CN114429549A - 图像边缘提取方法、图像边缘提取装置及存储介质 - Google Patents
图像边缘提取方法、图像边缘提取装置及存储介质 Download PDFInfo
- Publication number
- CN114429549A CN114429549A CN202011173924.3A CN202011173924A CN114429549A CN 114429549 A CN114429549 A CN 114429549A CN 202011173924 A CN202011173924 A CN 202011173924A CN 114429549 A CN114429549 A CN 114429549A
- Authority
- CN
- China
- Prior art keywords
- function
- vortex
- image
- processed
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 81
- 239000002131 composite material Substances 0.000 claims abstract description 51
- 238000001228 spectrum Methods 0.000 claims abstract description 34
- 238000002834 transmittance Methods 0.000 claims abstract description 33
- 230000006870 function Effects 0.000 claims description 281
- 230000003595 spectral effect Effects 0.000 claims description 42
- 238000011156 evaluation Methods 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 54
- 230000000694 effects Effects 0.000 abstract description 36
- 238000012545 processing Methods 0.000 abstract description 22
- 238000001914 filtration Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 28
- 238000003708 edge detection Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
Abstract
本公开是关于一种图像边缘提取方法、图像边缘提取装置及存储介质。图像边缘提取方法包括:获取待处理图像,并对待处理图像进行傅里叶变换得到待处理图像的频谱信息;基于涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,其中,涡旋滤波器的透过率函数是基于贝塞尔函数调制复合涡旋函数得到;对调制后的频谱信息进行逆傅里叶变换,得到待处理图像的边缘图像。通过本公开实施例,可对待处理图像实现高对比度的各向同性和各向异性边缘增强,提高边缘提取的处理效果。
Description
技术领域
本公开涉及图像处理技术领域,尤其涉及图像边缘提取方法、图像边缘提取装置及存储介质。
背景技术
随着科学技术的飞速发展,光信息和图像处理技术得到深入发展,边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节,是处理许多问题的关键。图像的其他特征都是由边缘和区域这些基本特征推导出来的,通过边缘信息可恢复图像中的全部信息。边缘检测的效果会直接影响图像的分割和识别性能,图像边缘检测技术在计算机视觉、图像分析等应用中起着重要作用。
边缘检测算法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等。虽然当前技术中边缘检测、边缘提取方法繁多,但是使用这些方法处理的图像存在着对比度降低、边缘锐度较低、背景噪声高等问题,影响图像边缘检测的效果。
发明内容
为克服相关技术中存在的问题,本公开提供图像边缘提取方法、图像边缘提取装置及存储介质。
根据本公开实施例的一方面,提供一种图像边缘提取方法,包括:获取待处理图像,并对所述待处理图像进行傅里叶变换得到所述待处理图像的频谱信息;基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,其中,所述涡旋滤波器的透过率函数基于基于贝塞尔函数调制复合涡旋函数得到;对所述调制后的频谱信息进行逆傅里叶变换,得到所述待处理图像的边缘图像。
在一实施例中,所述涡旋滤波器的透过率函数采用如下方式基于贝塞尔函数调制叠加涡旋函数得到:基于圆形孔径函数以及第一类二阶贝塞尔函数,确定贝塞尔函数;基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数;基于所述贝塞尔函数调制所述复合涡旋函数,得到所述涡旋滤波器的透过率函数。
在一实施例中,基于圆形孔径函数以及第一类的二阶贝塞尔函数,确定贝塞尔函数,包括:基于涡旋滤波器半径与边缘增强幅度值调制参数确定第一类二阶贝塞尔函数,并基于所述涡旋滤波器半径与指定圆形孔径确定圆形孔径函数;将所述第一类二阶贝塞尔函数与所述圆形孔径函数之间的乘积,确定为贝塞尔函数。
在一实施例中,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;将所述正涡旋函数和所述负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
在一实施例中,基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,包括:获取所述待处理图像的图像尺寸,并基于所述图像尺寸调整所述涡旋滤波器半径,和/或所述边缘增强幅度值,得到对所述待处理图像的频谱信息进行调制的频域涡旋滤波器,其中,所述频域涡旋滤波器使提取的边缘图像满足预设点扩散函数的评价值;基于所述频域涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息。
根据本公开实施例的又一方面,提供一种图像边缘提取装置,包括,获取模块,用于获取待处理图像;变换模块,用于对所述待处理图像进行傅里叶变换得到所述待处理图像的频谱信息,以及对调制后的频谱信息进行逆傅里叶变换,得到所述待处理图像的边缘图像;调制模块,用于基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,其中,所述涡旋滤波器的透过率函数基于贝塞尔函数调制复合涡旋函数得到。
在一实施例中,所述涡旋滤波器的透过率函数采用如下方式基于贝塞尔函数调制复合涡旋函数得到:基于圆形孔径函数以及第一类二阶贝塞尔函数,确定贝塞尔函数;基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数;基于所述贝塞尔函数调制所述复合涡旋函数,得到所述涡旋滤波器的透过率函数。
在一实施例中,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;将所述正涡旋函数和所述负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
在一实施例中,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;将所述正涡旋函数和所述负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
在一实施例中,基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,包括:获取所述待处理图像的图像尺寸,并基于所述图像尺寸调整所述涡旋滤波器半径,和/或所述涡旋滤波器极角边缘增强幅度值,得到对所述待处理图像的频谱信息进行调制的频域涡旋滤波器,其中,所述频域涡旋滤波器使提取的边缘图像满足预设点扩散函数的评价值;基于所述频域涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息。
根据本公开实施例的又一方面,提供一种图像边缘提取装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行前述任意一项所述的图像边缘提取方法。
根据本公开实施例的又一方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行前述任意一项所述的图像边缘提取方法。
本公开的实施例提供的技术方案可以包括以下有益效果:通过对待处理图像进行傅里叶变换得到待处理图像的频谱信息,基于涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,涡旋滤波器的透过率函数基于贝塞尔函数调制复合涡旋函数得到,对调制后的频谱信息进行逆傅里叶变换,得到待处理图像的边缘图像,可以对待处理图像实现高对比度各项同性边缘增强,并能对各向异性边缘增强,提高边缘提取的处理效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1示出了传统方法与拉盖尔高斯调制涡旋滤波方法进行图像处理的效果对比图。
图2示出了拉盖尔高斯调制涡旋滤波方法与艾里函数调制涡旋方法进行图像处理的效果对比图。
图3a与图3b示出了不同方向下不同分数值、不同径向位移的基于希尔伯特变换的各向异性边缘增强效果对比图。
图4是根据本公开一示例性实施例示出的一图像边缘提取种方法的流程图。
图5是根据本公开一示例性示出的4f成像系统示意图。
图6是根据本公开一示例性实施例示出的一种涡旋滤波器的透过率函数确定方法的流程图。
图7是根据本公开另一示例性实施例示出的一种图像边缘提取方法中贝塞尔涡旋滤波函数确定方法流程图。
图8是根据本公开另一示例性实施例示出的一种图像边缘提取方法中复合涡旋函数确定方法流程图。
图9是根据本公开另一示例性实施例示出的一种图像边缘提取方法的流程图。
图10是根据本公开另一示例性实施例示出的一种图像边缘提取方法一种应用场景示意图。
图11是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。
图12是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。
图13是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。
图14是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。
图15是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。
图16是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。
图17是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。
图18是根据本公开一示例性实施例示出的一种图像边缘提取装置框图。
图19是根据一示例性实施例示出的一种装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
光信息和图像处理技术得到深入发展,边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节,是处理许多问题的关键。图像的其他特征都是由边缘和区域这些基本特征推导出来的,通过边缘信息可恢复图像中的全部信息。边缘检测的效果会直接影响图像的分割和识别性能,图像边缘检测技术在计算机视觉、图像分析等应用中起着重要作用。
边缘检测算法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等。虽然当前技术中边缘检测、边缘提取方法繁多,但是使用这些方法处理的图像存在着对比度降低、边缘锐度较低、背景噪声高等问题。
当前技术中,图像边缘检测方法基于高通滤波方法,高通滤波方法滤除图像中的低频信息的同时导致丢失大部分能量,主要用于各向同性的边缘提取或检测。希尔伯特变换因其对物体信息的复折射率梯度敏感,当被应用于图像边缘检测时增强图像对比度。径向希尔伯特变换常被应用于各向同性的图像边缘增强技术中。各向异性就是具有方向性,例如图像边缘,即以某点为中心,各个方向的特性不一样,与之相反即无方向性,各向同性。
在基于希尔伯特变换的各项同性边缘提取技术中,包括有拉盖尔高斯调制涡旋滤波方法和艾里函数调制涡旋滤波方法。其中,拉盖尔高斯调制涡旋滤波器是利用拉盖尔高斯函数进行振幅调制,以减少中心奇点对入射光的衍射。该方法中,拉盖尔振幅难以消除滤波器锐利边缘对入射光的直边衍射现象,点扩散函数中旁瓣分布明显。
图1示出了传统方法与拉盖尔高斯调制涡旋滤波方法进行图像处理的效果对比图。其中,图1(a)示出了包含汉字“山”的原图像,图1(b)示出了采用传统涡旋滤波方法处理后的图像,图1(c)示出了采用拉盖尔高斯调制涡旋滤波方法处理后的图像,
为了消除旁瓣,提高图像对比度,艾里函数调制涡旋滤波器被提出。艾里函数调制涡旋滤波器通过改变衰减因子,消除点扩散函数中的旁瓣,使得图像边缘的锐度和对比度得到提高。
图2示出了拉盖尔高斯调制涡旋滤波方法与艾里函数调制涡旋方法进行图像处理的效果对比图。其中,图2(a)示出了分辨率班的原图像、图2(b)示出了采用拉盖尔高斯调制涡旋滤波方法处理后的图像,图2(c)示出了采用艾里函数调制涡旋滤波方法处理后的图像,图2(d)、图2(e)和图2(f)分别为沿着图2(a)、图2(b)和图2(c)中虚线的强度分布曲线。
基于希尔伯特变换的各向异性边缘提取技术中,打破过滤过程的径向对称性,包括有分数涡旋滤波方法和离轴涡旋滤波方法。分数涡旋滤波方法,打破滤波过程的径向对称性,由此产生可控的边缘位错,通过控制分数阶的大小和初始相位改变边缘增强的程度和方向,随着分数阶的减小,图像边缘提取中各向异性明显,但会增大阴影效应。
离轴涡旋滤波方法,通过分别设置不同的角度和位移参数,得到各个方向上的各向异性边缘增强效果。上述基于希尔伯特变换的各向异性边缘提取技术中,经边缘提取的图像中图像边缘仍存在明显的阴影效应,不能获得高对比度的边缘检测效果。
图3a与图3b示出了不同方向下不同分数值、不同径向位移的基于希尔伯特变换的各向异性边缘增强效果对比图。
在实际应用中,根据场景强调突出不同的边缘特征,需采用各向异性边缘增强技术来强调这些边缘,同时实现高对比度的各向同性和各向异性的边缘检测为亟待解决的问题。
由此,本公开提供一种图像边缘提取方法,用于实现高对比度的各向同性和各向异性图像边缘提取。
图4是根据本公开一示例性实施例示出的一种图像边缘提取方法的流程图,如图4所示,图像边缘提取方法包括以下步骤。
在步骤S101中,获取待处理图像,并对待处理图像进行傅里叶变换得到待处理图像的频谱信息。
在步骤S102中,基于涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,其中,涡旋滤波器的透过率函数是基于贝塞尔函数调制复合涡旋函数得到。
在步骤S103中,对调制后的频谱信息进行逆傅里叶变换,得到待处理图像的边缘图像。
在本公开实施例中,获取待处理图像,待处理图像可以由图像采集装置采集或者通过网络下载、接收保存的图像。
本公开的实施例中的图像边缘提取方法可以基于4f成像系统实现,图5是根据本公开一示例性示出的4f成像系统示意图。
如图5所示,o(r0,θ0)表示物平面,O(ρ,φ)表示傅里叶平面以及o′(r0,θ0)表示像平面。物平面和傅里叶平面分别位于透镜L1的前焦平面和后焦平面,像平面位于透镜L2的后焦平面。涡旋滤波器设置于傅里叶平面,在傅里叶平面上频谱信息被涡旋滤波器调制。利用图5所示的系统,将涡旋滤波器设置于傅里叶平面,实现希尔伯特变换。
待处理图像的物体信息通过透镜L1执行傅里叶变换,在傅里叶平面上获得物体频谱信息F[o(r0,θ0)],其中符号F[]表示傅里叶变换。在傅里叶平面通过所设计的滤波器调制后,对调制后的频谱信息进行逆傅里叶变换,得到待处理图像的边缘图像。
调制后的物体频谱信息用物体频谱乘以滤波器的透过率函数T(ρ,φ)表示,如下式所示。
O(ρ,φ)=F[o(r0,θ0)]×T(ρ,φ)
涡旋滤波器的透过率函数T(ρ,φ)基于贝塞尔函数调制复合涡旋函数得到。
根据本公开的实施例,通过对待处理图像进行傅里叶变换得到待处理图像的频谱信息,基于涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,涡旋滤波器的透过率函数基于贝塞尔函数调制复合涡旋函数得到,对调制后的频谱信息进行逆傅里叶变换,得到待处理图像的边缘图像,可以对待处理图像实现高对比度各向异性边缘增强,提高边缘提取的处理效果。
图6是根据本公开一示例性实施例示出的一种涡旋滤波器的透过率函数确定方法的流程图。如图6所示,透过率函数确定方法包括以下步骤。
在步骤S201中,基于圆形孔径函数以及第一类二阶贝塞尔函数,确定贝塞尔函数。
在步骤S202中,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数。
在步骤S203中,基于贝塞尔函数调制复合涡旋函数,得到涡旋滤波器的透过率函数。
在本公开实施例中,涡旋滤波器的透过率函数基于贝塞尔函数调制复合涡旋函数得到,透过率函数T(ρ,φ)可以用下式表示。
其中,J2是第一类的二阶贝塞尔函数,circl()是圆形孔径函数,表示半径为R0的圆形孔径,当∣ρ∣大于R0时,圆形孔径函数值为0。即,贝塞尔函数为基于圆形孔径函数以及第一类二阶贝塞尔函数确定,实现了透过率函数T(ρ,φ)的渐变,从而降低噪声,提高对比度。
在本公开实施例中,复合涡旋函数是基于正涡旋函数和负涡旋函数的叠加得到。如上式所示,复合涡旋函数即exp[il(φ+φ0)]+exp[-il(φ+φ0)],其中,exp[il(φ+φ0)]表示正涡旋函数,exp[-il(φ+φ0)]表示负涡旋函数。正涡旋函数和负涡旋函数的复合涡旋函数实现了对待处理图像的各向同性边缘提取或各向异性边缘提取。基于贝塞尔函数调制复合涡旋函数,得到涡旋滤波器的透过率函数。
根据本公开的实施例,通过贝塞尔函数调制复合涡旋函数,得到涡旋滤波器的透过率函数,可以对待处理图像实现高对比度、且各向同性或各向异性边缘增强,使得图像边缘的锐度和对比度得到提高,提高边缘提取的图像处理效果。
图7是根据本公开另一示例性实施例示出的一种图像边缘提取方法中贝塞尔涡旋滤波函数确定方法流程图。如图7所示,贝塞尔涡旋滤波函数确定方法包括以下步骤。
在步骤S301中,基于涡旋滤波器半径与边缘增强幅度值调制参数确定第一类二阶贝塞尔函数,并基于涡旋滤波器半径与指定圆形孔径确定圆形孔径函数。
在步骤S302中,将第一类二阶贝塞尔函数与圆形孔径函数之间的乘积,确定为贝塞尔函数。
在本公开实施例中,圆形孔径函数中,ρ为涡旋滤波器半径,R0为指定圆形孔径,基于涡旋滤波器半径ρ与指定圆形孔径R0确定圆形孔径函数。α为边缘增强幅度值调制参数,第一类二阶贝塞尔函数J2基于涡旋滤波器半径R0与边缘增强幅度值调制参数确定。将第一类二阶贝塞尔函数J2与圆形孔径函数ciccl()之间的乘积,确定为贝塞尔函数,实现了透过率函数T(ρ,φ)的渐变,从而降低噪声,提高对比度,实现了更高的对比度边缘检测、提取。
根据本公开的实施例,通过复合贝塞尔函数调制复合涡旋函数,得到涡旋滤波器的透过率函数,可以对待处理图像实现高对比度、且各向同性或各向异性边缘增强,使得图像边缘的锐度和对比度得到进一步提高。
图8是根据本公开另一示例性实施例示出的一种图像边缘提取方法中复合涡旋函数确定方法流程图。如图8所示,复合涡旋函数确定方法包括以下步骤。
在步骤S401中,在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数。
在步骤S402中,将正涡旋函数和负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
在本公开实施例中,复合涡旋函数是基于正涡旋函数和负涡旋函数的叠加得到,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数。复合涡旋函数,即cexp[il(φ+φ0)]+exp[-il(φ+φ0)],其中,l表示拓扑电荷数参数,l为整数。示例性地,拓扑电荷数参数l可以取值为1,滤波器极角φ,0≤φ<2π。设定的初始相位角φ0,用于控制边缘增强的方向。将初始相位φ0设置为不同的角度值,以控制不同方向的边缘增强。例如,初始相位角φ0可以是0、π/4、π/2和3π/4。加权因子c,用于表示正涡旋和负涡旋的权重比,边缘增强的幅度随加权因子c的数值变化而变化。例如,当c=0时,通过该滤波器获得各向同性边缘增强。
根据本公开的实施例,通过基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数,将正涡旋函数和负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数,实现了不同方向、不同增强幅度的各向同性或各向异性边缘增强,对待处理图像的边缘图像提取效果更好。
图9是根据本公开另一示例性实施例示出的一种图像边缘提取方法的流程图。如图9所示,图像边缘提取方法包括以下步骤。
在步骤S501中,获取待处理图像的图像尺寸,并基于图像尺寸调整涡旋滤波器半径,和/或边缘增强幅度值,得到对待处理图像的频谱信息进行调制的频域涡旋滤波器,其中,频域涡旋滤波器使提取的边缘图像满足预设点扩散函数的评价值。
在步骤S502中,基于频域涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息。
在本公开实施例中,获取待处理图像的图像尺寸,包括待处理图像的大小,即像素数,以及待处理图像的像素大小。基于图像尺寸调整涡旋滤波器半径,和/或边缘增强幅度值,即公式中,基于获取到的待处理图像的图像尺寸,调整α和/或ρ,得到对待处理图像的频谱信息进行调制的频域涡旋滤波器,以实现透过率函数T(ρ,φ)的渐变,降低噪声,提高对比度。
通过傅里叶变换,极坐标中的4f系统的点扩散函数可以表示为:
其中,(r1,θ1)表示像平面上的极坐标,f2是透镜L2的焦距,J1是第一类一阶贝塞尔函数。提取的边缘图像满足预设点扩散函数的评价值,即基于频域涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,能量更集中于位于中心的主瓣上,旁瓣噪声得到更好的抑制。
根据本公开的实施例,通过基于获取到的待处理图像的图像尺寸调整涡旋滤波器半径,和/或边缘增强幅度值,得到对待处理图像的频谱信息进行调制的频域涡旋滤波器,基于频域涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,频域涡旋滤波器使提取的边缘图像满足预设点扩散函数的评价值,实现了基于自适应涡旋滤波器、对不同图像尺寸的待处理图像的边缘提取。
图10是根据本公开另一示例性实施例示出的一种图像边缘提取方法一种应用场景示意图。
例如,采用功率为300mw的532nm单模固态激光器作为光源,进扩展、准直,通过物镜和透镜L1将携带物体信息放大。在透镜L1和透镜L2之间设置光阑,阻挡其余衍射光。透镜L2和L3构成4f成像系统,分别进行傅里叶变换和逆傅里叶变换,空间光调制器放置在透镜L2的后焦平面上,加载全息图,调制物体频谱信息。涡旋滤波器的复振幅通过闪耀光栅的方法被编码成全息图,可以在叉形光栅的正一阶衍射中获得调制的复振幅。在空间光调制器和分光棱镜的反射下,第一级衍射光束通过透镜L3进行傅里叶变换,并且输出图像在焦平面上记录在相机上,加载的全息图和记录的图像结果由电脑控制。
在本开一实施例中,应用分数涡旋滤波、离轴涡旋滤波、常规叠加涡旋滤波、拉盖尔高斯调制叠加涡旋滤波和本公开的基于贝塞尔函数调制复合涡旋函数得到的涡旋滤波器的点扩散函数进行了仿真。
图11是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图。图11中a1-e1分别为分数涡旋滤波、离轴涡旋滤波、常规叠加涡旋滤波、拉盖尔高斯调制叠加涡旋滤波和贝塞尔调制叠加涡旋滤波的点扩散函数。图11中a2-e2分别是a1-e1中绘制点扩散函数的径向截面强度分布,使其最大值归一化,得到径向截面的振幅曲线。
参照图11,分数涡旋滤波器和离轴涡旋滤波器的点扩散函数强度分布是不对称的,且上述滤波器中还存在强大的多余旁瓣。常规叠加涡旋滤波器的点扩散函数保持了径向对称性,但是多余的旁瓣仍然很明显。拉盖尔高斯调制叠加涡旋滤波,点扩散函数的旁瓣被部分抑制。本公开的滤波器可以有效地抑制旁瓣,且保持滤波过程的径向对称性,能量更集中在主瓣上,旁瓣噪声得到了更好的抑制。
在本开一实施例中,应用分数涡旋滤波、离轴涡旋滤波、常规叠加涡旋滤波、拉盖尔高斯调制叠加涡旋滤波和本公开的基于贝塞尔函数叠加涡旋函数对边缘检测或提取的效果进行比较。
图12是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图,图12中a1-e1分别为分数涡旋滤波、离轴涡旋滤波、常规叠加涡旋滤波、拉盖尔高斯调制叠加涡旋滤波和贝塞尔调制叠加涡旋滤波的仿真结果。图12中a2-e2分别是沿图12中a1-e1中的虚线的强度截面分步。
参照图12,应用分数涡旋滤波器和离轴涡旋滤波器,由于破坏了滤波处理的对称性,因此阴影效应变得严重。应用分数涡旋滤波器、离轴涡旋滤波器和常规叠加涡旋滤波的处理结果中存在旁瓣,背景噪声显著。拉盖尔高斯调制叠加涡旋滤波可以改变奇异点的幅度,阻挡了来自奇异点的衍射光,比传统的叠加涡旋滤光片更高的对比度边缘检测或提取。常规叠加涡旋滤波器的对比度仅为0.62,本公开实施例的图像边缘提取方法的对比度为0.98,降低背景噪声方面性能好,提高成像分辨率和对比度。
在本开一实施例中,将初始相位角φ0设置为不同的角度值时,以控制不同方向的边缘增强。当加权因子c等于1时,可以通过将初始相位角φ0设置为0、π/4、π/2和3π/4来获得不同方向的边缘增强。通过更改加权因子c的值,以适应实际应用过程中的情况,实现以变化的功率来检测或提取各向异性边缘。例如,φ0设置π/2,并将加权因子c的值从0更改为1,实现水平方向边缘增强幅度的改变。
图13是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图,图13中(a)-(d)分别是初始相位角φ0设置为0、π/4、π/2和3π/4的仿真结果。
图14是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图,图14中(a)-(e)示出了φ0设置为π/2和不同数值的加权因子c的仿真结果。(a)-(e)中,加权因子c的值分别取为0、0.3、0.5、0.7和1。图14(f)是图10(a)-(e)沿虚线的强度分布。
图15是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图,图15中(a)和(b)分别是使用常规叠加涡旋滤波和应用本公开实施例的涡旋滤波函数的实验结果。(c)和(d)分别是(a)和(b)沿虚线的强度截面分布。图15中物体为字母“AF”。
图16是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图,图16中(a)-(d)是字母“1X”的各向异性边缘增强效果,(e)-(h)是四个古币的各向异性边缘增强效果。
图17是根据本公开一示例性实施例示出的一种图像边缘提取方法的效果图,图17中(a)-(e)示出了应用本公开实施例的涡旋滤波函数,φ0设置为π/2和不同数值的加权因子c时的实验结果,图17(f)是(a)-(e)沿虚线的强度分布,物体为字母“AF”。
基于相同的构思,本公开实施例还提供一种图像边缘提取装置。
可以理解的是,本公开实施例提供的图像边缘提取装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图18是根据一示例性实施例示出的一种图像边缘提取装置框图。参照图18,该图像边缘提取装置100包括获取模块101,变换模块102和调制模块103。
获取模块101,用于获取待处理图像。
变换模块102,用于对待处理图像进行傅里叶变换得到待处理图像的频谱信息,以及对调制后的频谱信息进行逆傅里叶变换,得到待处理图像的边缘图像。
调制模块103,用于基于涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,其中,涡旋滤波器的透过率函数基于贝塞尔函数调制复合涡旋函数得到。
在一实施例中,涡旋滤波器的透过率函数采用如下方式基于贝塞尔函数调制复合涡旋函数得到:基于圆形孔径函数以及第一类二阶贝塞尔函数,确定贝塞尔函数;基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数;基于贝塞尔函数调制复合涡旋函数,得到涡旋滤波器的透过率函数。
在一实施例中,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;将正涡旋函数和负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
在一实施例中,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;将正涡旋函数和负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
在一实施例中,基于涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息,包括:获取待处理图像的图像尺寸,并基于图像尺寸调整涡旋滤波器半径,和/或涡旋滤波器极角边缘增强幅度值,得到对待处理图像的频谱信息进行调制的频域涡旋滤波器,其中,频域涡旋滤波器使提取的边缘图像满足预设点扩散函数的评价值;基于频域涡旋滤波器对待处理图像的频谱信息进行调制,得到待处理图像调制后的频谱信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图19是根据一示例性实施例示出的一种图像边缘提取装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图19,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为装置800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,除非有特殊说明,“连接”包括两者之间不存在其他构件的直接连接,也包括两者之间存在其他元件的间接连接。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
Claims (12)
1.一种图像边缘提取方法,其特征在于,包括:
获取待处理图像,并对所述待处理图像进行傅里叶变换得到所述待处理图像的频谱信息;
基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,其中,所述涡旋滤波器的透过率函数是基于贝塞尔函数调制复合涡旋函数得到;
对所述调制后的频谱信息进行逆傅里叶变换,得到所述待处理图像的边缘图像。
2.根据权利要求1所述的图像边缘提取方法,其特征在于,所述涡旋滤波器的透过率函数采用如下方式基于贝塞尔函数调制复合涡旋函数得到:
基于圆形孔径函数以及第一类二阶贝塞尔函数,确定贝塞尔函数;
基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数;
基于所述贝塞尔函数调制所述复合涡旋函数,得到所述涡旋滤波器的透过率函数。
3.根据权利要求2所述的图像边缘提取方法,其特征在于,基于圆形孔径函数以及第一类的二阶贝塞尔函数,确定贝塞尔函数,包括:
基于涡旋滤波器半径与边缘增强幅度值调制参数确定第一类二阶贝塞尔函数,并基于所述涡旋滤波器半径与指定圆形孔径确定圆形孔径函数;
将所述第一类二阶贝塞尔函数与所述圆形孔径函数之间的乘积,确定为贝塞尔函数。
4.根据权利要求2或3所述的图像边缘提取方法,其特征在于,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:
在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;
将所述正涡旋函数和所述负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
5.根据权利要求4所述的图像边缘提取方法,其特征在于,基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,包括:
获取所述待处理图像的图像尺寸,并基于所述图像尺寸调整所述涡旋滤波器半径,和/或所述边缘增强幅度值,得到对所述待处理图像的频谱信息进行调制的频域涡旋滤波器,其中,所述频域涡旋滤波器使提取的边缘图像满足预设点扩散函数的评价值;
基于所述频域涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息。
6.一种图像边缘提取装置,其特征在于,包括:
获取模块,用于获取待处理图像;
变换模块,用于对所述待处理图像进行傅里叶变换得到所述待处理图像的频谱信息,以及对调制后的频谱信息进行逆傅里叶变换,得到所述待处理图像的边缘图像;
调制模块,用于基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,其中,所述涡旋滤波器的透过率函数基于贝塞尔函数调制复合涡旋函数得到。
7.根据权利要求6所述的图像边缘提取装置,其特征在于,所述涡旋滤波器的透过率函数采用如下方式基于贝塞尔函数调制复合涡旋函数得到:
基于圆形孔径函数以及第一类二阶贝塞尔函数,确定贝塞尔函数;
基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数;
基于所述贝塞尔函数调制所述复合涡旋函数,得到所述涡旋滤波器的透过率函数。
8.根据权利要求7所述的图像边缘提取装置,其特征在于,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:
在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;
将所述正涡旋函数和所述负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
9.根据权利要求7或8所述的图像边缘提取装置,其特征在于,基于正涡旋函数和负涡旋函数的叠加,得到复合涡旋函数,包括:
在保持拓扑电荷参数为预设整数的情况下,基于滤波器极角以及设定的初始相位角,分别构建正涡旋函数和负涡旋函数;
将所述正涡旋函数和所述负涡旋函数二者之一乘以加权因子后,进行加权求和,得到复合涡旋函数。
10.根据权利要求9所述的图像边缘提取装置,其特征在于,基于涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息,包括:
获取所述待处理图像的图像尺寸,并基于所述图像尺寸调整所述涡旋滤波器半径,和/或所述涡旋滤波器极角边缘增强幅度值,得到对所述待处理图像的频谱信息进行调制的频域涡旋滤波器,其中,所述频域涡旋滤波器使提取的边缘图像满足预设点扩散函数的评价值;
基于所述频域涡旋滤波器对所述待处理图像的频谱信息进行调制,得到所述待处理图像调制后的频谱信息。
11.一种图像边缘提取装置,其特征在于,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行权利要求1至5中任意一项所述的图像边缘提取方法。
12.一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行权利要求1至5中任意一项所述的图像边缘提取方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011173924.3A CN114429549B (zh) | 2020-10-28 | 2020-10-28 | 图像边缘提取方法、图像边缘提取装置及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011173924.3A CN114429549B (zh) | 2020-10-28 | 2020-10-28 | 图像边缘提取方法、图像边缘提取装置及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114429549A true CN114429549A (zh) | 2022-05-03 |
CN114429549B CN114429549B (zh) | 2025-03-04 |
Family
ID=81309653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011173924.3A Active CN114429549B (zh) | 2020-10-28 | 2020-10-28 | 图像边缘提取方法、图像边缘提取装置及存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114429549B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115713475A (zh) * | 2023-01-10 | 2023-02-24 | 深圳市格灵精睿视觉有限公司 | 图像处理方法、装置、设备及存储介质 |
CN117274287A (zh) * | 2023-08-31 | 2023-12-22 | 哈尔滨理工大学 | 一种基于无干涉编码孔径相关全息术的边缘检测方法 |
CN118674665A (zh) * | 2024-08-23 | 2024-09-20 | 浙江大华技术股份有限公司 | 图像增强方法、设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4703349A (en) * | 1985-03-19 | 1987-10-27 | Picturetel Corporation | Method and apparatus for multi-dimensional signal processing using a Short-Space Fourier transform |
US20160123877A1 (en) * | 2014-11-04 | 2016-05-05 | Nec Laboratories America, Inc. | Method and apparatus for remote sensing using optical orbital angular momentum (oam)-based spectroscopy for object recognition |
US20180063519A1 (en) * | 2016-08-29 | 2018-03-01 | Disney Enterprises, Inc. | Multi-view displays using images encoded with orbital angular momentum (oam) on a pixel or image basis |
CN108873323A (zh) * | 2018-07-09 | 2018-11-23 | 苏州大学 | 一种实现边缘增强成像的方法及系统 |
CN109212749A (zh) * | 2018-07-09 | 2019-01-15 | 苏州大学 | 一种实现边缘增强成像的滤波片及其设计方法 |
CN110521277A (zh) * | 2017-03-22 | 2019-11-29 | 尼克根合伙Ip有限责任公司 | 用于建筑物穿透的毫米波的再生与转发 |
-
2020
- 2020-10-28 CN CN202011173924.3A patent/CN114429549B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4703349A (en) * | 1985-03-19 | 1987-10-27 | Picturetel Corporation | Method and apparatus for multi-dimensional signal processing using a Short-Space Fourier transform |
US20160123877A1 (en) * | 2014-11-04 | 2016-05-05 | Nec Laboratories America, Inc. | Method and apparatus for remote sensing using optical orbital angular momentum (oam)-based spectroscopy for object recognition |
US20180063519A1 (en) * | 2016-08-29 | 2018-03-01 | Disney Enterprises, Inc. | Multi-view displays using images encoded with orbital angular momentum (oam) on a pixel or image basis |
CN110521277A (zh) * | 2017-03-22 | 2019-11-29 | 尼克根合伙Ip有限责任公司 | 用于建筑物穿透的毫米波的再生与转发 |
CN108873323A (zh) * | 2018-07-09 | 2018-11-23 | 苏州大学 | 一种实现边缘增强成像的方法及系统 |
CN109212749A (zh) * | 2018-07-09 | 2019-01-15 | 苏州大学 | 一种实现边缘增强成像的滤波片及其设计方法 |
Non-Patent Citations (3)
Title |
---|
ZHONG ZHENG GU等: "Butterworth spiral filter for image processing with edge enhancement", 2019 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 21 July 2019 (2019-07-21) * |
吴华钦等: "基于螺旋相位滤波的图像边缘增强研究", 福建师范大学学报(自然科学版), no. 03, 20 May 2015 (2015-05-20) * |
顾忠政等: "基于涡旋滤波的图像边缘增强研究进展", 红外与激光工程, vol. 48, no. 6, 30 June 2019 (2019-06-30) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115713475A (zh) * | 2023-01-10 | 2023-02-24 | 深圳市格灵精睿视觉有限公司 | 图像处理方法、装置、设备及存储介质 |
CN117274287A (zh) * | 2023-08-31 | 2023-12-22 | 哈尔滨理工大学 | 一种基于无干涉编码孔径相关全息术的边缘检测方法 |
CN118674665A (zh) * | 2024-08-23 | 2024-09-20 | 浙江大华技术股份有限公司 | 图像增强方法、设备及存储介质 |
CN118674665B (zh) * | 2024-08-23 | 2024-11-29 | 浙江大华技术股份有限公司 | 图像增强方法、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN114429549B (zh) | 2025-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11532180B2 (en) | Image processing method and device and storage medium | |
EP3770847B1 (en) | Method and device for processing image | |
TWI749593B (zh) | 去除圖像中的反光的方法、電子設備和電腦可讀儲存媒體 | |
CN114429549A (zh) | 图像边缘提取方法、图像边缘提取装置及存储介质 | |
JP7106687B2 (ja) | 画像生成方法および装置、電子機器、並びに記憶媒体 | |
CN113192527B (zh) | 用于消除回声的方法、装置、电子设备和存储介质 | |
CN107945163B (zh) | 图像增强方法及装置 | |
CN109784255B (zh) | 神经网络训练方法及装置以及识别方法及装置 | |
KR102126300B1 (ko) | 올-인-포커스 이미지를 생성하기 위한 방법 및 장치 | |
WO2020155711A1 (zh) | 图像生成方法及装置、电子设备和存储介质 | |
RU2628494C1 (ru) | Способ и устройство для генерирования фильтра изображения | |
KR20210065178A (ko) | 생체 검출 방법 및 장치, 전자 기기 및 저장 매체 | |
WO2018076935A1 (zh) | 图像虚化处理方法、装置、移动终端和计算机存储介质 | |
TWI808177B (zh) | 用於連續多幀圖像去除雜訊的裝置和方法 | |
CN108230333B (zh) | 图像处理方法、装置、计算机程序、存储介质和电子设备 | |
CN106412458A (zh) | 一种图像处理方法和装置 | |
TWI778313B (zh) | 圖像處理方法、電子設備和儲存介質 | |
WO2022227394A1 (zh) | 图像处理方法、装置、设备、存储介质及程序 | |
CN107079094A (zh) | 图像处理装置、图像处理方法、程序及记录介质 | |
CN111583142A (zh) | 图像降噪方法及装置、电子设备和存储介质 | |
WO2021082381A1 (zh) | 人脸识别方法及装置、电子设备和存储介质 | |
CN104506771B (zh) | 图像处理方法及装置 | |
CN105654470B (zh) | 图像选取方法、装置及系统 | |
CN104363374A (zh) | 高帧率的视频生成方法、装置及终端 | |
CN113177890B (zh) | 图像处理方法及装置、电子设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |