之差。可以采用电压传感器在待测电线无电流通过时电压传感器检测霍尔元件的输出端子所输出的电压信号的电压值,该霍尔元件可以是第一霍尔元件5或第二霍尔元件6。在本实施中,在待测电线无电流通过时霍尔传感器的霍尔元件输出的电压信号的理论值为2.5v,该零点电压平移采样系数z采用以下算式计算:The zero-point voltage shift sampling coefficient is used to represent the deviation between the actual value and the theoretical value of the voltage signal output by the Hall element of the Hall sensor when the wire to be tested has no current passing through the Hall sensor. The zero-point voltage offset sampling coefficient may be the difference between the theoretical value and the actual value. A voltage sensor can be used to detect the voltage value of the voltage signal output by the output terminal of the Hall element when the wire to be tested has no current passing through it. The Hall element can be the
z=2.5-V0 z=2.5-V 0
其中,V0为电压传感器在待测电线无电流通过时电压传感器检测霍尔元件的输出端子所输出的电压信号的电压值。Wherein, V 0 is the voltage value of the voltage signal output by the voltage sensor to detect the output terminal of the Hall element when the wire to be tested has no current passing through the voltage sensor.
步骤S2:获取温漂校正系数;Step S2: obtaining the temperature drift correction coefficient;
温漂系数用于表征温度对霍尔传感器的测量结果的影响。可以预先标定出霍尔传感器的温度与温漂校正系数之间的关系,预先将霍尔传感器的温度与温漂校正系数之间的对应关系存储到一个温漂系数表中。The temperature drift coefficient is used to characterize the effect of temperature on the measurement results of the Hall sensor. The relationship between the temperature of the Hall sensor and the temperature drift correction coefficient can be pre-calibrated, and the corresponding relationship between the temperature of the Hall sensor and the temperature drift correction coefficient can be stored in a temperature drift coefficient table in advance.
采用温度传感器测量霍尔传感器的温度,再根据该温度查询温漂系数表来获得与该温度相对应的温漂校正系数。A temperature sensor is used to measure the temperature of the Hall sensor, and then a temperature drift correction coefficient corresponding to the temperature is obtained by querying the temperature drift coefficient table according to the temperature.
步骤S3:根据以下算法计算经过待测电线的电流的第一电流值;Step S3: Calculate the first current value of the current passing through the wire to be measured according to the following algorithm;
其中,I0为第一电流值,Vout1为第一霍尔元件5输出的电压信号的电压值,Vout2为第二霍尔元件输出的电压信号的电压值,G为霍尔传感器敏感度系数,T为温漂校正系数,z为零点电压偏移采样系数,p电源采样校正系数。Among them, I 0 is the first current value, V out1 is the voltage value of the voltage signal output by the
步骤S4:获取软件线性误差校正系数,根据以下算法计算出待测电线的电流值:Step S4: Obtain the software linear error correction coefficient, and calculate the current value of the wire to be tested according to the following algorithm:
Ip=l·I0 I p =l·I 0
其中,Ip为经过待测电线的电流的电流值,I0为第一电流值,l为软件线性误差校正系数;Wherein, I p is the current value of the current passing through the wire to be measured, I 0 is the first current value, and l is the software linearity error correction coefficient;
进入到步骤S2。Proceed to step S2.
软件线性误差校正系数可以根据查表的方法获得。第一电流值I0与软件线性误差校正系数l之间的对应关系可以预先标定出来,并储存在软件线性误差校正系数表中,可以根据第一电流值I0来查询软件线性误差校正系数表来获得与该第一电流值I0相对应的软件线性误差校正系数l。The software linear error correction coefficient can be obtained according to the method of look-up table. The correspondence between the first current value I 0 and the software linear error correction coefficient l can be pre-calibrated and stored in the software linear error correction coefficient table, and the software linear error correction coefficient table can be queried according to the first current value I 0 to obtain the software linearity error correction coefficient l corresponding to the first current value I 0 .
根据电源采样校正系数、零点电压偏移采样系数、温漂校正系数和软件线性误差校正系数对霍尔传感器的测量结果进行校准,所测得的待测电线上的电流值更加准确。The measurement results of the Hall sensor are calibrated according to the power supply sampling correction coefficient, the zero point voltage offset sampling coefficient, the temperature drift correction coefficient and the software linear error correction coefficient, and the measured current value on the wire to be measured is more accurate.
在一个示意性的实施例中,该待测电线连接于汽车的逆变器。该待测电线可以是连接到逆变器的直流输入端或逆变器的交流输出端。因此,该检测方法可以测量逆变器的直流输入端或逆变器的交流输出端的电流值。In an exemplary embodiment, the wire to be tested is connected to an inverter of an automobile. The wire to be tested can be connected to the DC input of the inverter or the AC output of the inverter. Therefore, the detection method can measure the current value of the DC input terminal of the inverter or the AC output terminal of the inverter.
本申请描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本申请所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。This application describes a number of embodiments, but the description is exemplary rather than restrictive, and it will be apparent to those of ordinary skill in the art that within the scope of the embodiments described in this application can be There are many more examples and implementations. Although many possible combinations of features are shown in the drawings and discussed in the detailed description, many other combinations of the disclosed features are possible. Unless expressly limited, any feature or element of any embodiment may be used in combination with, or may be substituted for, any other feature or element of any other embodiment.
本申请包括并设想了与本领域普通技术人员已知的特征和元件的组合。本申请已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独特的发明方案。任何实施例的任何特征或元件也可以与来自其它发明方案的特征或元件组合,以形成另一个由权利要求限定的独特的发明方案。因此,应当理解,在本申请中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。This application includes and contemplates combinations with features and elements known to those of ordinary skill in the art. The embodiments, features and elements that have been disclosed in this application can also be combined with any conventional features or elements to form unique inventive solutions as defined by the claims. Any features or elements of any embodiment may also be combined with features or elements from other inventive arrangements to form another unique inventive arrangement defined by the claims. Accordingly, it should be understood that any of the features shown and/or discussed in this application may be implemented alone or in any suitable combination. Accordingly, the embodiments are not to be limited except in accordance with the appended claims and their equivalents. Furthermore, various modifications and changes may be made within the scope of the appended claims.
此外,在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本申请实施例的精神和范围内。Furthermore, in describing representative embodiments, the specification may have presented methods and/or processes as a particular sequence of steps. However, to the extent that the method or process does not depend on the specific order of steps described herein, the method or process should not be limited to the specific order of steps described. Other sequences of steps are possible, as will be understood by those of ordinary skill in the art. Therefore, the specific order of steps set forth in the specification should not be construed as limitations on the claims. Furthermore, the claims directed to the method and/or process should not be limited to performing their steps in the order written, as those skilled in the art will readily appreciate that these orders may be varied and still remain within the spirit and scope of the embodiments of the present application Inside.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210108030.9A CN114441823A (en) | 2022-01-28 | 2022-01-28 | Hall sensor, current detection device and current detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210108030.9A CN114441823A (en) | 2022-01-28 | 2022-01-28 | Hall sensor, current detection device and current detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114441823A true CN114441823A (en) | 2022-05-06 |
Family
ID=81370938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210108030.9A Pending CN114441823A (en) | 2022-01-28 | 2022-01-28 | Hall sensor, current detection device and current detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114441823A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119178927A (en) * | 2024-11-26 | 2024-12-24 | 宁波中车时代传感技术有限公司 | Current sensor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103217570A (en) * | 2013-03-21 | 2013-07-24 | 无锡凌湖科技有限公司 | Tunneling magneto resistive (TMR) self-temperature-compensation digital current sensor |
CN104395766A (en) * | 2012-01-19 | 2015-03-04 | 邹高芝 | Coaxial dual-loop magnetic core structure assembly for high-precision cross-core open-loop hall current sensor |
CN204903625U (en) * | 2015-08-10 | 2015-12-23 | 比亚迪股份有限公司 | Current sensor and car |
CN206294142U (en) * | 2016-11-01 | 2017-06-30 | 浙江新涛电子科技股份有限公司 | A kind of Hall sensor |
CN210071933U (en) * | 2019-04-09 | 2020-02-14 | 苏州汇川联合动力系统有限公司 | Signal sampling circuit |
CN113916265A (en) * | 2021-09-23 | 2022-01-11 | 苏州直为精驱控制技术有限公司 | Processing method of Hall position sensing signal for permanent magnet synchronous linear motor |
-
2022
- 2022-01-28 CN CN202210108030.9A patent/CN114441823A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104395766A (en) * | 2012-01-19 | 2015-03-04 | 邹高芝 | Coaxial dual-loop magnetic core structure assembly for high-precision cross-core open-loop hall current sensor |
CN103217570A (en) * | 2013-03-21 | 2013-07-24 | 无锡凌湖科技有限公司 | Tunneling magneto resistive (TMR) self-temperature-compensation digital current sensor |
CN204903625U (en) * | 2015-08-10 | 2015-12-23 | 比亚迪股份有限公司 | Current sensor and car |
CN206294142U (en) * | 2016-11-01 | 2017-06-30 | 浙江新涛电子科技股份有限公司 | A kind of Hall sensor |
CN210071933U (en) * | 2019-04-09 | 2020-02-14 | 苏州汇川联合动力系统有限公司 | Signal sampling circuit |
CN113916265A (en) * | 2021-09-23 | 2022-01-11 | 苏州直为精驱控制技术有限公司 | Processing method of Hall position sensing signal for permanent magnet synchronous linear motor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119178927A (en) * | 2024-11-26 | 2024-12-24 | 宁波中车时代传感技术有限公司 | Current sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11394312B2 (en) | Coreless current sensor for high current power module | |
US10247759B2 (en) | Current sensor | |
JP5531215B2 (en) | Current sensor | |
US7642768B1 (en) | Current sensor having field screening arrangement including electrical conductors sandwiching magnetic permeability layer | |
US9714959B2 (en) | Current sensor and electronic device incorporating the same | |
EP3376244B1 (en) | Magnetic sensor | |
US20250067780A1 (en) | Current sensor | |
JP2015049184A (en) | Inverter device | |
CN113917215B (en) | Current sensor | |
CN109752586B (en) | PCB-based current detection device | |
JP2005321206A (en) | Current detection device | |
WO2014203862A2 (en) | Current sensor | |
CN114441823A (en) | Hall sensor, current detection device and current detection method | |
US11841383B2 (en) | Magnetic current sensor integration into high current connector device | |
JP2009168790A (en) | Current sensor | |
JP5704352B2 (en) | Current sensor | |
CN113644830A (en) | Power conversion device | |
US20220285890A1 (en) | Magnetic current sensor integration into high current connector device | |
JP5458319B2 (en) | Current sensor | |
RU2465609C1 (en) | Contactless current metre | |
JP2014098634A (en) | Current sensor | |
JP2024037680A (en) | Current measurement module, current measurement conductor, and current measurement device | |
JP2021043071A (en) | Current sensor and watthour meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230117 Address after: No. 99, Beihui Road, Huishan Industrial Transformation Cluster, Wuxi City, Jiangsu Province, 214181 Applicant after: Wuxi Xingqu Technology Co.,Ltd. Applicant after: ZHEJIANG GEELY HOLDING GROUP Co.,Ltd. Address before: 310051 No. 1760, Jiangling Road, Hangzhou, Zhejiang, Binjiang District Applicant before: ZHEJIANG GEELY HOLDING GROUP Co.,Ltd. Applicant before: Wuxi Xingqu Technology Co.,Ltd. Applicant before: Aurobay Technology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230630 Address after: No. 99, Beihui Road, Huishan Industrial Transformation Cluster, Wuxi City, Jiangsu Province, 214181 Applicant after: Wuxi Xingqu Power Technology Co.,Ltd. Applicant after: Wuxi Xingqu Technology Co.,Ltd. Applicant after: ZHEJIANG GEELY HOLDING GROUP Co.,Ltd. Address before: No. 99, Beihui Road, Huishan Industrial Transformation Cluster, Wuxi City, Jiangsu Province, 214181 Applicant before: Wuxi Xingqu Technology Co.,Ltd. Applicant before: ZHEJIANG GEELY HOLDING GROUP Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240613 Address after: No. 98 Beihui Road, Huishan Industrial Transformation and Agglomeration Zone, Wuxi City, Jiangsu Province, China Applicant after: Wuxi Xingqu Power Technology Co.,Ltd. Country or region after: China Applicant after: Wuxi Xingqu Technology Co.,Ltd. Address before: No. 99, Beihui Road, Huishan Industrial Transformation Cluster, Wuxi City, Jiangsu Province, 214181 Applicant before: Wuxi Xingqu Power Technology Co.,Ltd. Country or region before: China Applicant before: Wuxi Xingqu Technology Co.,Ltd. Applicant before: ZHEJIANG GEELY HOLDING GROUP Co.,Ltd. |