CN114422038A - Photon terahertz wireless communication method and system based on subcarrier OFDM - Google Patents
Photon terahertz wireless communication method and system based on subcarrier OFDM Download PDFInfo
- Publication number
- CN114422038A CN114422038A CN202111640707.5A CN202111640707A CN114422038A CN 114422038 A CN114422038 A CN 114422038A CN 202111640707 A CN202111640707 A CN 202111640707A CN 114422038 A CN114422038 A CN 114422038A
- Authority
- CN
- China
- Prior art keywords
- signal
- optical signal
- subcarrier
- terahertz wireless
- division multiplexing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000003287 optical effect Effects 0.000 claims abstract description 124
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000035559 beat frequency Effects 0.000 claims abstract description 21
- 230000008878 coupling Effects 0.000 claims abstract description 14
- 238000010168 coupling process Methods 0.000 claims abstract description 14
- 238000005859 coupling reaction Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 238000004590 computer program Methods 0.000 claims description 17
- 238000005516 engineering process Methods 0.000 abstract description 28
- 230000005540 biological transmission Effects 0.000 abstract description 12
- 238000001228 spectrum Methods 0.000 abstract description 6
- 238000005070 sampling Methods 0.000 description 13
- 238000012549 training Methods 0.000 description 13
- 125000004122 cyclic group Chemical group 0.000 description 10
- 238000005562 fading Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000969 carrier Substances 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000006735 deficit Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5165—Carrier suppressed; Single sideband; Double sideband or vestigial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5563—Digital frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2689—Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
- H04L27/2691—Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本发明涉及太赫兹通信技术领域,尤其涉及一种基于多副载波OFDM的光子太赫兹无线通信方法、系统、设备、介质和产品。The present invention relates to the technical field of terahertz communication, and in particular, to a method, system, device, medium and product of photonic terahertz wireless communication based on multi-subcarrier OFDM.
背景技术Background technique
B5G/6G通信技术中通常使用正交频分复用(Orthogonal Frequency DivisionMultiplexing,简称OFDM)调制技术或者副载波调制技术。In the B5G/6G communication technology, an Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM for short) modulation technology or a subcarrier modulation technology is generally used.
但是,随着B5G/6G通信技术的快速发展,通信业务对于信号传输速率、数据容量等需求日益增加,通信频段向更高频段发展是必然趋势,这也对信号误码率、频谱效率以及器件带宽等关键指标提出了更高要求。但是,OFDM调制技术不能有效减小接收端ADC带宽需求,也不能有效降低计算复杂度。副载波调制技术在高频谱效率,颗粒度、抗色散性、强抗符号间干扰能力等方面表现平平,且不能有效降低无线信道的多径时延扩展的影响。However, with the rapid development of B5G/6G communication technology, communication services have increasing demands for signal transmission rate, data capacity, etc., and the development of communication frequency bands to higher frequency bands is an inevitable trend. Key indicators such as bandwidth put forward higher requirements. However, the OFDM modulation technology cannot effectively reduce the ADC bandwidth requirement at the receiving end, nor can it effectively reduce the computational complexity. The subcarrier modulation technology has a mediocre performance in terms of high spectral efficiency, granularity, dispersion resistance, and strong resistance to inter-symbol interference, and cannot effectively reduce the influence of multipath delay spread of wireless channels.
发明内容SUMMARY OF THE INVENTION
本发明提供一种基于副载波OFDM的光子太赫兹无线通讯方法、系统、设备、介质和产品。实现了大容量、高速率、低成本的太赫兹无线通信传输和多用户的灵活接入。The present invention provides a photonic terahertz wireless communication method, system, device, medium and product based on subcarrier OFDM. It realizes large-capacity, high-speed, low-cost terahertz wireless communication transmission and flexible access for multiple users.
第一方面,本发明提供了一种基于副载波OFDM的光子太赫兹无线通讯方法,包括:接收至少一路用户输入的基带信号,将所述基带信号转换为正交频分复用信号,得到至少一路所述正交频分复用信号;将所述至少一路正交频分复用信号进行信号复用,得到一路副载波正交频分复用信号;将所述副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号;将所述第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,并将所述太赫兹无线信号发射到自由空间中。In a first aspect, the present invention provides a photonic terahertz wireless communication method based on subcarrier OFDM, comprising: receiving at least one baseband signal input by a user, converting the baseband signal into an orthogonal frequency division multiplexing signal, and obtaining at least one baseband signal input by a user. one channel of the OFDM signal; performing signal multiplexing on the at least one channel of the OFDM signal to obtain a sub-carrier OFDM signal; The second optical signal is obtained by modulating the first optical signal of the preset frequency with the signal through the I/Q modulator; after coupling the second optical signal with the third optical signal of the preset frequency, it is obtained through beat frequency processing Terahertz wireless signal, and transmit the terahertz wireless signal into free space.
进一步地,所述将所述副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号,包括:将所述副载波正交频分复用信号的I、Q两路信号分别经过数模转换得到两路模拟电信号;将所述两路模拟电信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号。Further, the step of modulating the subcarrier OFDM signal on the first optical signal with a preset frequency through an I/Q modulator to obtain a second optical signal includes: orthogonalizing the subcarrier The I and Q signals of the frequency division multiplexed signal are respectively subjected to digital-to-analog conversion to obtain two analog electrical signals; the two analog electrical signals are modulated on the first optical signal of the preset frequency by the I/Q modulator, A second optical signal is obtained.
进一步地,所述将所述第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,包括:将所述第二光信号与预设频率的第三光信号耦合后,通过PD拍频处理得到太赫兹无线信号。Further, after coupling the second optical signal with the third optical signal of the preset frequency, and obtaining the terahertz wireless signal through beat frequency processing, the method includes: combining the second optical signal with the third optical signal of the preset frequency. After the optical signal is coupled, a terahertz wireless signal is obtained through PD beat frequency processing.
进一步地,所述将所述基带信号转换为正交频分复用信号,包括:根据所述基带信号,通过逆快速傅里叶反变换处理,得到所述正交频分复用信号。Further, the converting the baseband signal into an OFDM signal includes: obtaining the OFDM signal through an inverse fast Fourier transform process according to the baseband signal.
进一步地,所述太赫兹无线信号的频率为所述第二光信号与预设频率的第三光信号的频率之差。Further, the frequency of the terahertz wireless signal is the difference between the frequencies of the second optical signal and the third optical signal of a preset frequency.
进一步地,所述方法,还包括:接收所述所述太赫兹无线信号,将所述太赫兹无线信号下变频至中频信号;根据所述中频信号恢复所述基带信号。Further, the method further includes: receiving the terahertz wireless signal, down-converting the terahertz wireless signal to an intermediate frequency signal; and restoring the baseband signal according to the intermediate frequency signal.
第二方面,本发明还提供了一种基于副载波OFDM的光子太赫兹无线通讯系统,包括:用户发端模块,用于接收至少一路用户输入的基带信号,将所述基带信号转换为正交频分复用信号,得到至少一路所述正交频分复用信号,将所述至少一路正交频分复用信号进行信号复用后得到一路副载波正交频分复用信号;中心站,用于将所述副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号;远程基站,用于将所述第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,并将所述太赫兹无线信号发射到自由空间中。In a second aspect, the present invention also provides a subcarrier OFDM-based photonic terahertz wireless communication system, comprising: a user originating module for receiving at least one baseband signal input by a user, and converting the baseband signal into an orthogonal frequency dividing multiplexed signals to obtain at least one OFDM signal, and performing signal multiplexing on the at least one OFDM signal to obtain a subcarrier OFDM signal; the central station, is used to modulate the subcarrier OFDM signal on the first optical signal of a preset frequency through an I/Q modulator to obtain a second optical signal; the remote base station is used to convert the second optical signal After being coupled with a third optical signal of a preset frequency, a terahertz wireless signal is obtained through beat frequency processing, and the terahertz wireless signal is transmitted into free space.
第三方面,本发明还提供一种通信设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述基于副载波OFDM的光子太赫兹无线通讯方法的步骤。In a third aspect, the present invention also provides a communication device, comprising a memory, a processor, and a computer program stored in the memory and running on the processor, when the processor executes the program, the above-mentioned subcarrier-based OFDM is implemented The steps of the photonic terahertz wireless communication method.
第四方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述基于副载波OFDM的光子太赫兹无线通讯方法的步骤。In a fourth aspect, the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the above-mentioned subcarrier OFDM-based photonic terahertz wireless communication method .
第五方面,本发明还提供一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上述基于副载波OFDM的光子太赫兹无线通讯方法的步骤。In a fifth aspect, the present invention also provides a computer program product, including a computer program, wherein when the computer program is executed by a processor, the steps of the above-mentioned subcarrier OFDM-based photonic terahertz wireless communication method are implemented.
本发明提供的一种基于副载波OFDM的光子太赫兹无线通讯方法、系统、设备、介质和产品,相比OFDM调制,副载波OFDM调制技术可减小接收端ADC带宽需求并减小快速傅里叶变换(fast Fourier transform,简称FFT)数以降低计算复杂度;相比副载波调制,副载波OFDM调制技术具有高频谱效率,细颗粒度、良好的抗色散性、强抗符号间干扰能力,能有效降低无线信道的多径时延扩展影响。因此,副载波OFDM调制技术结合了两者优势。在不同副载波的子载波上采用不同调制/编码方案实现了灵活调制,提高了对频率选择性衰落和窄带干扰的鲁棒性,有效减少了功率衰弱的影响,减小了ADC带宽需求,降低了运算复杂度,又大大提高了频谱效率,增强了抗色散、抗多径干扰以及频率选择性衰落能力。极大提升了光子太赫兹通信系统的通信质量,实现了大容量、高速率、低成本的太赫兹无线通信传输和多用户的灵活接入。因此在光子太赫兹传输系统中运用副载波OFDM调制技术作为一种重要解决方案,具有广阔的应用前景。The invention provides a photonic terahertz wireless communication method, system, device, medium and product based on subcarrier OFDM. Compared with OFDM modulation, subcarrier OFDM modulation technology can reduce the bandwidth requirement of the ADC at the receiving end and reduce the fast Fourier The number of leaf transforms (fast Fourier transform, referred to as FFT) is reduced to reduce the computational complexity; compared with sub-carrier modulation, sub-carrier OFDM modulation technology has high spectral efficiency, fine granularity, good dispersion resistance, strong resistance to inter-symbol interference, It can effectively reduce the influence of multipath delay spread of wireless channels. Therefore, the subcarrier OFDM modulation technique combines the advantages of both. Different modulation/coding schemes are used on subcarriers of different subcarriers to achieve flexible modulation, improve robustness to frequency selective fading and narrowband interference, effectively reduce the impact of power fading, reduce ADC bandwidth requirements, and reduce The computational complexity is greatly improved, the spectral efficiency is greatly improved, and the anti-chromatic dispersion, anti-multipath interference and frequency selective fading capabilities are enhanced. It greatly improves the communication quality of the photonic terahertz communication system, and realizes large-capacity, high-speed, low-cost terahertz wireless communication transmission and flexible access for multiple users. Therefore, the use of subcarrier OFDM modulation technology in photonic terahertz transmission system as an important solution has broad application prospects.
附图说明Description of drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are the For some embodiments of the invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是根据本发明提供的基于副载波OFDM的光子太赫兹无线通讯方法的一些实施例的流程示意图;1 is a schematic flowchart of some embodiments of a subcarrier OFDM-based photonic terahertz wireless communication method according to the present invention;
图2-1是根据本发明提供的基于副载波OFDM的光子太赫兹无线通讯系统的一个应用场景示意图;2-1 is a schematic diagram of an application scenario of a photonic terahertz wireless communication system based on subcarrier OFDM provided according to the present invention;
图2-2是图2-1的一个应用场景的具体结构示意图;Figure 2-2 is a schematic diagram of a specific structure of an application scenario of Figure 2-1;
图2-3是用户发端模块的一个应用场景的具体结构示意图;Figure 2-3 is a schematic diagram of the specific structure of an application scenario of the user originating module;
图2-4是用户终端模块的一个应用场景的具体结构示意图;Figure 2-4 is a schematic diagram of the specific structure of an application scenario of the user terminal module;
图3是根据本发明提供的基于副载波OFDM的光子太赫兹无线通讯装置的一些实施例的结构示意图;3 is a schematic structural diagram of some embodiments of a subcarrier OFDM-based photonic terahertz wireless communication device according to the present invention;
图4是根据本发明提供的通信设备的结构示意图。FIG. 4 is a schematic structural diagram of a communication device provided according to the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions in the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention. , not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。In addition, it should be noted that, for the convenience of description, only the parts related to the related invention are shown in the drawings. Embodiments of the invention and features of the embodiments may be combined with each other without conflict.
需要注意,本发明中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that concepts such as "first" and "second" mentioned in the present invention are only used to distinguish different devices, modules or units, and are not used to limit the order of functions performed by these devices, modules or units or interdependence.
需要注意,本发明中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "a" and "a plurality" mentioned in the present invention are illustrative rather than restrictive, and those skilled in the art should understand that unless the context clearly indicates otherwise, they should be understood as "one or a plurality of" multiple".
本发明实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of messages or information exchanged between multiple devices in the embodiments of the present invention are only used for illustrative purposes, and are not used to limit the scope of these messages or information.
下面将参考附图并结合实施例来详细说明本发明。The present invention will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
请参阅图1,图1是本发明提供的基于副载波OFDM的光子太赫兹无线通讯方法的一些实施例的流程示意图。如图1所示,该方法包括以下步骤:Please refer to FIG. 1. FIG. 1 is a schematic flowchart of some embodiments of the subcarrier OFDM-based photonic terahertz wireless communication method provided by the present invention. As shown in Figure 1, the method includes the following steps:
步骤101,接收至少一路用户输入的基带信号,将基带信号转换为正交频分复用信号,得到至少一路正交频分复用信号。Step 101: Receive at least one baseband signal input by a user, convert the baseband signal into an OFDM signal, and obtain at least one OFDM signal.
在一些实施例中,信源(信息源,也称发送端)发出的没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是频率较低,信号频谱从零频附近开始,具有低通形式。根据原始电信号的特征,基带信号可以分为数字基带信号和模拟基带信号,相应地,信源也可以分为数字信源和模拟信源。基带信号就是信源发出的直接表达要传输的信息的信号,例如说话的声波就是基带信号。In some embodiments, the original electrical signal without modulation (spectrum shifting and transformation) sent by the information source (information source, also referred to as the transmitting end) is characterized by a low frequency, and the signal spectrum starts from the vicinity of zero frequency, and has low pass form. According to the characteristics of the original electrical signal, the baseband signal can be divided into a digital baseband signal and an analog baseband signal, and correspondingly, the signal source can also be divided into a digital signal source and an analog signal source. The baseband signal is the signal sent by the source that directly expresses the information to be transmitted. For example, the sound wave of speech is the baseband signal.
步骤102,将至少一路正交频分复用信号进行信号复用,得到一路副载波正交频分复用信号。Step 102: Perform signal multiplexing on at least one OFDM signal to obtain a subcarrier OFDM signal.
在一些实施例中,将至少一路正交频分复用信号进行数字上变频处理后再进行信号复用,得到一路副载波正交频分复用信号。In some embodiments, at least one OFDM signal is digitally up-converted and then multiplexed to obtain a sub-carrier OFDM signal.
副载波正交频分复用(即,副载波OFDM)信号,可以是将正交频分复用信号通过正交频分复用技术处理后得到的。正交频分复用技术(简称OFDM技术),广泛应用于数字通信系统中。OFDM技术可以不需要子载波间放置保护频带的情况下,用基于傅里叶变换的数字信号处理实现频域子载波之间互相正交,,因此,具有更好的频谱利用效率。同时,OFDM技术可以有效对抗多径,以及符号间干扰(inter-symbol interference,简称ISI)。The subcarrier orthogonal frequency division multiplexing (ie, subcarrier OFDM) signal may be obtained by processing the orthogonal frequency division multiplexing signal through the orthogonal frequency division multiplexing technology. Orthogonal Frequency Division Multiplexing (OFDM for short) is widely used in digital communication systems. OFDM technology can realize mutual orthogonality between frequency domain sub-carriers by using digital signal processing based on Fourier transform without placing guard bands between sub-carriers. Therefore, it has better spectrum utilization efficiency. At the same time, the OFDM technology can effectively combat multipath and inter-symbol interference (inter-symbol interference, ISI for short).
OFDM技术实际上是多载波调制的一种,OFDM技术的主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少正交子信道之间的载波间干扰(Inter-Carrier Interference,简称ICI)。每个正交子信道上的信号带宽小于信道的相关带宽,因此每个正交子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且,由于每个正交子信道的带宽仅仅是原信道带宽的一小部分,因此信道均衡变得相对容易。OFDM technology is actually a kind of multi-carrier modulation. The main idea of OFDM technology is to divide the channel into several orthogonal sub-channels, convert high-speed data signals into parallel low-speed sub-data streams, and modulate them to transmit on each sub-channel. . The orthogonal signals can be separated by adopting a correlation technique at the receiving end, which can reduce the Inter-Carrier Interference (Inter-Carrier Interference, ICI for short) between orthogonal sub-channels. The signal bandwidth on each orthogonal sub-channel is smaller than the correlation bandwidth of the channel, so the fading on each orthogonal sub-channel can be regarded as flat fading, so that inter-symbol interference can be eliminated. Moreover, since the bandwidth of each orthogonal sub-channel is only a fraction of the original channel bandwidth, channel equalization becomes relatively easy.
步骤103,将副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号。
光子太赫兹无线通讯技术,即运用了基于光子学技术的太赫兹辐射源技术。基于光子学技术的太赫兹辐射源包括量子级联激光器、自由电子激光器和气体激光器等,这是激光技术向低频方向的延伸,这类太赫兹辐射源输出功率较大,具有很好的应用潜力。基于太赫兹激光器的光频梳技术在高分辨成像和成谱应用方面的前景广阔。作为示例,预设频率的第一光信号可以是由量子级联激光器、自由电子激光器和气体激光器等等类型的激光器发出的。Photonic terahertz wireless communication technology uses terahertz radiation source technology based on photonics technology. Terahertz radiation sources based on photonics technology include quantum cascade lasers, free electron lasers and gas lasers, etc., which are the extension of laser technology to low frequency. Such terahertz radiation sources have high output power and have good application potential. . Optical frequency comb technology based on terahertz lasers has broad prospects for high-resolution imaging and spectroscopy applications. As an example, the first optical signal of the preset frequency may be emitted by a laser of a type such as a quantum cascade laser, a free electron laser, and a gas laser.
在一些可选的实现方式中,将所述副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号,包括:将所述副载波正交频分复用信号的I、Q两路信号分别经过数模转换得到两路模拟电信号;将所述两路模拟电信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号。In some optional implementation manners, modulating the subcarrier OFDM signal on a first optical signal with a preset frequency by an I/Q modulator to obtain a second optical signal includes: The I and Q signals of the subcarrier orthogonal frequency division multiplexing signal are respectively subjected to digital-to-analog conversion to obtain two analog electrical signals; the two analog electrical signals are modulated by the I/Q modulator at the first preset frequency On the optical signal, a second optical signal is obtained.
数模转换,就是将离散的数字量转换为连接变化的模拟量,可以通过数模转换器或者其他转换方法完成数模转换,例如低通采样、内插公式、带通采样、过采样等方法完成转换。Digital-to-analog conversion is to convert discrete digital quantities into analog quantities with connection changes. Digital-to-analog conversion can be completed by digital-to-analog converters or other conversion methods, such as low-pass sampling, interpolation formula, band-pass sampling, oversampling and other methods. Complete the conversion.
将两路模拟电信号和激光器射出的光信号(即第一光信号),通过I/Q调制器调制在一起,得到第二光信号,即通过将副载波(两路模拟电信号)通过I/Q调制器调制在预设频率的第一光信号上(光子太赫兹无线通讯技术),得到第二光信号。The two analog electrical signals and the optical signal emitted by the laser (that is, the first optical signal) are modulated together by the I/Q modulator to obtain the second optical signal, that is, by passing the subcarrier (two analog electrical signals) through the I/Q modulator. The /Q modulator modulates the first optical signal with a preset frequency (photonic terahertz wireless communication technology) to obtain the second optical signal.
如图2-3所示,用户发端将正交频分复用信号进行信号复用,得到副载波正交频分复用信号,将副载波正交频分复用信号的I、Q两路信号分别经过数模转换,得到两路模拟电信号。As shown in Figure 2-3, the transmitting end of the user performs signal multiplexing on the OFDM signal to obtain a sub-carrier OFDM signal, and the I and Q channels of the sub-carrier OFDM signal are combined. The signals are respectively subjected to digital-to-analog conversion to obtain two analog electrical signals.
作为示例,如图2-2所示,激光器1产生的1路频率为f1THz的光载波(光载波即光信号)和两路模拟电信号,通过I/Q调制器,将用户发端模块生成的两路模拟电信号调制在第一光信号上,并耦合入光纤中传输。As an example, as shown in Figure 2-2, the laser 1 generates one optical carrier (optical carrier or optical signal) with a frequency of f 1 THz and two analog electrical signals. The generated two analog electrical signals are modulated on the first optical signal and coupled into the optical fiber for transmission.
步骤104,将第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,并将太赫兹无线信号发射到自由空间中。
在一些实施例中,预设频率的第三光信号也可以是有量子级联激光器、自由电子激光器或气体激光器等等激光器发出的。作为示例,可以采用数字信号光耦合器等光电耦合器将第二光信号与预设频率的第三光信号耦合。In some embodiments, the third optical signal of the preset frequency may also be emitted by a laser such as a quantum cascade laser, a free electron laser, or a gas laser. As an example, an optocoupler such as a digital signal optocoupler may be used to couple the second optical signal with the third optical signal of a preset frequency.
拍频,指的是这两个光波频率之差。The beat frequency refers to the difference between the frequencies of the two light waves.
在一些可选的实现方式中,将所述第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,包括:将所述第二光信号与预设频率的第三光信号耦合后,通过PD拍频处理得到太赫兹无线信号。In some optional implementation manners, after coupling the second optical signal with a third optical signal of a preset frequency, the terahertz wireless signal is obtained through beat frequency processing, including: combining the second optical signal with a preset frequency After the third optical signal of the frequency is coupled, a terahertz wireless signal is obtained through PD beat frequency processing.
作为示例,可以通过光电二极管(Photo-diode,简称PD)拍频处理得到太赫兹无线信号,太赫兹无线信号的光频率即第二光信号与预设频率的第三光信号的光频率之差。As an example, a terahertz wireless signal can be obtained by beat frequency processing of a photodiode (PD), and the optical frequency of the terahertz wireless signal is the difference between the optical frequency of the second optical signal and the third optical signal of the preset frequency. .
本发明一些实施例公开的基于副载波OFDM的光子太赫兹无线通讯方法,相比OFDM调制,副载波OFDM调制技术可减小接收端ADC带宽需求并减小快速傅里叶变换(fastFourier transform,简称FFT)数以降低计算复杂度;相比副载波调制,副载波OFDM调制技术具有高频谱效率,细颗粒度、良好的抗色散性、强抗符号间干扰能力,能有效降低无线信道的多径时延扩展影响。因此,副载波OFDM调制技术结合了两者优势。在不同副载波的子载波上采用不同调制/编码方案实现了灵活调制,提高了对频率选择性衰落和窄带干扰的鲁棒性,有效减少了功率衰弱的影响,减小了ADC带宽需求,降低了运算复杂度,又大大提高了频谱效率,增强了抗色散、抗多径干扰以及频率选择性衰落能力。极大提升了光子太赫兹通信系统的通信质量,实现了大容量、高速率、低成本的太赫兹无线通信传输和多用户的灵活接入。因此在光子太赫兹传输系统中运用副载波OFDM调制技术作为一种重要解决方案,具有广阔的应用前景。The subcarrier OFDM-based photonic terahertz wireless communication method disclosed in some embodiments of the present invention, compared with OFDM modulation, the subcarrier OFDM modulation technology can reduce the bandwidth requirement of the ADC at the receiving end and reduce the fast Fourier transform (fast Fourier transform, referred to for short). Compared with subcarrier modulation, subcarrier OFDM modulation technology has high spectral efficiency, fine granularity, good dispersion resistance, strong resistance to inter-symbol interference, and can effectively reduce the multipath of wireless channels Delay spread effect. Therefore, the subcarrier OFDM modulation technique combines the advantages of both. Different modulation/coding schemes are used on subcarriers of different subcarriers to achieve flexible modulation, improve robustness to frequency selective fading and narrowband interference, effectively reduce the impact of power fading, reduce ADC bandwidth requirements, and reduce The computational complexity is greatly improved, the spectral efficiency is greatly improved, and the anti-chromatic dispersion, anti-multipath interference and frequency selective fading capabilities are enhanced. It greatly improves the communication quality of the photonic terahertz communication system, and realizes large-capacity, high-speed, low-cost terahertz wireless communication transmission and flexible access for multiple users. Therefore, the use of subcarrier OFDM modulation technology in photonic terahertz transmission system as an important solution has broad application prospects.
在一些可选的是实现方式中,所述将基带信号转换为正交频分复用信号,包括:根据基带信号,通过逆快速傅里叶反变换处理,得到正交频分复用信号。In some optional implementation manners, the converting the baseband signal into an OFDM signal includes: obtaining an OFDM signal through an inverse fast Fourier transform process according to the baseband signal.
在一些实施例中,将基带信号转换为正交频分复用信号,包括:根据基带信号,通过串并变换、符号映射、插入导频符号、逆快速傅里叶反变换、插入训练序列、插入循环前缀、并串变换处理后,得到正交频分复用信号。In some embodiments, converting the baseband signal into an OFDM signal includes: according to the baseband signal, performing serial-parallel transformation, symbol mapping, inserting pilot symbols, inverse fast Fourier transform, inserting a training sequence, After inserting a cyclic prefix and performing parallel-to-serial conversion, an OFDM signal is obtained.
在一些实施例中,串并变换,用于将输入串行用户数据转换为并行数据;符号映射,用于将并行数据根据不同调制格式映射成与子载波相对应的信息符号组成OFDM符号;导频插入,用于对并行序列综合考虑频谱资源利用率与系统性能选择合理数量的子载波传输导频符号;逆快速傅里叶反变换(Inverse Fast Fourier Transform,简称IFFT),用于对并行序列根据子载波总数做快速反傅里叶变换实现将并行数据流分别调制到不同的正交子载波的过程;训练序列插入,用于在IFFT变换后的序列中插入训练序列以完成符号同步、频率估计以及信道估计;循环前缀插入,用于对序列满足循环前缀长度大于多径时延的条件下,通过循环延伸OFDM波形插入循环前缀,减弱ISI和ICI影响;并串变换,用于对并行序列转换为串行形式传输。In some embodiments, serial-to-parallel conversion is used to convert input serial user data into parallel data; symbol mapping is used to map the parallel data into information symbols corresponding to subcarriers according to different modulation formats to form OFDM symbols; leading Frequency insertion, which is used to select a reasonable number of sub-carriers to transmit pilot symbols for parallel sequences considering spectral resource utilization and system performance; Inverse Fast Fourier Transform (IFFT) is used for parallel sequences Perform fast inverse Fourier transform according to the total number of sub-carriers to realize the process of modulating parallel data streams to different orthogonal sub-carriers respectively; training sequence insertion is used to insert training sequence into the sequence after IFFT transformation to complete symbol synchronization, frequency Estimation and channel estimation; cyclic prefix insertion, which is used to insert a cyclic prefix through a cyclically extended OFDM waveform under the condition that the sequence satisfies the condition that the cyclic prefix length is greater than the multipath delay, to reduce the influence of ISI and ICI; Convert to serial transmission.
在一些可选的是实现方式中,太赫兹无线信号的频率为第二光信号与预设频率的第三光信号的频率之差。In some optional implementations, the frequency of the terahertz wireless signal is the difference between the frequencies of the second optical signal and the third optical signal of a preset frequency.
作为示例,如2-2图所示,通过激光器2,产生另一路频率为f2 THz的光载波,再通过光耦合器将激光器2产生的光载波(激光器2产生的光载波即预设频率的第三光信号)和光纤上传输的光信号(即第二光信号)进行耦合。然后,再通过单行载流子光电探测器,将光耦合器输出的耦合光信号拍频产生频率为两束光频率之差的(f2-f1)THz的太赫兹信号。如2-2图所示,f1THz的光载波是激光器1产生的。As an example, as shown in Fig. 2-2, another optical carrier with a frequency of f 2 THz is generated by the laser 2, and then the optical carrier generated by the laser 2 (the optical carrier generated by the laser 2 is the preset frequency is generated by the optical coupler). The third optical signal) is coupled with the optical signal (ie the second optical signal) transmitted on the optical fiber. Then, a single-row carrier photodetector is used to beat the coupled optical signal output by the optical coupler to generate a terahertz signal with a frequency of (f 2 -f 1 )THz that is the difference between the frequencies of the two beams. As shown in Figure 2-2, the optical carrier of f 1 THz is generated by laser 1 .
在一些可选的是实现方式中,方法,还包括:接收太赫兹无线信号,将太赫兹无线信号下变频至中频信号;根据中频信号恢复基带信号。In some optional implementations, the method further includes: receiving a terahertz wireless signal, down-converting the terahertz wireless signal to an intermediate frequency signal; and restoring the baseband signal according to the intermediate frequency signal.
作为示例,可以将中频信号经过带通滤波、模数转换、数字下变频、采样时钟同步补偿、符号同步、小数倍频偏估计与补偿、去循环前缀、快速傅里叶反变换、整数倍频偏估计与补偿、信道均衡、残余频偏估计与采样时钟频偏估计、相位噪声估计与补偿和符号判决与误码统计处理,得到恢复的基带信号。As an example, the IF signal can be subjected to band-pass filtering, analog-to-digital conversion, digital down-conversion, sampling clock synchronization compensation, symbol synchronization, fractional frequency offset estimation and compensation, cyclic prefix removal, inverse fast Fourier transform, integer multiples Frequency offset estimation and compensation, channel equalization, residual frequency offset estimation and sampling clock frequency offset estimation, phase noise estimation and compensation, symbol decision and error statistic processing, to obtain the recovered baseband signal.
作为示例,如图2-2所示,可以通过接收端的太赫兹无线接收端接收太赫兹无线信号并将其下变频至中频信号,太赫兹无线接收端包括:喇叭天线,用于接收太赫兹无线信号;混频器,用于根据预置的本振源和倍频器将太赫兹信号下变频至中频信号。用户终端模块,用于从中频信号中恢复出至少一路用户基带信号,包括:带通滤波、模数转换、数字下变频、采样时钟同步补偿、符号同步、小数倍频偏估计与补偿、去循环前缀、FFT、整数倍频偏估计与补偿、信道均衡、残余频偏估计与采样时钟频偏估计、相位噪声估计与补偿、符号判决与误码统计。As an example, as shown in Figure 2-2, the terahertz wireless signal can be received and down-converted to an intermediate frequency signal through the terahertz wireless receiver at the receiving end. The terahertz wireless receiver includes a horn antenna for receiving terahertz wireless signals. Signal; mixer for down-converting terahertz signals to IF signals based on preset LO sources and frequency multipliers. The user terminal module is used to recover at least one user baseband signal from the intermediate frequency signal, including: band-pass filtering, analog-to-digital conversion, digital down-conversion, sampling clock synchronization compensation, symbol synchronization, fractional frequency offset estimation and compensation, decompression Cyclic prefix, FFT, integer frequency offset estimation and compensation, channel equalization, residual frequency offset estimation and sampling clock frequency offset estimation, phase noise estimation and compensation, symbol decision and error statistics.
综上,通过副载波正交频分复用技术减小了模拟数字转换器(Analog-to-digitalconverter,简称ADC)带宽需求,有效减少功率衰弱影响,能使用比特和功率加载技术。根据信道不同带宽性能灵活选择调制格式,具体有以下优点:(1)对频率选择性衰落和窄带干扰的鲁棒性强;(2)高频谱效率;(3)细颗粒度,调制灵活,在不同副载波的子载波上可采用不同调制/编码方案;(4)减小FFT数,降低计算复杂度;(5)降低无线信道的多径时延影响;(6)抗色散性好,抗符号间干扰强。In summary, the subcarrier orthogonal frequency division multiplexing technology reduces the bandwidth requirement of an analog-to-digital converter (ADC), effectively reduces the influence of power attenuation, and can use the bit and power loading technology. The modulation format is flexibly selected according to the different bandwidth performance of the channel, which has the following advantages: (1) Strong robustness to frequency selective fading and narrowband interference; (2) High spectral efficiency; (3) Fine granularity, flexible modulation, Different modulation/coding schemes can be used on the subcarriers of different subcarriers; (4) reduce the number of FFTs and reduce the computational complexity; (5) reduce the influence of multipath delay of the wireless channel; (6) good dispersion resistance, Intersymbol interference is strong.
请参阅图3,图3是根据本发明提供的基于副载波OFDM的光子太赫兹无线通讯系统的一些实施例的结构示意图,作为对上述各图所示方法的实现,本发明还提供了一种基于副载波OFDM的光子太赫兹无线通讯系统的一些实施例,这些装置实施例与图1所示的一些方法的实施例相对应,且该系统可以应用于各种通信设备中。Please refer to FIG. 3. FIG. 3 is a schematic structural diagram of some embodiments of a subcarrier OFDM-based photonic terahertz wireless communication system provided by the present invention. As the implementation of the methods shown in the above figures, the present invention also provides a Some embodiments of the subcarrier OFDM-based photonic terahertz wireless communication system, these apparatus embodiments correspond to some method embodiments shown in FIG. 1 , and the system can be applied to various communication devices.
如图3所示,一些实施例的基于副载波OFDM的光子太赫兹无线通讯系统300包括用户发端模块11、中心站12、远程基站模块13:用户发端模块11,用于接收至少一路用户输入的基带信号,将基带信号转换为正交频分复用信号,得到至少一路正交频分复用信号,将至少一路正交频分复用信号进行信号复用,得到一路副载波正交频分复用信号;中心站12,用于将副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号;远程基站13,用于将第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,并将太赫兹无线信号发射到自由空间中。As shown in FIG. 3 , a subcarrier OFDM-based photonic terahertz
在一些实施例的可选实现方式中,中心站12还用于将所述副载波正交频分复用信号的I、Q两路信号分别经过数模转换得到两路模拟电信号;将所述两路模拟电信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号。In an optional implementation manner of some embodiments, the
在一些实施例的可选实现方式中,远程基站模块13还用于将所述第二光信号与预设频率的第三光信号耦合后,通过PD拍频处理得到太赫兹无线信号。In an optional implementation manner of some embodiments, the remote
在一些实施例的可选实现方式中,用户发端模块11还用于:根据基带信号,通过逆快速傅里叶反变换处理,得到正交频分复用信号。In an optional implementation manner of some embodiments, the
在一些实施例的可选实现方式中,太赫兹无线信号的频率为第二光信号与预设频率的第三光信号的频率之差。In an optional implementation manner of some embodiments, the frequency of the terahertz wireless signal is the difference between the frequencies of the second optical signal and the third optical signal of a preset frequency.
在一些实施例的可选实现方式中,系统300,还包括:太赫兹无线接收模块,用于接收太赫兹无线信号,将太赫兹无线信号下变频至中频信号;用户终端模块,用于根据中频信号恢复基带信号。In an optional implementation manner of some embodiments, the
作为示例,参阅图2-1和图2-2,如图2-1所示,系统400的实现可以包括:发送端1和接收端2,As an example, referring to Fig. 2-1 and Fig. 2-2, as shown in Fig. 2-1, the implementation of the system 400 may include: a sending end 1 and a receiving end 2,
发送端1包括:四路用户,用于发送用户数据;用户发端模块11,产生4路用户数据的OFDM信号并将其复用为一路信号,在完成数模转换后发送给下述中心站12;中心站12,用于调制光信号;远程基站13,用于光子拍频太赫兹信号。The sending end 1 includes: four channels of users, which are used to send user data; a user sending
如图2-2所示,中心站12,用于将上述两路模拟电信号通过I/Q调制器调制在光载波上生成光信号并注入光纤链路中传输。As shown in Figure 2-2, the
中心站12,可以包括:
激光器121,用于产生1束稳定连续的频率为193.1THz的光载波(即第一光信号)。The
I/Q调制器122,用于将用户发端模块生成的两路模拟电信号调制在光载波上合为一路后注入光纤,然后发送至下述的远程基站单元13。The I/Q modulator 122 is used to modulate the two channels of analog electrical signals generated by the user transmitter module on the optical carrier and combine them into one channel, then inject them into the optical fiber, and then send them to the remote
其中,激光器121可以产生稳定而连续的光载波(即第一光信号),通过数模转换,根据OFDM的同相和正交技术,提供2路独立模拟信号,经放大后用于驱动I/Q调制器,这2路信号分别对应I路和Q路信号。经64QAM调制后的电信号通过I/Q调制器进行光载波的外调制,两路合为一路后产生的光信号经过掺铒光纤放大器对功率损耗进行补偿后,注入到长度为25-km的标准单模光纤(standard single mode fiber,简称SSMF)链路中进行传输,通过光衰减器(variable optical attenuator,简称VOA)来实现对光信号功率的实时控制,最后光信号传送到远程基站模块13进行处理操作。Among them, the
在具体实施例中,远程基站13,可以包括:In a specific embodiment, the
激光器131,用于产生另一路频率为193.4THz稳定且连续的光载波(即第三光信号)。The
单行载流子光电探测器132,用于PD拍频产生频率为两束光频率之差的0.3THz的太赫兹信号并经过一个喇叭天线发射到自由空间中。The single-
其中,激光器131和已调制的光信号在基站内进行耦合,随后通过单行载流子光电探测器UTC-PD产生频率为两束光频率之差为0.3THz的太赫兹信号,将0.3THz的太赫兹信号通过放大器放大后,经过一个喇叭天线发射到自由空间,空间传播距离设定为8m。Among them, the
仍以上述为例,用户发端模块11的具体结构可以如图2-3所示:Still taking the above example as an example, the specific structure of the
串并变换单元111,用于将4路用户端输入的串行数据比特分别转换成88道并行数据传输。The serial-to-
符号映射单元112,用于将4路并行数据分别映射成与子载波相对应的信息符号来组成一个64QAM的OFDM符号。The
导频插入单元113,用于对4路映射后的信号,综合考虑频谱资源利用率与系统性能分别插入8个导频符号,生成96道并行数据以补偿相位损伤,例如,所设计的导频符号为3+3j恒模。The pilot
IFFT单元114,用于对4路信号分别利用剩余32个子载波填零实现1.375倍过采样后,进行128点IFFT变换实现将并行数据流分别调制到128个正交子载波,即完成OFDM调制过程。The
训练序列插入单元115,综合考虑系统接收机灵敏度、频谱资源利用率以及算法实时性(训练序列越长处理所需时间越多)的需求,训练序列插入单元115用于对4路IFFT信号分别插入82个训练序列,第一个训练序列用来完成符号同步以及小数倍频偏估计,第一个与第二个训练序列共同完成整数倍频偏估计,80个训练符号用于信道均衡。The training
循环前缀插入单元116,用于根据最大多径时延对FFT窗口内部分波形进行复制,循环前缀长度为4个样值,插入循环前缀后4路128道并行数据变为132道并行数据。The cyclic
并串变换单元117,用于对132路并行数据进行并串变换生成1路串行数据。The parallel-
数字上变频单元118,用于对4路串行数据分别进行数字上变频,以生成4路变频的正交频分复用信号。The digital up-
复用单元119,用于对4路数字变频的正交频分复用信号进行复用生成多副载波正交频分复用信号。The
数模转换单元120,用于对数字复数信号取实部为同相信号,虚部取实数为正交信号,将两路数据分别转换成两路独立的模拟电信号并送入中心站单元12。The digital-to-
接收端2包括:太赫兹无线接收模块21。The receiving end 2 includes: a terahertz
在具体实施例中,太赫兹无线接收模块21可以包括:In a specific embodiment, the terahertz
喇叭天线211,用于接收太赫兹无线信号。The
混频器212,用于根据预置的本振源和倍频器将太赫兹信号下变频至中频信号。The
如图2-2所示,太赫兹无线接收端得到的太赫兹信号利用混频器和本振源LO相干探测得到中频信号。作为示例,设定倍频数N=26,fLO=10GHz,经过混频得到40GHz中频信号,经过放大器EA对功率损耗进行补偿后送入用户终端模块22。As shown in Figure 2-2, the terahertz signal obtained by the terahertz wireless receiver uses the mixer and the LO coherent detection to obtain the intermediate frequency signal. As an example, set the frequency multiplication number N=26, f LO =10 GHz, and obtain a 40 GHz intermediate frequency signal through frequency mixing, which is sent to the
用户终端模块22,如图2-4所示:
滤波器221,用于对中频信号进行带通滤波分离出所需的1路副载波正交频分复用信号。The
模数转换222,用于对副载波正交频分复用信号进行模数转换生成数字信号。The analog-to-
数字下变频223,用于对数字信号进行数字下变频得到正交频分复用信号。The digital down-
采样时钟同步补偿224,用于对正交频分复用信号进行采样时钟定时偏差的估计与补偿和采样时钟频率偏差的估计与补偿。The sampling
符号同步225,用于根据Schmidl符号同步算法求相关找最大值的方法确定FFT窗同步起始点。The
小数倍频偏估计与补偿226,用于去除载波小数倍频率偏移损伤。Fractional frequency offset estimation and
去循环前缀227,只取并行数据的后128行,舍弃前面四行。Remove the
FFT228,对正交频分复用信号进行FFT以实现频域信号到时域信号的变换。
整数倍频偏估计与补偿229,用于去除载波整数倍频率偏移损伤。Integer frequency offset estimation and
信道均衡230,用于通过对原始发射的训练序列与接收到的信号比较以得出信道传递函数,并对接收信号进行信道补偿。The
残余频偏估计与采样时钟频偏估计231,用于利用采样时钟定时偏差和符号同步偏差在一个OFDM符号帧近似不变的特性,利用信道估计训练符号,同时完成采样钟偏差和载波残余频偏估计。估计出的采样钟定时偏差反馈到前述采样时钟同步补偿224中进行补偿,载波残余频偏值反馈到小数倍频偏估计与补偿226中进行补偿。Residual frequency offset estimation and sampling clock frequency offset
相位噪声估计与补偿232,用于通过在每一个OFDM符号中预留一定数目的子载波完成传输导频。在接收端经过FFT之后比较对应子载波上的信号和原始信号,找出其在相位上的变化并平均,得到频域估计方法中的相位噪声,并对接收信号进行相位噪声补偿。Phase noise estimation and
符号判决与误码统计233,用于对前述处理后数据进行符号判决,恢复出原始信号并对比原信号统计误码情况。The symbol decision and
可以理解的是,该系统300中记载的各模块与参考图1描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作、特征以及产生的有益效果同样适用于系统300及其中包含的模块、单元,在此不再赘述。It can be understood that each module recorded in the
对于双工通信,通信设备可同时包括发射机和接收机,单工通信通信设备只具有其一。For duplex communication, a communication device may include both a transmitter and a receiver, while a simplex communication communication device has only one of them.
图4示例了一种通信设备的实体结构示意图,如图4所示,该通信设备可以包括:处理器(processor)410、通信接口(CommunicationsInterface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行基于副载波OFDM的光子太赫兹无线通讯方法,该方法包括:接收至少一路用户输入的基带信号,将基带信号转换为正交频分复用信号,得到至少一路正交频分复用信号;将至少一路正交频分复用信号进行信号复用后得到一路副载波正交频分复用信号;将副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号;将第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,并将太赫兹无线信号发射到自由空间中。FIG. 4 illustrates a schematic diagram of the physical structure of a communication device. As shown in FIG. 4 , the communication device may include: a processor (processor) 410, a communication interface (CommunicationsInterface) 420, a memory (memory) 430 and a
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the above-mentioned logic instructions in the
另一方面,本发明还提供一种计算机程序产品,上述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,上述计算机程序包括程序指令,当上述程序指令被计算机执行时,计算机能够执行上述各方法所提供的基于副载波OFDM的光子太赫兹无线通讯方法,该方法包括:接收至少一路用户输入的基带信号,将基带信号转换为正交频分复用信号,得到至少一路正交频分复用信号;将至少一路正交频分复用信号进行信号复用后得到一路副载波正交频分复用信号;将副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号;将第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,并将太赫兹无线信号发射到自由空间中。On the other hand, the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, The computer can execute the subcarrier OFDM-based photonic terahertz wireless communication method provided by the above methods. The method includes: receiving at least one baseband signal input by a user, converting the baseband signal into an orthogonal frequency division multiplexing signal, and obtaining at least one channel. Orthogonal frequency division multiplexing signal; at least one OFDM signal is multiplexed to obtain a sub-carrier OFDM signal; the sub-carrier OFDM signal is modulated by I/Q The second optical signal is obtained by modulating the first optical signal with the preset frequency; after coupling the second optical signal with the third optical signal of the preset frequency, the terahertz wireless signal is obtained through beat frequency processing, and the terahertz wireless signal is Wireless signals are launched into free space.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的基于副载波OFDM的光子太赫兹无线通讯方法,该方法包括:接收至少一路用户输入的基带信号,将基带信号转换为正交频分复用信号,得到至少一路正交频分复用信号;将至少一路正交频分复用信号进行信号复用后得到一路副载波正交频分复用信号;将副载波正交频分复用信号通过I/Q调制器调制在预设频率的第一光信号上,得到第二光信号;将第二光信号与预设频率的第三光信号耦合后,通过拍频处理得到太赫兹无线信号,并将太赫兹无线信号发射到自由空间中。In yet another aspect, the present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to execute the above-mentioned subcarrier OFDM-based photonic terahertz wireless radios A communication method, the method comprising: receiving at least one baseband signal input by a user, converting the baseband signal into an OFDM signal, and obtaining at least one OFDM signal; converting the at least one OFDM signal After signal multiplexing, a sub-carrier OFDM signal is obtained; the sub-carrier OFDM signal is modulated on the first optical signal with a preset frequency through an I/Q modulator to obtain a second optical signal ; After coupling the second optical signal with the third optical signal of the preset frequency, a terahertz wireless signal is obtained through beat frequency processing, and the terahertz wireless signal is emitted into the free space.
以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in a local, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分上述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware. Based on this understanding, the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the above-described methods of various embodiments or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111640707.5A CN114422038B (en) | 2021-12-29 | 2021-12-29 | Photon terahertz wireless communication method and system based on subcarrier OFDM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111640707.5A CN114422038B (en) | 2021-12-29 | 2021-12-29 | Photon terahertz wireless communication method and system based on subcarrier OFDM |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114422038A true CN114422038A (en) | 2022-04-29 |
CN114422038B CN114422038B (en) | 2024-04-05 |
Family
ID=81269753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111640707.5A Active CN114422038B (en) | 2021-12-29 | 2021-12-29 | Photon terahertz wireless communication method and system based on subcarrier OFDM |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114422038B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115396031A (en) * | 2022-07-29 | 2022-11-25 | 西安空间无线电技术研究所 | Optical frequency comb-based ultra-high-speed spatial optical communication combined carrier recovery method |
CN116388872B (en) * | 2023-05-26 | 2023-08-04 | 北京融为科技有限公司 | Satellite laser communication signal frequency offset estimation method and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518008A (en) * | 2006-08-16 | 2009-08-26 | 贺利实公司 | System and method for communicating data using symbol-based randomized orthogonal frequency division multiplexing (ofdm) |
CN101692627A (en) * | 2009-10-15 | 2010-04-07 | 复旦大学 | System for generating optical cable-carried terahertz signal based on two-stage single-side band modulation |
CN102340477A (en) * | 2011-09-05 | 2012-02-01 | 北京邮电大学 | 100Gbit/s Optical Signal Transmitting System and Method Based on Optical Orthogonal Frequency Division Multiplexing |
JP2018121107A (en) * | 2017-01-23 | 2018-08-02 | 学校法人立命館 | Orthogonal frequency division multiplex signal separation system |
CN110995404A (en) * | 2019-11-21 | 2020-04-10 | 复旦大学 | A THz Secure Communication System Based on Chaos Encryption |
-
2021
- 2021-12-29 CN CN202111640707.5A patent/CN114422038B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101518008A (en) * | 2006-08-16 | 2009-08-26 | 贺利实公司 | System and method for communicating data using symbol-based randomized orthogonal frequency division multiplexing (ofdm) |
CN101692627A (en) * | 2009-10-15 | 2010-04-07 | 复旦大学 | System for generating optical cable-carried terahertz signal based on two-stage single-side band modulation |
CN102340477A (en) * | 2011-09-05 | 2012-02-01 | 北京邮电大学 | 100Gbit/s Optical Signal Transmitting System and Method Based on Optical Orthogonal Frequency Division Multiplexing |
JP2018121107A (en) * | 2017-01-23 | 2018-08-02 | 学校法人立命館 | Orthogonal frequency division multiplex signal separation system |
CN110995404A (en) * | 2019-11-21 | 2020-04-10 | 复旦大学 | A THz Secure Communication System Based on Chaos Encryption |
Non-Patent Citations (2)
Title |
---|
WEIDONG TONG, ETAL.: "Photonics-aided 0.3-THz Wireless Transmission Using DSCM-OFDM Modulation and Heterodyne Detection", 《2022 20TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)》, pages 1 - 3 * |
田宇兴等: "RoF技术在光纤宽带接入中的应用", 《光通信研究》, no. 06, 10 December 2016 (2016-12-10), pages 56 - 58 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115396031A (en) * | 2022-07-29 | 2022-11-25 | 西安空间无线电技术研究所 | Optical frequency comb-based ultra-high-speed spatial optical communication combined carrier recovery method |
CN115396031B (en) * | 2022-07-29 | 2024-05-31 | 西安空间无线电技术研究所 | A joint carrier recovery method for ultra-high-speed space optical communication based on optical frequency comb |
CN116388872B (en) * | 2023-05-26 | 2023-08-04 | 北京融为科技有限公司 | Satellite laser communication signal frequency offset estimation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN114422038B (en) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shieh | OFDM for flexible high-speed optical networks | |
US8798471B2 (en) | Method for processing data in an optical network element and optical network element | |
EP2445153A1 (en) | Method, device and wave-division multiplexing system for generating and receiving optical orthogonal frequency division multiplexing signal | |
Browning et al. | 5G wireless and wired convergence in a passive optical network using UF-OFDM and GFDM | |
US20090067833A1 (en) | Method and arrangement for transmitting an optical ofdm-signal | |
CN104683277B (en) | Reception, sending device and method, front end circuit, modulator and receive-transmit system | |
US8559829B2 (en) | Flexible multi-band multi-traffic optical OFDM network | |
KR20120068337A (en) | Method and apparatus for transmitting and receiving coherent optical ofdm | |
CN107113059A (en) | Utilize the discrete multitone transmission method and system modulated more | |
JP7387632B2 (en) | pseudo frequency division multiplexing | |
CN114422038B (en) | Photon terahertz wireless communication method and system based on subcarrier OFDM | |
Deng et al. | Twin-SSB-OFDM transmission over heterodyne W-band fiber-wireless system with real-time implementable blind carrier recovery | |
Yang et al. | Optical OFDM basics | |
EP3232626B1 (en) | Transmitter for fbmc system with alamouti space-time block coding | |
Jin et al. | Experimental demonstrations of hybrid OFDM-digital filter multiple access PONs | |
CN106161329A (en) | Signal processing apparatus, sender unit and receiver | |
Qiu et al. | OFDM-PON optical fiber access technologies | |
Nagapushpa et al. | Studying applicability feasibility of OFDM in upcoming 5G network | |
CN108965188B (en) | Method and system for reducing PAPR of optical millimeter waveband OFDM signal using DFT spread spectrum technology | |
Sankoh et al. | Hybrid OFDM-digital filter multiple access PONs utilizing spectrally overlapped digital orthogonal filtering | |
WO2018014969A1 (en) | Papr reduction through tone reservation for ofdm | |
Zhong et al. | Experimental demonstrations of matching filter-free digital filter multiplexed SSB OFDM IMDD transmission systems | |
Moreolo et al. | Software-defined optical OFDM transmission systems: Enabling elasticity in the data plane | |
Bai et al. | Performance analysis of multicarrier modulation waveforms for terahertz wireless communication | |
Raj et al. | Analysis of OFDM scheme for RoF system and characterization with GPON architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: No. 9 Mozhou East Road, Nanjing City, Jiangsu Province, 211111 Patentee after: Zijinshan Laboratory Country or region after: China Address before: No. 9 Mozhou East Road, Jiangning Economic Development Zone, Jiangning District, Nanjing City, Jiangsu Province Patentee before: Purple Mountain Laboratories Country or region before: China |
|
CP03 | Change of name, title or address |