CN114429848B - Multipolar tubular permanent magnet and assembly device and assembly method thereof - Google Patents
Multipolar tubular permanent magnet and assembly device and assembly method thereof Download PDFInfo
- Publication number
- CN114429848B CN114429848B CN202210116049.8A CN202210116049A CN114429848B CN 114429848 B CN114429848 B CN 114429848B CN 202210116049 A CN202210116049 A CN 202210116049A CN 114429848 B CN114429848 B CN 114429848B
- Authority
- CN
- China
- Prior art keywords
- magnetic ring
- magnetic
- pressure plate
- permanent magnet
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000005405 multipole Effects 0.000 claims abstract description 114
- 230000005415 magnetization Effects 0.000 claims abstract description 57
- 238000003825 pressing Methods 0.000 claims description 95
- 230000004888 barrier function Effects 0.000 claims description 84
- 230000001846 repelling effect Effects 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 239000000696 magnetic material Substances 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 9
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0205—Magnetic circuits with PM in general
- H01F7/021—Construction of PM
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0205—Magnetic circuits with PM in general
- H01F7/0221—Mounting means for PM, supporting, coating, encapsulating PM
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
技术领域technical field
本发明涉及永磁体技术领域,特别是一种多极管状永磁体及其装配装置、装配方法。The invention relates to the technical field of permanent magnets, in particular to a multi-pole tubular permanent magnet, an assembling device and an assembling method thereof.
背景技术Background technique
随着磁力驱动装备、家电和信息产业的发展,多极管状永磁体的应用越来越广泛,工业和科技对它的需要越来越迫切。现有的永磁体工业应用过程中,不可避免的需要使用磁极沿着磁环管圆柱表面的轴向或径向交替布置的多极管状永磁体。现有的管状永磁体有Halbach阵列永磁体或组合磁环永磁体等多极永磁体,这类管状永磁体多数采用环形永磁体拼装制得,例如Halbach阵列永磁体由多个环形磁体径向阵列拼接而成,环形磁体之间由于磁体本身的吸引或排斥力,越大块的环形磁体的磁场力就越强,拼装过程中由于磁力作用很容易碰撞损坏,因此,现有的Halbach永磁体多为小型磁力轴承。并且,为了尽可能增大径向磁场应强度,需要尽可能充分利用空间,比如整个圆柱面布满永磁体,现有的组合磁环在轴向或者径向上间隔拼装,存在磁环管磁场强度较小、整体性能不高的问题。With the development of magnetic drive equipment, household appliances and information industry, the application of multi-pole tubular permanent magnets is becoming more and more extensive, and the needs of industry and technology for it are becoming more and more urgent. In the existing industrial application of permanent magnets, it is unavoidable to use multi-pole tubular permanent magnets whose magnetic poles are alternately arranged axially or radially along the cylindrical surface of the magnetic ring tube. Existing tubular permanent magnets include multi-pole permanent magnets such as Halbach array permanent magnets or combined magnetic ring permanent magnets. Most of these tubular permanent magnets are assembled by annular permanent magnets. For example, Halbach array permanent magnets are composed of multiple annular magnets in radial array Spliced together, due to the attractive or repulsive force of the magnet itself, the larger the ring magnet, the stronger the magnetic field force. During the assembly process, it is easy to collide and damage due to the magnetic force. Therefore, the existing Halbach permanent magnets are more For small magnetic bearings. Moreover, in order to increase the intensity of the radial magnetic field as much as possible, it is necessary to make full use of the space as much as possible. For example, the entire cylindrical surface is covered with permanent magnets. The existing combined magnetic rings are assembled at intervals in the axial or radial direction, and there is a magnetic ring tube magnetic field strength. Smaller, lower overall performance issues.
现有的多极永磁体主要通过多极充磁或取向充磁后拼装制得,但由于多极充磁存在充磁困难和成本高的问题;由于稀土永磁较脆,环形永磁体在安装和使用过程中容易发生脆性碎裂,现有的永磁体装配装置无法满足多极永磁体的装配,装配过程中很容易损坏的问题;再者,充磁后拼装的径向多极永磁体,由于磁环之间可能存在很大吸引力或者排斥力,越大块环形磁体的磁场力就越强,目前尚无大直径磁环管的装配方案。Existing multi-pole permanent magnets are mainly assembled by multi-pole magnetization or oriented magnetization, but multi-pole magnetization has the problems of difficult magnetization and high cost; because rare earth permanent magnets are relatively brittle, annular permanent magnets are And brittle fragmentation is prone to occur during use, the existing permanent magnet assembly device cannot meet the assembly of multi-pole permanent magnets, and the problem that it is easy to be damaged during the assembly process; moreover, the radial multi-pole permanent magnets assembled after magnetization, Since there may be a large attractive or repulsive force between the magnetic rings, the larger the ring magnet, the stronger the magnetic field force. At present, there is no assembly scheme for large-diameter magnetic ring tubes.
发明内容Contents of the invention
本发明的目的在于:针对现有技术中由于磁环管永磁体大多采用环形磁体拼装制得,环形磁体之间存在较大的间隔,造成磁环管磁场强度减小、整体性能不高的问题,提供一种多极管状永磁体;针对现有技术中的装配装置和装配方案不能装配成大型多极永磁体、装配过程中易损坏磁性体的问题,提供一种多极管状永磁体的装配装置和装配方法。The purpose of the present invention is to solve the problem that in the prior art, the permanent magnets of the magnetic ring tube are mostly assembled by ring magnets, and there is a large gap between the ring magnets, which causes the magnetic field intensity of the magnetic ring tube to decrease and the overall performance is not high. , providing a multi-pole tubular permanent magnet; aiming at the problem that the assembly device and assembly scheme in the prior art cannot be assembled into a large multi-pole permanent magnet, and the magnetic body is easily damaged during the assembly process, an assembly of a multi-pole tubular permanent magnet is provided Device and method of assembly.
为了实现上述目的,本发明提供的技术方案为:In order to achieve the above object, the technical solution provided by the invention is:
一种多极管状永磁体,具有沿所述多极管状永磁体轴向的多个S-N磁极的磁场回路,包括沿轴向配置的多个磁路单元,每个所述磁路单元包括:沿轴向同轴并顺次邻位配置的第一磁环、第二磁环、第三磁环和第四磁环;所述第一磁环径向内磁化;所述第二磁环轴向磁化;所述第三磁环的磁化方向与所述第一磁环的磁化方向相反;所述第四磁环的磁化方向与所述第二磁环的磁化方向相反;所述第一磁环、所述第二磁环、所述第三磁环和所述第四磁环的内环直径均相同;所述第一磁环、所述第二磁环、所述第三磁环和所述第四磁环的外环直径均相同。A multi-pole tubular permanent magnet has a magnetic field circuit of multiple S-N magnetic poles along the axial direction of the multi-pole tubular permanent magnet, and includes a plurality of magnetic circuit units arranged along the axial direction, each of which includes: A first magnetic ring, a second magnetic ring, a third magnetic ring, and a fourth magnetic ring arranged axially coaxially and adjacently in sequence; the first magnetic ring is magnetized radially inward; the second magnetic ring is axially Magnetization; the magnetization direction of the third magnetic ring is opposite to the magnetization direction of the first magnetic ring; the magnetization direction of the fourth magnetic ring is opposite to the magnetization direction of the second magnetic ring; the first magnetic ring , the inner ring diameters of the second magnetic ring, the third magnetic ring and the fourth magnetic ring are all the same; the first magnetic ring, the second magnetic ring, the third magnetic ring and the The diameters of the outer rings of the fourth magnetic rings are all the same.
本方案中,所述轴向是指所述多极管状永磁体中的各个磁环的轴向,亦指装配好的该多极管状永磁体的轴向。所述径向是指所述轴向是指所述多极管状永磁体中的各个磁环的径向,亦指装配好的该多极管状永磁体的径向。所述邻位指相邻位置。In this solution, the axial direction refers to the axial direction of each magnetic ring in the multipolar tubular permanent magnet, and also refers to the axial direction of the assembled multipolar tubular permanent magnet. The radial direction refers to the radial direction of each magnetic ring in the multipolar tubular permanent magnet, and also refers to the radial direction of the assembled multipolar tubular permanent magnet. The ortho position refers to an adjacent position.
本发明提供的技术方案,采用环形磁性体与环形磁体拼接,所述第一磁环、所述第二磁环、所述第三磁环、所述第四磁环顺次两两相邻配置,避免了因所拼装的磁性体在轴向或径向存在间隔,磁场强度减小、整体性能不高的问题。In the technical solution provided by the present invention, the annular magnetic body is spliced with the annular magnet, and the first magnetic ring, the second magnetic ring, the third magnetic ring, and the fourth magnetic ring are arranged adjacent to each other in sequence , to avoid the problems of reduced magnetic field strength and low overall performance due to the axial or radial spacing of the assembled magnetic bodies.
该多极管状永磁体的所述第一磁环径向内磁化、所述第二磁环轴向磁化、所述第三磁环的磁化方向与所述第一磁环磁化方向相反,所述第四磁环的磁化方向与所述第二磁环的磁化方向相反,将所述第一磁环、所述第二磁环、所述第三磁环、所述第四磁环沿磁环的顺次邻位配置,在所述磁路单元的外部就形成了一个S-N磁极的磁场回路,再通过将多个磁路单元沿轴向邻位配置,就形成沿所述多极管状永磁体轴向的多个S-N磁极的磁场回路,形成轴向交替多极磁极的永磁体的,同时,该多极管状永磁体的轴向和径向均布满环状磁性体,从而增强了磁场强度,提高了多极管状永磁体的性能。In the multi-pole tubular permanent magnet, the first magnetic ring is radially magnetized, the second magnetic ring is axially magnetized, and the magnetization direction of the third magnetic ring is opposite to the magnetization direction of the first magnetic ring. The magnetization direction of the fourth magnetic ring is opposite to that of the second magnetic ring, and the first magnetic ring, the second magnetic ring, the third magnetic ring, and the fourth magnetic ring are placed along the magnetic ring The sequential adjacent configuration, a magnetic field circuit of S-N magnetic poles is formed outside the magnetic circuit unit, and then a plurality of magnetic circuit units are arranged adjacent to each other in the axial direction to form a permanent magnet along the multi-pole tube. The magnetic field circuit of multiple S-N magnetic poles in the axial direction forms a permanent magnet with alternating multi-pole magnetic poles in the axial direction. At the same time, the axial and radial directions of the multi-polar tubular permanent magnet are covered with ring-shaped magnetic bodies, thereby enhancing the magnetic field strength. , which improves the performance of multipole tubular permanent magnets.
作为本发明的优选方案,所述第一磁环、所述第三磁环为金属磁性体;所述第二磁环和所述第四磁环为永磁体。本方案通过采用金属磁性体和永磁体交叉配置,保障永磁体整体性能的基础上,节约了永磁体的用料,降低了成本。As a preferred solution of the present invention, the first magnetic ring and the third magnetic ring are metal magnetic bodies; the second magnetic ring and the fourth magnetic ring are permanent magnets. In this solution, metal magnetic bodies and permanent magnets are cross-arranged to ensure the overall performance of the permanent magnets, save the materials used for the permanent magnets, and reduce the cost.
作为本发明的优选方案,所述磁路单元还包括可选配的:第五磁环、第六磁环、第七磁环和第八磁环;所述第五磁环配置在所述第一磁环和所述第二磁环之间,所述第五磁环斜向内磁化;所述第六磁环配置在所述第二磁环和所述第三磁环之间,所述第六磁环的磁化方向为所述第五磁环的磁化方向沿顺时针旋转90°的方向;所述第七磁环配置在所述第三磁环和所述第四磁环之间,所述第七磁环的磁化方向与所述第五磁环的磁化方向相反;所述第八磁环沿轴向配置在所述第四磁环相邻的位置,第八磁环的磁化方向与所述第六磁环的磁化方向相反;所述第五磁环、所述第六磁环、所述第七磁环和所述第八磁环的内环直径均与所述第一磁环的内环直径相同;所述第五磁环、所述第六磁环、所述第七磁环和所述第八磁环的外环直径均与所述第一磁环的外环直径相同。As a preferred solution of the present invention, the magnetic circuit unit further includes optional: a fifth magnetic ring, a sixth magnetic ring, a seventh magnetic ring and an eighth magnetic ring; the fifth magnetic ring is arranged on the Between the first magnetic ring and the second magnetic ring, the fifth magnetic ring is magnetized obliquely inward; the sixth magnetic ring is arranged between the second magnetic ring and the third magnetic ring, and the The magnetization direction of the sixth magnetic ring is a direction in which the magnetization direction of the fifth magnetic ring rotates 90° clockwise; the seventh magnetic ring is arranged between the third magnetic ring and the fourth magnetic ring, The magnetization direction of the seventh magnetic ring is opposite to that of the fifth magnetic ring; the eighth magnetic ring is arranged axially adjacent to the fourth magnetic ring, and the magnetization direction of the eighth magnetic ring The magnetization direction of the sixth magnetic ring is opposite; the inner ring diameters of the fifth magnetic ring, the sixth magnetic ring, the seventh magnetic ring and the eighth magnetic ring are all the same as the first magnetic ring. The diameter of the inner ring of the ring is the same; same.
该实施方案中,所述斜向内,指与所述轴向、径向均存在夹角的斜向,而斜向内指不但斜向而且向内环一方倾斜,即,斜向内方向与径向内方向的夹角为锐角。In this embodiment, the obliquely inward refers to an oblique direction that has an included angle with both the axial and radial directions, and obliquely inward refers to not only obliquely but also inclined toward the inner ring, that is, the obliquely inward direction is the same as that of the inner ring. The included angle in the radially inner direction is an acute angle.
该实施方案通过在所述第一磁环和所述第二磁环之间配置斜向内磁化的第五磁环,而所述第一磁环为径向内磁环,所述第二磁环为轴向磁化。所述第五磁环配置后,根据磁场强度矢量叠加原理,所述第五磁环的磁场强度填补了斜向内的磁场强度矢量,使磁场更密集,达到增强磁场强度的目的,同理,所述第六磁环、所述第七磁环和所述第八磁环的配置,均达到增强磁场应强度的目的,从而提升了该多极管状永磁体整体性能。In this embodiment, an obliquely inwardly magnetized fifth magnetic ring is arranged between the first magnetic ring and the second magnetic ring, and the first magnetic ring is a radially inner magnetic ring, and the second magnetic ring The ring is axially magnetized. After the fifth magnetic ring is configured, according to the magnetic field strength vector superposition principle, the magnetic field strength of the fifth magnetic ring fills the obliquely inward magnetic field strength vector, making the magnetic field denser and achieving the purpose of enhancing the magnetic field strength. Similarly, The configurations of the sixth magnetic ring, the seventh magnetic ring and the eighth magnetic ring all achieve the purpose of enhancing the strength of the magnetic field, thereby improving the overall performance of the multipolar tubular permanent magnet.
作为本发明的优选方案,所述第一磁环、所述第二磁环、所述第三磁环、所述第四磁环、所述第五磁环、所述第六磁环、所述第七磁环、所述第八磁环均为永磁体。本方案通过均采用永磁体配置进一步提高了该多极管状永磁体的整体性能。As a preferred solution of the present invention, the first magnetic ring, the second magnetic ring, the third magnetic ring, the fourth magnetic ring, the fifth magnetic ring, the sixth magnetic ring, the Both the seventh magnetic ring and the eighth magnetic ring are permanent magnets. This solution further improves the overall performance of the multi-pole tubular permanent magnet by adopting permanent magnet configuration.
作为本发明的优选方案,所述第五磁环的磁化方向为所述第一磁环的磁化方向沿顺时针旋转45°的方向。由上述可知,所述第一磁环的磁化方向为径向内磁化,所述第二磁环的磁化方向为轴向磁化,将斜向内磁化的所述第五磁环采取磁化方向与径向内磁化方向夹角为45°,根据磁场应强度矢量叠加原理,使所述第五磁环在所述第一磁环和所述第二磁环磁化方向上的分矢量大小均等,且分量贡献为正值,从而使磁场在斜向内更密集,进一步增强了整体的磁场强度,进一步提高了该永磁体的整体性能。As a preferred solution of the present invention, the magnetization direction of the fifth magnetic ring is a direction in which the magnetization direction of the first magnetic ring rotates clockwise by 45°. It can be seen from the above that the magnetization direction of the first magnetic ring is radially inwardly magnetized, the magnetization direction of the second magnetic ring is axially magnetized, and the magnetization direction of the fifth magnetic ring that is magnetized obliquely inwardly is in the same direction as the radial direction. The angle of the inward magnetization direction is 45°. According to the principle of superposition of the magnetic field strength vector, the component vectors of the fifth magnetic ring in the magnetization direction of the first magnetic ring and the second magnetic ring are equal in size, and the components The contribution is a positive value, so that the magnetic field is denser in the oblique direction, the overall magnetic field strength is further enhanced, and the overall performance of the permanent magnet is further improved.
针对现有技术中的装配装置在装配过程中易损坏磁性体,不能装配成大型多极永磁体的问题,本发明提供的技术方案为:In view of the problem that the assembly device in the prior art is easy to damage the magnetic body during the assembly process and cannot be assembled into a large multi-pole permanent magnet, the technical solution provided by the present invention is:
一种多极管状永磁体的装配装置,包括:内套管、隔挡组件和底座;所述内套管、所述隔挡组件的材质均为非磁性材料;所述内套管的下端与所述底座与固定连接,所述内套管用于束缚所述多极管状永磁体的各个磁环沿轴向排列;所述隔挡组件包括:隔挡套管、多个套管通孔、多个锁定销;An assembly device for a multi-pole tubular permanent magnet, comprising: an inner sleeve, a barrier assembly and a base; the materials of the inner sleeve and the barrier assembly are non-magnetic materials; the lower end of the inner sleeve and the The base is fixedly connected, and the inner sleeve is used to bind the magnetic rings of the multi-pole tubular permanent magnet to be arranged in the axial direction; the barrier assembly includes: a barrier sleeve, a plurality of sleeve through holes, a plurality of a locking pin;
所述隔挡套管的内径与所述磁环的外径相当;所述套管通孔开设在所述隔挡套管的侧壁;所述锁定销的一端穿过所述套管通孔并延伸至所述隔挡套管内部,所述锁定销延伸至所述隔挡套管的部分用于支撑放入所述隔挡套管内的磁环,所述锁定销延伸至所述隔挡套管内的一端设置斜面。The inner diameter of the barrier sleeve is equivalent to the outer diameter of the magnetic ring; the through hole of the sleeve is opened on the side wall of the barrier sleeve; one end of the locking pin passes through the through hole of the sleeve And extend to the inside of the barrier sleeve, the part of the locking pin extending to the barrier sleeve is used to support the magnetic ring placed in the barrier sleeve, the locking pin extends to the barrier One end inside the casing is provided with a slope.
所述内套管起到限定沿轴向叠放的相邻磁环的位置,将需要装配的磁环放置并套装在内套管外,所述管状永磁体的各个磁环能够沿轴向同轴并顺次邻位配置。The inner casing serves to limit the position of the adjacent magnetic rings stacked in the axial direction, and the magnetic rings to be assembled are placed and sleeved outside the inner casing, and each magnetic ring of the tubular permanent magnet can be aligned axially. Axes are arranged adjacently in sequence.
该实施方案,在需要装配相互吸引的两个所述磁环时,先将所述锁定销穿过所述套管通孔并伸入所述隔挡套管内,所述隔挡组件中的隔挡套管用于放置将要装配的相互吸引的两个磁环中的一个,再把隔挡组件携带一个磁环向另一个磁环靠近,所述锁定销伸入所述隔挡套管内的一端就阻挡并支撑在相互吸引的两个磁环之间。所述锁定销延伸至所述隔挡套管内的一端设置斜面,通过沿径向缓慢向外抽出所述锁定销,使所述隔挡套管内的一个磁与另一个磁环的间隔缓慢减小。In this embodiment, when it is necessary to assemble the two magnetic rings that attract each other, the locking pin is first passed through the through hole of the sleeve and inserted into the barrier sleeve, and the barrier in the barrier assembly The blocking sleeve is used to place one of the two magnetic rings that are attracted to each other to be assembled, and then the blocking assembly carries one magnetic ring close to the other magnetic ring, and the end of the locking pin that extends into the blocking sleeve is Blocked and supported between two magnetic rings that attract each other. An inclined surface is provided at one end of the locking pin extending into the barrier sleeve, and the distance between one magnetic ring and the other magnetic ring in the barrier sleeve is slowly reduced by slowly pulling out the locking pin in the radial direction. .
该隔挡组件配合所述内套管使用,如此实现隔挡和缓慢靠紧的效果。从而避免了因磁场力作用使两个相互吸引的磁环快速靠紧造成碰撞损坏,避免了装配磁环易损坏的问题,大大降低了被装配磁环损坏率。The barrier assembly is used in conjunction with the inner sleeve, so that the effects of barrier and slow abutment are realized. Thus avoiding collision damage caused by two magnetic rings attracting each other quickly due to the action of the magnetic field force, avoiding the problem that the assembled magnetic ring is easily damaged, and greatly reducing the damage rate of the assembled magnetic ring.
在装配大型的多极永磁体时,大型磁性体的组装耗费人力,特别是大型磁性体的磁场力更大,装配中相邻磁性体若存在吸引力则相互吸引很容易碰撞或损坏装配设备,传统的装配装置不能克服很大的磁场力实现装配。本发明所述的多极管状永磁体的装配装置通过内套管、隔挡组件的配合使用,内套管能够支撑并束缚大型的磁环,隔挡组件通过隔挡作用能够隔挡在具有大磁场力的两个相互吸引的磁环之间,避免了因磁场力较大而碰撞的问题,从而适宜于装配大型管状多极永磁体。When assembling large-scale multi-pole permanent magnets, the assembly of large-scale magnetic bodies is labor-intensive, especially the magnetic field force of large-scale magnetic bodies is greater. If there is an attractive force in the assembly, adjacent magnetic bodies will attract each other and easily collide or damage the assembly equipment. Traditional assembly devices cannot overcome a large magnetic field force to achieve assembly. The assembly device of the multi-pole tubular permanent magnet described in the present invention is used in cooperation with the inner casing and the barrier assembly, the inner sleeve can support and bind a large magnetic ring, and the barrier assembly can block a large magnetic ring through the barrier effect. The problem of collision due to a large magnetic field force is avoided between two mutually attracting magnetic rings of the magnetic field force, so that it is suitable for assembling a large tubular multi-pole permanent magnet.
作为本发明的优选方案,所述多极管状永磁体的装配装置还包括:压紧组件;所述压紧组件包括:压紧组件;所述压紧组件包括:第一压板、第二压板、第一拉杆和第二拉杆和压板螺母;As a preferred solution of the present invention, the assembly device of the multi-pole tubular permanent magnet further includes: a pressing assembly; the pressing assembly includes: a pressing assembly; the pressing assembly includes: a first pressing plate, a second pressing plate, The first tie rod and the second tie rod and the pressure plate nut;
所述第一压板开设有第一开口、第一开槽和至少三个第一压板通孔;所述第二压板开设有第二开口、第二开槽和至少三个第二压板通孔;The first pressing plate is provided with a first opening, a first slot and at least three through holes of the first pressing plate; the second pressing plate is provided with a second opening, a second slot and at least three through holes of the second pressing plate;
所述第一开口的宽度大于所述内套管的直径,所述第一开口的宽度小于所述多极管状永磁体的外径;所述第一开槽的一端封闭,所述第一开槽的另一端与所述第一开口连通,所述第一开槽的宽度大于所述压板螺母的外径;所有所述第一压板通孔以所述第一开口为中心对称布置;所述第一压板通孔供所述第一拉杆穿过;The width of the first opening is larger than the diameter of the inner casing, and the width of the first opening is smaller than the outer diameter of the multi-pole tubular permanent magnet; one end of the first slot is closed, and the first opening The other end of the groove communicates with the first opening, and the width of the first slot is larger than the outer diameter of the pressure plate nut; all the through holes of the first pressure plate are symmetrically arranged around the first opening; the The through hole of the first pressure plate is used for the passage of the first pull rod;
所述第二开口的宽度大于所述内套管的直径,所述第二开口的宽度小于所述多极管状永磁体的外径;所述第二开槽的一端封闭,所述第二开槽的另一端与所述第二开口连通,所述第二开槽的宽度大于所述压板螺母的外径;所有所述第二压板通孔以所述第二开口为中心对称布置;所述第二压板通孔供所述第二拉杆穿过;The width of the second opening is greater than the diameter of the inner casing, and the width of the second opening is smaller than the outer diameter of the multipole tubular permanent magnet; one end of the second slot is closed, and the second opening The other end of the groove communicates with the second opening, and the width of the second slot is larger than the outer diameter of the pressure plate nut; all the through holes of the second pressure plate are symmetrically arranged around the second opening; the The through hole of the second pressure plate is used for the passage of the second tie rod;
所述第一拉杆和所述第二拉杆的一端都可拆卸连接于所述底座;所述第一拉杆的个数与所述第一压板通孔的个数相同;所述第二拉杆的个数与所述第二压板通孔的个数相同;所述压板螺母与所述第一拉杆的个数相匹配,所述压板螺母与所述第一拉杆螺栓连接。One end of the first pull rod and the second pull rod are detachably connected to the base; the number of the first pull rod is the same as the number of through holes of the first pressure plate; the number of the second pull rod The number is the same as the number of through holes of the second pressure plate; the number of the pressure plate nuts matches the number of the first tie rods, and the pressure plate nuts are connected with the first tie rods by bolts.
该优选方案,在需要装配相互排斥的所述磁环时,通过所述压紧组件和所述内套管、底座的配合使用,所述压紧组件的第一压板和第二压板上开设有供所述内套管通过的第一开口,实现第一压板和第二压板能够套在所述内套管外;所述第一开口的宽度大于所述内套管的外径,小于所述磁环的外径,所述第一压板沿所述内套管轴向移动来推动所述内套管外已套装的相互排斥的所述磁环靠紧,实现了装配该多极管状永磁体的各个磁环邻位配置,并通过压紧力作用,减小了各磁环间的间隔,能够避免传统装配装置装配的多极永磁体的磁性体之间存在间隙造成磁性能较低的问题;In this preferred solution, when it is necessary to assemble the magnetic rings that repel each other, through the cooperative use of the pressing assembly, the inner sleeve and the base, the first pressing plate and the second pressing plate of the pressing assembly are provided with The first opening for the inner sleeve to pass through enables the first pressing plate and the second pressing plate to be placed outside the inner sleeve; the width of the first opening is larger than the outer diameter of the inner sleeve and smaller than the outer diameter of the inner sleeve. The outer diameter of the magnetic ring, the first pressure plate moves axially along the inner sleeve to push the mutually repulsive magnetic rings fitted outside the inner sleeve close together, realizing the assembly of the multi-pole tubular permanent magnet Each magnetic ring is arranged adjacent to each other, and the space between the magnetic rings is reduced through the action of the pressing force, which can avoid the problem of low magnetic performance caused by the gap between the magnetic bodies of the multi-pole permanent magnet assembled by the traditional assembly device ;
本方案所提供的装配装置,所述第一压板开设有第一开槽和第一压板通孔,所述第二压板开设有第二开槽和第二压板通孔,并且设置了与第一压板通孔相同个数的第一拉杆,与第二压板通孔个数相同的第二拉杆。使用时,首先固定第一拉杆并放置第一压板后,再将所述第二压板叠放再所述第一压板上,叠放第二压板时,不仅需要将所述第二开口通过所述内套管,并且需要将所述第二开槽的封闭端与已经放置好的第一压板上的一个所第一压板通孔轴向对齐,还需要将一个所述第二压板通孔与已经放置好的第一压板上的第一开槽的封闭端轴向对齐;如此轴向堆叠、径向交叉的放置第一压板和第二压板,一方面可以通过推动其中一个压板压紧相互排斥的所述磁环,通过固定其中一个压板使相互排斥的磁环被压紧;另一方面,保持其中一个压板压紧相互排斥的所述磁环的同时,通过拆除所述第一拉杆及对应的压板螺母,就能够从径向能拆除第一压板,实现保持一块压板压紧相互排斥磁环的同时,拆除另外一块压板循环利用;同理,如果使用中,第二压板位于第一压板的下方时,保持第一压板压紧相互排斥的所述磁环时,能够从径向拆除所述第二压板以循环使用,实现保持压紧相互排斥的所述磁环的同时,循环使用所述第一压板和所述第二压板,提高了该装配装置使用的灵活度,使用更方便,有助于提高工作效率。In the assembly device provided by this solution, the first pressing plate is provided with a first slot and a first pressing plate through hole, the second pressing plate is opened with a second slot and a second pressing plate through hole, and is provided with the first The first tie rods have the same number of through holes in the pressing plate, and the second tie rods have the same number of through holes in the second pressing plate. When in use, first fix the first pull rod and place the first pressure plate, then stack the second pressure plate on the first pressure plate, when stacking the second pressure plate, not only need to pass the second opening through the Inner sleeve, and the closed end of the second slot needs to be axially aligned with one of the first pressure plate through holes on the first pressure plate that has been placed, and one of the second pressure plate through holes needs to be aligned with the already placed The closed ends of the first slots on the placed first pressing plate are axially aligned; such that the first pressing plate and the second pressing plate are stacked axially and radially intersected, on the one hand, one of the pressing plates can be pushed to compress the mutually exclusive For the magnetic ring, by fixing one of the pressure plates, the mutually repulsive magnetic rings are compressed; on the other hand, while keeping one of the pressure plates to compress the mutually exclusive magnetic rings, by removing the first pull rod and the corresponding The pressure plate nut can remove the first pressure plate from the radial direction, so as to keep one pressure plate tightly and repel the magnetic ring while removing the other pressure plate for recycling; similarly, if it is in use, the second pressure plate is located below the first pressure plate When the first pressing plate is kept to press the magnetic rings that repel each other, the second pressing plate can be removed from the radial direction for recycling, so as to keep pressing the magnetic rings that are mutually exclusive and recycle the first The first pressing plate and the second pressing plate improve the flexibility of the assembly device, are more convenient to use, and help to improve work efficiency.
装配大型管状永磁体时,人力或机械能够克服相互排斥的磁环之间的磁场力时,通过人力压紧压板即可减小磁环之间的间隔,在人力难以克服较大排斥的磁场力时,所述第一压板和所述第二压板分别穿过所述第一拉杆和第二拉杆,通过在所述第一拉杆或第二上安装压板螺母,朝有磁环的方向拧紧螺母推动压板,通过螺母的旋进来压紧相互排斥的磁环,相比于人力对所述磁环做更大的功,能够用于克服很大磁场力实现装配,从而更加适宜大型管状多极永磁体的装配。When assembling a large tubular permanent magnet, when manpower or machinery can overcome the magnetic force between the magnetic rings that repel each other, the space between the magnetic rings can be reduced by pressing the pressure plate manually. , the first pressing plate and the second pressing plate pass through the first pull rod and the second pulling rod respectively, and by installing the pressing plate nut on the first pulling rod or the second pulling rod, tighten the nut in the direction of the magnetic ring to push The pressure plate compresses the magnetic rings that repel each other through the screwing of the nuts. Compared with manpower, it does more work on the magnetic rings, and can be used to overcome a large magnetic field force to achieve assembly, so it is more suitable for large tubular multi-pole permanent magnets assembly.
针对现有技术中的装配方案在装配过程中易损坏磁性体,不能装配成大型多极永磁体的问题,本发明提供了一种多极管状永磁体的装配方法,并使用本发明提供的多极管状永磁体的装配装置,包括以下步骤:In view of the problem that the assembly scheme in the prior art is easy to damage the magnetic body during the assembly process and cannot be assembled into a large multi-pole permanent magnet, the present invention provides an assembly method for a multi-pole tubular permanent magnet, and uses the multi-pole permanent magnet provided by the present invention An assembly device for a pole tubular permanent magnet, comprising the following steps:
步骤一:固定连接所述内套管和所述底座;Step 1: fixedly connecting the inner casing and the base;
步骤二:将所述多极管状永磁体的各个磁环逐个沿轴向套装在所述内套管外,在套装相互吸引的相邻两个所述磁环时,使用所述隔挡组件,具体包括以下步骤S:Step 2: Fit each magnetic ring of the multi-pole tubular permanent magnet axially outside the inner casing one by one, and use the barrier assembly when fitting two adjacent magnetic rings that attract each other, Specifically include the following steps S:
步骤S1:放置两个相互吸引所述磁环中的一个在所述隔挡套管内;Step S1: placing one of the two magnetic rings that attract each other in the barrier sleeve;
步骤S2:将步骤S1中的隔挡组件和所述磁环同时沿轴向靠近另一个所述磁环;Step S2: bringing the barrier assembly and the magnetic ring in step S1 close to the other magnetic ring in the axial direction at the same time;
步骤S3:沿径向逐渐抽出所述锁定销,使相邻两个所述磁环靠紧;Step S3: gradually withdrawing the locking pin in the radial direction, so that two adjacent magnetic rings are close together;
步骤S4:把所述隔挡套管从所述磁环上取掉;Step S4: removing the barrier sleeve from the magnetic ring;
步骤三:用粘结剂将所述多极管状永磁体的相邻两个所述磁环粘结。Step 3: bonding two adjacent magnetic rings of the multi-pole tubular permanent magnet with an adhesive.
该多极管状永磁体的装配方法,由于需要将所述多极管状永磁体的各个磁环相邻配置,在装配相邻两个相互吸引的磁环时,通过步骤二中结合使用隔挡组件,不影响套装的情况下,使相邻两个磁环可以缓慢靠紧,避免了因磁场力而相互吸引发生碰撞损坏,从而解决传统的装配方案在装配过程中易损坏磁性体的问题。In the assembly method of the multi-pole tubular permanent magnet, since each magnetic ring of the multi-pole tubular permanent magnet needs to be arranged adjacent to each other, when assembling two adjacent magnetic rings that attract each other, the barrier assembly is used in combination in
作为本发明的优选方案,所述步骤三替换为:将内套管螺母螺栓连接于所述内套管的上端,使所述多极管状永磁体的每个磁环束缚在所述内套管上。本优选方案,用内套管螺母螺栓连接于所述内套管,通过用内径小于所述磁环外径的内套管螺母螺栓连接在所述内套管端部,能够抵住磁环不沿轴向滑动,而不用拆除底座,从而使所述多极管状永磁体的每个磁环固定在所述内套管上,达到使多极管状永磁体在装运中比较牢固,保存完整的目的,方便使用,利于保存。As a preferred solution of the present invention, the third step is replaced by: connecting the inner sleeve nut and bolt to the upper end of the inner sleeve, so that each magnetic ring of the multi-pole tubular permanent magnet is bound to the inner sleeve superior. In this preferred solution, the inner casing nut bolts are used to connect the inner casing, and the inner casing nut bolts with an inner diameter smaller than the outer diameter of the magnetic ring are connected to the end of the inner casing, so that the magnetic ring can not be resisted. Sliding in the axial direction without removing the base, so that each magnetic ring of the multi-pole tubular permanent magnet is fixed on the inner sleeve, so that the multi-pole tubular permanent magnet is relatively firm in shipment and preserved intact , easy to use and conducive to preservation.
作为本发明的优选方案,上述多极管状永磁体的装配方法所述步骤二当套装相互排斥的相邻所述磁环时,使用所述压紧组件,包括步骤T:As a preferred solution of the present invention, the second step of the assembly method of the multi-pole tubular permanent magnet is to use the pressing assembly when the adjacent magnetic rings that repel each other are set, including step T:
步骤T1:将第一拉杆的一端固定于所述底座,将所述第一拉杆沿周向阵列地竖立在所述内套管的外侧;Step T1: fixing one end of the first tie rods to the base, and erecting the first tie rods in a circumferential array on the outside of the inner sleeve;
步骤T2:将相互排斥的相邻所述磁环沿轴向套在所述内套管外;Step T2: Put the adjacent magnetic rings that repel each other axially outside the inner casing;
步骤T3:沿轴向放置所述第一压板在步骤T2中所述磁环的上方,使所述第一开口通过所述内套管,使所述第一压板通孔通过第一拉杆;Step T3: place the first pressure plate axially above the magnetic ring in step T2, make the first opening pass through the inner sleeve, and make the through hole of the first pressure plate pass through the first pull rod;
步骤T4:推压所述第一压板,使相互排斥的所述磁环靠紧;Step T4: pushing the first pressing plate to make the mutually repelling magnetic rings close together;
步骤T5:把所述压板螺母分别螺栓连接于所述第一拉杆的上端;拧紧所述压板螺母,使所述第一压板压紧所述磁环;Step T5: Bolt the nuts of the pressure plate to the upper end of the first pull rod respectively; tighten the nuts of the pressure plate so that the first pressure plate compresses the magnetic ring;
步骤T6:放置所述第二压板在所述第一压板上;将所述第二开槽的封闭的一端与一个所述第一压板通孔轴向对齐;将一个所述第二压板通孔与所述第一开槽封闭的一端轴向对齐;Step T6: placing the second pressure plate on the first pressure plate; axially aligning the closed end of the second slot with a through hole of the first pressure plate; aligning a through hole of the second pressure plate axially aligned with the closed end of the first slot;
步骤T7:将所述第二拉杆穿过所述第二压板通孔并固定连接于所述底座;Step T7: passing the second pull rod through the through hole of the second pressure plate and fixedly connecting it to the base;
步骤T8:将所述压板螺母分别螺栓连接于所述第二拉杆的上端,拧紧所述压板螺母,使所述第二压板压紧所述第一压板;Step T8: Bolt the nuts of the pressure plate to the upper end of the second pull rod respectively, tighten the nuts of the pressure plate, so that the second pressure plate presses the first pressure plate;
步骤T9:拆除与所述第一拉杆连接的所述压板螺母和所述第一拉杆;沿径向向外拆除所述第一压板;Step T9: removing the pressure plate nut connected to the first pull rod and the first pull rod; removing the first pressure plate radially outward;
步骤T10:再次套装相互排斥的磁环时,重复步骤T1至T4后拆除所述第二压板备用。Step T10: When refitting the magnetic rings repelling each other, repeat steps T1 to T4 and remove the second pressing plate for use.
本优选方案,在装配相互排斥的磁环时,通过在所述步骤二中结合使用压紧组件,不影响套装的情况下压紧相互排斥的所述磁环,更能减小相邻磁环间的间隙,从而提高了装配的多极永磁体的整体性能;另外,通过步骤T,能够保持其中一块压紧所述磁环管的同时,沿内套管的径向单独拆除另一块压板,使用步骤更操作方便,节省人力,提高了装配的效率。In this preferred solution, when assembling mutually exclusive magnetic rings, by combining the use of the compression assembly in the second step, the magnetic rings that are mutually exclusive are compressed without affecting the set, and the adjacent magnetic rings can be reduced. gap between them, thereby improving the overall performance of the assembled multi-pole permanent magnet; in addition, through step T, while one of them can be kept to press the magnetic ring tube, the other pressing plate can be separately removed along the radial direction of the inner casing, The use steps are more convenient to operate, save manpower, and improve the efficiency of assembly.
综上所述,本发明的有益效果是:In summary, the beneficial effects of the present invention are:
1.本发明所述多极管状永磁体通过将磁环与磁环沿轴向相邻配置,避免了传统组合永磁体中采用扇形拼装导致易损坏的问题,该多极管状永磁体的轴向和径向均布满磁性体,增强了磁场强度,从而提高了多极管状永磁体的整体性能;1. The multi-pole tubular permanent magnet of the present invention avoids the problem of easy damage caused by fan-shaped assembly in traditional combined permanent magnets by arranging the magnetic ring and the magnetic ring adjacent to the axial direction. Both the radial and radial directions are covered with magnetic bodies, which enhances the magnetic field strength, thereby improving the overall performance of the multi-pole tubular permanent magnet;
2.本发明所述多极管状永磁体,通过配置斜向内磁化的磁环,填补了轴向或径向磁场强度矢量在斜向内的空位,使磁场更密集,从而达到增强磁场强度的目的,提升了该多极管状永磁体整体性能;2. The multi-pole tubular permanent magnet of the present invention fills the vacancy of the axial or radial magnetic field intensity vector in the oblique direction by configuring the magnetic ring magnetized obliquely inwardly, so that the magnetic field is denser, thereby achieving the effect of enhancing the magnetic field intensity The purpose is to improve the overall performance of the multi-pole tubular permanent magnet;
3.本发明所述多极管状永磁体的装配装置,所述内套管起到支撑和限定所要装配的磁环位置的作用,所述隔挡组件配合所述内套管使用,能将相邻两个磁环先靠紧再套装在所述内套管外,或者先套装一个磁环在所述内套管外,再用隔挡组件使另外一个磁环缓慢靠紧所述内套管外的磁环,均能实现隔挡和缓慢靠紧的效果,避免了因磁场力作用使两个相互吸引的磁环快速靠紧造成碰撞损坏,避免了装配磁环易损坏的问题,大大降低了被装配磁环损坏率;3. The assembly device of the multi-pole tubular permanent magnet of the present invention, the inner sleeve plays the role of supporting and limiting the position of the magnetic ring to be assembled, and the barrier assembly is used in conjunction with the inner sleeve, which can The two adjacent magnetic rings are close first and then installed outside the inner casing, or one magnetic ring is first installed outside the inner casing, and then the other magnetic ring is slowly pressed against the inner casing with a barrier assembly The outer magnetic ring can achieve the effect of blocking and slowly closing, avoiding the collision damage caused by the magnetic field force that makes the two magnetic rings that attract each other quickly close together, avoiding the problem of easy damage to the assembled magnetic ring, and greatly reducing the The damage rate of the magnetic ring assembled;
4.多极管状永磁体的装配装置通过内套管、隔挡组件的配合使用,内套管能够支撑并套装大型的磁环,隔挡组件的使用通过支撑就能够隔挡在具有大磁场力的两个相互吸引的磁环之间,避免了因磁场力较大而碰撞的问题,具有适宜于装配大型管状多极永磁体的优点;进一步通过压紧组件的结合,能够克服较大的磁场力作用,从而减小了各磁环间的间隔,提高了所装配的管状永磁体的整体性能,并且使用方便;4. The assembly device of the multi-pole tubular permanent magnet is used in conjunction with the inner sleeve and the barrier assembly. The inner sleeve can support and fit a large magnetic ring. Between the two magnetic rings that attract each other, the problem of collision due to large magnetic field force is avoided, and it has the advantage of being suitable for assembling large-scale tubular multi-pole permanent magnets; further, through the combination of compression components, it can overcome a large magnetic field Force action, thereby reducing the interval between the magnetic rings, improving the overall performance of the assembled tubular permanent magnet, and easy to use;
5.该多极管状永磁体的装配方法的方案,通过所述步骤一至步骤三,结合所述内套管、底座、隔挡组件的使用,能够使所述管状永磁体的各个磁环能够沿轴向同轴并顺次邻位配置的同时,使所装配的磁环与磁环之间更紧密相邻,提高该多极管状永磁体的整体性能;通过步骤二装配相互吸引的相邻两个磁环时,相邻两个磁环可以缓慢靠紧,避免了因磁场力而相互吸引发生碰撞损坏,解决传统的装配方案在装配过程中易损坏磁性体的问题,具有降低装配永磁体损坏率的效果;进一步配合使用压紧组件使用,通过装配相互排斥的磁环,不影响套装的情况下,压紧相互排斥的所述磁环,更能减小相邻磁环间的间隙,从而提高了装配的多极永磁体的整体性能,装配步骤节省了人力,并且能够装配大型永磁体。5. The scheme of the assembly method of the multi-pole tubular permanent magnet, through the
附图说明Description of drawings
图1是本发明所述多极管状永磁体的三维结构示意图a;Fig. 1 is the three-dimensional structure schematic diagram a of the multipole tubular permanent magnet of the present invention;
图2是本发明图1中沿A-A线的剖视图;Fig. 2 is the sectional view along A-A line in Fig. 1 of the present invention;
图3是本发明所述多极管状永磁体的三维结构示意图b;Fig. 3 is a schematic diagram b of a three-dimensional structure of a multipole tubular permanent magnet according to the present invention;
图4是本发明图3中沿A-A线的剖视图;Fig. 4 is the sectional view along A-A line in Fig. 3 of the present invention;
图5是本发明所述多极管状永磁体装配装置使用中的剖面示意图a;Fig. 5 is a schematic cross-sectional view a of the multi-pole tubular permanent magnet assembly device in use according to the present invention;
图6是本发明所述隔挡组件的三维结构示意图;Fig. 6 is a three-dimensional structural schematic diagram of the barrier assembly of the present invention;
图7是本发明所述多极管状永磁体装配装置使用中的剖面示意图b;Fig. 7 is a schematic cross-sectional view b of the multi-pole tubular permanent magnet assembly device in use according to the present invention;
图8是本发明所述第一压板的俯视图a;Fig. 8 is a top view a of the first pressing plate of the present invention;
图9是本发明所述第二压板的俯视图a;Fig. 9 is a top view a of the second pressing plate of the present invention;
图10是本发明所述第一压板的俯视图b;Fig. 10 is a top view b of the first pressing plate of the present invention;
图11是本发明所述第二压板的俯视图b;Fig. 11 is a top view b of the second platen of the present invention;
图12是本发明所述多极管状永磁体装配装置的三维结构示意图a;Fig. 12 is a three-dimensional structural schematic a of the multi-pole tubular permanent magnet assembly device of the present invention;
图13是本发明所述多极管状永磁体装配装置的三维结构示意图b;Fig. 13 is a three-dimensional structural schematic diagram b of the multipole tubular permanent magnet assembly device of the present invention;
图标:0-多极管状永磁体;100-磁环;1-磁路单元;11-第一磁环;12-第二磁环;13-第三磁环;14-第四磁环;15-第五磁环;16-第六磁环;17-第七磁环;18-第八磁环;2-内套管;3-隔挡组件;31-隔挡套管;32-套管通孔;33-多个锁定销;34-斜面;4-底座;5-压紧组件;51-第一压板;511-第一开口;512-第一开槽;513-第一压板通孔a;514-第一压板通孔b;515-第一压板通孔c;516-第一压板通孔d;52-第二压板;521-第二开口;522-第二开槽;523-第二压板通孔e;524-第二压板通孔f;525-第二压板通孔g;526-第二压板通孔h;53-第一拉杆;54-第二压板;55-压板螺母;6-内套管螺母;7-支撑金属块。Icons: 0-multipole tubular permanent magnet; 100-magnetic ring; 1-magnetic circuit unit; 11-first magnetic ring; 12-second magnetic ring; 13-third magnetic ring; 14-fourth magnetic ring; 15 -Fifth magnetic ring; 16-Sixth magnetic ring; 17-Seventh magnetic ring; 18-Eighth magnetic ring; 2-Inner sleeve; Through hole; 33-multiple locking pins; 34-incline; 4-base; 5-press assembly; 51-first pressure plate; 511-first opening; 512-first slot; a; 514-the first pressure plate through hole b; 515-the first pressure plate through hole c; 516-the first pressure plate through hole d; 52-the second pressure plate; 521-the second opening; 522-the second slot; 523- Second pressure plate through hole e; 524-second pressure plate through hole f; 525-second pressure plate through hole g; 526-second pressure plate through hole h; 53-first pull rod; 54-second pressure plate; 55-pressure plate nut ; 6-inner casing nut; 7-support metal block.
具体实施方式detailed description
下面结合附图,对本发明作详细的说明。Below in conjunction with accompanying drawing, the present invention is described in detail.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
实施例1Example 1
如图1-2所示,本发明所述的多极管状永磁体,包括沿轴向配置的多个磁路单元1,每个所述磁路单元1包括:沿轴向同轴并顺次邻位配置的第一磁环11、第二磁环12、第三磁环13和第四磁环14;所述第一磁环11径向内磁化;所述第二磁环12轴向磁化;所述第三磁环13的磁化方向与所述第一磁环11的磁化方向相反;所述第四磁环14的磁化方向与所述第二磁环12的磁化方向相反;所述第一磁环11、所述第二磁环12、所述第三磁环13和所述第四磁环14的内环直径均相同;所述第一磁环11、所述第二磁环12、所述第三磁环13和所述第四磁环14的外环直径均相同。As shown in Figures 1-2, the multipole tubular permanent magnet of the present invention includes a plurality of
所述轴向理解为第一磁环11的轴向,也理解为本发明所述装配好的多极管状永磁体0的轴向。所述磁环为环状的磁性体,封闭的环状磁性体在磁体产生围绕在其外部的磁场,包括环内和环外,磁场强度的方向根据磁化的方向不同而不同。所述磁化理解为磁性体本身具有的磁性或者充磁达到磁化,永磁体优选的可使用铁氧体,充磁磁化可根据电磁感应原理充磁或压制注塑等工艺来磁化取向。所述第一磁环11径向内磁环,理解为所述第一磁环11充磁时的磁极方向沿其径向并指向内环方向充磁,即在所述第一磁环11的内部磁场应的方向为径向指向内环,使得在所诉第一磁环11的侧部表面产生径向的流入(磁极N的磁场,在所述一个磁路单元1外部形成的磁场的磁场线如图2中虚线X和Y所示,所示X和Y磁场线图示仅为了描述磁极而模拟画出的有限条数磁场线示意,实物中的所述多极管状永磁体0的外部布满了磁场,周围实际具有无数的磁场线。The axial direction is understood to be the axial direction of the first
本发明所述的多极管状永磁体0,包括沿轴向配置的多个磁路单元1,由多个磁路单元1沿轴向循环布置,形成沿轴向排布的多极管状永磁体0。如图2所示,图2中示出了两个所示磁路单元1,实际该多极管状永磁体0根据需要配置相适应的磁路单元1的个数,就能够制造所需长度的管状永磁体,并且该多极管状永磁体0的外径根据实际需要采用磁环的外径,即可达到制造不同外径的多极管状永磁体0。The multi-pole tubular
优选的,所述第一磁环11、所述第三磁环13为金属磁性体;所述第二磁环12和所述第四磁环14为永磁体。所述金属磁性体可以采用例如合金金属,充磁后达到磁化成为磁性体。Preferably, the first
实施例2Example 2
在实施例1的基础上,如图3-4所示,本实施例所述多极管状永磁体0中所述磁路单元1还包括:第五磁环15、第六磁环16、第七磁环17和第八磁环18;所述第五磁环15配置在所述第一磁环11和所述第二磁环12之间,所述第五磁环15斜向内磁化;所述第六磁环16配置在所述第二磁环12和所述第三磁环13之间,所述第六磁环16的磁化方向为所述第五磁环15的磁化方向沿顺时针旋转90°的方向;所述第七磁环17配置在所述第三磁环13和所述第四磁环14之间,所述第七磁环17的磁化方向与所述第五磁环15的磁化方向相反;所述第八磁环沿轴向配置在所述第四磁环相邻的位置,第八磁环18的磁化方向与所述第六磁环16的磁化方向相反;所述第五磁环15、所述第六磁环16、所述第七磁环17和所述第八磁环18的内环直径均与所述第一磁环11的内环直径相同;所述第五磁环15、所述第六磁环16、所述第七磁环17和所述第八磁环18的外环直径均与所述第一磁环11的外环直径相同。On the basis of
所述斜向指与所述轴向、径向均存在夹角的斜向,斜向内指不但斜向而且偏向内环,与径向内方向的夹角为锐角。优选的,如图2或图4所示的标注在磁环上的箭头所示,所述第五磁环15的磁化方向为所述第一磁环11的磁化方向沿顺时针旋转45°的方向。The oblique direction refers to an oblique direction that has an included angle with both the axial and radial directions, and the oblique inner direction refers not only obliquely but also to the inner ring, and the included angle with the radially inner direction is an acute angle. Preferably, as shown by the arrow marked on the magnetic ring as shown in FIG. 2 or FIG. 4 , the magnetization direction of the fifth
如图4所示,通过在所述第一磁环11和所述第二磁环12之间配置斜向内磁化的第五磁环15,而所述第一磁环11为径向内磁环,所述第二磁环12为轴向磁化。所述第五磁环15配置后,根据磁场强度矢量叠加原理,所述第五磁环15的磁场强度填补了斜向内的磁场强度矢量,使磁场更密集,达到增强磁场强度的目的,同理,所述第六磁环16、所述第七磁环17和所述第八磁环18的配置均达到增强磁场应强度的目的,从而提升了该多极管状永磁体0整体性能。As shown in FIG. 4 , by disposing an obliquely inwardly magnetized fifth
优选的,所述第一磁环11、所述第二磁环12、所述第三磁环13、所述第四磁环14、所述第五磁环15、所述第六磁环16、所述第七磁环17、所述第八磁环18均为永磁体。每个磁环可以是通过注塑或充磁工艺成品即为永磁体的磁环。Preferably, the first
实施例3Example 3
一种多极管状永磁体0的装配装置,如图5所示,可以用来装配实施例1或2中所述的多极管状永磁体0,包括:内套管2、隔挡组件3和底座4;所述内套管2、所述隔挡组件3的材质均为非磁性材料;所述内套管2的下端与所述底座4与固定连接,所述内套管2用于束缚所述多极管状永磁体0的各个磁环100沿轴向排列。An assembly device for a multipole tubular permanent magnet O, as shown in Figure 5, can be used to assemble the multipole tubular permanent magnet O described in
本实施例中所述的非磁性材料相对于所装配的多极管状永磁体0而言,即与所要装配的多极管状永磁体0不发生磁相互作用的材料。With respect to the multipole tubular
需要说明的是,本发明所述多极管状永磁体0装配前包含待装的磁环100,磁环100装配完成后为所述多极管状永磁体0,标记0或100仅为了理解适用,磁环100的个数根据实际需要配置来选择,达到相应个数的磁路单元1即可实现。It should be noted that the multi-pole tubular
如图6所示,所述隔挡组件3包括:隔挡套管31、多个套管通孔32、多个锁定销33;所述隔挡套管31的内径与所述磁环100的外径相当;所述套管通孔32开设在所述隔挡套管31的侧壁;所述锁定销33的一端穿过所述套管通孔32并延伸至所述隔挡套管31内部,所述锁定销33延伸至所述隔挡套管31的部分用于支撑放入所述隔挡套管内的磁环100,所述锁定销33延伸至所述隔挡套管31内的一端设置斜面34。As shown in Figure 6, the
需要说明的是,所述隔挡套管31的内径与所述磁环100外径相当,所述“外径相当”理解为所述磁环100的外径小于所述隔挡套管31的内径,磁环能够放置在隔挡套管31内。It should be noted that the inner diameter of the
本实施例中,将所述内套管2的外径小于所述多极管状永磁体0的内径;所述隔挡套管31的内径与所述磁环100外径相当。所述的隔挡套管31 呈管状,所述套管通孔32的直径或宽度能够供所述锁定销33穿过;当放入磁环100在所述隔挡套管31内时,所述锁定销33伸入所述隔挡套管31内的那部分就能够支撑在磁环100的底面,由于所述隔挡套管31的内径大于所述多极管状永磁体0的外径,所述锁定销33插入所述隔挡套管31内的一端不接触所述内套管2的外壁即可实现携带磁环100一起套在所述内套管2外。In this embodiment, the outer diameter of the
在装配多极管状永磁体0的过程中,在内套管上已经装了一个或几个磁环100,而将要装的另外一个磁环100与已套装磁环100存在相互吸引磁场力,相互吸引的磁场力随着磁环100距离越近而越大,动量就越大,装配时容易快速靠紧而发生碰撞造成损坏,为了实现阻挡两个相邻的磁环100相互吸引发生碰撞,采用该隔挡组件3配合内套管2使用,将隔挡套管31携带磁环100一起套在内套管2外以靠近已装在内套管2上的磁环100,使所述锁定销33伸入所述隔挡套管31内的部分隔挡在两个相邻磁环100之间,再缓慢沿径向外抽出所述锁定销33,并且通过设置所述锁定销33伸入隔挡套管31内部的一端为斜面34,缓慢抽出所述锁定销33过程中斜面34支撑磁环100的位置逐渐降低,并保持了上面的所述磁环100被支撑隔挡并缓慢移动并靠近下面的所述磁环100,实现隔挡在相互吸引的两个磁环100之间,并使磁环100的间隔缓慢缩小的方式来相邻靠紧,从而避免了安装相邻相互吸的两个磁环100时由于磁力过大发生碰撞损坏的情况出现。In the process of assembling the multi-pole tubular
本实施例中,也可以将两个相互吸引磁环100的其中一个放置在平台,将另一个磁环100放置在所述隔挡套管31内,将装有磁环100的隔挡组件3轴向靠近相互吸引的一个磁环100,缓慢抽出所述锁定销33,使所述隔挡套管31内的一个磁环100与待靠近磁环100之间的间隔缓慢减小,从而相互靠紧,最后再将已经靠紧的相邻两个磁环100一起套装在所述内套管2上。In this embodiment, one of the two mutually attracting
用该多极管状永磁体装配装置,通过隔挡组件3配合内套管2的使用,通过隔挡组件3的支撑和隔挡作用,锁定销33伸入隔挡套管31内的部分能够隔挡在具有大磁场力的两个相互吸引的磁环100之间,通过缓慢抽出锁定销33又能够减缓相邻两个相互吸引的磁环100靠紧的速度,从而避免了因磁场力较大而碰撞的问题,并且实现适宜于装配大型管状多极永磁体。With this multi-pole tubular permanent magnet assembly device, through the use of the
优选的,如图7-11所示,本实施例中所述的多极管状永磁体的装配装置,还包括压紧组件5;所述压紧组件5包括:第一压板51、第二压板52、第一拉杆53和第二拉杆54和压板螺母55;所述第一压板51开设有第一开口511、第一开槽512和至少三个第一压板通孔513;所述第二压板52开设有第二开口521、第二开槽522和至少三个第二压板通孔523;Preferably, as shown in Figures 7-11, the assembly device of the multi-pole tubular permanent magnet described in this embodiment also includes a
所述第一开口511的宽度大于所述内套管2的直径,所述第一开口的511宽度小于所述多极管状永磁体0的外径;所述第一开槽512的一端封闭,所述第一开槽512的另一端与所述第一开口511连通,所述第一开槽512的宽度大于所述压板螺母55的外径;所有所述第一压板通孔513以所述第一开口511为中心对称布置;所述第一压板通孔513供所述第一拉杆53穿过;The width of the
所述第二开口521的宽度大于所述内套管2的直径,所述第二开口的521宽度小于所述多极管状永磁体0的外径;所述第二开槽522的一端封闭,所述第二开槽522的另一端与所述第二开口521连通,所述第二开槽522的宽度大于所述压板螺母55的外径;所有所述第二压板通孔523以所述第二开口521为中心对称布置;所述第二压板通孔523供所述第二拉杆54穿过。The width of the
所述第一拉杆53和所述第二拉杆54的一端都可拆卸连接于所述底座4;所述第一拉杆53的个数与所述第一压板通孔513的个数相同;所述第二拉杆54的个数与所述第二压板通孔523的个数相同;所述压板螺母55与所述第一拉杆53的个数相匹配,所述压板螺母55与所述第一拉杆53螺栓连接。One end of the
本实施例中,所述“至少三个第一压板通孔513”,如图8所示,为了便于理解,将三个压板通孔标记为第一压板通孔a513、第一压板通孔b514和第一压板通孔c515;所述“至少三个第二压板通孔523”如图9所示将三个第二压板通孔标记为第二压板通孔e523、第二压板通孔f524、第二压板通孔g525。所述三个所述第一压板通孔a513、第一压板通孔b514和第一压板通孔c515以所述第一开口511为中心对称布置,如图8所示,使其中一个第一压板通孔c515处于第一开口511的中心线PQ上以设置为三个第一压板通孔对称布置,此对称布置的第一压板通孔,使得在使用中,所述第一压板51被推压压紧所述磁环100时,三个压板通孔借助第一拉杆53的导向或支撑能够在内套管周围受力均匀,使推压磁环100更平稳,同理,如图9所示的第二压板52上的三个第二压板通孔e523、第二压板通孔f524、第二压板通孔g525亦可设置为对称布置和达到上述作用。In this embodiment, the "at least three first pressure plate through
也可以优选的,如图10所示,所述第一压板通孔包括第一压板通孔a513、第一压板通孔b514、第一压板通孔c515和第一压板通孔d516,如图11所示,所述第二压板通孔包括第二压板通孔e523、第二压板通孔f524、第二压板通孔g525和第二压板通孔h526;Also preferably, as shown in FIG. 10 , the first pressure plate through holes include a first pressure plate through hole a513, a first pressure plate through hole b514, a first pressure plate through hole c515 and a first pressure plate through hole d516, as shown in FIG. 11 As shown, the second pressure plate through holes include the second pressure plate through hole e523, the second pressure plate through hole f524, the second pressure plate through hole g525 and the second pressure plate through hole h526;
需要说明的是,如图8和图9所示,或图10和图11所示,所述第一压板51与所述第二压板52的结构大小相同,由于使用中的放置位置以及配合使用时的放置位置不同,为了清楚描述采用不同标记进行说明。It should be noted that, as shown in FIG. 8 and FIG. 9, or as shown in FIG. 10 and FIG. 11, the structure and size of the first pressing
需要说明的是,所述第一拉杆53对应穿过第一压板通孔513,作用于第一压板51,第二拉杆54对应穿过第二压板通孔523,作用于第二压板52,所述第一拉杆53的个数与所述第一压板通孔513的个数相同,所述第二拉杆54的个数与所述第二压板通孔523的个数相同,由于第一压板51与所述第二压板52可设置为结构大小相同,因此,第一压板通孔53和第二压板通孔54的规格也可设置为相同,因此,所述第一拉杆53和所示第二拉杆54可以设置为规格大小相同的拉杆,便于理解,标记为第一拉杆53和第二拉杆54。It should be noted that the
本实施例中,结合图12和图13所示,所述第一压板51和所述第二压板52的作用是借助人力或机械力的推压力来推动磁环100相互靠紧,设置所述第一开口511目的是:所述第一压板51能够沿径向或轴向放置所述压板在所述内套管2上;对所述第一开口511的宽度小于多极管状永磁体0的外径,实现压板能够沿着所述内套管2轴向移动并推动所述多极管状永磁体0所装配的磁环100的目的。所述第一拉杆53的下端可固定在所述底座4上,所述第一压板51上优选的设置四个第一压板通孔a、b、c、d均第一拉杆53穿过,能够导向第一压板51压紧磁环100,也起到固定所述第一压板51的作用,使第一压板51保持压紧磁环100的状态,同理,所述第二拉杆54也起到固定所述第二压板52的作用,使第二压板52保持压紧磁环100的状态。In this embodiment, as shown in FIG. 12 and FIG. 13 , the function of the first pressing
本实施例中,如图13所示,需要说明的是,图13中为了描述清楚,所述第一压板通孔a513未显示穿过第一拉杆53和连接压板螺母55的状态,实际装配如图13所示的状态,所述第一压板通孔a513内安装了第一拉杆53,并且所述第一拉杆53上安装了压板螺母55。在使用中,将第二压板52和第一压板51叠放,且径向平面交错放置,使第二压板52的第二开槽522的封闭端与第一压板51的第一压板通孔a513能够共用第一拉杆53固定,使第一压板51的第一开槽512的封闭端与第二压板52的第二压板通孔f524能够共用一个第二拉杆54固定,此结构布置能够实现在沿径向拆除第一压板51,不影响位于上方的第二压板52压紧磁环100的状态,或者沿径向拆除第二压板52,不影响位于上方的第一压板51的压紧磁环100的状态,从而实现拆除其中一块压板循环使用,通过采用此压紧组件5配合内套管2使用,起到压紧磁环100以尽可能减小磁环100间隙的同时,方便拆装压紧组件和循环使用,提高装配效率。In this embodiment, as shown in FIG. 13 , it should be noted that in FIG. 13 , for clarity of description, the first pressure plate through hole a513 does not show the state of passing through the
实施例4Example 4
一种多极管状永磁体的装配方法,采用实施例3所述的多极管状永磁体的装配装置,能够装配实施例1或2所述的多极管状永磁体,包括以下步骤:An assembly method of a multi-pole tubular permanent magnet, adopting the assembly device of the multi-pole tubular permanent magnet described in
步骤一:固定连接所述内套管2和所述底座4;Step 1: fixedly connecting the
步骤二:将所述多极管状永磁体0的各个磁环100逐个沿轴向套装在所述内套管2外,当套装相互吸引的相邻两个所述磁环100时,在使用所述隔挡组件3,具体包括以下步骤S:Step 2: Fit each
步骤S1:放置两个相互吸引所述磁环100中的一个在所述隔挡套管31内;Step S1: placing one of the two mutually attracting
步骤S2:将步骤S1中的隔挡组件3和所述磁环100同时沿轴向靠近另一个所述磁环100;Step S2: Bring the
步骤S3:沿径向逐渐抽出所述锁定销33,使相邻两个所述磁环100靠紧;Step S3: gradually withdraw the locking
步骤S4:把所述隔挡套管31从所述磁环100上取掉;Step S4: remove the
步骤三:用粘结剂将所述多极管状永磁体0的相邻两个所述磁环100粘结。Step 3: bonding two adjacent
本实施例中,通过将内套管2与底座4固定连接,底座4用于轴向支撑各个套装的磁环100,而内套管2配合底座4使用束缚各个磁环100沿轴向排列;通过步骤二将所述所多极管状永磁体0的各个磁环100逐个套在内套管2外,再通过粘结各个磁环100形成一个多极管状永磁体0。In this embodiment, by fixedly connecting the
通过套装的方式装配各个磁环100,由于磁环100之间存在相互吸引的磁场力,因此采用步骤二中的步骤S套装相互吸引的相邻两个所述磁环100时,如图5所示的使用状态,先套装相互吸引的两个磁环100中的一个在内套管2外,然后放置另外一个磁环100在所述隔挡套管31内,把隔挡组件3和隔挡套管31内的磁环100一起套向所述内套管2,再沿径向抽出所述锁定销33,锁定销33的隔挡作用,相互吸引的两个磁环100被隔挡,再缓慢抽出所述锁定销33,锁定销33伸入所述隔挡套管31内的部分被缓慢抽出,从而使相邻两个相互吸引的磁环缓慢靠紧,最后取走所述隔挡套管31,完成装配两个相邻相互吸引的磁环100。Assemble each
本实施例中所述的装方法,通过步骤一至步骤三完成多极管状永磁体0的装配,根据实际装配的需要选择装配相应个数的磁环,通过步骤二的实施,能够避免两个相互吸引的磁环100在装配时由于磁场力作用而快速靠紧造成碰撞而损坏的问题,再通过步骤三使用粘结剂将磁环之间粘结限制磁环散开,从而完成多极管状永磁体0的装配。The installation method described in this embodiment, completes the assembly of the multi-pole tubular permanent magnet O through
本实施例中,优选的,如图7所示状态,所述步骤二将所述多极管状永磁体0的各个磁环100逐个沿轴向套装在所述内套管2之前,可以加装支撑金属块7在所述内套管2外支撑所述管状永磁体0,配合所述步骤三粘结所述相邻两个所述磁环100之前,可以在永磁体0的上端加装支撑金属块7,再用粘结剂将相邻的所述磁环100之间和金属块7之间都粘结,最后拆除内套管和底座4,使金属块7与所装配的管状永磁体0形成整体,金属块7可设置为环状,金属环粘结在所述管状永磁体0的端部,避免了所述多极管状永磁体0的端部磨损,起到保护磁环的作用,方便了运输和保存。In this embodiment, preferably, as shown in FIG. 7 , in the second step, each
如图7所示的状态,图7是图13中沿A-A线剖开后并安装有内套管螺母6的图示,本实施例所述的多极管状永磁体的装配方法,优选的,所述步骤三替换为:将内套管螺母7螺栓连接于所述内套管2的上端,使所述多极管状永磁体0的每个磁环100束缚在所述内套管2上。所述内套管螺母7可采用常用螺母,要求用内径小于所述磁环100外径,且与所述内套管2匹配的螺母即可,所述内套管螺母7螺栓连接在所述内套管端部,能够抵住磁环不沿轴向滑动,管状永磁体底部的底座4也不用拆除,从而限制装配好的每个磁环固定在所述内套管上,达到使多极管状永磁体0在装运中比较牢固,保存完整的目的,方便使用,利于保存。The state shown in Figure 7, Figure 7 is a diagram after being cut along the A-A line in Figure 13 and the inner casing nut 6 is installed, the assembly method of the multi-pole tubular permanent magnet described in this embodiment, preferably, The third step is replaced by: bolting the
优选的,本实施例可使用压紧组件5,如图12和图13所示的使用状态,多极管状永磁体的装配方法的所述步骤二中当套装相互排斥的相邻所述磁环时,使用所述压紧组件5,还包括以下步骤T:Preferably, this embodiment can use the
步骤T1:将第一拉杆53的一端固定于所述底座4,将所述第一拉杆53沿周向阵列地竖立在所述内套管2的外侧;Step T1: Fix one end of the
步骤T2:将相互排斥的相邻所述磁环100沿轴向套在所述内套管2外;Step T2: Put the mutually repelling adjacent
步骤T3:沿轴向放置所述第一压板51在步骤T2中所述磁环100的上方,使所述第一开口511通过所述内套管2,使所述第一压板通孔513通过第一拉杆53;Step T3: placing the
步骤T4:推压所述第一压板51,使相互排斥的所述磁环100靠紧;Step T4: pushing the first pressing
步骤T5:把所述压板螺母55分别螺栓连接于所述第一拉杆53的上端;拧紧所述压板螺母55,使所述第一压板51压紧所述磁环100;Step T5: Connect the
步骤T6:放置所述第二压板52在所述第一压板51上;将所述第二开槽522的封闭的一端与一个所述第一压板通孔513轴向对齐;将一个所述第二压板通孔523与所述第一开槽512封闭的一端轴向对齐;Step T6: placing the second
步骤T7:将所述第二拉杆54穿过所述第二压板通孔523并固定连接于所述底座4;Step T7: passing the
步骤T8:将所述压板螺母55分别螺栓连接于所述第二拉杆54的上端,拧紧所述压板螺母55,使所述第二压板52压紧所述第一压板51;Step T8: Connect the
步骤T9:拆除与所述第一拉杆53连接的所述压板螺母55和所述第一拉杆53;沿径向向外拆除所述第一压板51;Step T9: dismantling the
步骤T10:再次套装相互排斥的磁环100时,重复步骤T1至T4后拆除所述第二压板52备用。Step T10: When refitting the mutually repelling
本实施例中,可以通过加入压紧组件5的使用,如图12所示的使用状态,在步骤二中将要装配两个相互排斥的所述磁环100时,首先连接第一拉杆53在所述内套管2的侧方,将所述第一开口511通过所述内套管2套在所述内套管2外,由于第一开口512的宽度是大于所述内套管2的外径而小于所述磁环100的外径,通过步骤T4向有磁环100的一方推压所述第一压板51就能够借助人力使相互排斥的两个磁环相互靠紧,通过步骤T5将压板螺母螺栓连接于第一拉杆53的上端,固定第一压板51的同时就能够保持压紧所述两个相互排斥的磁环100;由于存在需要再次套装磁环100在已经装配的两个相互排斥的磁环轴向外侧的情况,因此,出现采用两块压板循环使用的目的。In this embodiment, by adding the use of the
该方法中,通过步骤T6至步骤T9,如图13所示的使用状态,在所述第一压板51的上方轴向叠放、径向夹角错位放置第二压板52,所述径向夹角错位放置的要求是:使将所述第二开槽522封闭的一端与所述第一压板通孔a513轴向对齐,将所述第二压板通孔f524与所述第一开槽512封闭的一端轴向对齐;再用第二拉杆54穿过第二压板通孔524,同时也穿过了第一开槽512,由于第一压板51的第一压板通孔a513在步骤T3中已经穿有第一拉杆53,但所述第二开槽522的宽度大于所述压板螺母55的外径,因此,所述第二压板52上的第二开槽522不会受到所述第一压板通孔a513上的压板螺母的影响;再通过步骤T7实现固定所述第二压板52在所述第一压板51的上方,实现第二压板52与所述第一压板51分别通过第一拉杆53和第二拉杆54作为固定支撑,从而实现第二压板52压紧磁环100的同时,沿内套管2的径向能够拆除第一压板51,拆除第一压板51后可以通过常规的拧紧压板螺母55的方式使第二压板52下移填补第一压板51取走后的空位,从而保持压紧所述磁环100的同时,拆除后的第一压板51可再次使用,如步骤T10,再次安装好第一压板51后,通过拆除第二压板52备用,以再次实现步骤T6使用第二压板52,如此实现第一压板51与第二压板52分别压紧磁环100的同时,能够循环使用两块压板而不相互影响压紧功能,提高了装配的效率。In this method, through steps T6 to T9, in the state of use shown in FIG. The requirement for angular misalignment is: make the end that closes the
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210116049.8A CN114429848B (en) | 2022-01-28 | 2022-01-28 | Multipolar tubular permanent magnet and assembly device and assembly method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210116049.8A CN114429848B (en) | 2022-01-28 | 2022-01-28 | Multipolar tubular permanent magnet and assembly device and assembly method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114429848A CN114429848A (en) | 2022-05-03 |
CN114429848B true CN114429848B (en) | 2022-12-13 |
Family
ID=81313224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210116049.8A Active CN114429848B (en) | 2022-01-28 | 2022-01-28 | Multipolar tubular permanent magnet and assembly device and assembly method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114429848B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1862718A (en) * | 2005-05-09 | 2006-11-15 | 中国科学院电工研究所 | Bipolar permanent magnet |
CN1866700A (en) * | 2006-06-23 | 2006-11-22 | 中国科学院电工研究所 | Cylindrical permanent magnetic system |
CN107369519A (en) * | 2017-08-22 | 2017-11-21 | 广东电网有限责任公司电力科学研究院 | A kind of coil support fastener of superconductive current limiter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5608499B2 (en) * | 2010-09-27 | 2014-10-15 | Fdk株式会社 | Faraday rotator and optical isolator |
-
2022
- 2022-01-28 CN CN202210116049.8A patent/CN114429848B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1862718A (en) * | 2005-05-09 | 2006-11-15 | 中国科学院电工研究所 | Bipolar permanent magnet |
CN1866700A (en) * | 2006-06-23 | 2006-11-22 | 中国科学院电工研究所 | Cylindrical permanent magnetic system |
CN107369519A (en) * | 2017-08-22 | 2017-11-21 | 广东电网有限责任公司电力科学研究院 | A kind of coil support fastener of superconductive current limiter |
Also Published As
Publication number | Publication date |
---|---|
CN114429848A (en) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220123625A1 (en) | Magnetic motor and method of use | |
CN102158019B (en) | Magnetization method and magnetization component of permanent magnet motor | |
CN105186743B (en) | A kind of method for the rotor mechanism for making magneto | |
CN102856032B (en) | A kind of installation method of Halbach structure permanent magnet | |
CN105761627B (en) | Preceding maintenance LED display module | |
RU2014150790A (en) | MAGNET BEARING AND METHOD FOR INSTALLING A FERROMAGNETIC STRUCTURE AROUND A CORE OF A MAGNET BEARING | |
CN102832763A (en) | Surface-mounted permanent magnet synchronous motor magnetic steel seamless assembling apparatus and assembling and repairing processes | |
CN101795048A (en) | Cylindrical permanent magnet linear motor with high thrust density | |
CN114429848B (en) | Multipolar tubular permanent magnet and assembly device and assembly method thereof | |
US7638914B2 (en) | Permanent magnet bonding construction | |
CN106451948B (en) | A kind of permanent magnet machine rotor SmCo alinco assembled device and method | |
CN108900046A (en) | A kind of installation method of cylinder type Halbach permanent magnet array | |
CN104779722B (en) | A kind of rotor structure of high-speed permanent magnet motor | |
CN109149822B (en) | Motor rotor and motor | |
CN104218773A (en) | Magnetic coupler with bidirectional push-and-pull force | |
CN108757670A (en) | A kind of quick dismantled and assembled attachment device based on magnetic part | |
RU2241296C1 (en) | Stack for shaping rotor magnetic system | |
CN106882738B (en) | A kind of pipeline construction pipeline placing device | |
CN207410249U (en) | A Nonlinear Vibration Energy Harvester | |
CN209419337U (en) | Rotor structure and motor with same | |
CN104934258A (en) | Failure operation prevention permanent-magnet operating mechanism | |
CN101183807B (en) | Dipolar permanent-magnet generator block clamping type rotor | |
US20250119012A1 (en) | Molded Rotor | |
CN104751721B (en) | A kind of magnetomotive transition experiment device | |
CN105099010A (en) | Stator structure and linear compressor employing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |