CN114425430B - Catalytic cracking catalyst - Google Patents
Catalytic cracking catalyst Download PDFInfo
- Publication number
- CN114425430B CN114425430B CN202011175727.5A CN202011175727A CN114425430B CN 114425430 B CN114425430 B CN 114425430B CN 202011175727 A CN202011175727 A CN 202011175727A CN 114425430 B CN114425430 B CN 114425430B
- Authority
- CN
- China
- Prior art keywords
- phosphorus
- molecular sieve
- catalyst
- aluminum
- catalytic cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 174
- 238000004523 catalytic cracking Methods 0.000 title claims abstract description 84
- 239000002808 molecular sieve Substances 0.000 claims abstract description 271
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 269
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 145
- 239000011574 phosphorus Substances 0.000 claims abstract description 142
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 93
- 239000000126 substance Substances 0.000 claims abstract description 27
- 238000005004 MAS NMR spectroscopy Methods 0.000 claims abstract description 8
- 239000011230 binding agent Substances 0.000 claims description 104
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 91
- 238000000034 method Methods 0.000 claims description 67
- URRHWTYOQNLUKY-UHFFFAOYSA-N [AlH3].[P] Chemical compound [AlH3].[P] URRHWTYOQNLUKY-UHFFFAOYSA-N 0.000 claims description 64
- -1 1, 3-xylyl Chemical group 0.000 claims description 63
- 239000004927 clay Substances 0.000 claims description 59
- 229910052782 aluminium Inorganic materials 0.000 claims description 57
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 54
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 48
- 239000003921 oil Substances 0.000 claims description 44
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 42
- 239000002002 slurry Substances 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 230000032683 aging Effects 0.000 claims description 24
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 24
- 238000001035 drying Methods 0.000 claims description 23
- 238000002360 preparation method Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 22
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 21
- 239000005995 Aluminium silicate Substances 0.000 claims description 19
- 235000012211 aluminium silicate Nutrition 0.000 claims description 19
- 238000001228 spectrum Methods 0.000 claims description 19
- 238000003795 desorption Methods 0.000 claims description 18
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 16
- 229930195733 hydrocarbon Natural products 0.000 claims description 16
- 150000002430 hydrocarbons Chemical class 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 239000004215 Carbon black (E152) Substances 0.000 claims description 14
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 14
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 14
- 150000002910 rare earth metals Chemical class 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 11
- 238000000921 elemental analysis Methods 0.000 claims description 10
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 9
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 239000004113 Sepiolite Substances 0.000 claims description 8
- 229960000892 attapulgite Drugs 0.000 claims description 8
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 8
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 8
- 229910052625 palygorskite Inorganic materials 0.000 claims description 8
- 229910052624 sepiolite Inorganic materials 0.000 claims description 8
- 235000019355 sepiolite Nutrition 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- 238000001694 spray drying Methods 0.000 claims description 7
- 235000019353 potassium silicate Nutrition 0.000 claims description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 6
- 239000005909 Kieselgur Substances 0.000 claims description 5
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 claims description 5
- YZYDPPZYDIRSJT-UHFFFAOYSA-K boron phosphate Chemical compound [B+3].[O-]P([O-])([O-])=O YZYDPPZYDIRSJT-UHFFFAOYSA-K 0.000 claims description 5
- 229910000149 boron phosphate Inorganic materials 0.000 claims description 5
- 229910052621 halloysite Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 5
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000004254 Ammonium phosphate Substances 0.000 claims description 4
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical group [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 4
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 4
- 235000019289 ammonium phosphates Nutrition 0.000 claims description 4
- 239000003245 coal Substances 0.000 claims description 4
- 239000010779 crude oil Substances 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 4
- 239000011268 mixed slurry Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- DASNDJBQHOUCAV-UHFFFAOYSA-N CCCCP(CCCC)(CCCC)CCCC.Br Chemical compound CCCCP(CCCC)(CCCC)CCCC.Br DASNDJBQHOUCAV-UHFFFAOYSA-N 0.000 claims description 3
- BINPBNUGDBNVGP-UHFFFAOYSA-N CCCCP(CCCC)(CCCC)CCCC.Cl Chemical compound CCCCP(CCCC)(CCCC)CCCC.Cl BINPBNUGDBNVGP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 3
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 claims description 3
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 3
- 229960001545 hydrotalcite Drugs 0.000 claims description 3
- 150000002903 organophosphorus compounds Chemical class 0.000 claims description 3
- CYTQBVOFDCPGCX-UHFFFAOYSA-N trimethyl phosphite Chemical compound COP(OC)OC CYTQBVOFDCPGCX-UHFFFAOYSA-N 0.000 claims description 3
- 238000004537 pulping Methods 0.000 claims 2
- YUBYWXGQWBNUDW-UHFFFAOYSA-N 2,2,2-triphenylethylphosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1C(C=1C=CC=CC=1)(C[PH3+])C1=CC=CC=C1 YUBYWXGQWBNUDW-UHFFFAOYSA-N 0.000 claims 1
- XTPHBWGZLPWPQR-UHFFFAOYSA-N 4,4,4-triphenylbutylphosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1C(C=1C=CC=CC=1)(CCC[PH3+])C1=CC=CC=C1 XTPHBWGZLPWPQR-UHFFFAOYSA-N 0.000 claims 1
- AOTOMVRCWUMWDC-UHFFFAOYSA-N CCCCP(CCCC)(CCCC)CCCC.O Chemical compound CCCCP(CCCC)(CCCC)CCCC.O AOTOMVRCWUMWDC-UHFFFAOYSA-N 0.000 claims 1
- VOZIDVYZYUQUPE-UHFFFAOYSA-N [diphenyl-(2-phenylphenyl)methyl]phosphanium bromide Chemical compound [Br-].C=1C=CC=CC=1C(C=1C(=CC=CC=1)C=1C=CC=CC=1)([PH3+])C1=CC=CC=C1 VOZIDVYZYUQUPE-UHFFFAOYSA-N 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 140
- XXZCIYUJYUESMD-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(morpholin-4-ylmethyl)pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CN1CCOCC1 XXZCIYUJYUESMD-UHFFFAOYSA-N 0.000 description 59
- 238000011156 evaluation Methods 0.000 description 58
- 239000013078 crystal Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 24
- 230000014759 maintenance of location Effects 0.000 description 22
- 238000001116 aluminium-27 magic angle spinning nuclear magnetic resonance spectrum Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- 239000011148 porous material Substances 0.000 description 14
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 13
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 13
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 12
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 11
- 238000005470 impregnation Methods 0.000 description 11
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 10
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 9
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 9
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 9
- 239000005977 Ethylene Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000005336 cracking Methods 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 8
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 8
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 7
- 150000001336 alkenes Chemical class 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000004005 microsphere Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 6
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 5
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 5
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 5
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 5
- 235000011130 ammonium sulphate Nutrition 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000002149 hierarchical pore Substances 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000010009 beating Methods 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 150000003018 phosphorus compounds Chemical class 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 2
- DQUMHVRYXFTPNC-UHFFFAOYSA-N benzyl-bromo-triphenyl-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(Br)(C=1C=CC=CC=1)CC1=CC=CC=C1 DQUMHVRYXFTPNC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- IKWKJIWDLVYZIY-UHFFFAOYSA-M butyl(triphenyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CCCC)C1=CC=CC=C1 IKWKJIWDLVYZIY-UHFFFAOYSA-M 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- VLKRPMRVOKGQRE-UHFFFAOYSA-N dibenzyl(diethyl)phosphanium Chemical compound C=1C=CC=CC=1C[P+](CC)(CC)CC1=CC=CC=C1 VLKRPMRVOKGQRE-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 235000019837 monoammonium phosphate Nutrition 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910001948 sodium oxide Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- DEZDKWLZZLEVST-UHFFFAOYSA-N tetrabutyl(hydroxy)-$l^{5}-phosphane Chemical compound CCCCP(O)(CCCC)(CCCC)CCCC DEZDKWLZZLEVST-UHFFFAOYSA-N 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 101100426973 Caenorhabditis elegans ttr-3 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 229910001648 diaspore Inorganic materials 0.000 description 1
- 238000007323 disproportionation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- YCOZIPAWZNQLMR-UHFFFAOYSA-N heptane - octane Natural products CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- OBSZRRSYVTXPNB-UHFFFAOYSA-N tetraphosphorus Chemical compound P12P3P1P32 OBSZRRSYVTXPNB-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/24—After treatment, characterised by the effect to be obtained to stabilize the molecular sieve structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/084—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种催化裂解催化剂,更具体说本发明涉及一种含Y型分子筛和ZSM-5分子筛的催化裂解催化剂。The present invention relates to a catalytic cracking catalyst, and more specifically, the invention relates to a catalytic cracking catalyst containing Y-type molecular sieve and ZSM-5 molecular sieve.
背景技术Background technique
包括ZSM-5分子筛在内的MFI结构分子筛是1972年由美国Mobil公司开发的一类用途广泛的沸石分子筛催化材料。该分子筛具有三维交叉的孔道结构,沿a轴向的孔道为直孔,其截面尺寸为0.54×0.56nm,近似圆形,沿b轴向的孔道是Z字形孔,其截面尺寸为0.51×0.56nm,系椭圆形。其孔口有十元环构成,其大小介于小孔沸石和大孔沸石之间,因此这类分子筛具有独特的择形催化作用。它具有独特的孔道结构,并有良好的择形催化和异构化性能、高热和水热稳定性、高比表面积、宽硅铝比变化范围、独特的表面酸性和较低结碳量的特点,被广泛用作催化剂和催化剂载体,并成功用于烷基化、异构化、歧化、催化裂化、甲醇制汽油、甲醇制烯烃等生产工艺。该分子筛被引入到催化裂化和碳四烃催化裂解中,表现出优异的催化性能,利用其分子择形性可以大幅度提高低碳烯烃的产率。MFI structural molecular sieves, including ZSM-5 molecular sieves, are a widely used zeolite molecular sieve catalytic material developed by the American Mobil Company in 1972. This molecular sieve has a three-dimensional intersecting pore structure. The pores along the a-axis are straight pores with a cross-sectional size of 0.54×0.56nm, which is approximately circular. The pores along the b-axis are Z-shaped pores with a cross-sectional size of 0.51×0.56. nm, is an ellipse. Its pore is composed of ten-membered rings, and its size is between small-pore zeolite and large-pore zeolite. Therefore, this type of molecular sieve has unique shape-selective catalytic effect. It has a unique pore structure, good shape-selective catalysis and isomerization performance, high thermal and hydrothermal stability, high specific surface area, wide silicon-aluminum ratio variation range, unique surface acidity and low carbon content. , is widely used as catalyst and catalyst carrier, and has been successfully used in production processes such as alkylation, isomerization, disproportionation, catalytic cracking, methanol to gasoline, and methanol to olefins. This molecular sieve is introduced into catalytic cracking and catalytic cracking of carbon tetrahydrocarbons, showing excellent catalytic performance, and its molecular shape selectivity can be used to greatly increase the yield of low-carbon olefins.
自从1983年起,ZSM-5分子筛作为催化裂化辛烷值助剂开始应用于催化裂化工艺,旨在提高催化裂化汽油的辛烷值和低碳烯烃的选择性。在US3758403最早报道了用ZSM-5作为增产丙烯的活性组元,即将ZSM-5与REY一起作为活性组元制备成FCC催化剂。US5997728公开了采用ZSM-5分子筛作为增产丙烯的助剂,分子筛不经任何改性。上述两种技术丙烯收率均不高。ZSM-5分子筛虽然具有良好的择形性能和异构化性能,但是其不足之处是水热稳定性差,苛刻的高温水热条件下易失活,使催化性能降低。Since 1983, ZSM-5 molecular sieve has been used in the catalytic cracking process as a catalytic cracking octane additive, aiming to improve the octane number of catalytic cracking gasoline and the selectivity of low-carbon olefins. US3758403 was the first to report the use of ZSM-5 as an active component to increase propylene production, that is, ZSM-5 and REY were used together as active components to prepare an FCC catalyst. US5997728 discloses the use of ZSM-5 molecular sieve as an additive to increase propylene production without any modification of the molecular sieve. The propylene yields of the above two technologies are not high. Although ZSM-5 molecular sieve has good shape-selective properties and isomerization properties, its shortcoming is poor hydrothermal stability and easy deactivation under harsh high-temperature hydrothermal conditions, which reduces catalytic performance.
20世纪80年代,Mobil公司就发现磷能改善ZSM-5分子筛的水热稳定性,同时磷对ZSM-5分子筛进行改性后提高了低碳烯烃收率。常规添加剂通常含有经磷活化的ZSM-5,其使初级裂化产物(例如汽油烯烃)选择性转化成C3和C4烯烃。ZSM-5分子筛在合成后引入适量的无机磷化合物改性,可在苛刻的水热条件下可稳定骨架铝。In the 1980s, Mobil Company discovered that phosphorus could improve the hydrothermal stability of ZSM-5 molecular sieve. At the same time, phosphorus modified the ZSM-5 molecular sieve to increase the yield of low-carbon olefins. Conventional additives typically contain phosphorus-activated ZSM-5, which selectively converts primary cracking products (such as gasoline olefins) into C3 and C4 olefins. ZSM-5 molecular sieve is modified with an appropriate amount of inorganic phosphorus compounds after synthesis, which can stabilize the skeleton aluminum under harsh hydrothermal conditions.
在CN 106994364 A中公开了一种磷改性ZSM-5分子筛的方法,该方法是先以选自磷酸、磷酸氢二铵、磷酸二氢铵和磷酸铵中的一种或多种的含磷化合物与高碱金属离子含量的ZSM-5分子筛混合得到具有磷以P2O5计、至少0.1wt%的载持量的混合物,混合物经干燥、焙烧,再进行铵交步骤和水洗步骤,使得其中碱金属离子含量降到0.10wt%以下,然后历经干燥和在400-1000℃和100%水蒸气条件下水热老化的步骤。该方法得到的含磷ZSM-5分子筛,总酸量高,具有优异的裂解转化率和丙烯的选择性,同时具有较高的液化气收率。A method for modifying ZSM-5 molecular sieve with phosphorus is disclosed in CN 106994364 A. The method is to first use one or more phosphorus-containing materials selected from phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate and ammonium phosphate. The compound is mixed with a ZSM-5 molecular sieve with a high alkali metal ion content to obtain a mixture with a phosphorus loading of at least 0.1 wt% calculated as P 2 O 5 . The mixture is dried, roasted, and then subjected to an ammonium salt step and a water washing step, so that The alkali metal ion content is reduced to less than 0.10wt%, and then undergoes drying and hydrothermal aging steps at 400-1000°C and 100% water vapor. The phosphorus-containing ZSM-5 molecular sieve obtained by this method has a high total acid content, excellent cracking conversion rate and propylene selectivity, and also has a high liquefied gas yield.
在CN1506161A中公开了一种多级孔ZSM-5分子筛进行改性的方法,该方法包括按照常规的步骤:合成→过滤→铵交换→烘干→焙烧,得到多级孔ZSM-5分子筛,然后用磷酸对该多级孔ZSM-5分子筛进行改性,再烘干、焙烧,从而得到磷改性的多级孔ZSM-5分子筛。其中,P2O5载持量通常在1~7wt%范围内。然而,磷酸或磷酸铵盐在焙烧过程中会自聚生成不同聚集态的磷物种,水热处理过程中只有进入孔内的磷酸根与骨架铝相互作用保留B酸中心,降低磷物种的分布。A method for modifying hierarchical pore ZSM-5 molecular sieve is disclosed in CN1506161A. The method includes following the conventional steps: synthesis → filtration → ammonium exchange → drying → roasting to obtain hierarchical pore ZSM-5 molecular sieve, and then The hierarchical pore ZSM-5 molecular sieve is modified with phosphoric acid, and then dried and roasted to obtain the phosphorus-modified hierarchical pore ZSM-5 molecular sieve. Among them, the P 2 O 5 holding amount is usually in the range of 1 to 7 wt%. However, phosphoric acid or ammonium phosphate salts will self-aggregate to form phosphorus species in different aggregate states during the roasting process. During the hydrothermal treatment, only the phosphate radicals entering the pores interact with the skeleton aluminum to retain the B acid center, reducing the distribution of phosphorus species.
虽然采用适量的无机磷化物对ZSM-5分子筛进行改性,可减缓骨架脱铝,提高水热稳定性,而且磷原子会与扭曲的四配位骨架铝结合生成弱B酸中心,从而达到较高的长链烷烃裂解的转化率和较高的轻烯烃选择性,但是过量的无机磷化物用于对ZSM-5分子筛进行改性,会堵塞分子筛的孔道,使孔体积和比表面积降低,并大量占据强B酸中心。而且,现有技术在焙烧过程中磷酸或磷酸铵盐会自聚生成不同聚集态的磷物种,磷与骨架铝配位不充分,磷的利用效率较低,磷改性并不总是得到令人满意的水热稳定性改善结果。因此,急需新的技术促进磷与骨架铝配位,提高磷改性ZSM-5分子筛的水热稳定性,进一步提高裂解活性。Although using an appropriate amount of inorganic phosphide to modify the ZSM-5 molecular sieve can slow down the dealumination of the skeleton and improve the hydrothermal stability, the phosphorus atoms will combine with the twisted four-coordinate skeleton aluminum to form a weak B acid center, thereby achieving a higher It has high conversion rate of cracking long-chain alkanes and high selectivity of light olefins. However, excessive inorganic phosphide used to modify ZSM-5 molecular sieve will block the pores of the molecular sieve, reduce the pore volume and specific surface area, and Occupy a large number of strong B acid centers. Moreover, in the existing technology, during the roasting process, phosphoric acid or ammonium phosphate salts will self-aggregate to form phosphorus species in different aggregate states. The coordination between phosphorus and skeleton aluminum is insufficient, the utilization efficiency of phosphorus is low, and phosphorus modification is not always achieved. Satisfactory hydrothermal stability improvement results. Therefore, there is an urgent need for new technologies to promote the coordination of phosphorus and framework aluminum, improve the hydrothermal stability of phosphorus-modified ZSM-5 molecular sieves, and further improve the cracking activity.
发明内容Contents of the invention
本发明的目的之一是提供一种基于更好水热稳定性的磷改性ZSM-5分子筛作为活性组分之一的催化裂解催化剂;目的之二是提供一种该催化裂解催化剂的制备方法;目的之三是提供该催化裂化催化剂在石油烃催化裂解反应中的应用,可以获得优异的裂解转化率和低碳烯烃的收率,同时具有较高的液化气收率。One of the purposes of the present invention is to provide a catalytic cracking catalyst based on phosphorus-modified ZSM-5 molecular sieve with better hydrothermal stability as one of the active components; the second purpose is to provide a preparation method of the catalytic cracking catalyst ; The third purpose is to provide the application of the catalytic cracking catalyst in the catalytic cracking reaction of petroleum hydrocarbons, so as to obtain excellent cracking conversion rate and low carbon olefin yield, and at the same time have a high liquefied gas yield.
为了实现上述目的之一,本发明第一方面提供的催化裂解催化剂,其特征在于,以所述催化裂解催化剂的干基为基准,所述催化裂解催化剂含有以干基计1-25重量%的Y型分子筛、以干基计5-50重量%的磷改性ZSM-5分子筛、以干基计1-60重量%的无机粘结剂和可选加入的以干基计0-60重量%的第二粘土,其中,所述的磷改性ZSM-5分子筛,27Al MAS-NMR中,化学位移为39±3ppm共振信号峰面积与化学位移为54ppm±3ppm共振信号峰面积的比值≥1,所述无机粘结剂包括磷铝无机粘结剂和/或其他无机粘结剂。In order to achieve one of the above objects, the catalytic cracking catalyst provided by the first aspect of the present invention is characterized in that, based on the dry basis of the catalytic cracking catalyst, the catalytic cracking catalyst contains 1-25% by weight on a dry basis. Y-type molecular sieve, 5-50% by weight of phosphorus-modified ZSM-5 molecular sieve on a dry basis, 1-60% by weight of an inorganic binder on a dry basis and optionally 0-60% by weight on a dry basis. The second clay, wherein the phosphorus-modified ZSM-5 molecular sieve, in 27 Al MAS-NMR, the ratio of the resonance signal peak area with a chemical shift of 39±3ppm and the resonance signal peak area with a chemical shift of 54ppm±3ppm is ≥1 , the inorganic binder includes phosphorus aluminum inorganic binder and/or other inorganic binders.
优选的,所述的Y型分子筛包括PSRY分子筛、PSRY-S分子筛、含稀土的PSRY分子筛、含稀土的PSRY-S分子筛、USY分子筛、含稀土的USY分子筛、REY分子筛、REHY分子筛和HY分子筛的至少一种。Preferably, the Y-type molecular sieve includes PSRY molecular sieve, PSRY-S molecular sieve, rare earth-containing PSRY molecular sieve, rare earth-containing PSRY-S molecular sieve, USY molecular sieve, rare earth-containing USY molecular sieve, REY molecular sieve, REHY molecular sieve and HY molecular sieve. At least one.
优选的,所述的磷改性ZSM-5分子筛的27Al MAS-NMR中,化学位移为39±3ppm共振信号峰面积与化学位移为54ppm±3ppm共振信号峰面积的比值≥1,优选的比值≥10,更优选的比值为12~25。Preferably, in the 27 Al MAS-NMR of the phosphorus-modified ZSM-5 molecular sieve, the ratio of the resonance signal peak area with a chemical shift of 39±3ppm and the resonance signal peak area with a chemical shift of 54ppm±3ppm is ≥1, and the preferred ratio is ≥10, and a more preferred ratio is 12-25.
所述的磷改性ZSM-5分子筛,表面XPS元素分析中,n1/n2≤0.1,优选n1/n2≤0.09,更优选n1/n2≤0.08,最优选n1/n2为0.04~0.07,n1表示磷的摩尔数,n2表示硅和铝的总摩尔数。In the surface XPS elemental analysis of the phosphorus-modified ZSM-5 molecular sieve, n1/n2≤0.1, preferably n1/n2≤0.09, more preferably n1/n2≤0.08, most preferably n1/n2 is 0.04~0.07, n1 represents The number of moles of phosphorus, n2 represents the total number of moles of silicon and aluminum.
所述的磷改性ZSM-5分子筛,该分子筛经过800℃、100%水蒸气条件17h的水热老化后,其NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积的比重≥40%,优选的比重≥42%,更优选的比重≥45%,最优选的比重为48%~85%。The phosphorus-modified ZSM-5 molecular sieve, after hydrothermal aging at 800°C and 100% water vapor for 17 hours, in its NH3-TPD spectrum, the peak area of the strong acid center with a desorption temperature above 200°C accounts for the total acid The specific gravity of the central peak area is ≥40%, the preferred specific gravity is ≥42%, the more preferred specific gravity is ≥45%, and the most preferred specific gravity is 48% to 85%.
所述的磷改性ZSM-5分子筛,当磷和铝均以摩尔计时,二者的比值为0.01~2,优选的比值为0.1~1.5,更优选的比值为0.2~1.5。For the phosphorus-modified ZSM-5 molecular sieve, when phosphorus and aluminum are measured in moles, the ratio between the two is 0.01 to 2, the preferred ratio is 0.1 to 1.5, and the more preferred ratio is 0.2 to 1.5.
为了实现上述的目的之二,本发明提供的催化裂解催化剂的制备方法,该方法包括:将Y型分子筛、磷改性ZSM-5分子筛和无机粘结剂进行混合打浆和喷雾干燥,并可选地进行焙烧处理,得到所述的催化裂解催化剂;其中,所述混合中加入或不加入第二粘土;以干基计,所述Y型分子筛、所述含磷改性ZSM-5分子筛、所述无机粘结剂和所述第二粘土的重量用量比为(1-25):(5-50):(1-60):(0-60);所述无机粘结剂包括磷铝无机粘结剂和/或其他无机粘结剂;所述的磷改性ZSM-5分子筛是将含磷化合物溶液与HZSM-5分子筛进行接触,经干燥处理后,在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理并回收产物得到的;所述的接触是采用浸渍法使温度为0~150℃的含磷化合物的水溶液与0~150℃的HZSM-5分子筛在基本相同的温度下混合接触至少0.1小时,或者,所述的接触是将含磷化合物、HZSM-5分子筛和水混合打浆后在0~150℃下保持至少0.1小时;所述的气氛环境,其表观压力为0.01~1.0Mpa并含1~100%水蒸气。In order to achieve the second of the above objectives, the invention provides a method for preparing a catalytic cracking catalyst, which method includes: mixing Y-type molecular sieve, phosphorus-modified ZSM-5 molecular sieve and inorganic binder, and spray drying, and optionally Roasting treatment is performed to obtain the catalytic cracking catalyst; wherein, the second clay is added or not added to the mixing; on a dry basis, the Y-type molecular sieve, the phosphorus-containing modified ZSM-5 molecular sieve, the The weight ratio of the inorganic binder and the second clay is (1-25): (5-50): (1-60): (0-60); the inorganic binder includes phosphorus aluminum inorganic Binders and/or other inorganic binders; the phosphorus-modified ZSM-5 molecular sieve is made by contacting a phosphorus-containing compound solution with the HZSM-5 molecular sieve, and after drying, external pressure is applied and water is added externally. It is obtained by performing hydrothermal roasting treatment and recovering the product in an atmospheric environment; the contact is made by using an impregnation method to make the aqueous solution of the phosphorus-containing compound with a temperature of 0 to 150°C and the HZSM-5 molecular sieve of 0 to 150°C at basically the same temperature. Mix and contact with water for at least 0.1 hours, or the contact is to mix and beat the phosphorus-containing compound, HZSM-5 molecular sieve and water and then maintain it at 0-150°C for at least 0.1 hours; the apparent pressure of the described atmosphere is 0.01~1.0Mpa and containing 1~100% water vapor.
所述的含磷化合物选自有机磷化物和/或无机磷化物。所述的有机磷化物选自磷酸三甲酯、三苯基磷、三甲基亚磷酸酯、四丁基溴化膦、四丁基氯化膦、四丁基氢氧化磷、三苯基乙基溴化磷、三苯基丁基溴化磷、三苯基苄基溴化磷、六甲基磷酰三胺、二苄基二乙基磷、1,3-二甲苯双三乙基磷;所述的无机磷化物选自磷酸、磷酸氢铵、磷酸氢二铵、磷酸铵、磷酸硼。The phosphorus-containing compound is selected from organic phosphide and/or inorganic phosphide. The organic phosphorus compound is selected from the group consisting of trimethyl phosphate, triphenyl phosphorus, trimethyl phosphite, tetrabutyl phosphine bromide, tetrabutyl phosphine chloride, tetrabutyl phosphorus hydroxide, triphenylethyl bromide Phosphate, triphenylbutylphosphonium bromide, triphenylbenzylphosphorus bromide, hexamethylphosphoric triamide, dibenzyldiethylphosphonium, 1,3-xylenebistriethylphosphonium; The inorganic phosphide is selected from the group consisting of phosphoric acid, ammonium hydrogen phosphate, diammonium hydrogen phosphate, ammonium phosphate, and boron phosphate.
所述的HZSM-5分子筛中,Na2O<0.1wt%。In the HZSM-5 molecular sieve, Na 2 O <0.1wt%.
所述的含磷化合物以磷计、HZSM-5分子筛以铝计,二者的摩尔比值为0.01~2;优选的,二者的摩尔比值为0.1~1.5;更优选的,二者的摩尔比值为0.2~1.5。The molar ratio of the phosphorus-containing compound and the HZSM-5 molecular sieve based on aluminum is 0.01 to 2; preferably, the molar ratio of the two is 0.1 to 1.5; more preferably, the molar ratio of the two is 0.1 to 1.5. It is 0.2~1.5.
所述的接触,水筛重量比为0.5~1,所述的接触在50~150℃、优选70~130℃条件下进行0.5~40小时。The contact and water to sieve weight ratio are 0.5 to 1, and the contact is carried out at 50 to 150°C, preferably 70 to 130°C for 0.5 to 40 hours.
所述的气氛环境,其表观压力为0.1~0.8Mpa、优选0.3~0.6Mpa,含30%~100%水蒸气、优选含60~100%水蒸气;所述的水热焙烧处理是在200~800℃、优选300~500℃下进行。The apparent pressure of the described atmosphere is 0.1-0.8Mpa, preferably 0.3-0.6Mpa, and contains 30%-100% water vapor, preferably 60-100% water vapor; the hydrothermal roasting treatment is performed at 200 ~800°C, preferably 300-500°C.
所述的粘结剂为磷铝无机粘结剂和/或其他无机物粘结剂。优选的,所述的粘结剂优选为磷铝无机粘结剂,更优选的为磷铝胶和/或含第一粘土的磷铝无机粘结剂;以所述含第一粘土的磷铝无机粘结剂干基重量为基准,所述含第一粘土的磷铝无机粘结剂含有以Al2O3计15-40重量%铝组分、以P2O5计45-80重量%的磷组分以及以干基计大于0且不超过40重量%的第一粘土,且所述含第一粘土的磷铝无机粘结剂P/Al重量比为1.0-6.0,pH为1-3.5,固含量为15-60重量%;所述第一粘土包括高岭土、海泡石、凹凸棒石、累托石、蒙脱土和硅藻土中的至少一种。所述其他无机粘结剂包括拟薄水铝石、铝溶胶、硅铝溶胶和水玻璃中的至少一种。所述的第二粘土为选自高岭土、海泡石、凹凸棒石、累托石、蒙脱土、多水高岭土、埃洛石、水滑石、膨润土以及硅藻土中的至少一种。The binder is a phosphorus aluminum inorganic binder and/or other inorganic binders. Preferably, the binder is preferably a phosphorus aluminum inorganic binder, and more preferably is a phosphorus aluminum glue and/or a phosphorus aluminum inorganic binder containing the first clay; with the first clay-containing phosphorus aluminum Based on the dry weight of the inorganic binder, the first clay-containing phosphorus aluminum inorganic binder contains 15-40 wt% aluminum component as Al 2 O 3 and 45-80 wt % as P 2 O 5 The phosphorus component and the first clay is greater than 0 and not more than 40% by weight on a dry basis, and the P/Al weight ratio of the first clay-containing phosphorus aluminum inorganic binder is 1.0-6.0, and the pH is 1- 3.5, the solid content is 15-60% by weight; the first clay includes at least one of kaolin, sepiolite, attapulgite, rectorite, montmorillonite and diatomite. The other inorganic binder includes at least one of pseudo-boehmite, aluminum sol, silica-alumino sol and water glass. The second clay is at least one selected from the group consisting of kaolin, sepiolite, attapulgite, rectorite, montmorillonite, halloysite, halloysite, hydrotalcite, bentonite and diatomite.
优选的,以所述催化裂解催化剂的干基为基准,含有以干基重量计3-40重量%的磷铝无机粘结剂或者含有3-40重量%的磷铝无机粘结剂和1-30重量%的其他无机粘结剂。Preferably, based on the dry basis of the catalytic cracking catalyst, it contains 3-40% by weight of phosphorus aluminum inorganic binder on a dry basis basis or 3-40% by weight of phosphorus aluminum inorganic binder and 1- 30% by weight of other inorganic binders.
所述Y型分子筛包括PSRY分子筛、PSRY-S分子筛、含稀土的PSRY分子筛、含稀土的PSRY-S分子筛、USY分子筛、含稀土的USY分子筛、REY分子筛、REHY分子筛和HY分子筛的至少一种。The Y-type molecular sieve includes at least one of PSRY molecular sieve, PSRY-S molecular sieve, rare earth-containing PSRY molecular sieve, rare earth-containing PSRY-S molecular sieve, USY molecular sieve, rare earth-containing USY molecular sieve, REY molecular sieve, REHY molecular sieve and HY molecular sieve.
本发明提供的制备方法还包括:将所述焙烧得到的产物进行洗涤和可选的干燥处理,得到所述催化裂解催化剂;其中所述第一焙烧处理的焙烧温度为300~650℃,焙烧时间为0.5~12h。The preparation method provided by the invention also includes: washing and optionally drying the product obtained by the roasting to obtain the catalytic cracking catalyst; wherein the roasting temperature of the first roasting process is 300-650°C, and the roasting time It is 0.5~12h.
优选的,本发明的制备方法还包括采用以下步骤制备所述含第一粘土的磷铝无机粘结剂:将氧化铝源、所述第一粘土与水打浆分散成固含量为5-48重量%的浆液;其中所述的氧化铝源为能被酸胶溶的氢氧化铝和/或氧化铝,相对于15~40重量份的以Al2O3计的氧化铝源,以干基重量计的所述第一粘土的用量大于0重量份且不超过40重量份;搅拌下按照P/Al=1-6的重量比向所述浆液中加入浓磷酸,并使所得混合浆液在50-99℃反应15-90分钟;其中所述的P/Al中P为磷酸中的以单质计的磷的重量,Al为氧化铝源中以单质计的铝的重量。Preferably, the preparation method of the present invention also includes the following steps to prepare the phosphorus aluminum inorganic binder containing the first clay: slurry the alumina source, the first clay and water to disperse the solid content to 5-48 wt. % slurry; wherein the alumina source is aluminum hydroxide and/or alumina that can be peptized by acid, relative to 15 to 40 parts by weight of the alumina source calculated as Al 2 O 3 , on a dry basis The dosage of the first clay is greater than 0 parts by weight and not more than 40 parts by weight; add concentrated phosphoric acid to the slurry according to the weight ratio of P/Al=1-6 under stirring, and make the resulting mixed slurry at 50- React at 99°C for 15-90 minutes; in P/Al, P is the weight of phosphorus in phosphoric acid in terms of elemental substance, and Al is the weight of aluminum in the alumina source in terms of elemental substance.
为了实现上述目的之三,本发明提供了催化裂解催化剂的应用方法,包括在催化裂解反应条件下,使烃油与所述催化裂解催化剂接触反应,其中所述催化裂解反应条件包括:反应温度为500-800℃。所述烃油选自原油、石脑油、汽油、常压渣油、减压渣油、常压蜡油、减压蜡油、直流蜡油、丙烷轻/重脱油、焦化蜡油和煤液化产物中的一种或几种。In order to achieve the third of the above objects, the present invention provides an application method of a catalytic cracking catalyst, which includes contacting and reacting hydrocarbon oil with the catalytic cracking catalyst under catalytic cracking reaction conditions, wherein the catalytic cracking reaction conditions include: a reaction temperature of 500-800℃. The hydrocarbon oil is selected from crude oil, naphtha, gasoline, atmospheric residual oil, vacuum residual oil, atmospheric wax oil, vacuum wax oil, DC wax oil, propane light/heavy deoiling, coking wax oil and coal One or more of the liquefied products.
本发明提供的催化裂解催化剂,含有一种特殊物化参数的磷改性ZSM-5分子筛,该分子筛与Y型分子筛共同作为催化剂的活性组分,在烃油催化裂解反应中具有高的裂解转化率和低碳烯烃收率、液化气收率高的特点。The catalytic cracking catalyst provided by the invention contains a phosphorus-modified ZSM-5 molecular sieve with special physical and chemical parameters. The molecular sieve and the Y-type molecular sieve jointly serve as the active component of the catalyst and have a high cracking conversion rate in the catalytic cracking reaction of hydrocarbon oil. And it has the characteristics of high yield of low carbon olefins and liquefied gas.
附图说明Description of the drawings
图1为本发明的催化裂解催化剂中的磷改性ZSM-5分子筛样品PSZ1-1的27Al MAS-NMR谱图。Figure 1 is the 27 Al MAS-NMR spectrum of the phosphorus-modified ZSM-5 molecular sieve sample PSZ1-1 in the catalytic cracking catalyst of the present invention.
图2为本发明的催化裂解催化剂中的磷改性ZSM-5分子筛样品PSZ1-1经过800℃、100%水蒸气条件、17h水热老化后的NH3-TPD谱图。Figure 2 is the NH 3 -TPD spectrum of the phosphorus-modified ZSM-5 molecular sieve sample PSZ1-1 in the catalytic cracking catalyst of the present invention after hydrothermal aging at 800°C, 100% water vapor conditions for 17 hours.
图3为磷改性ZSM-5分子筛对比样品DBZ1-1的27Al MAS-NMR谱图。Figure 3 shows the 27 Al MAS-NMR spectrum of the phosphorus-modified ZSM-5 molecular sieve comparison sample DBZ1-1.
图4为磷改性ZSM-5分子筛对比样品DBZ1-1经过800℃、100%水蒸气条件、17h水热老化后的NH3-TPD谱图。Figure 4 shows the NH 3 -TPD spectrum of the phosphorus-modified ZSM-5 molecular sieve comparison sample DBZ1-1 after hydrothermal aging at 800°C, 100% water vapor conditions for 17 hours.
具体实施方式Detailed ways
本发明的催化裂解催化剂,其特征在于,以所述催化裂解催化剂的干基为基准,所述催化裂解催化剂含有以干基计1-25重量%的Y型分子筛、以干基计5-50重量%的磷改性ZSM-5分子筛、以干基计1-60重量%的无机粘结剂和可选加入的以干基计0-60重量%的第二粘土,其中,所述的磷改性ZSM-5分子筛,27Al MAS-NMR中,化学位移为39±3ppm共振信号峰面积与化学位移为54ppm±3ppm共振信号峰面积的比值≥1,所述无机粘结剂包括磷铝无机粘结剂和/或其他无机粘结剂。The catalytic cracking catalyst of the present invention is characterized in that, based on the dry basis of the catalytic cracking catalyst, the catalytic cracking catalyst contains 1-25% by weight of Y-type molecular sieve on a dry basis, 5-50% by weight on a dry basis. % by weight of phosphorus modified ZSM-5 molecular sieve, 1-60% by weight of inorganic binder on a dry basis and optionally added 0-60% by weight of a second clay on a dry basis, wherein the phosphorus Modified ZSM-5 molecular sieve, in 27 Al MAS-NMR, the ratio of the resonance signal peak area with a chemical shift of 39±3ppm and the resonance signal peak area with a chemical shift of 54ppm±3ppm is ≥1, and the inorganic binder includes phosphorus aluminum inorganic Binders and/or other inorganic binders.
本发明提供的催化裂解催化剂(以下简记为催化剂),其中所述的Y型分子筛优选的包括PSRY分子筛、含稀土的PSRY分子筛、USY分子筛、含稀土的USY分子筛、REY分子筛、REHY分子筛和HY分子筛的至少一种。In the catalytic cracking catalyst (hereinafter abbreviated as catalyst) provided by the invention, the Y-type molecular sieve preferably includes PSRY molecular sieve, rare earth-containing PSRY molecular sieve, USY molecular sieve, rare earth-containing USY molecular sieve, REY molecular sieve, REHY molecular sieve and HY At least one type of molecular sieve.
本发明提供的催化剂,其中所述的磷改性ZSM-5分子筛,27Al MAS-NMR中,化学位移为39±3ppm共振信号峰面积与化学位移为54ppm±3ppm共振信号峰面积的比值≥1,优选≥5,更优选≥10,最优选的比值为12~25。In the catalyst provided by the invention, in the phosphorus-modified ZSM-5 molecular sieve, in 27 Al MAS-NMR, the ratio of the resonance signal peak area with a chemical shift of 39±3ppm and the resonance signal peak area with a chemical shift of 54ppm±3ppm is ≥1 , preferably ≥5, more preferably ≥10, and the most preferred ratio is 12-25.
进一步,本发明的催化剂,其中所述的磷改性ZSM-5分子筛,表面XPS元素分析中,n1/n2≤0.1,其中,n1表示磷的摩尔数,n2表示硅和铝的总摩尔数,优选的,n1/n2≤0.09,更优选的,n1/n2≤0.08,最优选的,n1/n2为0.04~0.07;该表征参数表明分子筛中表面磷物种含量的减少,也说明表面磷物种向分子筛体相迁移的更多,即n1/n2的数值说明的是磷物种在分子筛表面分散效果以及从ZSM-5分子筛表面向晶体内迁移的程度,数值越小说明表面磷物种含量的减少,磷物种分散好以及向内迁移的程度高,从而分子筛的水热稳定性更好。Further, in the catalyst of the present invention, the phosphorus-modified ZSM-5 molecular sieve, in surface XPS elemental analysis, n1/n2≤0.1, where n1 represents the number of moles of phosphorus, n2 represents the total number of moles of silicon and aluminum, Preferably, n1/n2≤0.09, more preferably, n1/n2≤0.08, most preferably, n1/n2 is 0.04~0.07; this characterization parameter indicates the reduction of surface phosphorus species content in the molecular sieve, and also indicates the orientation of surface phosphorus species. The molecular sieve bulk phase migrates more, that is, the value of n1/n2 illustrates the dispersion effect of phosphorus species on the molecular sieve surface and the degree of migration from the ZSM-5 molecular sieve surface to the crystal. The smaller the value, the smaller the surface phosphorus species content, the phosphorus species. The species are well dispersed and have a high degree of inward migration, resulting in better hydrothermal stability of the molecular sieve.
更进一步,本发明的催化剂,其中所述的磷改性ZSM-5分子筛,经过800℃、100%水蒸气条件17h的水热老化后,其NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积的比重≥40%,这说明经过800℃、100%水蒸气条件17h水热老化后具有较高的强酸中心保留度,从而该分子筛具有较高的裂解活性。优选的该比重≥42%,更优选的该比重≥45%,最优选的该比重为48%~85%。Furthermore, in the catalyst of the present invention, the phosphorus-modified ZSM-5 molecular sieve, after hydrothermal aging at 800°C and 100% water vapor for 17 hours, has a desorption temperature of 200°C in its NH 3 -TPD spectrum. The proportion of the above strong acid center peak area to the total acid center peak area is ≥40%, which shows that after 17 hours of hydrothermal aging at 800°C and 100% water vapor, it has a higher retention of strong acid centers, and thus the molecular sieve has a higher cracking ability active. Preferably, the specific gravity is ≥42%, more preferably, the specific gravity is ≥45%, and most preferably, the specific gravity is 48% to 85%.
本发明的催化剂,其中所述的磷改性ZSM-5分子筛中磷的含量,当磷和铝均以摩尔计时,二者的比值为0.01~2;优选的,二者的比值为0.1~1.5;更优选的,二者的比值为0.2~1.5。In the catalyst of the present invention, the phosphorus content in the phosphorus-modified ZSM-5 molecular sieve, when both phosphorus and aluminum are measured in moles, the ratio between the two is 0.01 to 2; preferably, the ratio between the two is 0.1 to 1.5 ; More preferably, the ratio between the two is 0.2 to 1.5.
本发明的催化裂解催化剂中,粘土为本领域技术人员所熟知,所述第二粘土可以为选自高岭土、偏高岭土、硅藻土、海泡石、凹凸棒石、蒙脱石和累托石中至少一种,优选为高岭土、偏高岭土、累托石中的一种。以催化剂的总重量为基准,本发明的催化剂优选含有10~50重量%的第二粘土,例如含有12~28重量%或15~40重量%的第二粘土。In the catalytic cracking catalyst of the present invention, clay is well known to those skilled in the art. The second clay can be selected from kaolin, metakaolin, diatomaceous earth, sepiolite, attapulgite, montmorillonite and rectorite. At least one, preferably one of kaolin, metakaolin and rectorite. Based on the total weight of the catalyst, the catalyst of the present invention preferably contains 10 to 50 wt% of the second clay, for example, 12 to 28 wt% or 15 to 40 wt% of the second clay.
本发明的催化剂的一种具体实施方式中,以干基计,所述催化剂包括5-35重量%的磷铝无机粘合剂、1.5-20重量%的Y型分子筛、10-45重量%的磷改性ZSM-5分子筛、10-50重量%的第二粘土和5-28重量%的其他无机粘结剂。In a specific embodiment of the catalyst of the present invention, on a dry basis, the catalyst includes 5-35% by weight of phosphorus aluminum inorganic binder, 1.5-20% by weight of Y-type molecular sieve, 10-45% by weight of Phosphorus modified ZSM-5 molecular sieve, 10-50% by weight of second clay and 5-28% by weight of other inorganic binders.
本发明还提供了所述的催化剂的一种制备方法,该方法包括:将Y型分子筛、磷改性ZSM-5分子筛和无机粘结剂进行混合打浆和喷雾干燥,并可选地进行焙烧处理,得到所述的催化裂解催化剂;其中,所述混合中加入或不加入第二粘土;以干基计,所述Y型分子筛、所述磷改性ZSM-5分子筛、所述无机粘结剂和所述第二粘土的重量用量比为(1-25):(5-50):(1-60):(0-60);所述无机粘结剂包括磷铝无机粘结剂和/或其他无机粘结剂;其中所述的磷改性ZSM-5分子筛是采用下述步骤制备的:将含磷化合物溶液与HZSM-5分子筛进行接触,经干燥处理后,在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理并回收产物得到的;所述的接触是采用浸渍法使温度为0~150℃的含磷化合物的水溶液与0~150℃的HZSM-5分子筛在基本相同的温度下混合接触至少0.1小时,或者,所述的接触是将含磷化合物、HZSM-5分子筛和水混合打浆后在0~150℃下保持至少0.1小时;所述的气氛环境,其表观压力为0.01~1.0Mpa并含1~100%水蒸气。The invention also provides a preparation method of the catalyst, which method includes: mixing Y-type molecular sieve, phosphorus-modified ZSM-5 molecular sieve and inorganic binder, spray-drying, and optionally performing roasting treatment , to obtain the catalytic cracking catalyst; wherein, the second clay is added or not added to the mixing; on a dry basis, the Y-type molecular sieve, the phosphorus-modified ZSM-5 molecular sieve, the inorganic binder The weight ratio to the second clay is (1-25): (5-50): (1-60): (0-60); the inorganic binder includes phosphorus aluminum inorganic binder and/ or other inorganic binders; the phosphorus-modified ZSM-5 molecular sieve described therein is prepared by the following steps: contact the phosphorus-containing compound solution with the HZSM-5 molecular sieve, and after drying, apply external pressure and external It is obtained by performing hydrothermal roasting treatment and recovering the product in an atmosphere with added water; the contact is achieved by using an impregnation method to make an aqueous solution of a phosphorus-containing compound at a temperature of 0 to 150°C and a HZSM-5 molecular sieve of 0 to 150°C in a basic state. Mix and contact at the same temperature for at least 0.1 hours, or the contact is to mix and beat the phosphorus-containing compound, HZSM-5 molecular sieve and water and maintain it at 0 to 150°C for at least 0.1 hours; the described atmosphere environment, its surface The apparent pressure is 0.01~1.0Mpa and contains 1~100% water vapor.
所述磷改性ZSM-5分子筛采用的制备步骤促进了表面磷物种向ZSM-5分子筛体相的迁移;使得磷与骨架铝配位充分,骨架铝得到充分保护,分子筛具有优异的水热稳定性。The preparation steps used in the phosphorus-modified ZSM-5 molecular sieve promote the migration of surface phosphorus species to the bulk phase of the ZSM-5 molecular sieve; the phosphorus and the skeleton aluminum are fully coordinated, the skeleton aluminum is fully protected, and the molecular sieve has excellent hydrothermal stability sex.
所述磷改性ZSM-5分子筛采用的制备步骤中,所述的HZSM-5分子筛是微孔ZSM-5分子筛经铵交换降钠至Na2O<0.1wt%后得到,硅铝比(氧化硅与氧化铝的摩尔比,下同)范围≥10,通常在10~200。In the preparation steps used in the phosphorus-modified ZSM-5 molecular sieve, the HZSM-5 molecular sieve is obtained by reducing the sodium of the microporous ZSM-5 molecular sieve through ammonium exchange to Na 2 O <0.1wt%, and the silicon-aluminum ratio (oxidation The molar ratio of silicon to alumina (the same below) ranges from ≥10, usually between 10 and 200.
所述磷改性ZSM-5分子筛采用的制备步骤中,含磷化合物选自有机磷化物和/或无机磷化物。所述的有机磷化物选自磷酸三甲酯、三苯基磷、三甲基亚磷酸酯、四丁基溴化膦、四丁基氯化膦、四丁基氢氧化磷、三苯基乙基溴化磷、三苯基丁基溴化磷、三苯基苄基溴化磷、六甲基磷酰三胺、二苄基二乙基磷、1,3-二甲苯双三乙基磷,所述的无机磷化物选自磷酸、磷酸氢铵、磷酸氢二铵、磷酸铵、磷酸硼。In the preparation steps used in the phosphorus-modified ZSM-5 molecular sieve, the phosphorus-containing compound is selected from organic phosphide and/or inorganic phosphide. The organic phosphorus compound is selected from the group consisting of trimethyl phosphate, triphenyl phosphorus, trimethyl phosphite, tetrabutyl phosphine bromide, tetrabutyl phosphine chloride, tetrabutyl phosphorus hydroxide, triphenylethyl bromide Phosphate, triphenylbutylphosphonium bromide, triphenylbenzylphosphorus bromide, hexamethylphosphoric triamide, dibenzyldiethylphosphonium, 1,3-xylenebistriethylphosphonium, so The inorganic phosphide is selected from the group consisting of phosphoric acid, ammonium hydrogen phosphate, diammonium hydrogen phosphate, ammonium phosphate, and boron phosphate.
所述磷改性ZSM-5分子筛采用的制备步骤中,所述的接触的第一种方式是用浸渍法使温度为0~150℃的含磷化合物的水溶液与0~150℃的HZSM-5分子筛在基本相同的温度下接触至少0.1小时。例如接触可以是在0~30℃的常温区间下进行,优选的,是在40℃以上的较高的温度区间,例如50~150℃、更优选70~130℃下进行,以获得更好的效果,即磷物种分散更好,磷更容易迁移至HZSM-5分子筛晶内与骨架铝结合,进一步提高磷与骨架铝配位程度,最终对分子筛的水热稳定性的提高作出贡献。所述的基本相同的温度,是指含磷化合物的水溶液与HZSM-5分子筛各自具有的温度之间的温度差在±5℃。例如,含磷化合物的水溶液的温度为80℃,HZSM-5分子筛则需加热到75~85℃。In the preparation steps of the phosphorus-modified ZSM-5 molecular sieve, the first method of contact is to use an impregnation method to make an aqueous solution of a phosphorus-containing compound at a temperature of 0 to 150°C and HZSM-5 at a temperature of 0 to 150°C. The molecular sieves are contacted at substantially the same temperature for at least 0.1 hours. For example, the contact can be carried out in the normal temperature range of 0 to 30°C, preferably in a higher temperature range of 40°C or above, such as 50 to 150°C, more preferably 70 to 130°C, in order to obtain better The effect is that the phosphorus species are better dispersed, and the phosphorus is more likely to migrate into the HZSM-5 molecular sieve crystal and combine with the framework aluminum, further improving the coordination degree of phosphorus and the framework aluminum, and ultimately contributing to the improvement of the hydrothermal stability of the molecular sieve. The substantially same temperature means that the temperature difference between the respective temperatures of the aqueous solution of the phosphorus-containing compound and the HZSM-5 molecular sieve is ±5°C. For example, the temperature of the aqueous solution containing phosphorus compounds is 80°C, and the HZSM-5 molecular sieve needs to be heated to 75~85°C.
所述磷改性ZSM-5分子筛采用的制备步骤中,所述的接触的第二种方式是将含磷化合物、HZSM-5分子筛和水混合后在0~150℃下保持至少0.1小时。例如混合之后是在0~30℃的常温区间保持至少0.1小时,优选的,为了可以获得更好的效果,即为了实现磷物种分散更好,磷更容易迁移至分子筛晶内与骨架铝结合,进一步提高磷与骨架铝配位程度,最终提高分子筛的水热稳定性的目的,所述的含磷化合物、HZSM-5分子筛和水混合之后,是在40℃以上的较高的温度区间保持0.1小时,例如50~150℃温度区间、更优选70~130℃温度区间。In the preparation steps of the phosphorus-modified ZSM-5 molecular sieve, the second method of contact is to mix the phosphorus-containing compound, the HZSM-5 molecular sieve and water and then maintain the mixture at 0 to 150°C for at least 0.1 hour. For example, after mixing, it is maintained at a normal temperature range of 0 to 30°C for at least 0.1 hours. Preferably, in order to obtain better results, that is, to achieve better dispersion of phosphorus species, phosphorus can more easily migrate into the molecular sieve crystals and combine with the framework aluminum, In order to further improve the coordination degree of phosphorus and framework aluminum, and ultimately improve the hydrothermal stability of the molecular sieve, the phosphorus-containing compound, HZSM-5 molecular sieve and water are mixed to maintain a temperature range of 0.1 in a higher temperature range above 40°C. hours, for example, in the temperature range of 50 to 150°C, more preferably in the temperature range of 70 to 130°C.
所述磷改性ZSM-5分子筛采用的制备步骤中,当含磷化合物以磷计、HZSM-5分子筛以铝计时,二者的摩尔比值为0.01~2;优选的,二者的摩尔比值为0.1~1.5;更优选的,二者的摩尔比值为0.2~1.5。所述的接触,水筛重量比为0.5~1,优选的接触时间为0.5~40小时。In the preparation steps used for the phosphorus-modified ZSM-5 molecular sieve, when the phosphorus-containing compound is measured as phosphorus and the HZSM-5 molecular sieve is measured as aluminum, the molar ratio between the two is 0.01 to 2; preferably, the molar ratio between the two is 0.1~1.5; more preferably, the molar ratio between the two is 0.2~1.5. In the described contact, the weight ratio of water to sieve is 0.5 to 1, and the preferred contact time is 0.5 to 40 hours.
所述磷改性ZSM-5分子筛采用的制备步骤中,所述的水热焙烧处理是在外部施加压力和外部添加水的气氛环境下进行。所述的气氛环境以由外部施加压力和外部施加水而获得,优选表观压力为0.1~0.8MPa、更优选表观压力为0.3~0.6MPa,优选含30~100%水蒸气,更优选含60~100%水蒸气。所述的外部施加压力是指从外部针对制备物料水热焙烧处理过程中施加一定压力,例如,可以采用从外部通入惰性气体保持一定背压的方式进行。所述的外部添加水的量,以满足所述的气氛环境含1~100%水蒸气为准。所述的水热焙烧处理的步骤在200~800℃、优选300~500℃下进行。In the preparation steps of the phosphorus-modified ZSM-5 molecular sieve, the hydrothermal roasting treatment is performed in an atmosphere with external pressure and external water added. The described atmospheric environment is obtained by externally applying pressure and externally applying water. The preferred superficial pressure is 0.1 to 0.8MPa, more preferably the superficial pressure is 0.3 to 0.6MPa, and preferably contains 30 to 100% water vapor, and more preferably contains 60~100% water vapor. The external pressure refers to applying a certain pressure from the outside during the hydrothermal roasting process of the prepared materials. For example, it can be carried out by introducing inert gas from the outside to maintain a certain back pressure. The amount of externally added water shall be such that the atmosphere contains 1 to 100% water vapor. The hydrothermal roasting treatment step is carried out at 200-800°C, preferably 300-500°C.
本发明的催化剂中,以所述催化剂的干基为基准,优选的,含有以干基重量计3-40重量%的磷铝无机粘结剂或者含有3-40重量%的磷铝无机粘结剂和1-30重量%的其他无机粘结剂。The catalyst of the present invention preferably contains 3-40% by weight of phosphorus-aluminum inorganic binder or 3-40% by weight of phosphorus-aluminum inorganic binder based on the dry basis of the catalyst. agent and 1-30% by weight of other inorganic binders.
所述磷铝无机粘结剂为磷铝胶和/或含第一粘土的磷铝无机粘结剂;以所述含第一粘土的磷铝无机粘结剂干基重量为基准,所述含第一粘土的磷铝无机粘结剂含有以Al2O3计15-40重量%铝组分、以P2O5计45-80重量%的磷组分以及以干基计大于0且不超过40重量%的第一粘土,且所述含第一粘土的磷铝无机粘结剂P/Al重量比为1.0-6.0,pH为1-3.5,固含量为15-60重量%;所述第一粘土包括高岭土、海泡石、凹凸棒石、累托石、蒙脱土和硅藻土中的至少一种。所述其他无机物粘结剂包括拟薄水铝石、铝溶胶、硅铝溶胶和水玻璃中的至少一种。所述第二粘土为选自高岭土、海泡石、凹凸棒石、累托石、蒙脱土、多水高岭土、埃洛石、水滑石、膨润土以及硅藻土中的至少一种。The phosphorus aluminum inorganic binder is phosphorus aluminum glue and/or a phosphorus aluminum inorganic binder containing the first clay; based on the dry basis weight of the phosphorus aluminum inorganic binder containing the first clay, the phosphorus aluminum inorganic binder containing the first clay is used as the basis. The phosphorus aluminum inorganic binder of the first clay contains an aluminum component of 15-40% by weight as Al2O3 , a phosphorus component of 45-80 % by weight as P2O5 and is greater than 0 and not More than 40% by weight of the first clay, and the P/Al weight ratio of the first clay-containing phosphorus aluminum inorganic binder is 1.0-6.0, the pH is 1-3.5, and the solid content is 15-60% by weight; The first clay includes at least one of kaolin, sepiolite, attapulgite, rectorite, montmorillonite and diatomaceous earth. The other inorganic binder includes at least one of pseudo-boehmite, alumina sol, silica-alumina sol and water glass. The second clay is at least one selected from the group consisting of kaolin, sepiolite, attapulgite, rectorite, montmorillonite, halloysite, halloysite, hydrotalcite, bentonite and diatomaceous earth.
所述Y型分子筛包括PSRY分子筛、含稀土的PSRY分子筛、USY分子筛、含稀土的USY分子筛、REY分子筛、REHY分子筛和HY分子筛的至少一种。The Y-type molecular sieve includes at least one of PSRY molecular sieve, rare earth-containing PSRY molecular sieve, USY molecular sieve, rare earth-containing USY molecular sieve, REY molecular sieve, REHY molecular sieve and HY molecular sieve.
所述的催化裂解催化剂的制备方法还包括:将所述喷雾干燥所得产物进行第一焙烧、洗涤和可选的干燥处理,得到所述催化剂;其中所述第一焙烧的焙烧温度为300-650℃,焙烧时间为0.5~8h;所述干燥处理的温度为100-200℃,干燥时间为0.5-24h。The preparation method of the catalytic cracking catalyst also includes: subjecting the product obtained by spray drying to first roasting, washing and optional drying to obtain the catalyst; wherein the roasting temperature of the first roasting is 300-650 ℃, the roasting time is 0.5-8h; the temperature of the drying treatment is 100-200℃, and the drying time is 0.5-24h.
所述的催化裂解催化剂的制备方法中,进一步还可包括采用以下步骤制备所述含第一粘土的磷铝无机粘结剂:将氧化铝源、所述第一粘土与水打浆分散成固含量为5-48重量%的浆液;其中所述的氧化铝源为能被酸胶溶的氢氧化铝和/或氧化铝,相对于15~40重量份的以Al2O3计的氧化铝源,以干基重量计的所述第一粘土的用量大于0重量份且不超过40重量份;搅拌下按照P/Al=1-6的重量比向所述浆液中加入浓磷酸,并使所得混合浆液在50-99℃反应15-90分钟;其中所述的P/Al中P为磷酸中的以单质计的磷的重量,Al为氧化铝源中以单质计的铝的重量。In the preparation method of the catalytic cracking catalyst, the method may further include preparing the phosphorus aluminum inorganic binder containing the first clay by using the following steps: slurrying the alumina source, the first clay and water to form a solid content. It is a slurry of 5-48% by weight; wherein the alumina source is aluminum hydroxide and/or alumina that can be peptized by acid, relative to 15-40 parts by weight of the alumina source calculated as Al 2 O 3 , the amount of the first clay on a dry basis is greater than 0 parts by weight and not more than 40 parts by weight; add concentrated phosphoric acid to the slurry according to the weight ratio of P/Al=1-6 under stirring, and make the resulting The mixed slurry is reacted at 50-99°C for 15-90 minutes; in P/Al, P is the weight of phosphorus in phosphoric acid in terms of elemental substance, and Al is the weight of aluminum in the alumina source in terms of elemental substance.
本发明中所述磷铝无机粘结剂的一种具体实施方式,以所述磷铝无机粘结剂的干基重量为基准,优选含有以Al2O3计15-35重量%的铝组分,以P2O5计50-75重量%的磷组分以及以干基重量计8-35重量%的第一粘土,且其P/Al重量比优选为1.2-6.0,更优选为2.0-5.0,pH值优选为2.0-3.0。本发明中所述磷铝无机粘结剂的另一种具体实施方式,以所述磷铝无机粘结剂的干基重量为基准,所述的磷铝无机粘结剂包括以Al2O3计20-40重量%铝组分和以P2O5计60-80重量%的磷组分。A specific embodiment of the phosphorus-aluminum inorganic binder in the present invention, based on the dry weight of the phosphorus-aluminum inorganic binder, preferably contains 15-35% by weight of aluminum based on Al 2 O 3 50-75% by weight of the phosphorus component as P2O5 and 8-35% by weight of the first clay on a dry basis, and its P/Al weight ratio is preferably 1.2-6.0, more preferably 2.0 -5.0, the pH value is preferably 2.0-3.0. Another specific embodiment of the phosphorus-aluminum inorganic binder in the present invention is based on the dry weight of the phosphorus-aluminum inorganic binder. The phosphorus-aluminum inorganic binder includes Al 2 O 3 20-40% by weight of the aluminum component and 60-80% by weight of the phosphorus component as P2O5 .
所述的催化裂解催化剂的制备方法,还可以包括:将所述焙烧处理所得产物进行洗涤和可选的干燥处理,得到所述催化裂解催化剂;其中所述焙烧的焙烧温度可以为300~650℃,例如为400~600℃优选450~550℃,焙烧时间可以为0.5~12小时;所述洗涤可以采用硫酸铵、硝酸铵、氯化铵中的一种,洗涤温度可以为40~80℃;所述干燥处理的温度可以为110~200℃例如为120~150℃,干燥时间可以为0.5~18h例如为2~12h。The preparation method of the catalytic cracking catalyst may also include: washing and optionally drying the product obtained by the roasting treatment to obtain the catalytic cracking catalyst; wherein the roasting temperature may be 300 to 650°C. , for example, 400 to 600°C, preferably 450 to 550°C, and the roasting time can be 0.5 to 12 hours; the washing can be one of ammonium sulfate, ammonium nitrate, and ammonium chloride, and the washing temperature can be 40 to 80°C; The temperature of the drying process may be 110-200°C, such as 120-150°C, and the drying time may be 0.5-18h, such as 2-12h.
本发明提供的制备方法的一种具体实施方式中,可以将无机粘结剂(例如拟薄水铝石、铝溶胶、硅溶胶、硅铝凝胶或其中两种或多种的混合物)与第二粘土(例如高岭土)以及水(例如脱氧离子水和/或去离子水)混合,配置成固含量为10~50重量%的浆液,搅拌均匀,用无机酸例如盐酸、硝酸、磷酸或硫酸将浆液pH调至1~4,保持该pH值,于20~80℃下静置老化0~2小时后例如0.3~2小时后加入铝溶胶和/或硅溶胶,搅拌0.5~1.5小时形成胶体,然后加入分子筛,所述分子筛包括所述磷改性的ZSM-5分子筛和Y型分子筛,形成催化剂浆液,催化剂浆液固含量例如为20~45重量,继续搅拌后喷雾干燥制成微球催化剂。然后将微球催化剂进行焙烧例如在350~650℃或400~600℃优选450~550℃焙烧0.5~6小时或0.5~2小时,再用硫酸铵洗涤(其中,洗涤温度可以在40~70℃,硫酸铵:微球催化剂:水=0.2~0.8:1:5~15重量比)至氧化钠含量小于0.25重量%,用水洗涤并过滤,之后干燥。In a specific embodiment of the preparation method provided by the present invention, an inorganic binder (such as pseudo-boehmite, aluminum sol, silica sol, silica-alumino gel or a mixture of two or more thereof) can be mixed with the third Diclay (such as kaolin) and water (such as deoxygenated ionized water and/or deionized water) are mixed to form a slurry with a solid content of 10 to 50% by weight, stir evenly, and use inorganic acid such as hydrochloric acid, nitric acid, phosphoric acid or sulfuric acid to slurry. Adjust the pH of the slurry to 1 to 4, maintain the pH value, and let it stand and age at 20 to 80°C for 0 to 2 hours, for example, after 0.3 to 2 hours, add aluminum sol and/or silica sol, and stir for 0.5 to 1.5 hours to form a colloid. Then add molecular sieves, which include the phosphorus-modified ZSM-5 molecular sieve and Y-type molecular sieve, to form a catalyst slurry. The solid content of the catalyst slurry is, for example, 20 to 45% by weight. The catalyst slurry is continuously stirred and then spray-dried to prepare a microsphere catalyst. The microsphere catalyst is then calcined, for example, at 350 to 650°C or 400 to 600°C, preferably 450 to 550°C for 0.5 to 6 hours or 0.5 to 2 hours, and then washed with ammonium sulfate (wherein, the washing temperature can be at 40 to 70°C , ammonium sulfate: microsphere catalyst: water = 0.2~0.8:1:5~15 weight ratio) until the sodium oxide content is less than 0.25% by weight, wash with water and filter, and then dry.
本发明提供的制备方法的另一种具体实施方式中,可以将Y型分子筛和磷改性ZSM-5分子筛、磷铝无机粘结剂和其他无机粘结剂混合,加或不加入第二粘土,打浆,喷雾干燥。In another specific embodiment of the preparation method provided by the present invention, Y-type molecular sieve and phosphorus-modified ZSM-5 molecular sieve, phosphorus aluminum inorganic binder and other inorganic binders can be mixed, with or without adding a second clay , beating, spray drying.
所述无机粘结剂包括所述磷铝无机粘结剂和所述其他无机物粘结剂,所述磷铝无机粘结剂和所述其他无机物粘结剂的重量用量比可以为(3-40):(1-30),优选为(5-35):(5-28),进一步优选为(10-30):(5-25);其中所述磷铝无机粘结剂可以为磷铝胶和/或含第一粘土的磷铝无机粘结剂;所述其他无机物粘结剂可以包括拟薄水铝石、铝溶胶、硅铝溶胶和水玻璃中的至少一种。The inorganic binder includes the phosphorus aluminum inorganic binder and the other inorganic binders. The weight ratio of the phosphorus aluminum inorganic binder and the other inorganic binders can be (3 -40): (1-30), preferably (5-35): (5-28), further preferably (10-30): (5-25); wherein the phosphorus aluminum inorganic binder can be Phosphorus aluminum glue and/or phosphorus aluminum inorganic binder containing the first clay; the other inorganic binders may include at least one of pseudo-boehmite, aluminum sol, silica-alumina sol and water glass.
本发明的催化裂解催化剂的制备方法,可以将含磷改性ZSM-5分子筛、磷铝无机粘结剂和其他无机粘结剂混合,打浆,其加料的顺序没有特殊要求,例如可以将磷铝无机粘结剂、其他无机粘结剂、分子筛、第二粘土混合(当不含第二粘土的时候则可以省略相关的加料步骤)打浆,优选的,先将第二粘土、分子筛以及其他无机粘结剂混合打浆后再加入所述磷铝无机粘结剂,这有利于改善催化剂的活性和选择性。The preparation method of the catalytic cracking catalyst of the present invention can mix and beat the phosphorus-containing modified ZSM-5 molecular sieve, phosphorus aluminum inorganic binder and other inorganic binders. There is no special requirement for the order of adding the materials. For example, phosphorus aluminum can be Inorganic binders, other inorganic binders, molecular sieves, and second clay are mixed (when the second clay is not included, the relevant adding steps can be omitted) and beaten. Preferably, the second clay, molecular sieves, and other inorganic binders are first mixed. The phosphorus-aluminum inorganic binder is added after the binder is mixed and beaten, which is beneficial to improving the activity and selectivity of the catalyst.
本发明的催化裂解催化剂的制备方法,还包括将所述打浆得到的浆液喷雾干燥的步骤。喷雾干燥的方法为本领域技术人员熟知,本公开没有特殊要求。The preparation method of the catalytic cracking catalyst of the present invention also includes the step of spray drying the slurry obtained by the beating. The method of spray drying is well known to those skilled in the art, and there are no special requirements in this disclosure.
进一步地,本发明的方法还可以包括采用如下步骤制备所述含第一粘土的磷铝无机粘结剂:将氧化铝源、所述第一粘土与水打浆分散成固含量为5-48重量%的浆液;其中所述的氧化铝源为能被酸胶溶的氢氧化铝和/或氧化铝,相对于15~40重量份的以Al2O3计的氧化铝源,以干基重量计的所述第一粘土的用量大于0重量份且不超过40重量份;搅拌下按照P/Al=1-6的重量比向所述浆液中加入浓磷酸,并使所得混合浆液在50-99℃反应15-90分钟;其中所述的P/Al中P为磷酸中的以单质计的磷的重量,Al为氧化铝源中以单质计的铝的重量。所述氧化铝源可以为选自ρ-氧化铝、x-氧化铝、η-氧化铝、γ-氧化铝、κ-氧化铝、σ-氧化铝、θ-氧化铝、三水铝石、湃铝石、诺水铝石、硬水铝石、薄水铝石和拟薄水铝石中的至少一种,所述含第一粘土的磷铝无机粘结剂中的铝组分源自所述的氧化铝源。所述的第一粘土可以分为高铝土、海泡石、凹凸棒石、累托土、蒙脱土以及硅藻土中的一种或多种,优选为累托土。所述的浓磷酸其浓度可以为60-98重量%,更优选为75-90重量%。磷酸的加料速度优选为0.01-0.10kg磷酸/分钟/kg氧化铝源,更优选为0.03-0.07kg磷酸/分钟/kg氧化铝源。Further, the method of the present invention may also include preparing the phosphate-aluminum inorganic binder containing the first clay by using the following steps: slurry the alumina source, the first clay and water to disperse the solid content to 5-48 wt. % slurry; wherein the alumina source is aluminum hydroxide and/or alumina that can be peptized by acid, relative to 15 to 40 parts by weight of the alumina source calculated as Al 2 O 3 , on a dry basis The dosage of the first clay is greater than 0 parts by weight and not more than 40 parts by weight; add concentrated phosphoric acid to the slurry according to the weight ratio of P/Al=1-6 under stirring, and make the resulting mixed slurry at 50- React at 99°C for 15-90 minutes; in P/Al, P is the weight of phosphorus in phosphoric acid in terms of elemental substance, and Al is the weight of aluminum in the alumina source in terms of elemental substance. The alumina source may be selected from the group consisting of rho-alumina, x-alumina, eta-alumina, γ-alumina, κ-alumina, σ-alumina, θ-alumina, gibbsite, and At least one of almanite, nordiaspore, diaspore, boehmite and pseudo-boehmite, the aluminum component in the first clay-containing phosphoaluminum inorganic binder is derived from the Alumina source. The first clay may be classified into one or more types of high alumina, sepiolite, attapulgite, rectorite, montmorillonite and diatomite, preferably rectorite. The concentration of the concentrated phosphoric acid may be 60-98% by weight, more preferably 75-90% by weight. The feeding rate of phosphoric acid is preferably 0.01-0.10kg phosphoric acid/minute/kg alumina source, and more preferably 0.03-0.07kg phosphoric acid/minute/kg alumina source.
在上述实施方式中,所述含第一粘土的磷铝无机粘结剂由于粘土的引入,不仅在制备过程中改善了物料之间的传质、传热,避免了物料不均匀局部瞬间剧烈反应放热超稳引起的粘结剂固话,得到的粘结剂的粘结性能与不引入粘土方法制备的磷铝粘结剂相当;而且该方法引入粘土,尤其是具有层状结构的累托土,改善了催化剂的重油转化能力,使得到的催化剂剂具有更佳的选择性。In the above embodiment, the introduction of the first clay-containing phosphorus aluminum inorganic binder not only improves the mass transfer and heat transfer between materials during the preparation process, but also avoids uneven local instantaneous violent reactions of the materials. When the binder is fixed due to exothermic super-stability, the bonding performance of the obtained binder is equivalent to that of the phosphorus-aluminum binder prepared by the method without introducing clay; and this method introduces clay, especially the retort with layered structure. Soil improves the heavy oil conversion ability of the catalyst, making the resulting catalyst more selective.
本发明还提供采用上述方法制备得到的催化裂解催化剂。The invention also provides a catalytic cracking catalyst prepared by the above method.
本发明进一步提供一种烃油催化裂解的方法。用于催化裂解过程时,一种具体实施方式,催化裂解催化剂可单独往催化裂解反应器里添加,例如在催化裂解条件下,使烃油与本发明所述的催化裂解催化剂接触反应;用于催化裂解过程时的另一种具体实施方式,该催化剂可与催化裂解催化剂混合使用,例如可以使烃油与含有本发明的催化裂解催化剂和其他催化裂解催化剂的催化混合物接触反应。本发明提供的催化剂占上述混合物总量可以不超过30重量%,优选为1-25重量%,更优选为3-15重量%,本发明所提供的催化裂解催化剂可以用于各种烃油催化裂解。所述烃油可以选自各种石油馏分,如原油、石脑油、催化汽油、常压渣油、减压渣油、常压蜡油、减压蜡油、直流蜡油、丙烷轻/重脱油、焦化蜡油和煤液化产物中的一种或多种。所述烃油可以含有镍、钒等重金属杂质及硫、氮杂质,如烃油中硫的含量可高达3.0重量%,氮的含量可高达2.0重量%,钒、镍等金属杂质的含量可高达3000ppm。The invention further provides a method for catalytic cracking of hydrocarbon oil. When used in the catalytic cracking process, in a specific embodiment, the catalytic cracking catalyst can be added separately to the catalytic cracking reactor, for example, under catalytic cracking conditions, the hydrocarbon oil is contacted and reacted with the catalytic cracking catalyst of the present invention; used for In another specific embodiment of the catalytic cracking process, the catalyst can be mixed with a catalytic cracking catalyst. For example, the hydrocarbon oil can be contacted with a catalytic mixture containing the catalytic cracking catalyst of the present invention and other catalytic cracking catalysts. The catalyst provided by the present invention may account for no more than 30% by weight of the total amount of the above mixture, preferably 1-25% by weight, more preferably 3-15% by weight. The catalytic cracking catalyst provided by the present invention can be used for various hydrocarbon oil catalysis lysis. The hydrocarbon oil can be selected from various petroleum fractions, such as crude oil, naphtha, catalytic gasoline, atmospheric residual oil, vacuum residual oil, atmospheric wax oil, vacuum wax oil, DC wax oil, propane light/heavy One or more of deoiling, coking wax oil and coal liquefaction products. The hydrocarbon oil may contain heavy metal impurities such as nickel and vanadium as well as sulfur and nitrogen impurities. For example, the sulfur content in the hydrocarbon oil may be as high as 3.0% by weight, the nitrogen content may be as high as 2.0% by weight, and the content of metal impurities such as vanadium and nickel may be as high as 3000 ppm.
在本发明的烃油催化裂解方法中,催化裂解条件可以为本领域常规的,优选地包括:反应温度500~800℃例如550~680℃。所用的烃油可以选自原油、石脑油、汽油、常压渣油、减压渣油、常压蜡油、减压蜡油、直流蜡油、丙烷轻/重脱油、焦化蜡油和煤液化产物中的一种或几种。In the hydrocarbon oil catalytic cracking method of the present invention, the catalytic cracking conditions can be conventional in the art, and preferably include: reaction temperature of 500 to 800°C, such as 550 to 680°C. The hydrocarbon oil used can be selected from crude oil, naphtha, gasoline, atmospheric residual oil, vacuum residual oil, atmospheric wax oil, vacuum wax oil, direct flow wax oil, propane light/heavy deoiling, coking wax oil and One or more of the coal liquefaction products.
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
X射线衍射(XRD)谱图在日本理学TTR-3粉末X射线衍射仪上测定。仪器参数:铜靶(管电压40kV,管电流250mA),闪烁计数器,步宽0.02°,扫描速率0.4(°)/min。采用CN1056818C中实施例1的方法合成的ZSM-5分子筛为标样,将其结晶度定为100%。相对结晶度是以所得产物和标样的X射线衍射谱图的2θ在22.5~25.0°之间的五个特征衍射峰的峰面积之和的比值以百分数来表示。X-ray diffraction (XRD) spectra were measured on a Japanese Rigaku TTR-3 powder X-ray diffractometer. Instrument parameters: copper target (tube voltage 40kV, tube current 250mA), scintillation counter, step width 0.02°, scan rate 0.4(°)/min. The ZSM-5 molecular sieve synthesized by the method of Example 1 in CN1056818C was used as a standard sample, and its crystallinity was set as 100%. The relative crystallinity is expressed as a percentage by the sum of the peak areas of five characteristic diffraction peaks with 2θ between 22.5 and 25.0° in the X-ray diffraction spectrum of the obtained product and the standard sample.
27Al MAS-NMR谱图分析是在Bruker AVANCE III 600WB型光谱仪进行测定。仪器参数:转子直径4mm,共振频谱为156.4MHz,脉宽0.4μs(对应15°扳倒角),魔角旋转转速为12kHz,延迟时间为1s。27Al MAS-NMR谱图特征,54±3pp m处的特征峰1归属于四配位骨架铝,39±3ppm处的特征峰2归属于磷稳定的骨架铝(扭曲四配位骨架铝)。各峰面积由特征峰进行分峰拟合后采用积分法计算。 27 Al MAS-NMR spectrum analysis was measured on a Bruker AVANCE III 600WB spectrometer. Instrument parameters: rotor diameter 4mm, resonance spectrum 156.4MHz, pulse width 0.4μs (corresponding to 15° chamfering angle), magic angle rotation speed 12kHz, delay time 1s. 27 Al MAS-NMR spectrum characteristics, characteristic peak 1 at 54±3ppm is attributed to four-coordinated framework aluminum, and characteristic peak 2 at 39±3ppm is attributed to phosphorus-stabilized framework aluminum (twisted four-coordinated framework aluminum). The area of each peak was calculated using the integration method after performing peak split fitting on the characteristic peaks.
X射线光电子能谱(XPS)用于对分子筛表面进行分析,考察磷化合物迁移状况,使用Thermo Fisher-VG公司的ESCALAB 250型X射线光电子能谱仪。仪器参数:激发源为单色化的功率150W的AlKαX射线,荷电位移用来自污染碳的C1s峰(284.8eV)校正。X-ray photoelectron spectroscopy (XPS) was used to analyze the surface of the molecular sieve and examine the migration of phosphorus compounds, using the ESCALAB 250 X-ray photoelectron spectrometer of Thermo Fisher-VG Company. Instrument parameters: The excitation source is monochromated AlKα X-ray with a power of 150W, and the charge shift is corrected by the C1s peak (284.8eV) from contaminated carbon.
程序升温脱附分析(NH3-TPD)表征采用Micromeritics公司的AutoChenⅡ程序升温吸附仪。称取样品0.1~0.2g,放入石英吸附管,通入载气(高纯He。流速50mL/min),以20℃/min的速率升至600℃,恒温2h,脱除样品上吸附的水和空气;以20℃/min的速率降至100℃,恒温30min;将载气切换为NH3-He混合气,恒温30min,使样品吸附氨达到饱和;将NH3-He混合气切换成高纯He载气,吹扫1h,以脱附物力吸附氨;然后以10℃/min的速率升温至600℃,得到程序升温脱附曲线。脱附的氨用热导池进行检测。将程序升温脱附曲线转化为NH3脱附速率-温度曲线后,通过对峰型的解谱,得到酸中心密度数据。Temperature programmed desorption analysis (NH 3 -TPD) was used for characterization using Micromeritics' AutoChenⅡ temperature programmed adsorption instrument. Weigh 0.1~0.2g of the sample, put it into a quartz adsorption tube, pass in the carrier gas (high purity He. Flow rate 50mL/min), raise it to 600℃ at a rate of 20℃/min, keep the temperature constant for 2h, and remove the adsorbed gas on the sample. Water and air; reduce to 100°C at a rate of 20°C/min and keep the temperature constant for 30 minutes; switch the carrier gas to NH 3 -He mixed gas and keep the temperature constant for 30 minutes to allow the sample to absorb ammonia to reach saturation; switch the NH 3 -He mixed gas to High-purity He carrier gas was purged for 1 hour to adsorb ammonia using desorption force; then the temperature was raised to 600°C at a rate of 10°C/min to obtain a programmed temperature-increasing desorption curve. The desorbed ammonia is detected using a thermal conductivity cell. After converting the programmed temperature desorption curve into an NH 3 desorption rate-temperature curve, the acid center density data was obtained by analyzing the peak shape.
本发明实施例所采用的仪器和试剂,如无特别说明,均为本领域技术人员所常用的仪器和试剂。Unless otherwise specified, the instruments and reagents used in the examples of the present invention are all commonly used by those skilled in the art.
采用微反装置评价本发明的催化裂解助剂在石油烃催化裂解中对低碳烯烃产率的影响。将制得的催化裂解助剂样品在固定床老化装置上进行800℃、100%水汽老化17小时处理,微反装置上进行评价,原料油为VGO或石脑油,评价条件为反应温度620℃,再生温度620℃,剂油比3.2。微反活性采用ASTM D5154-2010标准方法进行测定。A micro-reaction device is used to evaluate the impact of the catalytic cracking aid of the present invention on the yield of light olefins in the catalytic cracking of petroleum hydrocarbons. The prepared catalytic cracking additive sample was aged at 800°C and 100% water vapor for 17 hours on a fixed bed aging device, and then evaluated on a micro-reaction device. The raw material oil was VGO or naphtha, and the evaluation conditions were a reaction temperature of 620°C. , regeneration temperature 620℃, agent-oil ratio 3.2. Microreactive activity was measured using the ASTM D5154-2010 standard method.
本发明所述的RIPP标准方法具体可参见《石油化工分析方法》,杨翠定等编,1990年版。The specific RIPP standard method of the present invention can be found in "Petrochemical Analytical Methods", edited by Yang Cuiding et al., 1990 edition.
实施例中所用的部分原料性质如下:The properties of some of the raw materials used in the examples are as follows:
原料ZSM-5分子筛由中国石化催化剂公司齐鲁分公司提供,相对结晶度为91.1%,氧化硅/氧化铝摩尔比为24.1,比表面积为353m2/g,总孔体积为0.177ml/g。The raw material ZSM-5 molecular sieve is provided by Sinopec Catalyst Company Qilu Branch. The relative crystallinity is 91.1%, the silicon oxide/alumina molar ratio is 24.1, the specific surface area is 353m 2 /g, and the total pore volume is 0.177ml/g.
拟薄水铝石为山东铝业公司生产工业产品,固含量60重量%;铝溶胶为中石化催化剂齐鲁分公司生产的工业产品,Al2O3含量为21.5重量%;硅溶胶为中石化催化剂齐鲁分公司生产的工业产品,SiO2含量为28.9重量%,Na2O含量8.9%;高岭土为苏州高岭土公司生产的催化裂化催化剂专用高岭土,固含量78重量%;累托土为湖北钟祥名流累托石开发有限公司生产,石英砂含量<3.5重量%,Al2O3含量为39.0重量%,Na2O含量为0.03重量%,固含量77重量%;SB氢氧化铝粉,德国Condex公司生产,Al2O3含量为75重量%;γ-氧化铝,德国Condex公司生产,Al2O3含量为95重量%。盐酸,化学纯,浓度36-38重量%,北京化工厂生产。Pseudo-boehmite is an industrial product produced by Shandong Aluminum Company, with a solid content of 60% by weight; aluminum sol is an industrial product produced by Sinopec Catalyst Qilu Branch, with an Al 2 O 3 content of 21.5% by weight; silica sol is produced by Sinopec Catalyst Qilu Branch The industrial products produced by the company have a SiO 2 content of 28.9% by weight and a Na 2 O content of 8.9%; kaolin is a special kaolin for catalytic cracking catalyst produced by Suzhou Kaolin Company, with a solid content of 78% by weight; Retoite is Hubei Zhongxiang celebrity Retoite Produced by Development Co., Ltd., quartz sand content <3.5 wt%, Al 2 O 3 content 39.0 wt %, Na 2 O content 0.03 wt %, solid content 77 wt %; SB aluminum hydroxide powder, produced by Condex Company, Germany, Al The content of 2 O 3 is 75% by weight; γ-alumina is produced by Condex Company of Germany, and the content of Al 2 O 3 is 95% by weight. Hydrochloric acid, chemically pure, concentration 36-38% by weight, produced by Beijing Chemical Factory.
PSRY分子筛为中石化催化剂长岭分公司生产的工业产品,Na2O含量<1.5重量%,P2O5含量为0.8~1.2重量%,晶胞常数<2.456nm,结晶度≥64%。HRY-1成品分子筛为中石化催化剂长岭分公司生产的工业产品,La2O3含量为11~13重量%,晶胞常数<2.464nm,结晶度≥40%。PSRY molecular sieve is an industrial product produced by Sinopec Catalyst Changling Branch. The Na 2 O content is <1.5 wt%, the P 2 O 5 content is 0.8 to 1.2 wt%, the unit cell constant is <2.456nm, and the crystallinity is ≥64%. HRY-1 finished molecular sieve is an industrial product produced by Sinopec Catalyst Changling Branch. The La 2 O 3 content is 11 to 13% by weight, the unit cell constant is <2.464nm, and the crystallinity is ≥40%.
本发明实施例所采用的仪器和试剂,如无特别说明,均为本领域技术人员所常用的仪器和试剂。Unless otherwise specified, the instruments and reagents used in the examples of the present invention are all commonly used by those skilled in the art.
实施例1-1Example 1-1
实施例1-1说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 1-1 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
取16.2g磷酸氢二铵(天津市光复科技发展有限公司,分析纯,下同)溶于60g去离子水中,搅拌0.5h得到含磷的水溶液,加入113g HZSM-5分子筛(中国石化催化剂公司齐鲁分公司提供,相对结晶度为91.1%,氧化硅/氧化铝摩尔比为24.1,Na2O含量0.039重%,比表面积为353m2/g,总孔体积为0.177ml/g,下同),采用浸渍法改性,在20℃下浸渍2小时后在110℃下烘箱中干燥后,外部施加压力并添加水,在500℃、0.5Mpa、50%水蒸气气氛下处理0.5h,得到的磷改性ZSM-5分子筛样品,记为PSZ1-1。Dissolve 16.2g diammonium hydrogen phosphate (Tianjin Guangfu Technology Development Co., Ltd., analytical grade, the same below) in 60g deionized water, stir for 0.5h to obtain a phosphorus-containing aqueous solution, and add 113g HZSM-5 molecular sieve (Sinopec Catalyst Company Qilu Provided by the branch, the relative crystallinity is 91.1%, the silicon oxide/alumina molar ratio is 24.1, the Na 2 O content is 0.039% by weight, the specific surface area is 353m 2 /g, the total pore volume is 0.177ml/g, the same below), Modified by the impregnation method, immersed at 20°C for 2 hours and dried in an oven at 110°C, external pressure was applied and water was added, and treated at 500°C, 0.5Mpa, and 50% water vapor atmosphere for 0.5h to obtain the phosphorus The modified ZSM-5 molecular sieve sample is designated as PSZ1-1.
实施例1-2Example 1-2
实施例1-2说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 1-2 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
同实施例1-1的物料、配比、干燥和焙烧,区别在于将磷酸氢二铵、HZSM-5分子筛和水混合打成浆液后,升温到100℃下保持2h。得到的磷改性ZSM-5分子筛样品,记为PSZ1-2。The materials, proportions, drying and roasting are the same as in Example 1-1, except that after mixing diammonium hydrogen phosphate, HZSM-5 molecular sieve and water into a slurry, the mixture is heated to 100°C and maintained for 2 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample was designated as PSZ1-2.
对比例1-1Comparative example 1-1
对比例1-1说明现有工业常规的方法和得到的磷改性ZSM-5分子筛对比样品。Comparative Example 1-1 illustrates the existing industrial conventional method and the obtained phosphorus-modified ZSM-5 molecular sieve comparison sample.
同实施例1-1,区别在于,焙烧条件为常压(表观压力0Mpa)且在550℃马弗炉中空气焙烧。得到的磷改性ZSM-5分子筛对比样品,记为DBZ1-1。It is the same as Example 1-1, except that the roasting conditions are normal pressure (apparent pressure 0 MPa) and air roasting in a muffle furnace at 550°C. The obtained phosphorus-modified ZSM-5 molecular sieve comparison sample is designated as DBZ1-1.
对比例1-2Comparative Example 1-2
对比例1-2说明以常压水热焙烧得到的磷改性ZSM-5分子筛对比样品。Comparative Example 1-2 illustrates a comparative sample of phosphorus-modified ZSM-5 molecular sieve obtained by hydrothermal roasting under normal pressure.
同实施例1-1,区别在于,焙烧条件为常压(表观压力0Mpa)。得到磷改性ZSM-5分子筛对比样品,记为DBZ1-2。It is the same as Example 1-1, except that the roasting condition is normal pressure (apparent pressure 0 MPa). A comparative sample of phosphorus-modified ZSM-5 molecular sieve was obtained, designated as DBZ1-2.
PSZ1-1、PSZ1-2、DBZ1-1、DBZ1-2分别经800℃、100%水蒸气、17h水热老化处理前、后的XRD结晶度见表1-1。The XRD crystallinity of PSZ1-1, PSZ1-2, DBZ1-1, and DBZ1-2 before and after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours is shown in Table 1-1.
PSZ1-1和DBZ1-1的27Al MAS-NMR谱图分别见图1和图3,PSZ1-2和DBZ1-2的27AlMAS-NMR谱图分别同1和图3的特征,图中,化学位移在54ppm处归属于四配位骨架铝,而化学位移在39ppm处归属于磷与铝结合的四配位骨架铝(磷稳定的骨架铝)。27Al MAS-NMR谱图峰面积比例数据见表1-2。 The 27 Al MAS-NMR spectra of PSZ1-1 and DBZ1-1 are shown in Figure 1 and Figure 3 respectively. The 27 AlMAS-NMR spectra of PSZ1-2 and DBZ1-2 have the same characteristics as Figure 1 and Figure 3 respectively. In the figure, Chemistry The shift at 54 ppm is attributed to four-coordinated framework aluminum, while the chemical shift at 39 ppm is attributed to four-coordinated framework aluminum in which phosphorus is combined with aluminum (phosphorus-stabilized framework aluminum). The peak area ratio data of 27 Al MAS-NMR spectrum are shown in Table 1-2.
PSZ1-1、PSZ1-2、DBZ1-1、DBZ1-2的表面XPS元素分析数据见表1-3。The surface XPS elemental analysis data of PSZ1-1, PSZ1-2, DBZ1-1, and DBZ1-2 are shown in Table 1-3.
PSZ1-1经过800℃、100%水蒸气条件、17h水热老化后的NH3-TPD谱图见图2。对比样品DBZ1-1经过800℃、100%水蒸气条件、17h水热老化后的NH3-TPD谱图见图4。PSZ1-1、PSZ1-2、DBZ1-1、DBZ1-2的NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积比重数据见表1-4。The NH 3 -TPD spectrum of PSZ1-1 after hydrothermal aging at 800°C, 100% water vapor conditions for 17 hours is shown in Figure 2. The NH 3 -TPD spectrum of comparative sample DBZ1-1 after hydrothermal aging at 800°C, 100% water vapor conditions, and 17 hours is shown in Figure 4. In the NH 3 -TPD spectra of PSZ1-1, PSZ1-2, DBZ1-1, and DBZ1-2, the ratio of the peak area of strong acid centers to the peak area of total acid centers when the desorption temperature is above 200°C is shown in Table 1-4.
表1-1Table 1-1
由表1-1可见,本发明方法制备得到的磷改性ZSM-5分子筛经800℃、100%水蒸气、17h水热老化处理后仍具有较高的结晶保留度,结晶保留度明显高于对比样品,结晶保留度至少提高5个百分点。It can be seen from Table 1-1 that the phosphorus-modified ZSM-5 molecular sieve prepared by the method of the present invention still has a high crystal retention after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours, and the crystal retention is significantly higher than Compared with the sample, the crystal retention is increased by at least 5 percentage points.
表1-2Table 1-2
表1-3Table 1-3
表1-4Table 1-4
实施例2-1Example 2-1
实施例2-1说明本发明的催化剂中采用的磷改性ZSM-5分子筛和方法。Example 2-1 illustrates the phosphorus-modified ZSM-5 molecular sieve and method used in the catalyst of the present invention.
取16.2g磷酸氢二铵在50℃下溶于120g去离子水中,搅拌0.5h得到含磷的水溶液,加入113g HZSM-5分子筛,采用浸渍法改性,在20℃浸渍2小时后在110℃下烘箱中干燥,外部施加压力并添加水,在600℃、0.5Mpa、30%水蒸气气氛下加压水热焙烧处理2h,得到的磷改性ZSM-5分子筛样品,记为PSZ-2。Take 16.2g of diammonium hydrogen phosphate and dissolve it in 120g of deionized water at 50°C. Stir for 0.5h to obtain a phosphorus-containing aqueous solution. Add 113g of HZSM-5 molecular sieve and modify it by impregnation. Dip at 20°C for 2 hours and then at 110°C. Dry it in a lower oven, apply external pressure and add water, and perform hydrothermal roasting treatment under pressure at 600°C, 0.5Mpa, and 30% water vapor atmosphere for 2 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample is designated as PSZ-2.
实施例2-2Example 2-2
实施例2-2说明本发明的催化剂中采用的磷改性ZSM-5分子筛和方法。Example 2-2 illustrates the phosphorus-modified ZSM-5 molecular sieve and method used in the catalyst of the present invention.
同实施例2-1的物料、配比、干燥和焙烧,区别在于将磷酸氢二铵、HZSM-5分子筛和水混合打成浆液后,升温到70℃下保持2h。得到的磷改性ZSM-5分子筛样品,记为PSZ2-2。The materials, proportions, drying and roasting are the same as those in Example 2-1, except that after mixing diammonium hydrogen phosphate, HZSM-5 molecular sieve and water into a slurry, the mixture is heated to 70°C and maintained for 2 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample was designated as PSZ2-2.
对比例2-1Comparative example 2-1
对比例2-1说明现有工业常规的方法和得到的磷改性ZSM-5对比样品。Comparative Example 2-1 illustrates the existing industrial conventional method and the obtained phosphorus-modified ZSM-5 comparative sample.
同实施例2-1,区别在于焙烧条件为常压(表观压力0Mpa)且为550℃马弗炉中空气焙烧。得到的磷改性ZSM-5分子筛对比样品,记为DBZ-2-1。It is the same as Example 2-1, except that the roasting conditions are normal pressure (apparent pressure 0 MPa) and air roasting in a muffle furnace at 550°C. The obtained phosphorus-modified ZSM-5 molecular sieve comparison sample is designated as DBZ-2-1.
对比例2-2Comparative Example 2-2
对比例2-2说明以常压水热焙烧得到的磷改性ZSM-5分子筛对比样品。Comparative Example 2-2 illustrates a comparative sample of phosphorus-modified ZSM-5 molecular sieve obtained by hydrothermal roasting under normal pressure.
同实施例2-1,区别在于焙烧条件为常压(表观压力0Mpa)。得到磷改性ZSM-5分子筛对比样品,记为DBZ-2-2。Same as Example 2-1, except that the roasting condition is normal pressure (apparent pressure 0 MPa). A comparative sample of phosphorus-modified ZSM-5 molecular sieve was obtained, which was designated as DBZ-2-2.
PSZ2-1、PSZ2-2、DBZ-2-1、DBZ-2-2经800℃、100%水蒸气、17h水热老化处理前、后其XRD结晶度见表2-1。The XRD crystallinity of PSZ2-1, PSZ2-2, DBZ-2-1, and DBZ-2-2 before and after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours is shown in Table 2-1.
PSZ1-2和PSZ2-2的27Al MAS-NMR谱图具有图1的特征,DBZ2-1和DBZ2-2的27AlMAS-NMR谱图同图3的特征。27Al MAS-NMR谱图峰面积比例数据见表2-2。 The 27 Al MAS-NMR spectra of PSZ1-2 and PSZ2-2 have the characteristics of Figure 1, and the 27 AlMAS-NMR spectra of DBZ2-1 and DBZ2-2 have the same characteristics as Figure 3. The peak area ratio data of 27 Al MAS-NMR spectrum are shown in Table 2-2.
PSZ2-1、PSZ2-2、DBZ2-1、DBZ2-2的表面XPS元素分析数据见表2-3,NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积比重数据见表2-4。The surface XPS elemental analysis data of PSZ2-1, PSZ2-2, DBZ2-1, and DBZ2-2 are shown in Table 2-3. In the NH 3 -TPD spectrum, the area of the strong acid center peaks with a desorption temperature above 200°C accounts for the total acid center peaks. The area proportion data are shown in Table 2-4.
PSZ2-1、PSZ2-2、DBZ2-1、DBZ2-2进行正十四烷烃裂解评价,评价数据见表2-5。PSZ2-1, PSZ2-2, DBZ2-1, and DBZ2-2 were evaluated for n-tetradecane cracking. The evaluation data are shown in Table 2-5.
表2-1table 2-1
由表2-1可见,本发明方法制备得到的磷改性ZSM-5分子筛经800℃、100%水蒸气、17h水热老化处理后仍具有较高的结晶保留度,结晶保留度明显高于对比样品,结晶保留度至少提高4个百分点。It can be seen from Table 2-1 that the phosphorus-modified ZSM-5 molecular sieve prepared by the method of the present invention still has a high crystal retention after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours, and the crystal retention is significantly higher than Compared with the sample, the crystal retention is increased by at least 4 percentage points.
表2-2Table 2-2
表2-3Table 2-3
表2-4Table 2-4
实施例3-1Example 3-1
实施例3-1说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 3-1 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
取10.4g磷酸常温下溶于60g去离子水中,搅拌2h,得到含磷的水溶液后,加入113gHZSM-5分子筛,采用浸渍法改性,在20℃下浸渍4小时后在110℃下烘箱中干燥后,外部施加压力并添加水,在400℃、0.3Mpa、100%水蒸气气氛下加压水热焙烧处理2h,得到的磷改性ZSM-5分子筛,记为PSZ3-1。Dissolve 10.4g of phosphoric acid in 60g of deionized water at room temperature, stir for 2 hours, and obtain a phosphorus-containing aqueous solution. Add 113g of HZSM-5 molecular sieve, modify it by dipping, soak at 20°C for 4 hours, and then dry in an oven at 110°C. Afterwards, external pressure was applied and water was added, and the phosphorus-modified ZSM-5 molecular sieve was obtained by pressurized hydrothermal roasting at 400°C, 0.3Mpa, and 100% water vapor atmosphere for 2 hours, which was designated as PSZ3-1.
实施例3-2Example 3-2
实施例3-2说明本发明的的催化剂中采用的磷改性ZSM-5分子筛。Example 3-2 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
同实施例3-1的物料、配比、干燥和焙烧,区别在于将80℃的含磷化合物的水溶液与加热到80℃的HZSM-5分子筛混合接触4h。得到的磷改性ZSM-5分子筛样品,记为PSZ3-2。The materials, proportions, drying and roasting are the same as in Example 3-1, except that the aqueous solution of the phosphorus-containing compound at 80°C is mixed and contacted with the HZSM-5 molecular sieve heated to 80°C for 4 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample was designated as PSZ3-2.
对比例3-1Comparative example 3-1
对比例3-1说明现有工业常规的方法和得到的磷改性ZSM-5对比样品。Comparative Example 3-1 illustrates the existing industrial conventional method and the obtained phosphorus-modified ZSM-5 comparative sample.
同实施例3-1,区别在于焙烧条件为常压(表观压力0Mpa)且为550℃马弗炉中空气焙烧。得到的磷改性ZSM-5分子筛对比样品,记为DBZ3-1。It is the same as Example 3-1, except that the roasting conditions are normal pressure (apparent pressure 0 MPa) and air roasting in a muffle furnace at 550°C. The obtained phosphorus-modified ZSM-5 molecular sieve comparison sample is designated as DBZ3-1.
对比例3-2Comparative Example 3-2
对比例3-2说明以常压水热焙烧得到的磷改性ZSM-5分子筛对比样品。Comparative Example 3-2 illustrates a comparative sample of phosphorus-modified ZSM-5 molecular sieve obtained by hydrothermal roasting under normal pressure.
同实施例3-1,区别在于焙烧条件为常压(表观压力0Mpa)。得到磷改性ZSM-5分子筛对比样品,记为DBZ3-2。Same as Example 3-1, except that the roasting condition is normal pressure (apparent pressure 0 MPa). A comparative sample of phosphorus-modified ZSM-5 molecular sieve was obtained, designated as DBZ3-2.
PSZ3-1、PSZ3-2、DBZ3-1、DBZ3-2经800℃、100%水蒸气、17h水热老化处理前、后其XRD结晶度见表3-1。The XRD crystallinity of PSZ3-1, PSZ3-2, DBZ3-1, and DBZ3-2 before and after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours is shown in Table 3-1.
PSZ-3和PSZ3-2的27Al MAS-NMR谱图分别具有图1的特征,DBZ3-1和DBZ3-2的27AlMAS-NMR谱图同图3的特征。27Al MAS-NMR谱图峰面积比例数据见表3-2。 The 27 Al MAS-NMR spectra of PSZ-3 and PSZ3-2 have the characteristics of Figure 1 respectively, and the 27 AlMAS-NMR spectra of DBZ3-1 and DBZ3-2 have the same characteristics as Figure 3. The peak area ratio data of 27 Al MAS-NMR spectrum are shown in Table 3-2.
PSZ3-1、PSZ3-2、DBZ3-1、DBZ3-2的表面XPS元素分析数据见表3-3,NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积比重数据见表3-4。The surface XPS elemental analysis data of PSZ3-1, PSZ3-2, DBZ3-1, and DBZ3-2 are shown in Table 3-3. In the NH 3 -TPD spectrum, the area of the strong acid center peaks with a desorption temperature above 200°C accounts for the total acid center peaks. The area proportion data are shown in Table 3-4.
表3-1Table 3-1
由表3-1可见,本发明方法制备得到的磷改性ZSM-5分子筛经800℃、100%水蒸气、17h水热老化处理后仍具有较高的结晶保留度,结晶保留度明显高于对比样品,结晶保留度至少提高10个百分点。It can be seen from Table 3-1 that the phosphorus-modified ZSM-5 molecular sieve prepared by the method of the present invention still has a high crystal retention after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours, and the crystal retention is significantly higher than Compared with the sample, the crystal retention is increased by at least 10 percentage points.
表3-2Table 3-2
表3-3Table 3-3
表3-4Table 3-4
实施例4-1Example 4-1
实施例4-1说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 4-1 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
取8.1g磷酸氢二铵在常温下溶于120g去离子水中,搅拌0.5h得到含磷的水溶液,加入113g HZSM-5分子筛,采用浸渍法改性,在20℃下浸渍2小时后在110℃下烘箱中干燥,外部施加压力并添加水,在300℃、0.4Mpa、100%水蒸气气氛下加压水热焙烧处理2h,得到的磷改性ZSM-5分子筛样品,记为PSZ4-1。Dissolve 8.1g of diammonium hydrogen phosphate in 120g of deionized water at room temperature, stir for 0.5h to obtain a phosphorus-containing aqueous solution, add 113g of HZSM-5 molecular sieve, modify it by dipping, soak at 20℃ for 2 hours and then at 110℃ Dry it in a lower oven, apply external pressure and add water, and perform hydrothermal roasting treatment under pressure at 300°C, 0.4Mpa, and 100% water vapor atmosphere for 2 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample is designated as PSZ4-1.
实施例4-2Example 4-2
实施例4-2说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 4-2 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
同实施例4-1的物料、配比、干燥和焙烧,区别在于将磷酸二氢铵、HZSM-5分子筛和水混合打成浆液后,升温到90℃下保持2h。得到的磷改性ZSM-5分子筛样品,记为PSZ4-2。The materials, proportions, drying and roasting are the same as in Example 4-1, except that after mixing ammonium dihydrogen phosphate, HZSM-5 molecular sieve and water into a slurry, the temperature is raised to 90°C and maintained for 2 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample was designated as PSZ4-2.
对比例4-1Comparative example 4-1
对比例4-1说明现有工业常规的方法和得到的磷改性ZSM-5对比样品。Comparative Example 4-1 illustrates the existing industrial conventional method and the obtained phosphorus-modified ZSM-5 comparative sample.
同实施例4-1,区别在于焙烧条件为常压(表观压力0Mpa)且为550℃马弗炉中空气焙烧。得到的磷改性ZSM-5分子筛对比样品,记为DBZ4-1。The same as Example 4-1, except that the roasting conditions are normal pressure (apparent pressure 0 MPa) and air roasting in a muffle furnace at 550°C. The obtained phosphorus-modified ZSM-5 molecular sieve comparison sample is designated as DBZ4-1.
对比例4-2Comparative Example 4-2
对比例4-2说明以常压水热焙烧得到的磷改性ZSM-5分子筛对比样品。Comparative Example 4-2 illustrates a comparative sample of phosphorus-modified ZSM-5 molecular sieve obtained by hydrothermal roasting under normal pressure.
同实施例4-1,区别在于焙烧条件为常压(表观压力0Mpa)。得到磷改性ZSM-5分子筛对比样品,记为DBZ4-2。Same as Example 4-1, except that the roasting condition is normal pressure (apparent pressure 0 MPa). A comparative sample of phosphorus-modified ZSM-5 molecular sieve was obtained, designated as DBZ4-2.
PSZ4-1、PSZ4-2、DBZ4-1、DBZ4-2经800℃、100%水蒸气、17h水热老化处理前、后其XRD结晶度见表4-1。The XRD crystallinity of PSZ4-1, PSZ4-2, DBZ4-1, and DBZ4-2 before and after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours is shown in Table 4-1.
PSZ4-1和PSZ4-2的27Al MAS-NMR谱图分别具有图1的特征,DBZ-4-1和DBZ-4-2的27Al MAS-NMR谱图同图3的特征。27Al MAS-NMR谱图峰面积比例数据见表4-2。 The 27 Al MAS-NMR spectra of PSZ4-1 and PSZ4-2 have the characteristics of Figure 1 respectively, and the 27 Al MAS-NMR spectra of DBZ-4-1 and DBZ-4-2 have the same characteristics as Figure 3. The peak area ratio data of 27 Al MAS-NMR spectrum are shown in Table 4-2.
PSZ4-1、PSZ4-2、DBZ4-1、DBZ4-2的表面XPS元素分析数据见表4-3,NH3-TPD图谱中脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积比重数据见表4-4。The surface XPS elemental analysis data of PSZ4-1, PSZ4-2, DBZ4-1, and DBZ4-2 are shown in Table 4-3. In the NH 3 -TPD spectrum, the peak area of the strong acid center with a desorption temperature above 200°C accounts for the total acid center peak area. The specific gravity data is shown in Table 4-4.
表4-1Table 4-1
由表4-1可见,本发明方法制备得到的磷改性ZSM-5分子筛经800℃、100%水蒸气、17h水热老化处理后仍具有较高的结晶保留度,结晶保留度明显高于对比样品,结晶保留度至少提高15个百分点。It can be seen from Table 4-1 that the phosphorus-modified ZSM-5 molecular sieve prepared by the method of the present invention still has a high crystal retention after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours, and the crystal retention is significantly higher than Compared with the sample, the crystal retention is increased by at least 15 percentage points.
表4-2Table 4-2
表4-3Table 4-3
表4-4Table 4-4
实施例5-1Example 5-1
实施例5-1说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 5-1 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
取8.5g磷酸三甲酯在90℃下溶于80g去离子水中,搅拌1h得到含磷的水溶液,加入113g HZSM-5分子筛,采用浸渍法改性,20℃下浸渍8小时后在110℃下烘箱中干燥后,外部施加压力并添加水,在500℃、0.8Mpa、80%水蒸气气氛下加压水热焙烧处理4h,得到的磷改性ZSM-5分子筛,记为PSZ5-1。Dissolve 8.5g trimethyl phosphate in 80g deionized water at 90°C, stir for 1 hour to obtain a phosphorus-containing aqueous solution, add 113g HZSM-5 molecular sieve, modify it by dipping method, soak at 20°C for 8 hours and then at 110°C After drying in the oven, external pressure is applied and water is added, and the phosphorus-modified ZSM-5 molecular sieve obtained is hydrothermal roasted under pressure at 500°C, 0.8Mpa, and 80% water vapor for 4 hours, and is designated as PSZ5-1.
实施例5-2Example 5-2
实施例5-2说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 5-2 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
同实施例5-1的物料、配比、干燥和焙烧,区别在于将磷酸三甲酯、HZSM-5分子筛和水混合打成浆液后,升温到120℃下保持8h。得到的磷改性ZSM-5分子筛样品,记为PSZ5-2。The materials, proportions, drying and roasting are the same as in Example 5-1, except that trimethyl phosphate, HZSM-5 molecular sieve and water are mixed to form a slurry, and then the temperature is raised to 120°C and maintained for 8 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample was designated as PSZ5-2.
对比例5-1Comparative example 5-1
对比例5-1说明现有工业常规的方法和得到的磷改性ZSM-5对比样品。Comparative Example 5-1 illustrates the existing industrial conventional method and the obtained phosphorus-modified ZSM-5 comparative sample.
同实施例5-1,区别在于焙烧条件为常压(表观压力0Mpa)且为550℃马弗炉中空气焙烧。得到的磷改性ZSM-5分子筛对比样品,记为DBZ5-1。It is the same as Example 5-1, except that the roasting conditions are normal pressure (apparent pressure 0 MPa) and air roasting in a muffle furnace at 550°C. The obtained phosphorus-modified ZSM-5 molecular sieve comparison sample is designated as DBZ5-1.
对比例5-2Comparative example 5-2
对比例5-2说明以常压水热焙烧得到的磷改性ZSM-5分子筛对比样品。Comparative Example 5-2 illustrates a comparative sample of phosphorus-modified ZSM-5 molecular sieve obtained by hydrothermal roasting under normal pressure.
同实施例5-1,区别在于焙烧条件为常压(表观压力0Mpa)。得到磷改性ZSM-5分子筛对比样品,记为DBZ5-2。Same as Example 5-1, except that the roasting condition is normal pressure (apparent pressure 0 MPa). A comparative sample of phosphorus-modified ZSM-5 molecular sieve was obtained, designated as DBZ5-2.
PSZ5-1、PSZ5-2、DBZ5-1、DBZ5-2经800℃、100%水蒸气、17h水热老化处理前、后其XRD结晶度见表5-1。The XRD crystallinity of PSZ5-1, PSZ5-2, DBZ5-1, and DBZ5-2 before and after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours is shown in Table 5-1.
PSZ5-1和PSZ5-2的27Al MAS-NMR谱图具有图1的特征,DBZ5-1和DBZ5-2的27AlMAS-NMR谱图同图3的特征。27Al MAS-NMR谱图峰面积比例数据见表5-2。 The 27 Al MAS-NMR spectra of PSZ5-1 and PSZ5-2 have the characteristics of Figure 1, and the 27 AlMAS-NMR spectra of DBZ5-1 and DBZ5-2 have the same characteristics as Figure 3. The peak area ratio data of 27 Al MAS-NMR spectrum are shown in Table 5-2.
PSZ5-1、PSZ5-2、DBZ5-1、DBZ5-2的表面XPS元素分析数据见表5-3,NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积比重数据见表5-4。The surface XPS elemental analysis data of PSZ5-1, PSZ5-2, DBZ5-1, and DBZ5-2 are shown in Table 5-3. In the NH 3 -TPD spectrum, the peak area of strong acid centers with a desorption temperature above 200°C accounts for the total acid center peaks. The area proportion data are shown in Table 5-4.
表5-1Table 5-1
由表5-1可见,本发明方法制备得到的磷改性ZSM-5分子筛经800℃、100%水蒸气、17h水热老化处理后仍具有较高的结晶保留度,结晶保留度明显高于对比样品,结晶保留度至少提高5个百分点。It can be seen from Table 5-1 that the phosphorus-modified ZSM-5 molecular sieve prepared by the method of the present invention still has a high crystal retention after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours, and the crystal retention is significantly higher than Compared with the sample, the crystal retention is increased by at least 5 percentage points.
表5-2Table 5-2
表5-3Table 5-3
表5-4Table 5-4
实施例6-1Example 6-1
实施例6-2说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 6-2 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
取11.6g磷酸硼在100℃下溶于100g去离子水中,搅拌3h,得到含磷的水溶液,加入113g HZSM-5分子筛,采用浸渍法改性,在20℃下浸渍2小时后在110℃下烘箱中干燥,外部施加压力并添加水,在400℃、0.3Mpa、100%水蒸气气氛下加压水热焙烧处理4h,得到的磷改性ZSM-5分子筛,记为PSZ6-1。Take 11.6g of boron phosphate and dissolve it in 100g of deionized water at 100°C. Stir for 3 hours to obtain a phosphorus-containing aqueous solution. Add 113g of HZSM-5 molecular sieve and modify it by impregnation. After immersing at 20°C for 2 hours, remove it at 110°C. Dry in an oven, apply external pressure and add water, and perform hydrothermal roasting treatment under pressure at 400°C, 0.3Mpa, and 100% water vapor atmosphere for 4 hours. The obtained phosphorus-modified ZSM-5 molecular sieve is designated as PSZ6-1.
实施例6-2Example 6-2
实施例6-2说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 6-2 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
同实施例6-1的物料、配比、干燥和焙烧,区别在于将磷酸硼、HZSM-5分子筛和水混合打成浆液后升温到150℃下保持2h。得到的磷改性ZSM-5分子筛样品,记为PSZ6-2。The materials, proportions, drying and roasting are the same as in Example 6-1, except that boron phosphate, HZSM-5 molecular sieve and water are mixed into a slurry and then heated to 150°C and maintained for 2 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample was designated as PSZ6-2.
对比例6-1Comparative example 6-1
对比例6-1说明现有工业常规的方法和得到的磷改性ZSM-5对比样品。Comparative Example 6-1 illustrates the existing industrial conventional method and the obtained phosphorus-modified ZSM-5 comparative sample.
同实施例6-1,区别在于焙烧条件为常压(表观压力0Mpa)且为550℃马弗炉中空气焙烧。得到的磷改性ZSM-5分子筛对比样品,记为DBZ6-1。It is the same as Example 6-1, except that the roasting conditions are normal pressure (apparent pressure 0 MPa) and air roasting in a muffle furnace at 550°C. The obtained phosphorus-modified ZSM-5 molecular sieve comparison sample is designated as DBZ6-1.
对比例6-2Comparative Example 6-2
对比例6-2说明以常压水热焙烧得到的磷改性ZSM-5分子筛对比样品。Comparative Example 6-2 illustrates a comparative sample of phosphorus-modified ZSM-5 molecular sieve obtained by hydrothermal roasting under normal pressure.
同实施例6-1,区别在于焙烧条件为常压(表观压力0Mpa)。得到磷改性ZSM-5分子筛对比样品,记为DBZ6-2。Same as Example 6-1, except that the roasting condition is normal pressure (apparent pressure 0 MPa). A comparative sample of phosphorus-modified ZSM-5 molecular sieve was obtained, designated as DBZ6-2.
PSZ6-1、PSZ6-2、DBZ6-1、DBZ6-2经800℃、100%水蒸气、17h水热老化处理前、后其XRD结晶度见表6-1。The XRD crystallinity of PSZ6-1, PSZ6-2, DBZ6-1, and DBZ6-2 before and after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours is shown in Table 6-1.
PSZ6-1和PSZ6-2的27Al MAS-NMR谱图具有图1的特征,DBZ-6-1和DBZ6-2的27AlMAS-NMR谱图同图3的特征。27Al MAS-NMR谱图峰面积比例数据见表6-2。 The 27 Al MAS-NMR spectra of PSZ6-1 and PSZ6-2 have the characteristics of Figure 1, and the 27 AlMAS-NMR spectra of DBZ-6-1 and DBZ6-2 have the same characteristics as Figure 3. The peak area ratio data of 27 Al MAS-NMR spectrum are shown in Table 6-2.
PSZ6-1、PSZ6-2、DBZ6-1、DBZ6-2的表面XPS元素分析数据见表6-3,NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积比重数据见表6-4。The surface XPS elemental analysis data of PSZ6-1, PSZ6-2, DBZ6-1, and DBZ6-2 are shown in Table 6-3. In the NH 3 -TPD spectrum, the area of the strong acid center peaks with a desorption temperature above 200°C accounts for the total acid center peaks. The area proportion data are shown in Table 6-4.
表6-1Table 6-1
由表6-1可见,本发明方法制备得到的磷改性ZSM-5分子筛经800℃、100%水蒸气、17h水热老化处理后仍具有较高的结晶保留度,结晶保留度明显高于对比样品,结晶保留度至少提高10个百分点。It can be seen from Table 6-1 that the phosphorus-modified ZSM-5 molecular sieve prepared by the method of the present invention still has a high crystal retention after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours, and the crystal retention is significantly higher than Compared with the sample, the crystal retention is increased by at least 10 percentage points.
表6-2Table 6-2
表6-3Table 6-3
表6-4Table 6-4
实施例7-1Example 7-1
实施例7-1说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 7-1 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
取14.2g三苯基磷在100℃下溶于80g去离子水中,搅拌2h,得到含磷的水溶液,加入113g HZSM-5分子筛,采用浸渍法改性,在20℃下浸渍4小时后在110℃下烘箱中干燥,外部施加压力并添加水,在600℃、1.0Mpa、30%水蒸气气氛下加压水热焙烧处理2h,得到的磷改性ZSM-5分子筛,记为PSZ7-1。Take 14.2g triphenylphosphorus and dissolve it in 80g deionized water at 100°C. Stir for 2 hours to obtain a phosphorus-containing aqueous solution. Add 113g HZSM-5 molecular sieve and modify it by the impregnation method. After immersing it at 20°C for 4 hours, add it to 110 Dry in an oven at ℃, apply external pressure and add water, and perform hydrothermal roasting treatment under pressure at 600°C, 1.0Mpa, and 30% water vapor atmosphere for 2 hours. The obtained phosphorus-modified ZSM-5 molecular sieve is designated as PSZ7-1.
实施例7-2Example 7-2
实施例7-2说明本发明的催化剂中采用的磷改性ZSM-5分子筛。Example 7-2 illustrates the phosphorus-modified ZSM-5 molecular sieve used in the catalyst of the present invention.
同实施例7-1的物料、配比、干燥和焙烧,区别在于将80℃的含磷化合物的水溶液与加热到80℃的HZSM-5分子筛混合接触4h。得到的磷改性ZSM-5分子筛样品,记为PSZ7-2。The materials, proportions, drying and roasting are the same as in Example 7-1, except that the aqueous solution of the phosphorus-containing compound at 80°C is mixed and contacted with the HZSM-5 molecular sieve heated to 80°C for 4 hours. The obtained phosphorus-modified ZSM-5 molecular sieve sample was designated as PSZ7-2.
对比例7-1Comparative Example 7-1
对比例7-1说明现有工业常规的方法和得到的磷改性ZSM-5对比样品。Comparative Example 7-1 illustrates the existing industrial conventional method and the obtained phosphorus-modified ZSM-5 comparative sample.
同实施例7-1,区别在于浸渍、干燥后的焙烧条件为常压(表观压力0Mpa)且为550℃马弗炉中空气焙烧。得到的磷改性ZSM-5分子筛对比样品,记为DBZ7-1。It is the same as Example 7-1, except that the roasting conditions after impregnation and drying are normal pressure (apparent pressure 0 MPa) and air roasting in a muffle furnace at 550°C. The obtained phosphorus-modified ZSM-5 molecular sieve comparison sample is designated as DBZ7-1.
对比例7-2Comparative Example 7-2
对比例7-2说明以常压水热焙烧得到的磷改性ZSM-5分子筛对比样品。Comparative Example 7-2 illustrates a comparative sample of phosphorus-modified ZSM-5 molecular sieve obtained by hydrothermal roasting under normal pressure.
同实施例7-1,区别在于浸渍、干燥后的焙烧条件为常压(表观压力0Mpa)。得到磷改性ZSM-5分子筛对比样品,记为DBZ7-2。Same as Example 7-1, except that the roasting conditions after impregnation and drying are normal pressure (apparent pressure 0 MPa). A comparative sample of phosphorus-modified ZSM-5 molecular sieve was obtained, designated as DBZ7-2.
PSZ7-1、PSZ7-2、DBZ7-1、DBZ7-2经800℃、100%水蒸气、17h水热老化处理前、后其XRD结晶度见表7-1。The XRD crystallinity of PSZ7-1, PSZ7-2, DBZ7-1, and DBZ7-2 before and after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours is shown in Table 7-1.
PSZ-7和PSZ7-2、的27Al MAS-NMR谱图具有图1的特征,DBZ7-1和DBZ7-2的27AlMAS-NMR谱图同图3的特征。27Al MAS-NMR谱图峰面积比例数据见表7-2。 The 27 Al MAS-NMR spectra of PSZ-7 and PSZ7-2 have the characteristics of Figure 1, and the 27 AlMAS-NMR spectra of DBZ7-1 and DBZ7-2 have the same characteristics as Figure 3. The peak area ratio data of 27 Al MAS-NMR spectrum are shown in Table 7-2.
PSZ7-1、PSZ7-2、DBZ7-1、DBZ7-2的表面XPS元素分析数据见表7-3,PSZ7-1、PSZ7-2、DBZ7-1、DBZ7-2的NH3-TPD图谱中,脱附温度在200℃以上强酸中心峰面积占总酸中心峰面积比重数据见表7-4。The surface XPS elemental analysis data of PSZ7-1, PSZ7-2, DBZ7-1, and DBZ7-2 are shown in Table 7-3. In the NH 3 -TPD spectra of PSZ7-1, PSZ7-2, DBZ7-1, and DBZ7-2, When the desorption temperature is above 200°C, the proportion of strong acid center peak area to total acid center peak area is shown in Table 7-4.
表7-1Table 7-1
由表7-1可见,本发明方法制备得到的磷改性ZSM-5分子筛经800℃、100%水蒸气、17h水热老化处理后仍具有较高的结晶保留度,结晶保留度明显高于对比样品,结晶保留度至少提高8个百分点。It can be seen from Table 7-1 that the phosphorus-modified ZSM-5 molecular sieve prepared by the method of the present invention still has a high crystal retention after hydrothermal aging treatment at 800°C, 100% water vapor, and 17 hours, and the crystal retention is significantly higher than Compared with the sample, the crystal retention is increased by at least 8 percentage points.
表7-2Table 7-2
表7-3Table 7-3
表7-4Table 7-4
实施例8-11说明本发明的催化剂中采用的磷铝无机粘结剂。Examples 8-11 illustrate the phosphorus aluminum inorganic binder used in the catalyst of the present invention.
实施例8Example 8
将1.91千克拟薄水铝石(含Al2O3,1.19千克)、0.56千克高岭土(干基0.5千克)与3.27千克脱阳离子水打浆30分钟,搅拌下往浆液中加入5.37千克浓磷酸(质量浓度85%),磷酸加入速度为0.04千克磷酸/分钟/千克氧化铝源,升温至70℃,然后在此温度下反应45分钟,即制得磷铝无机粘结剂。物料配比见表8,样品编号Binder1。Slurry 1.91 kg of pseudo-boehmite (containing Al 2 O 3 , 1.19 kg), 0.56 kg of kaolin (0.5 kg on a dry basis) and 3.27 kg of decationized water for 30 minutes. Add 5.37 kg of concentrated phosphoric acid (mass) to the slurry under stirring. Concentration 85%), add phosphoric acid at a rate of 0.04 kg phosphoric acid/minute/kg alumina source, raise the temperature to 70°C, and then react at this temperature for 45 minutes to prepare the phosphorus aluminum inorganic binder. The material ratio is shown in Table 8, and the sample number is Binder1.
实施例9-11Examples 9-11
按实施例8的方法制备磷铝无机粘结剂,物料配比见表8,样品编号Binder2、Binder3、Binder4。The phosphorus aluminum inorganic binder was prepared according to the method of Example 8. The material ratio is shown in Table 8, and the sample numbers are Binder2, Binder3, and Binder4.
表8Table 8
实施例12-18说明本发明的催化裂解催化剂。Examples 12-18 illustrate the catalytic cracking catalysts of the present invention.
实施例12-1Example 12-1
取实施例1-1制备的磷改性分子筛PSZ1-1、Y型分子筛(PSRY分子筛)、高岭土和拟薄水铝石,加入脱阳离子水以及铝溶胶打浆120分钟,得到固含量30重量%的浆液,加入盐酸调节浆液pH值3.0,然后继续打浆45分钟,然后加入实施例8制备的磷铝无机粘结剂Binder1,搅拌30分钟后,将得到的浆液喷雾干燥,得到微球,将微球于500℃下焙烧1小时,得到本发明的催化裂解催化剂样品,编号CAZY1-1,其配比为磷改性ZSM-5分子筛40%、PSRY分子筛10%、高岭土18%、Binder1为18%、拟薄水铝石(以Al2O3计)5%、铝溶胶(以Al2O3计)9%。采用固定床微反装置对100%平衡剂以及平衡剂掺入催化剂CAZY1-1进行反应性能评价,以说明催化裂解反应效果。Take the phosphorus modified molecular sieve PSZ1-1, Y-type molecular sieve (PSRY molecular sieve), kaolin and pseudo-boehmite prepared in Example 1-1, add decationized water and aluminum sol and beat for 120 minutes to obtain a solid content of 30% by weight. slurry, add hydrochloric acid to adjust the pH value of the slurry to 3.0, and then continue beating for 45 minutes. Then add the phosphorus aluminum inorganic binder Binder1 prepared in Example 8. After stirring for 30 minutes, spray-dry the obtained slurry to obtain microspheres. Calculate at 500°C for 1 hour to obtain the catalytic cracking catalyst sample of the present invention, numbered CAZY1-1, with a proportion of 40% phosphorus-modified ZSM-5 molecular sieve, 10% PSRY molecular sieve, 18% kaolin, 18% Binder1, Pseudo-boehmite (calculated as Al 2 O 3 ) 5%, aluminum sol (calculated as Al 2 O 3 ) 9%. A fixed-bed micro-reaction device was used to evaluate the reaction performance of 100% balance agent and balance agent-incorporated catalyst CAZY1-1 to illustrate the catalytic cracking reaction effect.
将催化剂CAZY1-1在800℃下、100%水蒸气气氛条件下进行17小时的老化处理。取经老化处理的CAZY1-1与工业FCC平衡催化剂(工业牌号DVR-3的FCC平衡催化剂,轻油微反活性为63)分别10%和90%重量比混合。将平衡剂和催化剂混合物装入固定床微反反应器中,对表9所示原料油进行催化裂解,评价条件为反应温度620℃,再生温度620℃,剂油比3.2。表10给出反应结果。Catalyst CAZY1-1 was aged for 17 hours at 800°C and 100% water vapor atmosphere. The aged CAZY1-1 was mixed with an industrial FCC equilibrium catalyst (industrial brand DVR-3 FCC equilibrium catalyst, light oil micro reaction activity of 63) at a weight ratio of 10% and 90% respectively. The balance agent and catalyst mixture were put into the fixed-bed micro-reactor, and the feed oil shown in Table 9 was catalytically cracked. The evaluation conditions were reaction temperature 620°C, regeneration temperature 620°C, and agent-oil ratio 3.2. Table 10 gives the reaction results.
表9Table 9
实施例12-2Example 12-2
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1分别用实施例1-2制备的磷改性分子筛PSZ-1-2替代。制得催化剂样品,编号CAZY1-2。Same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the phosphorus modified molecular sieve PSZ-1-2 prepared in Example 1-2. A catalyst sample was prepared, numbered CAZY1-2.
评价同实施例12-1,结果见表10。The evaluation was the same as in Example 12-1, and the results are shown in Table 10.
对比例12-1Comparative example 12-1
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用对比例1-1的对比样品DBZ1-1替代。制得催化剂对比样品,编号DCAZY1-1。It is the same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the comparative sample DBZ1-1 of Comparative Example 1-1. A catalyst comparison sample was prepared, numbered DCAZY1-1.
评价同实施例12-1,结果见表10。The evaluation was the same as in Example 12-1, and the results are shown in Table 10.
对比例12-2Comparative example 12-2
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用对比例1-2的对比样品DBZ1-2替代。制得催化剂对比样品,编号DCAZY1-2。It is the same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the comparative sample DBZ1-2 of Comparative Example 1-2. A catalyst comparison sample was prepared, numbered DCAZY1-2.
评价同实施例12-1,结果见表10。The evaluation was the same as in Example 12-1, and the results are shown in Table 10.
表10Table 10
实施例13-1Example 13-1
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用实施例2-1制备的磷改性分子筛PSZ-2-1替代。制得催化裂解助剂样品,编号CAZY2-1。Same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the phosphorus modified molecular sieve PSZ-2-1 prepared in Example 2-1. A sample of catalytic cracking aid was prepared, numbered CAZY2-1.
评价同实施例12-1,结果见表11。The evaluation was the same as in Example 12-1, and the results are shown in Table 11.
实施例13-2Example 13-2
同实施例13-1,区别在于其中的磷改性分子筛PSZ-2-1用实施例2-2制备的磷改性分子筛PSZ-2-2替代。制得催化裂解助剂样品,编号CAZY2-2。Same as Example 13-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the phosphorus modified molecular sieve PSZ-2-2 prepared in Example 2-2. A sample of catalytic cracking aid was prepared, numbered CAZY2-2.
评价同实施例13-1,结果见表11。The evaluation was the same as in Example 13-1, and the results are shown in Table 11.
对比例13-1Comparative example 13-1
同实施例13-1,区别在于其中的磷改性分子筛PSZ-2-1用对比例2-1的对比样品DBZ2-1替代。制得催化裂解助剂对比样品,编号DCAZY2-1。It is the same as Example 13-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the comparative sample DBZ2-1 of Comparative Example 2-1. A comparative sample of catalytic cracking aid was prepared, numbered DCAZY2-1.
评价同实施例13-1,结果见表11。The evaluation was the same as in Example 13-1, and the results are shown in Table 11.
对比例13-2Comparative example 13-2
同实施例13-1,区别在于其中的磷改性分子筛PSZ-2-1用对比例2-2的对比样品DBZ2-2替代。制得催化裂解助剂对比样品,编号DCAZY2-2。Same as Example 13-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the comparative sample DBZ2-2 of Comparative Example 2-2. A comparative sample of catalytic cracking aid was prepared, numbered DCAZY2-2.
评价同实施例13-1,结果见表11。The evaluation was the same as in Example 13-1, and the results are shown in Table 11.
表11Table 11
实施例14-1Example 14-1
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用实施例3-1制备的磷改性分子筛PSZ-3-1替代。制得催化裂解助剂样品,编号CAZY3-1。Same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the phosphorus modified molecular sieve PSZ-3-1 prepared in Example 3-1. A sample of catalytic cracking aid was prepared, numbered CAZY3-1.
评价同实施例12-1,结果见表12。The evaluation was the same as in Example 12-1, and the results are shown in Table 12.
实施例14-2Example 14-2
同实施例14-1,区别在于其中的磷改性分子筛PSZ-3-1用实施例3-2制备的磷改性分子筛PSZ-3-2替代。制得催化裂解助剂样品,编号CAZY3-2。Same as Example 14-1, except that the phosphorus modified molecular sieve PSZ-3-1 is replaced by the phosphorus modified molecular sieve PSZ-3-2 prepared in Example 3-2. A sample of catalytic cracking aid was prepared, numbered CAZY3-2.
评价同实施例14-1,结果见表12。The evaluation was the same as in Example 14-1, and the results are shown in Table 12.
对比例14-1Comparative example 14-1
同实施例14-1,区别在于其中的磷改性分子筛PSZ-3-1用对比例3-1的对比样品DBZ3-1替代。制得催化裂解助剂对比样品,编号DCAZY3-1。It is the same as Example 14-1, except that the phosphorus modified molecular sieve PSZ-3-1 is replaced by the comparative sample DBZ3-1 of Comparative Example 3-1. A comparative sample of catalytic cracking aid was prepared, numbered DCAZY3-1.
评价同实施例14-1,结果见表12。The evaluation was the same as in Example 14-1, and the results are shown in Table 12.
对比例14-2Comparative Example 14-2
同实施例14-1,区别在于其中的磷改性分子筛PSZ-3-1用对比例3-2的对比样品DBZ2-2替代。制得催化剂对比样品,编号DCAZY3-2。It is the same as Example 14-1, except that the phosphorus modified molecular sieve PSZ-3-1 is replaced by the comparative sample DBZ2-2 of Comparative Example 3-2. A catalyst comparison sample was prepared, numbered DCAZY3-2.
评价同实施例14-1,结果见表12。The evaluation was the same as in Example 14-1, and the results are shown in Table 12.
表12Table 12
实施例15-1Example 15-1
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用实施例4-1制备的磷改性分子筛PSZ-4-1替代。制得催化剂样品,编号CAZY4-1。Same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the phosphorus modified molecular sieve PSZ-4-1 prepared in Example 4-1. A catalyst sample was prepared, numbered CAZY4-1.
评价同实施例12-1,结果见表13。The evaluation was the same as in Example 12-1, and the results are shown in Table 13.
实施例15-2Example 15-2
同实施例15-1,区别在于其中的磷改性分子筛PSZ-4-1用实施例4-2制备的磷改性分子筛PSZ-4-2替代。制得催化剂样品,编号CAZY4-2。Same as Example 15-1, except that the phosphorus modified molecular sieve PSZ-4-1 is replaced by the phosphorus modified molecular sieve PSZ-4-2 prepared in Example 4-2. A catalyst sample was prepared, numbered CAZY4-2.
评价同实施例15-1,结果见表13。The evaluation was the same as in Example 15-1, and the results are shown in Table 13.
对比例15-1Comparative example 15-1
同实施例15-1,区别在于其中的磷改性分子筛PSZ-2-1用对比例2-1的对比样品DBZ4-1替代。制得催化剂对比样品,编号DCAZY4-1。It is the same as Example 15-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the comparative sample DBZ4-1 of Comparative Example 2-1. A catalyst comparison sample was prepared, numbered DCAZY4-1.
评价同实施例15-1,结果见表13。The evaluation was the same as in Example 15-1, and the results are shown in Table 13.
对比例15-2Comparative example 15-2
同实施例15-1,区别在于其中的磷改性分子筛PSZ-2-1用对比例2-2的对比样品DBZ4-2替代。制得催化剂对比样品,编号DCAZY4-2。It is the same as Example 15-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the comparative sample DBZ4-2 of Comparative Example 2-2. A catalyst comparison sample was prepared, numbered DCAZY4-2.
评价同实施例15-1,结果见表13。The evaluation was the same as in Example 15-1, and the results are shown in Table 13.
表13Table 13
实施例16-1Example 16-1
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用实施例5-1制备的磷改性分子筛PSZ-5-1替代。制得催化剂样品,编号CAZY5-1。Same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the phosphorus modified molecular sieve PSZ-5-1 prepared in Example 5-1. A catalyst sample was prepared, numbered CAZY5-1.
评价同实施例12-1,结果见表14。The evaluation was the same as in Example 12-1, and the results are shown in Table 14.
实施例16-2Example 16-2
同实施例16-1,区别在于其中的磷改性分子筛PSZ-5-1用实施例5-2制备的磷改性分子筛PSZ-5-2替代。制得催化剂样品,编号CAZY5-2。Same as Example 16-1, except that the phosphorus modified molecular sieve PSZ-5-1 is replaced by the phosphorus modified molecular sieve PSZ-5-2 prepared in Example 5-2. A catalyst sample was prepared, numbered CAZY5-2.
评价同实施例16-1,结果见表14。The evaluation was the same as in Example 16-1, and the results are shown in Table 14.
对比例16-1Comparative example 16-1
同实施例16-1,区别在于其中的磷改性分子筛PSZ-5-1用对比例5-1的对比样品DBZ5-1替代。制得催化剂对比样品,编号DCAZY5-1。Same as Example 16-1, except that the phosphorus modified molecular sieve PSZ-5-1 is replaced by the comparative sample DBZ5-1 of Comparative Example 5-1. A catalyst comparison sample was prepared, numbered DCAZY5-1.
评价同实施例16-1,结果见表14。The evaluation was the same as in Example 16-1, and the results are shown in Table 14.
对比例16-2Comparative Example 16-2
同实施例16-1,区别在于其中的磷改性分子筛PSZ-2-1用对比例2-2的对比样品DBZ5-2替代。制得催化剂对比样品,编号DCAZY5-2。Same as Example 16-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the comparative sample DBZ5-2 of Comparative Example 2-2. A catalyst comparison sample was prepared, numbered DCAZY5-2.
评价同实施例16-1,结果见表14。The evaluation was the same as in Example 16-1, and the results are shown in Table 14.
表14Table 14
实施例17-1Example 17-1
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用实施例6-1制备的磷改性分子筛PSZ-6-1替代。制得催化剂样品,编号CAZY6-1。Same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the phosphorus modified molecular sieve PSZ-6-1 prepared in Example 6-1. A catalyst sample was prepared, numbered CAZY6-1.
评价同实施例12-1,结果见表15。The evaluation was the same as in Example 12-1, and the results are shown in Table 15.
实施例17-2Example 17-2
同实施例17-1,区别在于其中的磷改性分子筛PSZ-6-1用实施例6-2制备的磷改性分子筛PSZ-6-2替代。制得催化剂样品,编号CAZY6-2。Same as Example 17-1, except that the phosphorus modified molecular sieve PSZ-6-1 is replaced by the phosphorus modified molecular sieve PSZ-6-2 prepared in Example 6-2. A catalyst sample was prepared, numbered CAZY6-2.
评价同实施例17-1,结果见表15。The evaluation was the same as in Example 17-1, and the results are shown in Table 15.
对比例17-1Comparative Example 17-1
同实施例17-1,区别在于其中的磷改性分子筛PSZ-2-1用对比例6-1的对比样品DBZ2-1替代。制得催化剂对比样品,编号DCAZY6-1。It is the same as Example 17-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the comparative sample DBZ2-1 of Comparative Example 6-1. A catalyst comparison sample was prepared, numbered DCAZY6-1.
评价同实施例17-1,结果见表15。The evaluation was the same as in Example 17-1, and the results are shown in Table 15.
对比例17-2Comparative Example 17-2
同实施例17-1,区别在于其中的磷改性分子筛PSZ-2-1用对比例6-2的对比样品DBZ2-2替代。制得催化剂对比样品,编号DCAZY6-2。Same as Example 17-1, except that the phosphorus modified molecular sieve PSZ-2-1 is replaced by the comparative sample DBZ2-2 of Comparative Example 6-2. A catalyst comparison sample was prepared, numbered DCAZY6-2.
评价同实施例17-1,结果见表15。The evaluation was the same as in Example 17-1, and the results are shown in Table 15.
表15Table 15
实施例18-1Example 18-1
同实施例12-1,区别在于其中的磷改性分子筛PSZ-1-1用实施例7-1制备的磷改性分子筛PSZ-7-1替代。制得催化剂样品,编号CAZY7-1。Same as Example 12-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the phosphorus modified molecular sieve PSZ-7-1 prepared in Example 7-1. A catalyst sample was prepared, numbered CAZY7-1.
评价同实施例12-1,结果见表16。The evaluation was the same as in Example 12-1, and the results are shown in Table 16.
实施例18-2Example 18-2
同实施例18-1,区别在于其中的磷改性分子筛PSZ-7-1用实施例7-2制备的磷改性分子筛PSZ-7-2替代。制得催化剂样品,编号CAZY7-2。Same as Example 18-1, except that the phosphorus modified molecular sieve PSZ-7-1 is replaced by the phosphorus modified molecular sieve PSZ-7-2 prepared in Example 7-2. A catalyst sample was prepared, numbered CAZY7-2.
评价同实施例18-1,结果见表16。The evaluation was the same as in Example 18-1, and the results are shown in Table 16.
对比例18-1Comparative Example 18-1
同实施例18-1,区别在于其中的磷改性分子筛PSZ-7-1用对比例7-1的对比样品DBZ7-1替代。制得催化剂对比样品,编号DCAZY7-1。It is the same as Example 18-1, except that the phosphorus modified molecular sieve PSZ-7-1 is replaced by the comparative sample DBZ7-1 of Comparative Example 7-1. A catalyst comparison sample was prepared, numbered DCAZY7-1.
评价同实施例18-1,结果见表16。The evaluation was the same as in Example 18-1, and the results are shown in Table 16.
对比例18-2Comparative Example 18-2
同实施例18-1,区别在于其中的磷改性分子筛PSZ-7-1用对比例7-2的对比样品DBZ7-2替代。制得催化剂对比样品,编号DCAZY7-2。Same as Example 18-1, except that the phosphorus modified molecular sieve PSZ-7-1 is replaced by the comparative sample DBZ7-2 of Comparative Example 7-2. A catalyst comparison sample was prepared, numbered DCAZY7-2.
评价同实施例18-1,结果见表16。The evaluation was the same as in Example 18-1, and the results are shown in Table 16.
表16Table 16
实施例19-1Example 19-1
同实施例12-1,区别在于磷铝无机粘结剂以实施例9制备的Binder2替代。制得催化剂,编号CAZY8-1。It is the same as Example 12-1, except that the phosphorus aluminum inorganic binder is replaced by Binder2 prepared in Example 9. The catalyst was prepared, number CAZY8-1.
评价同实施例12-1,结果见表17。The evaluation was the same as in Example 12-1, and the results are shown in Table 17.
实施例19-2Example 19-2
同实施例12-2,区别在于磷铝无机粘结剂以实施例9制备的Binder2替代。制得催化剂,编号CAZY8-2。It is the same as Example 12-2, except that the phosphorus aluminum inorganic binder is replaced by Binder2 prepared in Example 9. The catalyst was prepared, number CAZY8-2.
评价同实施例12-1,结果见表17。The evaluation was the same as in Example 12-1, and the results are shown in Table 17.
实施例20-1Example 20-1
同实施例12-1,区别在于磷铝无机粘结剂以实施例10制备的Binder3替代。制得催化剂,编号CAZY9-1。It is the same as Example 12-1, except that the phosphorus aluminum inorganic binder is replaced by Binder3 prepared in Example 10. The catalyst was prepared, numbered CAZY9-1.
评价同实施例12-1,结果见表17。The evaluation was the same as in Example 12-1, and the results are shown in Table 17.
实施例20-2Example 20-2
同实施例12-2,区别在于磷铝无机粘结剂以实施例10制备的Binder3替代。制得催化剂,编号CAZY9-2。It is the same as Example 12-2, except that the phosphorus aluminum inorganic binder is replaced by Binder3 prepared in Example 10. The catalyst was prepared, number CAZY9-2.
评价同实施例12-1,结果见表17。The evaluation was the same as in Example 12-1, and the results are shown in Table 17.
实施例21-1Example 21-1
同实施例12-1,区别在于磷铝无机粘结剂以实施例11制备的Binder4替代。制得催化剂,编号CAZY10-1。It is the same as Example 12-1, except that the phosphorus aluminum inorganic binder is replaced by Binder 4 prepared in Example 11. The catalyst was prepared, number CAZY10-1.
评价同实施例12-1,结果见表17。The evaluation was the same as in Example 12-1, and the results are shown in Table 17.
实施例21-2Example 21-2
同实施例12-2,区别在于磷铝无机粘结剂以实施例11制备的Binder4替代。制得催化剂,编号CAZY10-2。It is the same as Example 12-2, except that the phosphorus aluminum inorganic binder is replaced by Binder 4 prepared in Example 11. The catalyst was prepared, number CAZY10-2.
评价同实施例12-1,结果见表17。The evaluation was the same as in Example 12-1, and the results are shown in Table 17.
表17Table 17
实施例22-1Example 22-1
同实施例12-1,区别在于磷改性ZSM-分子筛样品PSZ1-1 35重量%、PSRY10重量%、高岭土18重量%、磷铝无机粘结剂Binder3为22重量%,拟薄水铝石为10重量%、铝溶胶为5重量%。制得催化剂,编号CAZY11-1。Same as Example 12-1, except that the phosphorus modified ZSM-molecular sieve sample PSZ1-1 is 35% by weight, PSRY10% by weight, kaolin 18% by weight, phosphorus aluminum inorganic binder Binder3 is 22% by weight, and pseudo-boehmite is 10% by weight, aluminum sol is 5% by weight. The catalyst was prepared, number CAZY11-1.
评价同实施例12-1,结果见表18。The evaluation was the same as in Example 12-1, and the results are shown in Table 18.
实施例22-2Example 22-2
同实施例12-1,区别在于PSZ1-1用PSZ1-2替代。制得催化剂,编号CAZY11-2。Same as Example 12-1, except that PSZ1-1 is replaced by PSZ1-2. The catalyst was prepared, number CAZY11-2.
评价同实施例12-1,结果见表18。The evaluation was the same as in Example 12-1, and the results are shown in Table 18.
对比例22-1Comparative example 22-1
同实施例22-1,区别在于PSZ1-1用DBZ1-1替代。制得催化剂对比样品,编号DCAZ11-1。评价同实施例12-1,结果见表18。Same as Example 22-1, except that PSZ1-1 is replaced with DBZ1-1. A catalyst comparison sample was prepared, numbered DCAZ11-1. The evaluation was the same as in Example 12-1, and the results are shown in Table 18.
对比例22-2Comparative Example 22-2
同实施例22-1,区别在于PSZ1-1用DBZ1-2替代。制得催化剂对比样品,编号DCAZY11-2。评价同实施例12-1,结果见表18。Same as Example 22-1, except that PSZ1-1 is replaced with DBZ1-2. A catalyst comparison sample was prepared, numbered DCAZY11-2. The evaluation was the same as in Example 12-1, and the results are shown in Table 18.
表18Table 18
实施例23-1Example 23-1
同实施例12-1,区别在于磷改性ZSM-分子筛样品PSZ2-1 30重量%、PSRY16重量%、高岭土24重量%、磷铝无机粘结剂Binder4为20重量%,拟薄水铝石为6重量%、硅溶胶为10重量%。制得催化剂,编号CAZY12-1。Same as Example 12-1, except that the phosphorus modified ZSM-molecular sieve sample PSZ2-1 is 30 wt%, PSRY16 wt%, kaolin is 24 wt%, phosphorus aluminum inorganic binder Binder4 is 20 wt%, and pseudo-boehmite is 6% by weight and 10% by weight of silica sol. The catalyst was prepared, number CAZY12-1.
评价同实施例12-1,结果见表19。The evaluation was the same as in Example 12-1, and the results are shown in Table 19.
实施例23-2Example 23-2
同实施例12-1,区别在于PSZ2-1用PSZ2-2替代。制得催化剂,编号CAZY12-2。Same as Example 12-1, except that PSZ2-1 is replaced with PSZ2-2. The catalyst was prepared, number CAZY12-2.
评价同实施例12-1,结果见表19。The evaluation was the same as in Example 12-1, and the results are shown in Table 19.
对比例23-1Comparative example 23-1
同实施例23-1,区别在于PSZ2-1用DBZ2-1替代。制得催化剂对比样品,编号DCAZY12-1。Same as Example 23-1, except that PSZ2-1 is replaced with DBZ2-1. A catalyst comparison sample was prepared, numbered DCAZY12-1.
评价同实施例12-1,结果见表19。The evaluation was the same as in Example 12-1, and the results are shown in Table 19.
对比例23-2Comparative Example 23-2
同实施例23-1,区别在于PSZ2-1用DBZ2-2替代。制得催化剂对比样品,编号DCAZY12-2。Same as Example 23-1, except that PSZ2-1 is replaced with DBZ2-2. A catalyst comparison sample was prepared, numbered DCAZY12-2.
评价同实施例12-1,结果见表19。The evaluation was the same as in Example 12-1, and the results are shown in Table 19.
表19Table 19
实施例24-1Example 24-1
将粘结剂铝溶胶,与高岭土混合,并用脱阳离子水将其制成固含量为30重量%的浆液,搅拌均匀,用盐酸将浆液pH值调至2.8,于55℃下静置老化1小时后加入实施例1制备的磷改性ZSM-5分子筛PSZ1-1和Y型分子筛(PSRY)形成催化剂浆液(固含量为35%重量),继续搅拌后喷雾干燥制成微球催化剂。然后将微球催化剂在500℃下焙烧1小时,再在60℃下用硫酸铵洗涤(其中,硫酸铵:微球催化剂:水=0.5:1:10)至氧化钠含量小于0.25重量%,接着用去离子水淋洗并过滤,之后再于110℃下烘干,得到催化剂,编号CAZY13-1。催化剂配比为磷改性ZSM-5分子筛PSZ-1-1 40%、PSRY分子筛10%、高岭土25%、铝溶胶(以Al2O3计)25%。Mix the binder aluminum sol with kaolin, and use decationized water to make a slurry with a solid content of 30% by weight. Stir evenly. Use hydrochloric acid to adjust the pH value of the slurry to 2.8, and let it stand for aging at 55°C for 1 hour. Then, the phosphorus-modified ZSM-5 molecular sieve PSZ1-1 and Y-type molecular sieve (PSRY) prepared in Example 1 were added to form a catalyst slurry (solid content: 35% by weight), and the mixture was continuously stirred and spray-dried to prepare a microsphere catalyst. The microsphere catalyst is then calcined at 500°C for 1 hour, and then washed with ammonium sulfate at 60°C (ammonium sulfate:microsphere catalyst:water=0.5:1:10) until the sodium oxide content is less than 0.25% by weight, and then Rinse and filter with deionized water, and then dry at 110°C to obtain the catalyst, number CAZY13-1. The catalyst ratio is 40% of phosphorus modified ZSM-5 molecular sieve PSZ-1-1, 10% of PSRY molecular sieve, 25% of kaolin, and 25% of aluminum sol (calculated as Al 2 O 3 ).
评价同实施例12-1,结果见表20。The evaluation was the same as in Example 12-1, and the results are shown in Table 20.
实施例24-2Example 24-2
同实施例24-1,区别在于其中的磷改性分子筛PSZ1-1用实施例1-2制备的磷改性分子筛PSZ-1-2替代。制得催化剂样品,编号CAZY13-2。Same as Example 24-1, except that the phosphorus modified molecular sieve PSZ1-1 is replaced by the phosphorus modified molecular sieve PSZ-1-2 prepared in Example 1-2. A catalyst sample was prepared, numbered CAZY13-2.
评价同实施例12-1,结果见表20。The evaluation was the same as in Example 12-1, and the results are shown in Table 20.
对比例24-1Comparative Example 24-1
同实施例24-1,区别在于其中的磷改性分子筛PSZ1-1用对比例1-1的对比样品DBZ1-1替代。制得催化剂对比样品,编号DCAZY13-1。It is the same as Example 24-1, except that the phosphorus modified molecular sieve PSZ1-1 is replaced by the comparative sample DBZ1-1 of Comparative Example 1-1. A catalyst comparison sample was prepared, numbered DCAZY13-1.
评价同实施例12-1,结果见表20。The evaluation was the same as in Example 12-1, and the results are shown in Table 20.
对比例24-2Comparative Example 24-2
同实施例24-1,区别在于其中的磷改性分子筛PSZ-1-1用对比例1-2的对比样品DBZ1-2替代。制得催化剂对比样品,编号DCAZY13-2。It is the same as Example 24-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the comparative sample DBZ1-2 of Comparative Example 1-2. A catalyst comparison sample was prepared, numbered DCAZY13-2.
评价同实施例12-1,结果见表20。The evaluation was the same as in Example 12-1, and the results are shown in Table 20.
表20Table 20
实施例25-1Example 25-1
同实施例12-1,区别在于其中的Y型分子筛(PSRY)以HRY-1替换。制得催化剂样品,编号CAZY14-1。Same as Example 12-1, except that the Y-type molecular sieve (PSRY) is replaced with HRY-1. A catalyst sample was prepared, numbered CAZY14-1.
评价同实施例12-1,结果见表21。The evaluation was the same as in Example 12-1, and the results are shown in Table 21.
实施例25-2Example 25-2
同实施例12-2,区别在于其中的Y型分子筛(PSRY)以HRY-1替换。制得催化剂样品,编号CAZY14-1。Same as Example 12-2, except that the Y-type molecular sieve (PSRY) is replaced with HRY-1. A catalyst sample was prepared, numbered CAZY14-1.
评价同实施例12-1,结果见表21。The evaluation was the same as in Example 12-1, and the results are shown in Table 21.
对比例25-1Comparative example 25-1
同实施例25-1,区别在于其中的磷改性分子筛PSZ1-1用对比例1-1的对比样品DBZ1-1替代。制得催化剂对比样品,编号DCAZY14-1。It is the same as Example 25-1, except that the phosphorus modified molecular sieve PSZ1-1 is replaced by the comparative sample DBZ1-1 of Comparative Example 1-1. A catalyst comparison sample was prepared, numbered DCAZY14-1.
评价同实施例12-1,结果见表21。The evaluation was the same as in Example 12-1, and the results are shown in Table 21.
对比例25-2Comparative Example 25-2
同实施例25-1,区别在于其中的磷改性分子筛PSZ-1-1用对比例1-2的对比样品DBZ1-2替代。制得催化剂对比样品,编号DCAZY14-2。It is the same as Example 25-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the comparative sample DBZ1-2 of Comparative Example 1-2. A catalyst comparison sample was prepared, numbered DCAZY14-2.
评价同实施例12-1,结果见表21。The evaluation was the same as in Example 12-1, and the results are shown in Table 21.
表21Table 21
实施例26-1Example 26-1
同实施例12-1,区别在于其中的Y型分子筛(PSRY)以USY替换。制得催化剂样品,编号CAZY15-1。Same as Example 12-1, except that the Y-type molecular sieve (PSRY) is replaced by USY. A catalyst sample was prepared, numbered CAZY15-1.
评价同实施例12-1,结果见表22。The evaluation was the same as in Example 12-1, and the results are shown in Table 22.
实施例26-2Example 26-2
同实施例12-2,区别在于其中的Y型分子筛(PSRY)以USY替换。制得催化剂样品,编号CAZY15-2。Same as Example 12-2, except that the Y-type molecular sieve (PSRY) is replaced by USY. A catalyst sample was prepared, numbered CAZY15-2.
评价同实施例12-1,结果见表22。The evaluation was the same as in Example 12-1, and the results are shown in Table 22.
对比例26-1Comparative Example 26-1
同实施例26-1,区别在于其中的磷改性分子筛PSZ1-1用对比例1-1的对比样品DBZ1-1替代。制得催化剂对比样品,编号DCAZY15-1。It is the same as Example 26-1, except that the phosphorus modified molecular sieve PSZ1-1 is replaced by the comparative sample DBZ1-1 of Comparative Example 1-1. A catalyst comparison sample was prepared, numbered DCAZY15-1.
评价同实施例12-1,结果见表22。The evaluation was the same as in Example 12-1, and the results are shown in Table 22.
对比例26-2Comparative Example 26-2
同实施例26-1,区别在于其中的磷改性分子筛PSZ-1-1用对比例1-2的对比样品DBZ1-2替代。制得催化剂对比样品,编号DCAZY15-2。It is the same as Example 26-1, except that the phosphorus modified molecular sieve PSZ-1-1 is replaced by the comparative sample DBZ1-2 of Comparative Example 1-2. A catalyst comparison sample was prepared, numbered DCAZY15-2.
评价同实施例12-1,结果见表22。The evaluation was the same as in Example 12-1, and the results are shown in Table 22.
表22Table 22
实施例27-1、实施例27-2Example 27-1, Example 27-2
实施例27-1、实施例27-2分别采用实施例12-1和实施例12-2的催化剂CAZY1-1、CAZY1-2。催化裂解的原料油为表23所示的石脑油。Example 27-1 and Example 27-2 used the catalysts CAZY1-1 and CAZY1-2 of Example 12-1 and Example 12-2 respectively. The raw material oil for catalytic cracking is naphtha shown in Table 23.
评价条件为反应温度620℃,再生温度620℃,剂油比3.2。The evaluation conditions are reaction temperature 620°C, regeneration temperature 620°C, and agent-oil ratio 3.2.
表22给出了各个含催化裂解助剂的催化剂混合物的重量组成及反应结果。Table 22 shows the weight composition and reaction results of each catalyst mixture containing catalytic cracking promoter.
对比例27-1、对比例27-2Comparative Example 27-1, Comparative Example 27-2
同实施例27-1,区别在于分别采用对比例12-1和对比例12-2的催化对比剂DCAZY1-1、DCAZY1-2。Same as Example 27-1, except that the catalytic contrast agents DCAZY1-1 and DCAZY1-2 of Comparative Example 12-1 and Comparative Example 12-2 were respectively used.
各个含催化裂解助剂对比样品的催化剂混合物的重量组成及反应结果表24。Table 24 shows the weight composition and reaction results of each catalyst mixture containing the catalytic cracking aid comparative sample.
表23Table 23
表24Table 24
表24评价数据显示出对不同原料油进行催化裂解,含有实施例浸渍法改性的磷改性ZSM-5分子筛的催化剂表现出优异多产液化气同时富产低碳烯烃性能,其中含有对比例浸渍法改性的分子筛的催化剂则液化气及低碳烯烃收率明显偏低。The evaluation data in Table 24 shows that the catalyst containing the phosphorus-modified ZSM-5 molecular sieve modified by the impregnation method of the embodiment shows excellent performance in producing liquefied gas while being rich in low-carbon olefins when catalytically cracking different feed oils, including the comparative example For catalysts using molecular sieves modified by the impregnation method, the yields of liquefied gas and light olefins are significantly lower.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific details of the above embodiments. Within the scope of the technical concept of the present invention, a variety of simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the specific technical features described in the above-mentioned specific embodiments can be combined in any suitable manner as long as there is no contradiction. In order to avoid unnecessary repetition, various possible combinations are not further described in the present invention.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, any combination of various embodiments of the present invention can also be carried out. As long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Claims (38)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011175727.5A CN114425430B (en) | 2020-10-29 | 2020-10-29 | Catalytic cracking catalyst |
PCT/CN2021/086821 WO2021208884A1 (en) | 2020-04-13 | 2021-04-13 | Phosphorus-containing/phosphorus-modified zsm-5 molecular sieve, pyrolysis additive and pyrolysis catalyst containing same, preparation method therefor and application thereof |
KR1020227039663A KR20230002699A (en) | 2020-04-13 | 2021-04-13 | Phosphorus-containing/phosphorus-modified ZSM-5 molecular sieve, thermal decomposition additive and thermal decomposition catalyst including the same, manufacturing method thereof and application thereof |
JP2022562488A JP2023523559A (en) | 2020-04-13 | 2021-04-13 | Phosphorus-Containing/Phosphorus-Modified ZSM-5 Molecular Sieves, Cracking Aids and Cracking Catalysts Containing The Same, Methods Of Making The Same, And Methods Of Using The Same |
US17/996,178 US20230202851A1 (en) | 2020-04-13 | 2021-04-13 | Phosphorus-containing/phosphorus-modified zsm-5 molecular sieve, cracking auxiliary and cracking catalyst containing the same, process of preparing the same, and use thereof |
TW110113299A TW202146336A (en) | 2020-04-13 | 2021-04-13 | Phosphorus-containing/phosphorus-modified zsm-5 molecular sieve, pyrolysis additive and pyrolysis catalyst containing same, preparation method therefor and application thereof |
EP21788139.0A EP4137456A1 (en) | 2020-04-13 | 2021-04-13 | Phosphorus-containing/phosphorus-modified zsm-5 molecular sieve, pyrolysis additive and pyrolysis catalyst containing same, preparation method therefor and application thereof |
SA522440931A SA522440931B1 (en) | 2020-04-13 | 2022-10-13 | ZSM-5 molecular sieve containing phosphorus catalyst and cracking aid containing it, and its preparation and use process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011175727.5A CN114425430B (en) | 2020-10-29 | 2020-10-29 | Catalytic cracking catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114425430A CN114425430A (en) | 2022-05-03 |
CN114425430B true CN114425430B (en) | 2024-03-12 |
Family
ID=81309490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011175727.5A Active CN114425430B (en) | 2020-04-13 | 2020-10-29 | Catalytic cracking catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114425430B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102814194A (en) * | 2011-06-09 | 2012-12-12 | 中国石油化工股份有限公司 | Catalyst containing modified silicoaluminophosphate molecular sieve |
CN103785453A (en) * | 2012-10-26 | 2014-05-14 | 中国石油化工股份有限公司 | Catalytic cracking catalyst and preparation method thereof |
CN103785459A (en) * | 2012-10-26 | 2014-05-14 | 中国石油化工股份有限公司 | Catalytic cracking catalyst and preparation method thereof |
CN107971028A (en) * | 2016-10-21 | 2018-05-01 | 中国石油化工股份有限公司 | A kind of catalytic cracking catalyst and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005321726B2 (en) * | 2004-12-28 | 2011-03-03 | China Petroleum & Chemical Corporation | A catalyst and a hydrocarbon oil cracking method |
CN102531821B (en) * | 2010-12-28 | 2015-03-25 | 中国科学院大连化学物理研究所 | Method for catalyzing catalytic cracking reaction of methanol coupled with naphtha using modified ZSM-5 molecular sieve based catalyst |
-
2020
- 2020-10-29 CN CN202011175727.5A patent/CN114425430B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102814194A (en) * | 2011-06-09 | 2012-12-12 | 中国石油化工股份有限公司 | Catalyst containing modified silicoaluminophosphate molecular sieve |
CN103785453A (en) * | 2012-10-26 | 2014-05-14 | 中国石油化工股份有限公司 | Catalytic cracking catalyst and preparation method thereof |
CN103785459A (en) * | 2012-10-26 | 2014-05-14 | 中国石油化工股份有限公司 | Catalytic cracking catalyst and preparation method thereof |
CN107971028A (en) * | 2016-10-21 | 2018-05-01 | 中国石油化工股份有限公司 | A kind of catalytic cracking catalyst and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114425430A (en) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020078434A1 (en) | Mfi structure molecular sieve rich in mesopore, preparation method therefor, and catalyst containing same and application thereof | |
KR102803844B1 (en) | Mesopore-rich phosphorus-containing rare earth-containing MFI structured molecular sieve, method for producing same, and catalyst containing same and use thereof | |
US11964262B2 (en) | Phosphorus-containing rare-earth-containing MFI structure molecular sieve rich in mesopore, preparation method, and catalyst containing same and application thereof | |
CN103785456A (en) | Cracking auxiliary agent for increasing low-carbon olefin concentration | |
WO2021208885A1 (en) | Phosphorus-modified mfi-structured molecular sieve, catalytic cracking auxiliary agent and catalytic cracking catalyst containing phosphorus-modified mfi-structured molecular sieve, and preparation method therefor | |
CN113526519B (en) | Phosphorus-containing hierarchical pore ZSM-5 molecular sieve and preparation method thereof | |
CN114425432B (en) | A cracking catalyst, preparation method and application | |
CN114762836B (en) | A preparation method and preparation system of a catalytic cracking catalyst containing phosphorus modified MFI structure molecular sieve | |
US20230202851A1 (en) | Phosphorus-containing/phosphorus-modified zsm-5 molecular sieve, cracking auxiliary and cracking catalyst containing the same, process of preparing the same, and use thereof | |
CN114471676B (en) | a cracking aid | |
CN113526520B (en) | Phosphorus modified ZSM-5 molecular sieve and preparation method thereof | |
CN114425430B (en) | Catalytic cracking catalyst | |
CN114505092B (en) | A catalytic cracking aid, preparation method and method for catalytic cracking of hydrocarbon oil | |
CN114505093B (en) | Catalytic cracking auxiliary agent and preparation method and application thereof | |
CN114762831B (en) | Preparation method and preparation system of catalytic cracking auxiliary agent | |
CN114425431B (en) | A Catalytic Cracking Catalyst for Phosphorus-Containing Modified MFI Molecular Sieves | |
CN114749208B (en) | A catalytic cracking catalyst | |
CN113526521B (en) | Molecular Sieve Composite of Phosphorus Modified ZSM-5 and Y | |
RU2825864C1 (en) | Phosphorus-containing/phosphorus-modified molecular sieve zsm-5, containing cracking aid and cracking catalyst, method of preparation and use thereof | |
KR102803635B1 (en) | Mesopore-rich MFI structure molecular sieve, method for preparing the same, and catalyst containing the same and use thereof | |
CN119220292A (en) | A catalytic cracking method and a cracking catalyst for phosphorus-modified ZSM-5 molecular sieve | |
CN120361938A (en) | A catalytic cracking aid and a catalytic cracking reaction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |