CN114429868B - Preparation method of graphene/cobalt tetrasulfide nickel electrode material with sandwich structure - Google Patents
Preparation method of graphene/cobalt tetrasulfide nickel electrode material with sandwich structure Download PDFInfo
- Publication number
- CN114429868B CN114429868B CN202111548712.3A CN202111548712A CN114429868B CN 114429868 B CN114429868 B CN 114429868B CN 202111548712 A CN202111548712 A CN 202111548712A CN 114429868 B CN114429868 B CN 114429868B
- Authority
- CN
- China
- Prior art keywords
- graphene
- nico
- membrane
- filter
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 65
- 239000007772 electrode material Substances 0.000 title claims abstract description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract 5
- 239000010941 cobalt Substances 0.000 title claims abstract 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract 5
- 238000002360 preparation method Methods 0.000 title claims description 15
- 229910003266 NiCo Inorganic materials 0.000 claims abstract description 56
- 239000012528 membrane Substances 0.000 claims abstract description 40
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000008367 deionised water Substances 0.000 claims abstract description 32
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 32
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 32
- 239000010439 graphite Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 31
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000004202 carbamide Substances 0.000 claims abstract description 13
- 239000011888 foil Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000010335 hydrothermal treatment Methods 0.000 claims abstract description 7
- 238000009210 therapy by ultrasound Methods 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 18
- 239000006249 magnetic particle Substances 0.000 claims description 12
- 230000035484 reaction time Effects 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 1
- 238000005119 centrifugation Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- KAEHZLZKAKBMJB-UHFFFAOYSA-N cobalt;sulfanylidenenickel Chemical compound [Ni].[Co]=S KAEHZLZKAKBMJB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004540 pour-on Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了三明治结构石墨烯/四硫化二钴合镍电极材料的制备方法,具体为:首先,将石墨箔用作阳极,铂丝用作阴极,进行电化学剥离,之后溶于去离子水中,将形成的石墨烯离心液抽滤成膜;再将NiCl2·6H2O、CoCl2·6H2O和尿素混合,进行水热处理,得到NiCo(OH)粉末;将NiCo(OH)粉末、硫脲与H2O混合,进行水热反应,得到磁NiCo2S4;将NiCo2S4溶于去离子水中,倒在之前形成的膜上,并抽滤,形成双层膜;将石墨烯离心液倒在双层膜上,并再次抽滤成膜,干燥,即可。本发明的三明治结构电极材料,促进了离子和电子的传输;NiCo2S4在夹层中间,提供部分赝电容,提高了材料的电化学性能。
The invention discloses a method for preparing a sandwich structure graphene/cobalt tetrasulfide nickel electrode material. The specific steps are as follows: first, use graphite foil as an anode and platinum wire as a cathode, perform electrochemical stripping, and then dissolve in deionized water. , filter the formed graphene centrifuge into a film; then mix NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea, and perform hydrothermal treatment to obtain NiCo(OH) powder; NiCo(OH) powder, Thiourea is mixed with H 2 O for a hydrothermal reaction to obtain magnetic NiCo 2 S 4 ; dissolve NiCo 2 S 4 in deionized water, pour it on the previously formed membrane, and filter it with suction to form a double-layer membrane; add graphite Pour the ene centrifuge onto the double-layer membrane, filter it again to form a membrane, and dry. The sandwich structure electrode material of the present invention promotes the transmission of ions and electrons; NiCo 2 S 4 is in the middle of the sandwich, providing partial pseudocapacitance and improving the electrochemical performance of the material.
Description
技术领域Technical field
本发明属于电极材料制备技术领域,具体涉及三明治结构石墨烯/四硫化二钴合镍(NiCo2S4)电极材料的制备方法。The invention belongs to the technical field of electrode material preparation, and specifically relates to a preparation method of sandwich structure graphene/nickel dicobalt tetrasulfide (NiCo 2 S 4 ) electrode material.
背景技术Background technique
随着人类社会对能源的需求,锂离子电池、燃料电池、太阳能电池和超级电容器等新型储能和转换装置的研发至关重要。其中,超级电容器由于同时兼具电池高的能量密度和传统电容器大的功率密度等优点,近些年来受到科学界广泛关注。作为一种优异的超级电容器电极材料,石墨烯具有良好的导电性、优异的电子迁移率和大的比表面积。但由于范德瓦尔斯力和π-π键堆垛的作用,溶液或基底上的石墨烯在制备、保存和测试等过程中容易发生不可逆的团聚,这不利于其比表面积的充分利用。With human society's demand for energy, the research and development of new energy storage and conversion devices such as lithium-ion batteries, fuel cells, solar cells, and supercapacitors is crucial. Among them, supercapacitors have attracted widespread attention from the scientific community in recent years because they have the advantages of high energy density of batteries and high power density of traditional capacitors. As an excellent supercapacitor electrode material, graphene has good electrical conductivity, excellent electron mobility and large specific surface area. However, due to the effects of van der Waals forces and π-π bond stacking, graphene in solution or on a substrate is prone to irreversible agglomeration during preparation, storage, and testing, which is not conducive to the full utilization of its specific surface area.
自支撑石墨烯(SGr)因具有良好的力学强度和较高的表面能,其产生的褶皱形貌在一定程度上减少了这种团聚。但SCr本质上仍旧是双电层电容,这就导致电容普遍较小,难以满足实际应用中的能量需求。将SCr与导电聚合物复合可明显改善电容性能。将石墨烯与镍钴硫化物结合获得三明治结构的复合材料为超级电容器电极制备的一种有效方法。Self-supporting graphene (SGr) has good mechanical strength and high surface energy, and its wrinkled morphology reduces this agglomeration to a certain extent. However, SCr is still essentially an electric double layer capacitor, which results in the capacitance being generally small and difficult to meet the energy needs in practical applications. Compounding SCr with conductive polymers can significantly improve capacitive properties. Combining graphene with nickel cobalt sulfide to obtain a sandwich structure composite material is an effective method for the preparation of supercapacitor electrodes.
发明内容Contents of the invention
本发明的目的是提供三明治结构石墨烯/NiCo2S4电极材料的制备方法,解决了现有电极材料制备中掺杂集流体和粘结剂导致的导电性低、稳定性差的问题。The purpose of the present invention is to provide a method for preparing sandwich structure graphene/NiCo 2 S 4 electrode materials, which solves the problems of low conductivity and poor stability caused by doping current collectors and binders in the preparation of existing electrode materials.
本发明所采用的技术方案是,三明治结构石墨烯/NiCo2S4电极材料的制备方法,具体按照以下步骤实施:The technical solution adopted by the present invention is a preparation method of sandwich structure graphene/NiCo 2 S 4 electrode material, which is specifically implemented according to the following steps:
步骤1、将石墨箔用作碳电极,即阳极,铂丝用作阴极,用于石墨的电化学剥离,得到剥离石墨烯;Step 1. Use graphite foil as the carbon electrode, that is, the anode, and platinum wire as the cathode for electrochemical stripping of graphite to obtain exfoliated graphene;
步骤2、将剥离石墨烯溶于去离子水中,进行超声,然后离心,形成石墨烯离心液;Step 2: Dissolve the exfoliated graphene in deionized water, conduct ultrasonic, and then centrifuge to form a graphene centrifuge liquid;
步骤3、将石墨烯离心液抽滤成膜;Step 3. Filter the graphene centrifuge liquid to form a membrane;
步骤4、将NiCl2·6H2O、CoCl2·6H2O和尿素混合,进行超声处理,再转入高压反应釜中进行水热处理,得到水热产物;将水热产物用去离子水进行真空过滤,干燥,得到NiCo(OH)粉末;Step 4. Mix NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea, perform ultrasonic treatment, and then transfer to a high-pressure reactor for hydrothermal treatment to obtain a hydrothermal product; use deionized water to process the hydrothermal product. Vacuum filter and dry to obtain NiCo(OH) powder;
步骤5、将NiCo(OH)粉末、硫脲与H2O混合,超声处理,之后转入高压反应釜中进行水热反应,将得到的水热产物用去离子水进行真空过滤,得到磁性粒子NiCo2S4;Step 5. Mix NiCo(OH) powder, thiourea and H 2 O, conduct ultrasonic treatment, and then transfer it to a high-pressure reactor for hydrothermal reaction. The obtained hydrothermal product is vacuum filtered with deionized water to obtain magnetic particles. NiCo 2 S 4 ;
步骤6、将磁性粒子NiCo2S4溶于去离子水中,混合均匀,超声之后倒在步骤3形成的膜上,并抽滤成膜;Step 6. Dissolve the magnetic particles NiCo 2 S 4 in deionized water, mix evenly, ultrasonicate, pour on the membrane formed in step 3, and filter to form a membrane;
步骤7、将步骤2中的石墨烯离心液倒在步骤6形成的膜上,并再次抽滤成膜,干燥,即可得到三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯电极材料。Step 7. Pour the graphene centrifugal liquid in step 2 onto the membrane formed in step 6, filter it again to form a membrane, and dry it to obtain a sandwich-structured exfoliated graphene-NiCo 2 S 4 -exfoliated graphene electrode material. .
本发明的特点还在于,The present invention is also characterized in that,
步骤1中,具体为:将石墨箔和铂电极放置在0.1M(NH4)2SO4的溶液中,然后通过向石墨电极施加9.9V正电压进行电化学剥离,石墨剥落完成后,将产物用去离子水进行真空过滤,过滤时使用孔径为0.45μm的滤膜,即可得到剥离石墨烯。In step 1, the specific steps are: place the graphite foil and platinum electrode in a 0.1M (NH 4 ) 2 SO 4 solution, and then perform electrochemical peeling by applying a positive voltage of 9.9V to the graphite electrode. After the graphite peeling is completed, the product is Use deionized water for vacuum filtration, and use a filter membrane with a pore size of 0.45 μm during filtration to obtain exfoliated graphene.
步骤4中,NiCl2·6H2O、CoCl2·6H2O和尿素的摩尔比为1:1:3。In step 4, the molar ratio of NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea is 1:1:3.
步骤4中,超声处理时间为25min;水热反应温度为150-180℃,水热反应时间为22-26h。In step 4, the ultrasonic treatment time is 25 minutes; the hydrothermal reaction temperature is 150-180°C, and the hydrothermal reaction time is 22-26 hours.
步骤5中,NiCo(OH)粉末与硫脲的质量比为1:2。In step 5, the mass ratio of NiCo(OH) powder to thiourea is 1:2.
步骤5中,超声处理时间为10-30min;水热反应温度为180-260℃,水热反应时间为8-16h。In step 5, the ultrasonic treatment time is 10-30 minutes; the hydrothermal reaction temperature is 180-260°C, and the hydrothermal reaction time is 8-16 hours.
本发明的有益效果是:通过简单的真空辅助抽滤成膜的方法制备出具有三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯的复合薄膜,得到具有柔性、自支撑的复合电极材料。通过简单的制备方法获得具有三明治结构的薄膜电极材料,促进离子和电子的传输;NiCo2S4在夹层中间,提供部分赝电容,提高了整体的电化学性能,形成无集流体和黏结剂的自支撑结构,且具有高导电性、柔韧性和机械稳定性。所制备的三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯的复合薄膜用作电极,其比容量约为0.0631mF cm-2。The beneficial effects of the present invention are: a composite film of exfoliated graphene-NiCo 2 S 4 -exfoliated graphene with a sandwich structure is prepared through a simple vacuum-assisted suction filtration film forming method to obtain a flexible and self-supporting composite electrode material. . A thin film electrode material with a sandwich structure is obtained through a simple preparation method, which promotes the transmission of ions and electrons; NiCo 2 S 4 is in the middle of the sandwich, providing partial pseudocapacitance, improving the overall electrochemical performance, and forming a current collector and binder-free Self-supporting structure with high electrical conductivity, flexibility and mechanical stability. The prepared sandwich-structured exfoliated graphene-NiCo 2 S 4 -exfoliated graphene composite film was used as an electrode, and its specific capacity was approximately 0.0631mF cm -2 .
附图说明Description of the drawings
图1为本发明实施例1-3制备的三明治结构剥离石墨烯-NiCo2S4-剥离石墨烯电极材料的循环伏安特性曲线图。Figure 1 is a cyclic voltammetry characteristic curve of the sandwich structure exfoliated graphene-NiCo 2 S 4 -exfoliated graphene electrode material prepared in Examples 1-3 of the present invention.
具体实施方式Detailed ways
下面结合具体实施方式和附图对本发明进行详细说明。The present invention will be described in detail below with reference to specific embodiments and drawings.
本发明三明治结构石墨烯/四硫化二钴合镍(NiCo2S4)电极材料的制备方法,具体按照以下步骤实施:The preparation method of the sandwich structure graphene/nickel dicobalt tetrasulfide (NiCo 2 S 4 ) electrode material of the present invention is specifically implemented according to the following steps:
步骤1、将石墨箔用作碳电极,即阳极,铂丝用作阴极,用于石墨的电化学剥离,将石墨箔和铂电极放置在0.1M(NH4)2SO4的溶液中,然后通过向石墨电极施加9.9V正电压进行电化学剥离,石墨剥落完成后,将产物用去离子水进行真空过滤,过滤时使用孔径为0.45μm的滤膜,得到剥离石墨烯;Step 1. Use graphite foil as the carbon electrode, that is, the anode, and platinum wire as the cathode for electrochemical stripping of graphite. Place the graphite foil and platinum electrode in a solution of 0.1M (NH 4 ) 2 SO 4 , and then Electrochemical peeling is carried out by applying a positive voltage of 9.9V to the graphite electrode. After the graphite peeling is completed, the product is vacuum filtered with deionized water. During filtration, a filter membrane with a pore size of 0.45 μm is used to obtain exfoliated graphene;
步骤2、将剥离石墨烯溶于去离子水中,进行超声,然后离心,形成石墨烯离心液;Step 2: Dissolve the exfoliated graphene in deionized water, conduct ultrasonic, and then centrifuge to form a graphene centrifuge liquid;
离心转速为3000r/min,离心时间为20min;The centrifugal speed is 3000r/min, and the centrifugation time is 20min;
步骤3、将石墨烯离心液抽滤成膜;Step 3. Filter the graphene centrifuge liquid to form a membrane;
步骤4、将NiCl2·6H2O、CoCl2·6H2O和尿素混合,进行超声处理,再转入高压反应釜中进行水热处理,得到水热产物;将水热产物用去离子水进行真空过滤,干燥,得到NiCo(OH)粉末;Step 4. Mix NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea, perform ultrasonic treatment, and then transfer to a high-pressure reactor for hydrothermal treatment to obtain a hydrothermal product; use deionized water to process the hydrothermal product. Vacuum filter and dry to obtain NiCo(OH) powder;
NiCl2·6H2O、CoCl2·6H2O和尿素的摩尔比为1:1:3;The molar ratio of NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea is 1:1:3;
超声处理时间为25min;水热反应温度为150-180℃,水热反应时间为22-26h;The ultrasonic treatment time is 25 minutes; the hydrothermal reaction temperature is 150-180°C, and the hydrothermal reaction time is 22-26 hours;
步骤5、将NiCo(OH)粉末、硫脲与H2O混合,超声处理,之后转入高压反应釜中进行水热反应,将得到的水热产物用去离子水进行真空过滤,得到磁性粒子NiCo2S4;Step 5. Mix NiCo(OH) powder, thiourea and H 2 O, conduct ultrasonic treatment, and then transfer it to a high-pressure reactor for hydrothermal reaction. The obtained hydrothermal product is vacuum filtered with deionized water to obtain magnetic particles. NiCo 2 S 4 ;
NiCo(OH)粉末与硫脲的质量比为1:2;The mass ratio of NiCo(OH) powder to thiourea is 1:2;
超声处理时间为10-30min;水热反应温度为180-260℃,水热反应时间为8-16h;The ultrasonic treatment time is 10-30min; the hydrothermal reaction temperature is 180-260°C, and the hydrothermal reaction time is 8-16h;
步骤6、将磁性粒子NiCo2S4溶于去离子水中,超声混合均匀,之后倒在步骤3形成的膜上,并抽滤成膜;Step 6. Dissolve the magnetic particles NiCo 2 S 4 in deionized water, mix evenly with ultrasonic, then pour it on the membrane formed in step 3, and filter it with suction to form a membrane;
步骤7、将步骤2中的石墨烯离心液倒在步骤6形成的膜上,并再次抽滤成膜,干燥,即可得到三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯电极材料。Step 7. Pour the graphene centrifugal liquid in step 2 onto the membrane formed in step 6, filter it again to form a membrane, and dry it to obtain a sandwich-structured exfoliated graphene-NiCo 2 S 4 -exfoliated graphene electrode material. .
实施例1Example 1
本发明三明治结构石墨烯/NiCo2S4电极材料的制备方法,具体按照以下步骤实施:The preparation method of the sandwich structure graphene/NiCo 2 S 4 electrode material of the present invention is specifically implemented according to the following steps:
步骤1、将石墨箔用作碳电极,即阳极,铂丝用作阴极,用于石墨的电化学剥离,将石墨箔和铂电极放置在0.1M(NH4)2SO4的溶液中,然后通过向石墨电极施加9.9V正电压进行电化学剥离,石墨剥落完成后,将产物用去离子水进行真空过滤,过滤时使用孔径为0.45μm的滤膜,得到剥离石墨烯;Step 1. Use graphite foil as the carbon electrode, that is, the anode, and platinum wire as the cathode for electrochemical stripping of graphite. Place the graphite foil and platinum electrode in a solution of 0.1M (NH 4 ) 2 SO 4 , and then Electrochemical peeling is carried out by applying a positive voltage of 9.9V to the graphite electrode. After the graphite peeling is completed, the product is vacuum filtered with deionized water. During filtration, a filter membrane with a pore size of 0.45 μm is used to obtain exfoliated graphene;
步骤2、将剥离石墨烯溶于去离子水中,进行超声,然后离心,形成石墨烯离心液;Step 2: Dissolve the exfoliated graphene in deionized water, conduct ultrasonic, and then centrifuge to form a graphene centrifuge liquid;
离心转速为3000r/min,离心时间为20min;The centrifugal speed is 3000r/min, and the centrifugation time is 20min;
步骤3、将石墨烯离心液抽滤成膜;Step 3. Filter the graphene centrifuge liquid to form a membrane;
步骤4、将NiCl2·6H2O、CoCl2·6H2O和尿素混合,进行超声处理,再转入高压反应釜中进行水热处理,得到水热产物;将水热产物用去离子水进行真空过滤,80℃干燥12h,得到NiCo(OH)粉末;Step 4. Mix NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea, perform ultrasonic treatment, and then transfer to a high-pressure reactor for hydrothermal treatment to obtain a hydrothermal product; use deionized water to process the hydrothermal product. Vacuum filter and dry at 80°C for 12 hours to obtain NiCo(OH) powder;
NiCl2·6H2O、CoCl2·6H2O和尿素的摩尔比为1:1:3;The molar ratio of NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea is 1:1:3;
超声处理时间为25min;水热反应温度为160℃,水热反应时间为24h;The ultrasonic treatment time is 25 minutes; the hydrothermal reaction temperature is 160°C, and the hydrothermal reaction time is 24 hours;
步骤5、将NiCo(OH)粉末、硫脲与H2O混合,超声处理,之后转入高压反应釜中进行水热反应,将得到的水热产物用去离子水进行真空过滤,得到磁性粒子NiCo2S4;Step 5. Mix NiCo(OH) powder, thiourea and H 2 O, conduct ultrasonic treatment, and then transfer it to a high-pressure reactor for hydrothermal reaction. The obtained hydrothermal product is vacuum filtered with deionized water to obtain magnetic particles. NiCo 2 S 4 ;
NiCo(OH)粉末与硫脲的质量比为1:2;The mass ratio of NiCo(OH) powder to thiourea is 1:2;
超声处理时间为30min;水热反应温度为180℃,水热反应时间为16h;The ultrasonic treatment time is 30 minutes; the hydrothermal reaction temperature is 180°C, and the hydrothermal reaction time is 16 hours;
步骤6、将磁性粒子NiCo2S4溶于去离子水中,超声混合均匀,之后倒在步骤3形成的膜上,并抽滤成膜;Step 6. Dissolve the magnetic particles NiCo 2 S 4 in deionized water, mix evenly with ultrasonic, then pour it on the membrane formed in step 3, and filter it with suction to form a membrane;
步骤7、将步骤2中的石墨烯离心液倒在步骤6形成的膜上,并再次抽滤成膜,干燥,即可得到三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯电极材料。剥离石墨烯、NiCo2S4、剥离石墨烯的摩尔比为3:1:3。Step 7. Pour the graphene centrifugal liquid in step 2 onto the membrane formed in step 6, filter it again to form a membrane, and dry it to obtain a sandwich-structured exfoliated graphene-NiCo 2 S 4 -exfoliated graphene electrode material. . The molar ratio of exfoliated graphene, NiCo 2 S 4 and exfoliated graphene is 3:1:3.
实施例2Example 2
本发明三明治结构石墨烯/NiCo2S4电极材料的制备方法,具体按照以下步骤实施:The preparation method of the sandwich structure graphene/NiCo 2 S 4 electrode material of the present invention is specifically implemented according to the following steps:
步骤1、将石墨箔用作碳电极,即阳极,铂丝用作阴极,用于石墨的电化学剥离,将石墨箔和铂电极放置在0.1M(NH4)2SO4的溶液中,然后通过向石墨电极施加9.9V正电压进行电化学剥离,石墨剥落完成后,将产物用去离子水进行真空过滤,过滤时使用孔径为0.45μm的滤膜,得到剥离石墨烯;Step 1. Use graphite foil as the carbon electrode, that is, the anode, and platinum wire as the cathode for electrochemical stripping of graphite. Place the graphite foil and platinum electrode in a solution of 0.1M (NH 4 ) 2 SO 4 , and then Electrochemical peeling is carried out by applying a positive voltage of 9.9V to the graphite electrode. After the graphite peeling is completed, the product is vacuum filtered with deionized water. During filtration, a filter membrane with a pore size of 0.45 μm is used to obtain exfoliated graphene;
步骤2、将剥离石墨烯溶于去离子水中,进行超声,然后离心,形成石墨烯离心液;Step 2: Dissolve the exfoliated graphene in deionized water, conduct ultrasonic, and then centrifuge to form a graphene centrifuge liquid;
离心转速为3000r/min,离心时间为20min;The centrifugal speed is 3000r/min, and the centrifugation time is 20min;
步骤3、将石墨烯离心液抽滤成膜;Step 3. Filter the graphene centrifuge liquid to form a membrane;
步骤4、将NiCl2·6H2O、CoCl2·6H2O和尿素混合,进行超声处理,再转入高压反应釜中进行水热处理,得到水热产物;将水热产物用去离子水进行真空过滤,干燥,得到NiCo(OH)粉末;Step 4. Mix NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea, perform ultrasonic treatment, and then transfer to a high-pressure reactor for hydrothermal treatment to obtain a hydrothermal product; use deionized water to process the hydrothermal product. Vacuum filter and dry to obtain NiCo(OH) powder;
NiCl2·6H2O、CoCl2·6H2O和尿素的摩尔比为1:1:3;The molar ratio of NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea is 1:1:3;
超声处理时间为25min;水热反应温度为150℃,水热反应时间为22h;The ultrasonic treatment time is 25 minutes; the hydrothermal reaction temperature is 150°C, and the hydrothermal reaction time is 22 hours;
步骤5、将NiCo(OH)粉末、硫脲与H2O混合,超声处理,之后转入高压反应釜中进行水热反应,将得到的水热产物用去离子水进行真空过滤,得到磁性粒子NiCo2S4;Step 5. Mix NiCo(OH) powder, thiourea and H 2 O, conduct ultrasonic treatment, and then transfer it to a high-pressure reactor for hydrothermal reaction. The obtained hydrothermal product is vacuum filtered with deionized water to obtain magnetic particles. NiCo 2 S 4 ;
NiCo(OH)粉末与硫脲的质量比为1:2;The mass ratio of NiCo(OH) powder to thiourea is 1:2;
超声处理时间为30min;水热反应温度为200℃,水热反应时间为12h;The ultrasonic treatment time is 30 minutes; the hydrothermal reaction temperature is 200°C, and the hydrothermal reaction time is 12 hours;
步骤6、将磁性粒子NiCo2S4溶于去离子水中,超声混合均匀,之后倒在步骤3形成的膜上,并抽滤成膜;Step 6. Dissolve the magnetic particles NiCo 2 S 4 in deionized water, mix evenly with ultrasonic, then pour it on the membrane formed in step 3, and filter it with suction to form a membrane;
步骤7、将步骤2中的石墨烯离心液倒在步骤6形成的膜上,并再次抽滤成膜,干燥,即可得到三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯电极材料。剥离石墨烯、NiCo2S4、剥离石墨烯的摩尔比为2:1:2。Step 7. Pour the graphene centrifugal liquid in step 2 onto the membrane formed in step 6, filter it again to form a membrane, and dry it to obtain a sandwich-structured exfoliated graphene-NiCo 2 S 4 -exfoliated graphene electrode material. . The molar ratio of exfoliated graphene, NiCo 2 S 4 and exfoliated graphene is 2:1:2.
实施例3Example 3
本发明三明治结构石墨烯/NiCo2S4电极材料的制备方法,具体按照以下步骤实施:The preparation method of the sandwich structure graphene/NiCo 2 S 4 electrode material of the present invention is specifically implemented according to the following steps:
步骤1、将石墨箔用作碳电极,即阳极,铂丝用作阴极,用于石墨的电化学剥离,将石墨箔和铂电极放置在0.1M(NH4)2SO4的溶液中,然后通过向石墨电极施加9.9V正电压进行电化学剥离,石墨剥落完成后,将产物用去离子水进行真空过滤,过滤时使用孔径为0.45μm的滤膜,得到剥离石墨烯;Step 1. Use graphite foil as the carbon electrode, that is, the anode, and platinum wire as the cathode for electrochemical stripping of graphite. Place the graphite foil and platinum electrode in a solution of 0.1M (NH 4 ) 2 SO 4 , and then Electrochemical peeling is carried out by applying a positive voltage of 9.9V to the graphite electrode. After the graphite peeling is completed, the product is vacuum filtered with deionized water. During filtration, a filter membrane with a pore size of 0.45 μm is used to obtain exfoliated graphene;
步骤2、将剥离石墨烯溶于去离子水中,进行超声,然后离心,形成石墨烯离心液;Step 2: Dissolve the exfoliated graphene in deionized water, conduct ultrasonic, and then centrifuge to form a graphene centrifuge liquid;
离心转速为3000r/min,离心时间为20min;The centrifugal speed is 3000r/min, and the centrifugation time is 20min;
步骤3、将石墨烯离心液抽滤成膜;Step 3. Filter the graphene centrifuge liquid to form a membrane;
步骤4、将NiCl2·6H2O、CoCl2·6H2O和尿素混合,进行超声处理,再转入高压反应釜中进行水热处理,得到水热产物;将水热产物用去离子水进行真空过滤,干燥,得到NiCo(OH)粉末;Step 4. Mix NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea, perform ultrasonic treatment, and then transfer to a high-pressure reactor for hydrothermal treatment to obtain a hydrothermal product; use deionized water to process the hydrothermal product. Vacuum filter and dry to obtain NiCo(OH) powder;
NiCl2·6H2O、CoCl2·6H2O和尿素的摩尔比为1:1:3;The molar ratio of NiCl 2 ·6H 2 O, CoCl 2 ·6H 2 O and urea is 1:1:3;
超声处理时间为25min;水热反应温度为150℃,水热反应时间为22h;The ultrasonic treatment time is 25 minutes; the hydrothermal reaction temperature is 150°C, and the hydrothermal reaction time is 22 hours;
步骤5、将NiCo(OH)粉末、硫脲与H2O混合,超声处理,之后转入高压反应釜中进行水热反应,将得到的水热产物用去离子水进行真空过滤,得到磁性粒子NiCo2S4;Step 5. Mix NiCo(OH) powder, thiourea and H 2 O, conduct ultrasonic treatment, and then transfer it to a high-pressure reactor for hydrothermal reaction. The obtained hydrothermal product is vacuum filtered with deionized water to obtain magnetic particles. NiCo 2 S 4 ;
NiCo(OH)粉末与硫脲的质量比为1:2;The mass ratio of NiCo(OH) powder to thiourea is 1:2;
超声处理时间为25min;水热反应温度为180℃,水热反应时间为15h;The ultrasonic treatment time is 25 minutes; the hydrothermal reaction temperature is 180°C, and the hydrothermal reaction time is 15 hours;
步骤6、将磁性粒子NiCo2S4溶于去离子水中,超声混合均匀,之后倒在步骤3形成的膜上,并抽滤成膜;Step 6. Dissolve the magnetic particles NiCo 2 S 4 in deionized water, mix evenly with ultrasonic, then pour it on the membrane formed in step 3, and filter it with suction to form a membrane;
步骤7、将步骤2中的石墨烯离心液倒在步骤6形成的膜上,并再次抽滤成膜,干燥,即可得到三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯电极材料。剥离石墨烯、NiCo2S4、剥离石墨烯的摩尔比为1:1:1。Step 7. Pour the graphene centrifugal liquid in step 2 onto the membrane formed in step 6, filter it again to form a membrane, and dry it to obtain a sandwich-structured exfoliated graphene-NiCo 2 S 4 -exfoliated graphene electrode material. . The molar ratio of exfoliated graphene, NiCo 2 S 4 and exfoliated graphene is 1:1:1.
将实施例1-3制备得到的三明治结构的剥离石墨烯-NiCo2S4-剥离石墨烯电极材料作为自支撑电极,PVA/H3PO4凝胶作为电解质测试其性能。用科斯特电化学工作站将上述组装好的器件用于循环伏安法的测定。图1是循环伏安特性曲线及比容量随电流密度的变化曲线,在扫描速率增大时保持了良好的形状。The sandwich-structured exfoliated graphene-NiCo 2 S 4 -exfoliated graphene electrode material prepared in Example 1-3 was used as a self-supporting electrode, and PVA/H 3 PO 4 gel was used as the electrolyte to test its performance. The above assembled device was used for cyclic voltammetry measurement using Coster electrochemical workstation. Figure 1 shows the cyclic voltammetry characteristic curve and the change curve of specific capacity with current density, which maintains a good shape when the scan rate increases.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111548712.3A CN114429868B (en) | 2021-12-17 | 2021-12-17 | Preparation method of graphene/cobalt tetrasulfide nickel electrode material with sandwich structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111548712.3A CN114429868B (en) | 2021-12-17 | 2021-12-17 | Preparation method of graphene/cobalt tetrasulfide nickel electrode material with sandwich structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114429868A CN114429868A (en) | 2022-05-03 |
CN114429868B true CN114429868B (en) | 2023-11-28 |
Family
ID=81312297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111548712.3A Active CN114429868B (en) | 2021-12-17 | 2021-12-17 | Preparation method of graphene/cobalt tetrasulfide nickel electrode material with sandwich structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114429868B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118213206B (en) * | 2024-04-10 | 2025-01-03 | 西安理工大学 | Preparation method of flexible self-supporting MXene/graphene/carbon nano tube thin film electrode material |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015008615A1 (en) * | 2013-07-17 | 2015-01-22 | 独立行政法人物質・材料研究機構 | Metal hydroxide alignment electrode material, metal hydroxide-containing electrode, manufacturing method of these, and metal hydroxide-containing capacitor |
WO2015129820A1 (en) * | 2014-02-28 | 2015-09-03 | 独立行政法人物質・材料研究機構 | Lithium-ion supercapacitor using graphene-cnt hybrid electrode and method for manufacturing said lithium-ion supercapacitor |
CN106057497A (en) * | 2016-05-31 | 2016-10-26 | 常州大学 | Sandwich-structured composite graphene paper electrode material preparation method |
KR20180106166A (en) * | 2017-03-17 | 2018-10-01 | 영남대학교 산학협력단 | Preparation method of 3D hierarchical mesoporous NiCo2S4/Ni(OH)2 core-shell nanosheet arrays on 3-dimensional conductive carbon electrode and its application to high performance supercapacitors |
CN110415994A (en) * | 2019-07-23 | 2019-11-05 | 昆明云大新能源有限公司 | A kind of electrochemical energy storage three-dimensional manometer combination electrode material and preparation method thereof |
CN111199834A (en) * | 2020-01-08 | 2020-05-26 | 杭州电子科技大学 | A kind of cobalt sulfide/multilayer graphene composite material and preparation method thereof |
CN111732095A (en) * | 2020-07-16 | 2020-10-02 | 苏州碳素集电新材料有限公司 | Self-supporting graphene manganese dioxide nanowire composite film electrode and preparation method thereof |
WO2021022337A1 (en) * | 2019-08-06 | 2021-02-11 | University Of Technology Sydney | A solid-state supercapacitor and a process for producing a solid-state supercapacitor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104036969A (en) * | 2014-06-27 | 2014-09-10 | 西南大学 | Novel battery super capacitor electrode material with high power density and high energy density and preparing method thereof |
-
2021
- 2021-12-17 CN CN202111548712.3A patent/CN114429868B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015008615A1 (en) * | 2013-07-17 | 2015-01-22 | 独立行政法人物質・材料研究機構 | Metal hydroxide alignment electrode material, metal hydroxide-containing electrode, manufacturing method of these, and metal hydroxide-containing capacitor |
WO2015129820A1 (en) * | 2014-02-28 | 2015-09-03 | 独立行政法人物質・材料研究機構 | Lithium-ion supercapacitor using graphene-cnt hybrid electrode and method for manufacturing said lithium-ion supercapacitor |
CN106057497A (en) * | 2016-05-31 | 2016-10-26 | 常州大学 | Sandwich-structured composite graphene paper electrode material preparation method |
KR20180106166A (en) * | 2017-03-17 | 2018-10-01 | 영남대학교 산학협력단 | Preparation method of 3D hierarchical mesoporous NiCo2S4/Ni(OH)2 core-shell nanosheet arrays on 3-dimensional conductive carbon electrode and its application to high performance supercapacitors |
CN110415994A (en) * | 2019-07-23 | 2019-11-05 | 昆明云大新能源有限公司 | A kind of electrochemical energy storage three-dimensional manometer combination electrode material and preparation method thereof |
WO2021022337A1 (en) * | 2019-08-06 | 2021-02-11 | University Of Technology Sydney | A solid-state supercapacitor and a process for producing a solid-state supercapacitor |
CN111199834A (en) * | 2020-01-08 | 2020-05-26 | 杭州电子科技大学 | A kind of cobalt sulfide/multilayer graphene composite material and preparation method thereof |
CN111732095A (en) * | 2020-07-16 | 2020-10-02 | 苏州碳素集电新材料有限公司 | Self-supporting graphene manganese dioxide nanowire composite film electrode and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
"Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor";Z Ma et al.;《Journal of Colloid and Interface Science》;第602卷;第627-635页 * |
"Vital effect of sufficient vulcanization on the properties of Ni-Co-S/graphene composites for supercapacitor";M Dong et al.;《Chemical Engineering Science》;第第221卷卷;第115709(1-8)页 * |
"石墨烯负载钴镍双金属氢氧化物纳米线的制备与性能研究";秦勇;赵悠;晁磊;王成;储富强;孔泳;陶永新;;《常州大学学报(自然科学版)》;第27卷(第04期);第1-6页 * |
"钴镍硫化物及复合材料的制备及其性能的研究";肖雪纯 等;《电源技术》;第43卷(第11期);第1867-1870页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114429868A (en) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104795252B (en) | Ultra-thin Ti3C2The preparation method of the electrode of super capacitor of nanometer sheet self assembly | |
CN106024408B (en) | A kind of ruthenium-oxide-vulcanization carbon/carbon-copper composite material, using and a kind of electrode slice of ultracapacitor | |
CN103794754A (en) | Composite negative electrode and preparation method thereof as well as electrochemical power source and application thereof | |
CN101236841B (en) | An electric chemical super capacitor making method | |
CN108134055B (en) | Synthesis method of sodium titanate nanobelt/titanium carbide nanosheet composite | |
CN115663157B (en) | A kind of hard carbon composite material for lithium ion battery and preparation method thereof | |
CN104332326A (en) | Asymmetric supercapacitor adding potassium ferricyanide and p-phenylenediamine to dipolar electrolyte and preparation method | |
CN109037592A (en) | Lithium ion battery positive plate, preparation method thereof and lithium ion battery | |
CN110993375A (en) | Method for preparing compact-structure RGO/MXene-sulfuric acid supercapacitor flexible electrode in one step and application thereof | |
CN110311110A (en) | Graphene-based flexible lithium ion battery negative electrode material and testing method thereof | |
CN105047418B (en) | A kind of lithium titanate base lithium ion capacitor | |
CN111591981B (en) | A kind of preparation method of low-layer tulle-like nitrogen-doped graphene | |
CN107611379A (en) | A kind of three-dimensional nickel hydroxide-graphene composite material, its preparation method and application | |
CN114429868B (en) | Preparation method of graphene/cobalt tetrasulfide nickel electrode material with sandwich structure | |
CN112420399B (en) | High-specific-property lithium ion capacitor and preparation method thereof | |
CN112038106B (en) | A kind of electrode material and its preparation method and super capacitor electrode | |
CN113764202A (en) | A kind of preparation method of supercapacitor electrode based on mixed cellulose ester film | |
CN115497753B (en) | A preparation method of polyaniline/bamboo fiber/MXene composite material and its products and applications | |
CN108878161B (en) | Rose-like Ni (OH)2/rGO composite electrode material and preparation method and application thereof | |
CN103280340B (en) | A kind of nickel base electrode material and preparation method thereof | |
CN106848180A (en) | A kind of lithium air battery positive electrode based on electro-deposition conducting polymer technology and preparation method thereof | |
CN116759241A (en) | FeCo for electrochemical energy storage 2 O 4 -Ti 3 C 2 Preparation method of MXene nanocomposite | |
TWI753812B (en) | Method for manufacturing negative electrode material | |
CN116344225A (en) | Carbon nano tube/graphene assembled carbon fiber composite laminated structure wood ceramic electrode and preparation method and application thereof | |
CN108039290A (en) | A kind of method that electrode of super capacitor is prepared based on volume to volume printing technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |