[go: up one dir, main page]

CN114417229B - Two-dimensional calculation method for nuclear reactor steam explosion - Google Patents

Two-dimensional calculation method for nuclear reactor steam explosion Download PDF

Info

Publication number
CN114417229B
CN114417229B CN202210089939.4A CN202210089939A CN114417229B CN 114417229 B CN114417229 B CN 114417229B CN 202210089939 A CN202210089939 A CN 202210089939A CN 114417229 B CN114417229 B CN 114417229B
Authority
CN
China
Prior art keywords
melt
water
heat transfer
phase
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210089939.4A
Other languages
Chinese (zh)
Other versions
CN114417229A (en
Inventor
陈荣华
邬良芃
田文喜
秋穗正
苏光辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210089939.4A priority Critical patent/CN114417229B/en
Publication of CN114417229A publication Critical patent/CN114417229A/en
Application granted granted Critical
Publication of CN114417229B publication Critical patent/CN114417229B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种核反应堆蒸汽爆炸二维计算方法,步骤如下:1、确定核反应堆计算区域的几何结构及严重事故下环境压力和温度,输入熔融物射流直径、温度、速度,设定结束时间并初始化参数;2、根据物性表插值计算熔融物、水蒸气、水的物性;3、计算熔融物、水、蒸汽之间因相间摩擦产生的动量改变量;4、计算熔融物、水、蒸汽之间传递的热量;5、判定熔融物液滴是否碎裂,计算熔融物碎裂过程中的直径变化率;6、求解质量、动量、能量守恒方程,将数据保存到输出文件中,若未达到设置的结束时间,跳到步骤2进行下一时间步的计算,若已达到设置的结束时间,则停止计算。本发明的方法可以模拟计算核反应堆蒸汽爆炸现象,得到各流体温度、压力等计算结果。

Figure 202210089939

A two-dimensional calculation method for nuclear reactor steam explosion, the steps are as follows: 1. Determine the geometric structure of the nuclear reactor calculation area and the environmental pressure and temperature under severe accidents, input the diameter, temperature and speed of the molten material jet, set the end time and initialize the parameters; 2. , Calculate the physical properties of the melt, water vapor, and water according to the interpolation of the physical property table; 3. Calculate the momentum change between the melt, water, and steam due to interphase friction; 4. Calculate the heat transfer between the melt, water, and steam ;5. Determine whether the melt droplet is fragmented, and calculate the diameter change rate during the melt fragmentation process; 6. Solve the mass, momentum, and energy conservation equations, and save the data to the output file. If the set end time is not reached , jump to step 2 to calculate the next time step, and stop the calculation if the set end time has been reached. The method of the invention can simulate and calculate the steam explosion phenomenon of the nuclear reactor, and obtain calculation results such as the temperature and pressure of each fluid.

Figure 202210089939

Description

一种核反应堆蒸汽爆炸二维计算方法A Two-Dimensional Calculation Method for Nuclear Reactor Steam Explosion

技术领域technical field

本发明涉及压水反应堆技术领域,具体涉及一种核反应堆蒸汽爆炸二维计算方法。The invention relates to the technical field of pressurized water reactors, in particular to a two-dimensional calculation method for nuclear reactor steam explosions.

背景技术Background technique

核反应堆严重事故条件下,熔穿压力容器的熔融物与压水反应堆地坑内的水剧烈反应,产生强力冲击波,可能造成安全壳失效,放射性物质外泄。同时爆炸还可能对压力容器及一回路系统产生冲击。因此对蒸汽爆炸现象进行研究,对于高温熔融燃料与冷却剂接触反应的认识及评估现存压水反应堆严重事故进程中安全屏障完整性及放射性物质外泄与否有重要作用,同时对于新型反应堆的设计及安全评估也有重要意义。Under the severe accident conditions of nuclear reactors, the molten material that melts through the pressure vessel reacts violently with the water in the pit of the pressurized water reactor, generating a strong shock wave, which may cause the failure of the containment vessel and the leakage of radioactive substances. At the same time, the explosion may also have an impact on the pressure vessel and the primary circuit system. Therefore, the study of the phenomenon of steam explosion plays an important role in the understanding of the contact reaction between high-temperature molten fuel and coolant and the evaluation of the integrity of the safety barrier and the leakage of radioactive substances in the process of severe accidents in existing pressurized water reactors. At the same time, it is important for the design of new reactors And safety assessment is also important.

发明内容Contents of the invention

为了克服上述现有技术存在的问题,本发明的目的在于提供一种核反应堆蒸汽爆炸二维计算方法,该方法采用圆柱坐标系下的多流体欧拉方法,对蒸汽爆炸粗混合阶段及爆炸阶段分别进行模拟,能预测熔融物碎裂及扩散过程、蒸汽产生率、冲击波的产生及传播等,并给出计算区域压力、温度、空泡份额、冷却剂份额等参数的分布及随时间变化情况,为蒸汽爆炸相关实验、研究和评估核反应堆的FCI现象提供参考。In order to overcome the problems in the above-mentioned prior art, the object of the present invention is to provide a two-dimensional calculation method for nuclear reactor steam explosion, which adopts the multi-fluid Euler method under the cylindrical coordinate system, and separates Simulation can predict melt fragmentation and diffusion process, steam generation rate, shock wave generation and propagation, etc., and give the distribution and time-dependent changes of parameters such as pressure, temperature, void fraction, and coolant fraction in the calculation area. It provides a reference for steam explosion-related experiments, research and evaluation of FCI phenomena in nuclear reactors.

为了实现上述目的,本发明采取了以下技术方案:In order to achieve the above object, the present invention has taken the following technical solutions:

一种核反应堆蒸汽爆炸二维计算方法,包括以下步骤:A two-dimensional calculation method for a nuclear reactor steam explosion, comprising the following steps:

步骤1、确定核反应堆计算区域的几何结构及严重事故下环境压力、温度参数,输入熔融物射流直径、温度、速度,设定结束时间并初始化参数;Step 1. Determine the geometric structure of the nuclear reactor calculation area and the environmental pressure and temperature parameters under severe accidents, input the diameter, temperature and speed of the molten material jet, set the end time and initialize the parameters;

步骤2:根据物性表插值计算熔融物、水蒸气、水的物性;Step 2: Calculate the physical properties of melt, water vapor and water according to the interpolation table of physical properties;

步骤3:计算熔融物、水、蒸汽之间因相间摩擦产生的动量改变量;Step 3: Calculate the momentum change between the melt, water, and steam due to interphase friction;

在熔融物与水相互作用过程中,熔融物、水、蒸汽之间存在相间摩擦,离散相p与连续相c之间因相间摩擦产生的动量改变量表示为:During the interaction between the melt and water, there is interphase friction between the melt, water, and steam, and the momentum change between the discrete phase p and the continuous phase c due to interphase friction is expressed as:

Figure BDA0003488789830000021
Figure BDA0003488789830000021

Figure BDA0003488789830000022
Figure BDA0003488789830000022

式中:In the formula:

Ipc——单位时间单位体积内离散相与连续相之间因相间摩擦产生的动量改变量/kg·m-2s-2 I pc —momentum change between the discrete phase and the continuous phase due to interphase friction per unit time and unit volume/kg m -2 s -2

Cpc——离散相与连续相之间的摩擦系数C pc —coefficient of friction between the discrete phase and the continuous phase

Dp——离散相的直径/mD p ——diameter of discrete phase/m

αp——离散相的体积份额α p ——volume fraction of discrete phase

Cdpc——离散相与连续相之间的阻力系数Cd pc ——the resistance coefficient between the discrete phase and the continuous phase

ρc——连续相密度/kg·m-3 ρ c ——continuous phase density/kg·m -3

Figure BDA0003488789830000031
——连续相与离散相的相对矢量速度/m·s-1
Figure BDA0003488789830000031
——the relative vector velocity of continuous phase and discrete phase/m s -1

Rec——连续相的雷诺数Re c - the Reynolds number of the continuous phase

步骤4:计算熔融物、水、蒸汽之间传递的热量;Step 4: Calculate the heat transferred between the melt, water and steam;

蒸汽和水之间的传热发生在蒸汽与水的相界面上,假设蒸汽与水的相界面处于饱和温度,蒸汽和水向相界面传递的热量分别为:The heat transfer between steam and water occurs at the phase interface between steam and water. Assuming that the phase interface between steam and water is at the saturation temperature, the heat transferred by steam and water to the phase interface is:

Qvi=hviAvl(Tv-Tsat) (3)Q vi =h vi A vl (T v -T sat ) (3)

Qli=hliAvl(Tl-Tsat) (4)Q li =h li A vl (T l -T sat ) (4)

熔融物向蒸汽、水传递的热量表示为:The heat transferred from the melt to steam and water is expressed as:

Qmv=hmvAmv(Tm-Tv) (5)Q mv =h mv A mv (T m -T v ) (5)

Qml=hmlAml(Tm-Tl) (6)Q ml =h ml A ml (T m -T l ) (6)

Figure BDA0003488789830000032
Figure BDA0003488789830000032

Figure BDA0003488789830000033
Figure BDA0003488789830000033

Figure BDA0003488789830000034
Figure BDA0003488789830000034

式中:In the formula:

Qvi——单位时间单位体积内,蒸汽向相界面传递的热量/W·m-3 Q vi ——in unit time and unit volume, the heat transferred from steam to phase interface/W·m -3

Qli——单位时间单位体积内,水向相界面传递的热量/W·m-3 Q li ——the heat transferred from water to the phase interface in unit time and unit volume/W·m -3

Qmv——单位时间单位体积内,熔融物向蒸汽传递的热量/W·m-3 Q mv —— heat transfer from melt to steam in unit time and unit volume/W·m -3

Qml——单位时间单位体积内,熔融物向水传递的热量/W·m-3 Q ml ——the heat transferred from melt to water in unit time and unit volume/W·m -3

hvi——蒸汽与相界面的传热系数/W·m-3·K-1 h vi ——heat transfer coefficient between steam and phase interface/W m -3 K -1

hli——水与相界面的传热系数/W·m-3·K-1 h li ——heat transfer coefficient between water and phase interface/W m -3 K -1

hmv——熔融物与蒸汽之间的传热系数/W·m-3·K-1 h mv ——Heat transfer coefficient between melt and steam/W m -3 K -1

hml——熔融物与水之间的传热系数/W·m-3·K-1 h ml ——Heat transfer coefficient between melt and water/W m -3 K -1

Avl——单位体积内水与蒸汽的传热面积/m2·m-3 A vl ——the heat transfer area of water and steam per unit volume/m 2 ·m -3

Amv——单位体积内熔融物与蒸汽的传热面积/m2·m-3 A mv ——heat transfer area of melt and steam per unit volume/m 2 ·m -3

Aml——单位体积内熔融物与水的传热面积/m2·m-3 A ml ——Heat transfer area between melt and water per unit volume/m 2 ·m -3

Tv——蒸汽温度/KT v —— steam temperature/K

Tl——水的温度/KT l ——water temperature/K

Tsat——水的饱和温度/KT sat ——water saturation temperature/K

Tm——熔融物的温度/KT m ——The temperature of the melt/K

αm——熔融物的体积份额α m ——The volume fraction of the melt

αv——蒸汽的体积份额α v ——Volume fraction of steam

αl——水的体积份额α l ——volume fraction of water

Dm——熔融物液滴的直径/mD m ——the diameter of the melt droplet/m

S——水饱和度(水占除熔融物外流体的体积分数)S——water saturation (volume fraction of water in fluid except melt)

根据流动形态和沸腾方式不同,相间传热系数和传热面积的计算方式也不同,分为以下几种情况:According to different flow patterns and boiling methods, the calculation methods of interphase heat transfer coefficient and heat transfer area are also different, which can be divided into the following situations:

1)泡状流条件下水和蒸汽与相界面的传热系数以及传热面积1) Heat transfer coefficient and heat transfer area between water and steam and phase interface under bubbly flow conditions

hvi=1000 (10)h vi =1000 (10)

Figure BDA0003488789830000041
Figure BDA0003488789830000041

Figure BDA0003488789830000042
Figure BDA0003488789830000042

Figure BDA0003488789830000051
Figure BDA0003488789830000051

式中:In the formula:

Nul——水的努塞尔数Nu l - Nusselt number of water

Dv——泡状流中气泡的直径/mD v ——diameter of bubbles in bubbly flow/m

kl——水的导热系数/W·m-1·K-1 k l ——The thermal conductivity of water/W m -1 K -1

Prl——水的普朗特数Pr l — Prandtl number of water

Rel——水的雷诺数Re l - Reynolds number of water

vol——控制体的体积/m-3 vol - the volume of the control body/m -3

2)弥散流条件下水和蒸汽与相界面的传热系数以及传热面积2) Heat transfer coefficient and heat transfer area between water and steam and phase interface under the condition of diffuse flow

Figure BDA0003488789830000052
Figure BDA0003488789830000052

Figure BDA0003488789830000053
Figure BDA0003488789830000053

Figure BDA0003488789830000054
Figure BDA0003488789830000054

Figure BDA0003488789830000055
Figure BDA0003488789830000055

式中:In the formula:

Nuv——蒸汽的努塞尔数Nu v —— Nusselt number of steam

Dl——弥散流水滴直径/mD l ——diameter of dispersed water droplet/m

kv——蒸汽的热传导系数/W·m-1·K-1 k v ——heat transfer coefficient of steam/W m -1 K -1

Prv——蒸汽的普朗特数Pr v —— Prandtl number of steam

Rev——蒸汽的雷诺数Rev - Reynolds number of steam

ρl——水的密度/kg·m-3 ρ l ——density of water/kg·m -3

Cpl——水的比热/J·kg-1·K-1 Cp l ——Specific heat of water/J kg -1 K -1

Figure BDA0003488789830000061
——水与蒸汽的相对速度/m·s-1
Figure BDA0003488789830000061
——The relative speed of water and steam/m·s -1

3)过渡流条件下水和蒸汽与相界面的传热系数以及传热面积3) Heat transfer coefficient and heat transfer area between water and steam and phase interface under transitional flow conditions

当水饱和度在0.25到0.75的范围内时,认为当前为过渡流状态;在这种状态下,通过在临界泡状流即水饱和度S=0.75,和临界弥散流即水饱和度S=0.25计算的值之间进行线性插值,得到传热系数和传热面积;When the water saturation is in the range of 0.25 to 0.75, it is considered to be a transitional flow state; in this state, through the critical bubbly flow, that is, the water saturation S=0.75, and the critical diffuse flow, that is, the water saturation S= Perform linear interpolation between the values calculated at 0.25 to obtain the heat transfer coefficient and heat transfer area;

hvi=(1-f1)hvi,mist+f1hvi,bubbly (18)h vi =(1-f 1 )h vi,mist +f 1 h vi,bubbly (18)

hli=(1-f1)hli,mist+f1hli,bubbly (19)h li =(1-f 1 )h li,mist +f 1 h li,bubbly (19)

Avl=(1-f1)Avl,mist+f1Avl,bubbly (20)A vl =(1-f 1 )A vl,mist +f 1 A vl,bubbly (20)

Figure BDA0003488789830000062
Figure BDA0003488789830000062

式中:In the formula:

hvi,mist——弥散流蒸汽与相界面的传热系数/W·m-3·K-1 h vi,mist ——heat transfer coefficient between diffuse flow steam and phase interface/W m -3 K -1

hvi,bubbly——泡状流蒸汽与相界面的传热系数/W·m-3·K-1 h vi,bubbly ——heat transfer coefficient between bubbly steam and phase interface/W m -3 K -1

hli,mist——弥散流水与相界面的传热系数/W·m-3·K-1 h li,mist ——heat transfer coefficient between dispersed flowing water and phase interface/W m -3 K -1

hli,bubbly——泡状流水与相界面的传热系数/W·m-3·K-1 h li,bubbly ——heat transfer coefficient between bubbly flowing water and phase interface/W m -3 K -1

Avl,mist——单位体积内弥散流状态水与蒸汽的传热面积/m2·m-3 A vl,mist — heat transfer area of water and steam in diffuse flow state per unit volume/m 2 ·m -3

Avl,bubbly——单位体积内泡状流状态水与蒸汽的传热面积/m2·m-3 A vl,bubbly ——the heat transfer area of water and steam in bubbly flow state per unit volume/m 2 ·m -3

4)对流条件下熔融物与冷却剂的传热系数4) Heat transfer coefficient between melt and coolant under convective conditions

Figure BDA0003488789830000063
Figure BDA0003488789830000063

Figure BDA0003488789830000064
Figure BDA0003488789830000064

自然对流:Natural convection:

Nunc=2.0+0.6Grco 1/4Prco 1/3 (24)Nu nc =2.0+0.6Gr co 1/4 Pr co 1/3 (24)

强迫对流:Forced convection:

Figure BDA0003488789830000072
Figure BDA0003488789830000072

式中:In the formula:

hm,co——熔融物与冷却剂的传热系数/W·m-3·K-1 h m,co ——Heat transfer coefficient between melt and coolant/W m -3 K -1

Nuco——冷却剂的努塞尔数Nu co — Nusselt number of coolant

Nunc——自然对流条件下冷却剂的努塞尔数Nu nc — Nusselt number of the coolant under natural convection conditions

Nufc——强迫对流条件下冷却剂的努塞尔数Nu fc — Nusselt number of the coolant under forced convection conditions

kco——冷却剂的热传导系数/W·m-1·K-1 k co ——Coefficient of thermal conductivity of coolant/W m -1 K -1

Grco——冷却剂的格拉晓夫数Gr co - the Grashof number of the coolant

Prco——冷却剂的普朗特数Pr co - the Prandtl number of the coolant

Reco——冷却剂的雷诺数Re co - the Reynolds number of the coolant

5)核态沸腾条件下熔融物与冷却剂的传热系数5) Heat transfer coefficient between melt and coolant under nucleate boiling conditions

核态沸腾条件下,使用陈氏公式计算熔融物和水之间的传热系数;使用插值方法计算熔融物与蒸汽的传热系数,使熔融物与蒸汽的传热系数在Tm=Tsat时为零,在Tm=TCHF时为CHF点的传热系数值,Tm在Tsat和TCHF之间时,熔融物与蒸汽的传热系数通过插值方式计算:Under nucleate boiling conditions, use Chen's formula to calculate the heat transfer coefficient between the melt and water; use the interpolation method to calculate the heat transfer coefficient between the melt and steam, so that the heat transfer coefficient between the melt and steam is at T m = T sat When T m = T CHF , it is the value of the heat transfer coefficient of the CHF point. When T m is between T sat and T CHF , the heat transfer coefficient between the melt and the steam is calculated by interpolation:

hmv=(3y2-2y3)hmv,film(TCHF) (26)h mv =(3y 2 -2y 3 )h mv,film (T CHF ) (26)

Figure BDA0003488789830000071
Figure BDA0003488789830000071

式中:In the formula:

hmv,film(TCHF)——Tm=TCHF时CHF点对应的熔融物与蒸汽的传热系数/W·m-3·K-1 h mv,film (T CHF )——Heat transfer coefficient between melt and steam corresponding to CHF point when T m =T CHF /W·m -3 ·K -1

TCHF——发生临界热流密度时的熔融物温度/KT CHF ——melt temperature when critical heat flux occurs/K

6)膜态沸腾条件下熔融物与冷却剂的传热系数6) Heat transfer coefficient between melt and coolant under film boiling conditions

膜态沸腾条件下,熔融物与水的传热系数使用下式计算:Under film boiling conditions, the heat transfer coefficient between the melt and water is calculated using the following formula:

hml=max(hfree,hforce)+hrad (28)h ml =max(h free ,h force )+h rad (28)

使用Dhir-Purohit关系式计算hfree,hfree表示当熔融物与水的相对速度很小时的传热系数;使用Epstein-Hauser关系式计算hforce,hforce表示当熔融物与水的相对速度差较大时的传热系数。熔融物与水的辐射传热系数hrad为:Use the Dhir-Purohit relation to calculate h free , h free represents the heat transfer coefficient when the relative velocity between the melt and water is small; use the Epstein-Hauser relation to calculate h force , h force represents the relative velocity difference between the melt and water Larger heat transfer coefficients. The radiation heat transfer coefficient h rad between the melt and water is:

Figure BDA0003488789830000081
Figure BDA0003488789830000081

ε=αvl (30)ε=α vl (30)

在膜沸腾中,熔融物到蒸汽的传热系数设置为零;但是要注意,由于传热系数的总值是沸腾部分和对流部分的总和,所以它的总值可能不为零;In film boiling, the melt-to-vapour heat transfer coefficient is set to zero; however, note that the total value of the heat transfer coefficient may not be zero since it is the sum of the boiling part and the convective part;

式中:In the formula:

hfree——熔融物与水的相对速度很小时的传热系数/W·m-3·K-1 h free ——Heat transfer coefficient when the relative velocity between melt and water is small/W m -3 K -1

hforce——熔融物与水的相对速度差较大时的传热系数/W·m-3·K-1 h force ——the heat transfer coefficient when the relative speed difference between the melt and water is large/W m -3 K -1

hrad——辐射传热系数/W·m-3·K-1 h rad ——radiative heat transfer coefficient/W m -3 K -1

σ——玻尔兹曼常数/W·m-2·K-4 σ——Boltzmann constant/W m -2 K -4

ε——冷却剂体积份额ε——coolant volume fraction

7)过渡沸腾条件下熔融物与冷却剂的传热系数7) Heat transfer coefficient between melt and coolant under transition boiling conditions

假设熔融物与水的热流密度近似为临界热流密度qCHF和最小稳定膜沸腾热流密度qmin之间的插值;应用的插值公式为:The heat flux of the melt to water is assumed to be approximately an interpolation between the critical heat flux qCHF and the minimum stable film boiling heat flux qmin ; the interpolation formula applied is:

Figure BDA0003488789830000091
Figure BDA0003488789830000091

f1=(3y2-2y3) (32)f 1 =(3y 2 -2y 3 ) (32)

Figure BDA0003488789830000092
Figure BDA0003488789830000092

Figure BDA0003488789830000093
Figure BDA0003488789830000093

假设熔融物与蒸汽的传热系数能够通过在临界热流密度传热系数和最小稳定膜沸腾传热系数之间进行插值来近似计算;应用的插值公式为:It is assumed that the heat transfer coefficient of the melt to the steam can be approximated by interpolating between the critical heat flux heat transfer coefficient and the minimum stable film boiling heat transfer coefficient; the interpolation formula applied is:

hmv=f1hmvCHF+(1-f1)hmvmin (35)h mv =f 1 h mvCHF +(1-f 1 )h mvmin (35)

式中:In the formula:

qCHF——临界热流密度/W·m-2 q CHF ——Critical Heat Flux/W·m -2

qmin,rad——考虑辐射传热的最小膜态沸腾热流密度/W·m-2 q min,rad ——minimum film boiling heat flux considering radiation heat transfer/W·m -2

qmin——不考虑辐射传热的最小膜态沸腾热流密度/W·m-2 q min ——Minimum film boiling heat flux without considering radiation heat transfer/W·m -2

Tmin——最小稳定膜态沸腾温度/KT min ——Minimum stable film boiling temperature/K

hmvCHF——临界热流密度时熔融物与蒸汽的传热系数/W·m-3·K-1 h mvCHF ——heat transfer coefficient between melt and steam at critical heat flux/W m -3 K -1

hmvmin——熔融物温度等于最小稳定膜态沸腾温度时熔融物与蒸汽的传热系数/W·m-3·K-1 h mvmin ——the heat transfer coefficient between the melt and steam when the melt temperature is equal to the minimum stable film boiling temperature/W m -3 K -1

步骤5:判定熔融物液滴是否碎裂,计算熔融物碎裂过程中的直径变化速率;Step 5: Determine whether the melt droplet is fragmented, and calculate the diameter change rate during the melt fragmentation process;

熔融物在冷却剂中的碎裂分为两种情况:(1)熔融物注入水中受到水力学不稳定性而发生的粗混合碎裂;(2)熔融物液滴受到热力学作用发生的细碎裂;The fragmentation of the melt in the coolant is divided into two situations: (1) the coarse mixing fragmentation of the melt injected into the water due to hydraulic instability; (2) the fine fragmentation of the melt droplets by the thermodynamic action crack;

粗混合情况下,只有满足下式碎裂准则,熔融物才会发生碎裂:In the case of coarse mixing, the melt will be fragmented only if the following fragmentation criterion is met:

Figure BDA0003488789830000101
Figure BDA0003488789830000101

We表示韦伯数:We represent the Weber number:

Figure BDA0003488789830000102
Figure BDA0003488789830000102

Ae*表示修正气动弹性系数:Ae * denotes the modified aeroelastic coefficient:

Figure BDA0003488789830000103
Figure BDA0003488789830000103

碎裂使用Pilch理论的碎裂模型计算粗混合情况下熔融物直径变化速率:Fragmentation Calculate the rate of change of melt diameter for coarse mixing using the fragmentation model of Pilch theory:

Figure BDA0003488789830000104
Figure BDA0003488789830000104

细碎裂发生期间,熔融物碎裂质量变化率由下式计算:During the occurrence of fine fragmentation, the mass change rate of melt fragmentation is calculated by the following formula:

Figure BDA0003488789830000105
Figure BDA0003488789830000105

式中:In the formula:

vr——熔融物与冷却剂的相对速度/m·s-1 v r ——relative speed of melt and coolant/m·s -1

ρco——冷却剂的平均密度/kg·m-3 ρ co ——average density of coolant/kg·m -3

ρm——熔融物的密度/kg·m-3 ρ m ——density of melt/kg·m -3

We——韦伯数We - Weber number

Wecri——临界韦伯数,取4πWe cri ——Critical Weber number, take 4π

Ae——修正气动弹性系数Ae——Corrected aeroelastic coefficient

Ae* cri——临界修正气动弹性系数,取8π3 Ae * cri ——Critical corrected aeroelastic coefficient, take 8π 3

σm——熔融物表面张力/N·s-1 σ m ——surface tension of melt/N·s -1

χ——熔融物材料的泊松比χ—Poisson’s ratio of the melt material

δ——熔融物液滴表面凝固外壳厚度/mδ—thickness of the solidified shell on the surface of the melt droplet/m

E——熔融物凝固后的杨氏模量/PaE——Young's modulus after solidification of the melt/Pa

mfrag——已细碎裂的熔融物质量/kgm frag ——the amount of molten material that has been finely fragmented/kg

Cf——细碎裂常数C f —— fine fragmentation constant

mi——控制体内熔融物质量/kgm i ——the amount of molten material in the control body/kg

P——控制体内压力P - control internal pressure

Pth——细碎裂压力阈值/PaP th ——threshold of fine fragmentation pressure/Pa

步骤6:使用预估计算稳定法求解质量、动量、能量守恒方程,将数据保存到输出文件中,若未达到设置的结束时间,跳到步骤2进行下一时间步的计算,若已达到设置的结束时间,则停止计算;Step 6: Use the estimated stability method to solve the mass, momentum, and energy conservation equations, and save the data to the output file. If the set end time has not been reached, skip to step 2 to calculate the next time step. If it has reached the set the end time, stop calculation;

采用预估计算稳定法求解热工水力方程,该方法主要分三步:(1)使用上一时间步的压力求解动量守恒方程得到速度的预测值;(2)将预测的速度表示为这一时间步压力的函数,并与质量、能量守恒方程形成关于压力的方程组,该方程组通过压力迭代进行求解得到这一时间步的压力、速度、空泡份额及温度;(3)利用这一时间步的压力求解质量、能量守恒方程得到各相宏观密度,内能,作为下一时间步中质量、能量守恒方程中对应的量。The thermal-hydraulic equation is solved by the pre-estimation calculation stability method. This method is mainly divided into three steps: (1) use the pressure of the previous time step to solve the momentum conservation equation to obtain the predicted value of the velocity; (2) express the predicted velocity as this The function of the time step pressure, and form a pressure equation system with the mass and energy conservation equations, which can be solved by pressure iteration to obtain the pressure, velocity, void fraction and temperature of this time step; (3) use this The mass and energy conservation equations are solved for the pressure of the time step to obtain the macroscopic density and internal energy of each phase, which are used as the corresponding quantities in the mass and energy conservation equations in the next time step.

采用圆柱坐标系下的多流体欧拉方法,考虑了蒸汽、水和熔融物三相之间的相互作用,对于第i相的守恒方程如(41)~(43)所示,j和k表示和i不同的相;Using the multi-fluid Euler method in the cylindrical coordinate system, the interaction among the three phases of steam, water and melt is considered. The conservation equation for the i-th phase is shown in (41)~(43), j and k represent phase different from i;

质量守恒方程:Mass Conservation Equation:

Figure BDA0003488789830000121
Figure BDA0003488789830000121

动量守恒方程:Momentum Conservation Equation:

Figure BDA0003488789830000122
Figure BDA0003488789830000122

能量守恒方程:Energy Conservation Equation:

Figure BDA0003488789830000123
Figure BDA0003488789830000123

式中:In the formula:

t——时间/st——time/s

αi——i相的体积份额α i ——volume fraction of phase i

ρi——i相的密度/kg·m-3 ρ i ——density of phase i/kg·m -3

Figure BDA0003488789830000126
——i相的速度/m·s-1
Figure BDA0003488789830000126
——Velocity of phase i/m·s -1

Γji——单位时间单位体积内,j相转变为i相的质量/kg·m-3·s-1 Γ ji —mass of phase j transformed into phase i in unit time and unit volume/kg m -3 s -1

Γki——单位时间单位体积内,k相转变为i相的质量/kg·m-3·s-1 Γ ki —mass of phase k transformed into phase i per unit time and unit volume/kg m -3 s -1

Γs——单位时间单位体积内,外质量源产生的质量/kg·m-3·s-1 Γ s ——mass produced by the external mass source per unit time and unit volume/kg m -3 s -1

P——压力/PaP——pressure/Pa

x——表示与i相不同的另外两相,即j相或k相x——Indicates the other two phases different from phase i, that is, phase j or phase k

Cxi——x相与i相之间的摩擦系数C xi ——the coefficient of friction between phase x and phase i

Figure BDA0003488789830000124
——x相的速度/m·s-1
Figure BDA0003488789830000124
——Velocity of phase x/m s -1

Cwi——i相与墙壁之间的摩擦系数C wi —coefficient of friction between phase i and the wall

Figure BDA0003488789830000125
——重力加速度/m·s-2
Figure BDA0003488789830000125
——Gravity acceleration/m·s -2

ui——单位质量i相的内能/J·kg-1 u i ——internal energy per unit mass of phase i/J·kg -1

Hji——单位质量j相转变为i相的焓值变化量/J·kg-1 H ji ——The enthalpy change of phase j to phase i per unit mass/J kg -1

Hki——单位质量k相转变为i相的焓值变化量/J·kg-1 H ki ——the enthalpy change of unit mass phase k to phase i/J kg -1

Qji——单位时间单位体积内,j相向i相传递的热量/W·m-3 Q ji ——The amount of heat transferred from phase j to phase i in unit time and unit volume/W·m -3

Qki——单位时间单位体积内,k相向i相传递的热量/W·m-3 Q ki ——the heat transferred from phase k to phase i in unit time and unit volume/W·m -3

Qs——单位时间单位体积内,外热量源产生的热量/W·m-3Q s ——the heat generated by the external heat source per unit time and unit volume/W·m -3 .

与现有技术相比,本发明有如下突出特点:Compared with the prior art, the present invention has the following prominent features:

能够对计算区域而未建模,从而得到二维计算结果,相对于一维的计算结果,能够对蒸汽爆炸径向差异进行分析和评估。The calculation area can be calculated without modeling, so as to obtain two-dimensional calculation results. Compared with the one-dimensional calculation results, the radial difference of steam explosion can be analyzed and evaluated.

针对已存在的问题,本发明通过提供二维蒸汽爆炸计算方法计算方法,对高温熔融燃料与冷却剂接触反应的认识及评估现存压水反应堆严重事故进程中安全屏障完整性及放射性物质外泄与否有重要作用,同时对于新型反应堆的设计及安全评估也有重要意义。In view of the existing problems, the present invention provides a two-dimensional steam explosion calculation method, the understanding of the contact reaction between high-temperature molten fuel and coolant, and the evaluation of the integrity of the safety barrier and the leakage of radioactive substances during the serious accident process of the existing pressurized water reactor. Whether it plays an important role or not, it is also of great significance to the design and safety assessment of new reactors.

附图说明Description of drawings

图1为本发明方法流程图。Fig. 1 is a flow chart of the method of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明作进一步详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:

本发明为一种核反应堆蒸汽爆炸二维计算方法,如图1所示,该方法具体流程包括以下步骤:The present invention is a two-dimensional calculation method for nuclear reactor steam explosion, as shown in Figure 1, the specific flow of the method includes the following steps:

步骤1、确定核反应堆计算区域的几何结构及严重事故下环境压力、温度参数,输入熔融物射流直径、温度、速度,设定结束时间,作为计算变量的初始值;Step 1. Determine the geometric structure of the nuclear reactor calculation area and the environmental pressure and temperature parameters under severe accidents, input the diameter, temperature, and speed of the molten material jet, and set the end time as the initial value of the calculation variable;

步骤2:根据物性表插值计算熔融物、水蒸气、水的物性,以便后续计算过程中使用各相物性数据;Step 2: Calculate the physical properties of melt, water vapor, and water according to the physical property table interpolation, so that the physical property data of each phase can be used in the subsequent calculation process;

步骤3:计算熔融物、水、蒸汽之间因相间摩擦产生的动量改变量;Step 3: Calculate the momentum change between the melt, water, and steam due to interphase friction;

在熔融物与水相互作用过程中,熔融物、水、蒸汽之间存在相间摩擦。将离散相近似地看做球形,连续相为存在于离散相周围的连续流体,在特定的情况下,蒸汽、水、熔融物三相均可作为离散相或连续相。离散相p与连续相c之间因相间摩擦产生的动量改变量表示为:During the interaction between melt and water, there is phase friction among melt, water and steam. The discrete phase is approximately regarded as a sphere, and the continuous phase is the continuous fluid existing around the discrete phase. Under certain circumstances, the three phases of steam, water, and melt can be used as the discrete phase or the continuous phase. The momentum change between the discrete phase p and the continuous phase c due to interphase friction is expressed as:

Figure BDA0003488789830000141
Figure BDA0003488789830000141

Figure BDA0003488789830000142
Figure BDA0003488789830000142

式中:In the formula:

Ipc——单位时间单位体积内离散相与连续相之间因相间摩擦产生的动量改变量/kg·m-2s-2 I pc —momentum change between the discrete phase and the continuous phase due to interphase friction per unit time and unit volume/kg m -2 s -2

Cpc——离散相与连续相之间的摩擦系数C pc —coefficient of friction between the discrete phase and the continuous phase

Dp——离散相的直径/mD p ——diameter of discrete phase/m

αp——离散相的体积份额α p ——volume fraction of discrete phase

Cdpc——离散相与连续相之间的阻力系数Cd pc ——the resistance coefficient between the discrete phase and the continuous phase

ρc——连续相密度/kg·m-3 ρ c ——continuous phase density/kg·m -3

Figure BDA0003488789830000143
——连续相与离散相的相对矢量速度/m·s-1
Figure BDA0003488789830000143
——the relative vector velocity of continuous phase and discrete phase/m s -1

Rec——连续相的雷诺数Re c - the Reynolds number of the continuous phase

步骤4:计算熔融物、水、蒸汽之间传递的热量;Step 4: Calculate the heat transferred between the melt, water and steam;

蒸汽和水之间的传热发生在蒸汽与水的相界面上,假设蒸汽与水的相界面处于饱和温度,蒸汽和水向相界面传递的热量分别为:The heat transfer between steam and water occurs at the phase interface between steam and water. Assuming that the phase interface between steam and water is at the saturation temperature, the heat transferred by steam and water to the phase interface is:

Qvi=hviAvl(Tv-Tsat) (3)Q vi =h vi A vl (T v -T sat ) (3)

Qli=hliAvl(Tl-Tsat) (4)Q li =h li A vl (T l -T sat ) (4)

熔融物向蒸汽、水传递的热量表示为:The heat transferred from the melt to steam and water is expressed as:

Qmv=hmvAmv(Tm-Tv) (5)Q mv =h mv A mv (T m -T v ) (5)

Qml=hmlAml(Tm-Tl) (6)Q ml =h ml A ml (T m -T l ) (6)

Figure BDA0003488789830000151
Figure BDA0003488789830000151

Figure BDA0003488789830000152
Figure BDA0003488789830000152

Figure BDA0003488789830000153
Figure BDA0003488789830000153

式中:In the formula:

Qvi——单位时间单位体积内,蒸汽向相界面传递的热量/W·m- Q vi —— heat transfer from steam to phase interface in unit time and unit volume/W·m -

Qli——单位时间单位体积内,水向相界面传递的热量/W·m-3 Q li ——the heat transferred from water to the phase interface in unit time and unit volume/W·m -3

Qmv——单位时间单位体积内,熔融物向蒸汽传递的热量/W·mQ mv ——The heat transferred from the melt to the steam per unit time and unit volume/W m

Qml——单位时间单位体积内,熔融物向水传递的热量/W·m-3 Q ml ——the heat transferred from melt to water in unit time and unit volume/W·m -3

hvi——蒸汽与相界面的传热系数/W·m-3·K-1 h vi ——heat transfer coefficient between steam and phase interface/W m -3 K -1

hli——水与相界面的传热系数/W·m-3·K-1 h li ——heat transfer coefficient between water and phase interface/W m -3 K -1

hmv——熔融物与蒸汽之间的传热系数/W·m-3·K-1 h mv ——Heat transfer coefficient between melt and steam/W m -3 K -1

hml——熔融物与水之间的传热系数/W·m-3·K-1 h ml ——Heat transfer coefficient between melt and water/W m -3 K -1

Avl——单位体积内水与蒸汽的传热面积/m2·m-3 A vl ——the heat transfer area of water and steam per unit volume/m 2 ·m -3

Amv——单位体积内熔融物与蒸汽的传热面积/m2·m-3 A mv ——heat transfer area of melt and steam per unit volume/m 2 ·m -3

Aml——单位体积内熔融物与水的传热面积/m2·m-3 A ml ——Heat transfer area between melt and water per unit volume/m 2 ·m -3

Tv——蒸汽温度/KT v —— steam temperature/K

Tl——水的温度/KT l ——water temperature/K

Tsat——水的饱和温度/KT sat ——water saturation temperature/K

Tm——熔融物的温度/KT m ——The temperature of the melt/K

αm——熔融物的体积份额α m ——The volume fraction of the melt

αv——蒸汽的体积份额α v ——Volume fraction of steam

αl——水的体积份额α l ——volume fraction of water

Dm——熔融物液滴的直径/mD m ——the diameter of the melt droplet/m

S——水饱和度(水占除熔融物外流体的体积分数)S——water saturation (volume fraction of water in fluid except melt)

根据流动形态和沸腾方式不同,相间传热系数和传热面积的计算方式也不同,可以更加准确的计算不同条件下的传热系数和传热面积。分为以下几种情况:According to different flow patterns and boiling modes, the calculation methods of interphase heat transfer coefficient and heat transfer area are also different, and the heat transfer coefficient and heat transfer area under different conditions can be calculated more accurately. Divided into the following situations:

1)泡状流条件下水和蒸汽与相界面的传热系数以及传热面积1) Heat transfer coefficient and heat transfer area between water and steam and phase interface under bubbly flow conditions

hvi=1000 (10)h vi =1000 (10)

Figure BDA0003488789830000161
Figure BDA0003488789830000161

Figure BDA0003488789830000162
Figure BDA0003488789830000162

Figure BDA0003488789830000163
Figure BDA0003488789830000163

式中:In the formula:

Nul——水的努塞尔数Nu l - Nusselt number of water

Dv——泡状流中气泡的直径/mD v ——diameter of bubbles in bubbly flow/m

kl——水的导热系数/W·m-1·K-1 k l ——The thermal conductivity of water/W m -1 K -1

Prl——水的普朗特数Pr l — Prandtl number of water

Rel——水的雷诺数Re l - Reynolds number of water

vol——控制体的体积/m-3 vol - the volume of the control body/m -3

2)弥散流条件下水和蒸汽与相界面的传热系数以及传热面积2) Heat transfer coefficient and heat transfer area between water and steam and phase interface under the condition of diffuse flow

Figure BDA0003488789830000171
Figure BDA0003488789830000171

Figure BDA0003488789830000172
Figure BDA0003488789830000172

Figure BDA0003488789830000173
Figure BDA0003488789830000173

Figure BDA0003488789830000174
Figure BDA0003488789830000174

式中:In the formula:

Nuv——蒸汽的努塞尔数Nu v —— Nusselt number of steam

Dl——弥散流水滴直径/mD l ——diameter of dispersed water droplet/m

kv——蒸汽的热传导系数/W·m-1·K-1 k v ——heat transfer coefficient of steam/W m -1 K -1

Prv——蒸汽的普朗特数Pr v —— Prandtl number of steam

Rev——蒸汽的雷诺数Rev - Reynolds number of steam

ρl——水的密度/kg·m-3 ρ l ——density of water/kg·m -3

Cpl——水的比热/J·kg-1·K-1 Cp l ——Specific heat of water/J kg -1 K -1

Figure BDA0003488789830000175
——水与蒸汽的相对速度/m·s-1
Figure BDA0003488789830000175
——The relative speed of water and steam/m·s -1

3)过渡流条件下水和蒸汽与相界面的传热系数以及传热面积3) Heat transfer coefficient and heat transfer area between water and steam and phase interface under transitional flow conditions

当水饱和度在0.25到0.75的范围内时,认为当前为过渡流状态;在这种状态下,通过在临界泡状流即水饱和度S=0.75,和临界弥散流即水饱和度S=0.25计算的值之间进行线性插值,得到传热系数和传热面积;When the water saturation is in the range of 0.25 to 0.75, it is considered to be a transitional flow state; in this state, through the critical bubbly flow, that is, the water saturation S=0.75, and the critical diffuse flow, that is, the water saturation S= Perform linear interpolation between the values calculated at 0.25 to obtain the heat transfer coefficient and heat transfer area;

hvi=(1-f1)hvi,mist+f1hvi,bubbly (18)h vi =(1-f 1 )h vi,mist +f 1 h vi,bubbly (18)

hli=(1-f1)hli,mist+f1hli,bubbly (19)h li =(1-f 1 )h li,mist +f 1 h li,bubbly (19)

Avl=(1-f1)Avl,mist+f1Avl,bubbly (20)A vl =(1-f 1 )A vl,mist +f 1 A vl,bubbly (20)

Figure BDA0003488789830000181
Figure BDA0003488789830000181

式中:In the formula:

hvi,mist——弥散流蒸汽与相界面的传热系数/W·m-3·K-1 h vi,mist ——heat transfer coefficient between diffuse flow steam and phase interface/W m -3 K -1

hvi,bubbly——泡状流蒸汽与相界面的传热系数/W·m-3·K-1 h vi,bubbly ——heat transfer coefficient between bubbly steam and phase interface/W m -3 K -1

hli,mist——弥散流水与相界面的传热系数/W·m-3·K-1 h li,mist ——heat transfer coefficient between dispersed flowing water and phase interface/W m -3 K -1

hli,bubbly——泡状流水与相界面的传热系数/W·m-3·K-1 h li,bubbly ——heat transfer coefficient between bubbly flowing water and phase interface/W m -3 K -1

Avl,mist——单位体积内弥散流状态水与蒸汽的传热面积/m2·m-3 A vl,mist — heat transfer area of water and steam in diffuse flow state per unit volume/m 2 ·m -3

Avl,bubbly——单位体积内泡状流状态水与蒸汽的传热面积/m2·m-3 A vl,bubbly ——the heat transfer area of water and steam in bubbly flow state per unit volume/m 2 ·m -3

4)对流条件下熔融物与冷却剂的传热系数4) Heat transfer coefficient between melt and coolant under convective conditions

对流条件下,熔融物以液滴或碎片状态存在于单相水或单相蒸汽中,熔融物与蒸汽或水的传热系数为:Under convective conditions, the melt exists in single-phase water or single-phase steam in the form of droplets or fragments, and the heat transfer coefficient between the melt and steam or water is:

Figure BDA0003488789830000182
Figure BDA0003488789830000182

Figure BDA0003488789830000183
Figure BDA0003488789830000183

自然对流:Natural convection:

Nunc=2.0+0.6Grco 1/4Prco 1/3 (24)Nu nc =2.0+0.6Gr co 1/4 Pr co 1/3 (24)

强迫对流:Forced convection:

Figure BDA0003488789830000191
Figure BDA0003488789830000191

式中:In the formula:

hm,co——熔融物与冷却剂的传热系数/W·m-3·K-1 h m,co ——Heat transfer coefficient between melt and coolant/W m -3 K -1

Nuco——冷却剂的努塞尔数Nu co — Nusselt number of coolant

Nunc——自然对流条件下冷却剂的努塞尔数Nu nc — Nusselt number of the coolant under natural convection conditions

Nufc——强迫对流条件下冷却剂的努塞尔数Nu fc — Nusselt number of the coolant under forced convection conditions

kco——冷却剂的热传导系数/W·m-1·K-1 k co ——Coefficient of thermal conductivity of coolant/W m -1 K -1

Grco——冷却剂的格拉晓夫数Gr co - the Grashof number of the coolant

Prco——冷却剂的普朗特数Pr co - the Prandtl number of the coolant

Reco——冷却剂的雷诺数Re co - the Reynolds number of the coolant

5)核态沸腾条件下熔融物与冷却剂的传热系数5) Heat transfer coefficient between melt and coolant under nucleate boiling conditions

核态沸腾条件下,使用陈氏公式计算熔融物和水之间的传热系数;使用插值方法计算熔融物与蒸汽的传热系数,使熔融物与蒸汽的传热系数在Tm=Tsat时为零,在Tm=TCHF时为CHF点的传热系数值,Tm在Tsat和TCHF之间时,熔融物与蒸汽的传热系数通过插值方式计算:Under nucleate boiling conditions, use Chen's formula to calculate the heat transfer coefficient between the melt and water; use the interpolation method to calculate the heat transfer coefficient between the melt and steam, so that the heat transfer coefficient between the melt and steam is at T m = T sat When T m = T CHF , it is the value of the heat transfer coefficient at the CHF point. When T m is between T sat and T CHF , the heat transfer coefficient between the melt and the steam is calculated by interpolation:

hmv=(3y2-2y3)hmv,film(TCHF) (26)h mv =(3y 2 -2y 3 )h mv,film (T CHF ) (26)

Figure BDA0003488789830000192
Figure BDA0003488789830000192

式中:In the formula:

hmv,film(TCHF)——Tm=TCHF时CHF点对应的熔融物与蒸汽的传热系数/W·m-3·K-1 h mv,film (T CHF )——Heat transfer coefficient between melt and steam corresponding to CHF point when T m =T CHF /W·m -3 ·K -1

TCHF——发生临界热流密度时的熔融物温度/KT CHF ——melt temperature when critical heat flux occurs/K

6)膜态沸腾条件下熔融物与冷却剂的传热系数6) Heat transfer coefficient between melt and coolant under film boiling conditions

膜态沸腾条件下,熔融物与水的传热系数使用下式计算:Under film boiling conditions, the heat transfer coefficient between the melt and water is calculated using the following formula:

hml=max(hfree,hforce)+hrad (28)h ml =max(h free ,h force )+h rad (28)

使用Dhir-Purohit关系式计算hfree,hfree表示当熔融物与水的相对速度很小时的传热系数;使用Epstein-Hauser关系式计算hforce,hforce表示当熔融物与水的相对速度差较大时的传热系数。熔融物与水的辐射传热系数hrad为:Use the Dhir-Purohit relation to calculate h free , h free represents the heat transfer coefficient when the relative velocity between the melt and water is small; use the Epstein-Hauser relation to calculate h force , h force represents the relative velocity difference between the melt and water Larger heat transfer coefficients. The radiation heat transfer coefficient h rad between the melt and water is:

Figure BDA0003488789830000201
Figure BDA0003488789830000201

ε=αvl (30)ε=α vl (30)

在膜沸腾中,熔融物到蒸汽的传热系数设置为零;但是要注意,由于传热系数的总值是沸腾部分和对流部分的总和,所以它的总值可能不为零;In film boiling, the melt-to-vapour heat transfer coefficient is set to zero; however, note that the total value of the heat transfer coefficient may not be zero since it is the sum of the boiling part and the convective part;

式中:In the formula:

hfree——熔融物与水的相对速度很小时的传热系数/W·m-3·K-1 h free ——Heat transfer coefficient when the relative velocity between melt and water is small/W m -3 K -1

hforce——熔融物与水的相对速度差较大时的传热系数/W·m-3·K-1 h force ——the heat transfer coefficient when the relative speed difference between the melt and water is large/W m -3 K -1

hrad——辐射传热系数/W·m-3·K-1 h rad ——radiative heat transfer coefficient/W m -3 K -1

σ——玻尔兹曼常数/W·m-2·K-4 σ——Boltzmann constant/W m -2 K -4

ε——冷却剂体积份额ε——coolant volume fraction

7)过渡沸腾条件下熔融物与冷却剂的传热系数7) Heat transfer coefficient between melt and coolant under transition boiling conditions

假设熔融物与水的热流密度近似为临界热流密度qCHF和最小稳定膜沸腾热流密度qmin之间的插值;应用的插值公式为:The heat flux of the melt to water is assumed to be approximately an interpolation between the critical heat flux qCHF and the minimum stable film boiling heat flux qmin ; the interpolation formula applied is:

Figure BDA0003488789830000211
Figure BDA0003488789830000211

f1=(3y2-2y3) (32)f 1 =(3y 2 -2y 3 ) (32)

Figure BDA0003488789830000212
Figure BDA0003488789830000212

Figure BDA0003488789830000213
Figure BDA0003488789830000213

假设熔融物与蒸汽的传热系数能够通过在临界热流密度传热系数和最小稳定膜沸腾传热系数之间进行插值来近似计算;应用的插值公式为:It is assumed that the heat transfer coefficient of the melt to the steam can be approximated by interpolating between the critical heat flux heat transfer coefficient and the minimum stable film boiling heat transfer coefficient; the interpolation formula applied is:

hmv=f1hmvCHF+(1-f1)hmvmin (35)h mv =f 1 h mvCHF +(1-f 1 )h mvmin (35)

式中:In the formula:

qCHF——临界热流密度/W·m-2 q CHF ——Critical Heat Flux/W·m -2

qmin,rad——考虑辐射传热的最小膜态沸腾热流密度/W·m-2 q min,rad ——minimum film boiling heat flux considering radiation heat transfer/W·m -2

qmin——不考虑辐射传热的最小膜态沸腾热流密度/W·m-2 q min ——Minimum film boiling heat flux without considering radiation heat transfer/W·m -2

Tmin——最小稳定膜态沸腾温度/KT min ——Minimum stable film boiling temperature/K

hmvCHF——临界热流密度时熔融物与蒸汽的传热系数/W·m-3·K-1 h mvCHF ——heat transfer coefficient between melt and steam at critical heat flux/W m -3 K -1

hmvmin——熔融物温度等于最小稳定膜态沸腾温度时熔融物与蒸汽的传热系数/W·m-3·K-1 h mvmin ——the heat transfer coefficient between the melt and steam when the melt temperature is equal to the minimum stable film boiling temperature/W m -3 K -1

步骤5:判定熔融物液滴是否碎裂,计算熔融物碎裂过程中的直径变化速率;Step 5: Determine whether the melt droplet is fragmented, and calculate the rate of change in diameter during the melt fragmentation process;

熔融物在冷却剂中的碎裂分为两种情况:(1)熔融物注入水中受到水力学不稳定性而发生的粗混合碎裂;(2)熔融物液滴受到热力学作用发生的细碎裂;The fragmentation of the melt in the coolant is divided into two situations: (1) the coarse mixing fragmentation of the melt injected into the water due to hydraulic instability; (2) the fine fragmentation of the melt droplets by the thermodynamic action crack;

粗混合情况下,只有满足下式碎裂准则,熔融物才会发生碎裂:In the case of coarse mixing, the melt will be fragmented only if the following fragmentation criterion is met:

Figure BDA0003488789830000221
Figure BDA0003488789830000221

We表示韦伯数:We represent the Weber number:

Figure BDA0003488789830000222
Figure BDA0003488789830000222

Ae*表示修正气动弹性系数:Ae * denotes the modified aeroelastic coefficient:

Figure BDA0003488789830000223
Figure BDA0003488789830000223

若确定粗混合条件下熔融物会发生碎裂,使用Pilch理论的碎裂模型计算粗混合情况下熔融物直径变化速率:If it is determined that the melt will be fragmented under rough mixing conditions, the rate of change of melt diameter under coarse mixing is calculated using the fragmentation model of Pilch theory:

Figure BDA0003488789830000224
Figure BDA0003488789830000224

细碎裂发生期间,将要碎裂的熔融物碎裂质量变化率由下式计算:During the occurrence of fine fragmentation, the fragmentation mass change rate of the melt to be fragmented is calculated by the following formula:

Figure BDA0003488789830000225
Figure BDA0003488789830000225

式中:In the formula:

vr——熔融物与冷却剂的相对速度/m·s-1 v r ——relative speed of melt and coolant/m·s -1

ρco——冷却剂的平均密度/kg·m-3 ρ co ——average density of coolant/kg·m -3

ρm——熔融物的密度/kg·m-3 ρ m ——density of melt/kg·m -3

We——韦伯数We - Weber number

Wecri——临界韦伯数,取4πWe cri ——Critical Weber number, take 4π

Ae——修正气动弹性系数Ae——Corrected aeroelastic coefficient

Ae* cri——临界修正气动弹性系数,取8π3 Ae * cri ——Critical corrected aeroelastic coefficient, take 8π 3

σm——熔融物表面张力/N·s-1 σ m ——surface tension of melt/N·s -1

χ——熔融物材料的泊松比χ—Poisson’s ratio of the melt material

δ——熔融物液滴表面凝固外壳厚度/mδ—thickness of the solidified shell on the surface of the melt droplet/m

E——熔融物凝固后的杨氏模量/PaE——Young's modulus after solidification of the melt/Pa

mfrag——已细碎裂的熔融物质量/kgm frag ——the amount of molten material that has been finely fragmented/kg

Cf——细碎裂常数C f —— fine fragmentation constant

mi——控制体内熔融物质量/kgm i ——the amount of molten material in the control body/kg

P——控制体内压力P - control internal pressure

Pth——细碎裂压力阈值/PaP th ——threshold of fine fragmentation pressure/Pa

步骤6:使用预估计算稳定法求解质量、动量、能量守恒方程,将数据保存到输出文件中,若未达到设置的结束时间,跳到步骤2进行下一时间步的计算,若已达到设置的结束时间,则停止计算;Step 6: Use the estimated stability method to solve the mass, momentum, and energy conservation equations, and save the data to the output file. If the set end time has not been reached, skip to step 2 to calculate the next time step. If it has reached the set the end time, stop calculation;

采用预估计算稳定法求解热工水力方程,该方法主要分三步:(1)使用上一时间步的压力求解动量守恒方程得到速度的预测值;(2)将预测的速度表示为这一时间步压力的函数,并与质量、能量守恒方程形成关于压力的方程组,该方程组通过压力迭代进行求解得到这一时间步的压力、速度、空泡份额及温度;(3)利用这一时间步的压力求解质量、能量守恒方程得到各相宏观密度,内能,作为下一时间步中质量、能量守恒方程中对应的量。使用预估稳定法可以适当提高计算蒸汽爆炸过程中的稳定性。The thermal-hydraulic equation is solved by the pre-estimation calculation stability method. This method is mainly divided into three steps: (1) use the pressure of the previous time step to solve the momentum conservation equation to obtain the predicted value of the velocity; (2) express the predicted velocity as this The function of the time step pressure, and form a pressure equation system with the mass and energy conservation equations, which can be solved by pressure iteration to obtain the pressure, velocity, void fraction and temperature of this time step; (3) use this The mass and energy conservation equations are solved for the pressure of the time step to obtain the macroscopic density and internal energy of each phase, which are used as the corresponding quantities in the mass and energy conservation equations in the next time step. The stability of the steam explosion process can be properly improved by using the estimated stability method.

采用圆柱坐标系下的多流体欧拉方法,考虑了蒸汽、水和熔融物三相之间的相互作用,对于第i相的守恒方程如(41)~(43)所示,j和k表示和i不同的相;Using the multi-fluid Euler method in the cylindrical coordinate system, the interaction among the three phases of steam, water and melt is considered. The conservation equation for the i-th phase is shown in (41)~(43), j and k represent phase different from i;

质量守恒方程:Mass Conservation Equation:

Figure BDA0003488789830000241
Figure BDA0003488789830000241

动量守恒方程:Momentum Conservation Equation:

Figure BDA0003488789830000242
Figure BDA0003488789830000242

能量守恒方程:Energy Conservation Equation:

Figure BDA0003488789830000243
Figure BDA0003488789830000243

式中:In the formula:

t——时间/st——time/s

αi——i相的体积份额α i ——volume fraction of phase i

ρi——i相的密度/kg·m-3 ρ i ——density of phase i/kg·m -3

Figure BDA0003488789830000244
——i相的速度/m·s-1
Figure BDA0003488789830000244
——Velocity of phase i/m·s -1

Γji——单位时间单位体积内,j相转变为i相的质量/kg·m-3·s-1 Γ ji —mass of phase j transformed into phase i in unit time and unit volume/kg m -3 s -1

Γki——单位时间单位体积内,k相转变为i相的质量/kg·m-3·s-1 Γ ki —mass of phase k transformed into phase i per unit time and unit volume/kg m -3 s -1

Γs——单位时间单位体积内,外质量源产生的质量/kg·m-3·s-1 Γ s ——mass produced by the external mass source per unit time and unit volume/kg m -3 s -1

P——压力/PaP——pressure/Pa

x——表示与i相不同的另外两相,即j相或k相x——Indicates the other two phases different from phase i, that is, phase j or phase k

Cxi——x相与i相之间的摩擦系数C xi ——the coefficient of friction between phase x and phase i

Figure BDA0003488789830000245
——x相的速度/m·s-1
Figure BDA0003488789830000245
——Velocity of phase x/m s -1

Cwi——i相与墙壁之间的摩擦系数C wi —coefficient of friction between phase i and the wall

Figure BDA0003488789830000251
——重力加速度/m·s-2
Figure BDA0003488789830000251
——Gravity acceleration/m·s -2

ui——单位质量i相的内能/J·kg-1 u i ——internal energy per unit mass of phase i/J·kg -1

Hji——单位质量j相转变为i相的焓值变化量/J·kg-1 H ji ——The enthalpy change of phase j to phase i per unit mass/J kg -1

Hki——单位质量k相转变为i相的焓值变化量/J·kg-1 H ki ——the enthalpy change of unit mass phase k to phase i/J kg -1

Qji——单位时间单位体积内,j相向i相传递的热量/W·m-3 Q ji ——The amount of heat transferred from phase j to phase i in unit time and unit volume/W·m -3

Qki——单位时间单位体积内,k相向i相传递的热量/W·m-3 Q ki ——the heat transferred from phase k to phase i in unit time and unit volume/W·m -3

Qs——单位时间单位体积内,外热量源产生的热量/W·m-3Q s ——the heat generated by the external heat source per unit time and unit volume/W·m -3 .

Claims (1)

1.一种核反应堆蒸汽爆炸二维计算方法,其特征在于:包括以下步骤:1. A nuclear reactor steam explosion two-dimensional calculation method is characterized in that: comprise the following steps: 步骤1、确定核反应堆计算区域的几何结构及严重事故下环境压力、温度参数,输入熔融物射流直径、温度、速度,设定结束时间并初始化参数;Step 1. Determine the geometric structure of the nuclear reactor calculation area and the environmental pressure and temperature parameters under severe accidents, input the diameter, temperature and speed of the molten material jet, set the end time and initialize the parameters; 步骤2:根据物性表插值计算熔融物、水蒸气、水的物性;Step 2: Calculate the physical properties of melt, water vapor and water according to the interpolation table of physical properties; 步骤3:计算熔融物、水、蒸汽之间因相间摩擦产生的动量改变量;Step 3: Calculate the momentum change between the melt, water, and steam due to interphase friction; 在熔融物与水相互作用过程中,熔融物、水、蒸汽之间存在相间摩擦,离散相p与连续相c之间因相间摩擦产生的动量改变量表示为:During the interaction between the melt and water, there is interphase friction between the melt, water, and steam, and the momentum change between the discrete phase p and the continuous phase c due to interphase friction is expressed as:
Figure FDA0004035878210000011
Figure FDA0004035878210000011
Figure FDA0004035878210000012
Figure FDA0004035878210000012
式中:In the formula: Ipc——单位时间单位体积内离散相与连续相之间因相间摩擦产生的动量改变量/kg·m-2s-2 I pc —momentum change between the discrete phase and the continuous phase due to interphase friction per unit time and unit volume/kg m -2 s -2 Cpc——离散相与连续相之间的摩擦系数C pc —coefficient of friction between the discrete phase and the continuous phase Dp——离散相的直径/mD p ——diameter of discrete phase/m αp——离散相的体积份额α p ——volume fraction of discrete phase Cdpc——离散相与连续相之间的阻力系数Cd pc ——the resistance coefficient between the discrete phase and the continuous phase ρc——连续相密度/kg·m-3 ρ c ——continuous phase density/kg·m -3
Figure FDA0004035878210000013
——连续相与离散相的相对矢量速度/m·s-1
Figure FDA0004035878210000013
——the relative vector velocity of continuous phase and discrete phase/m s -1
Rec——连续相的雷诺数Re c - the Reynolds number of the continuous phase 步骤4:计算熔融物、水、蒸汽之间传递的热量;Step 4: Calculate the heat transferred between the melt, water and steam; 蒸汽和水之间的传热发生在蒸汽与水的相界面上,假设蒸汽与水的相界面处于饱和温度,蒸汽和水向相界面传递的热量分别为:The heat transfer between steam and water occurs at the phase interface between steam and water. Assuming that the phase interface between steam and water is at the saturation temperature, the heat transferred by steam and water to the phase interface is: Qvi=hviAvl(Tv-Tsat) (3)Q vi =h vi A vl (T v -T sat ) (3) Qli=hliAvl(Tl-Tsat) (4)Q li =h li A vl (T l -T sat ) (4) 熔融物向蒸汽、水传递的热量表示为:The heat transferred from the melt to steam and water is expressed as: Qmv=hmvAmv(Tm-Tv) (5)Q mv =h mv A mv (T m -T v ) (5) Qml=hmlAml(Tm-Tl) (6)Q ml =h ml A ml (T m -T l ) (6)
Figure FDA0004035878210000021
Figure FDA0004035878210000021
Figure FDA0004035878210000022
Figure FDA0004035878210000022
Figure FDA0004035878210000023
Figure FDA0004035878210000023
式中:In the formula: Qvi——单位时间单位体积内,蒸汽向相界面传递的热量/W·m-3 Q vi ——in unit time and unit volume, the heat transferred from steam to phase interface/W·m -3 Qli——单位时间单位体积内,水向相界面传递的热量/W·m-3 Q li ——the heat transferred from water to the phase interface in unit time and unit volume/W·m -3 Qmv——单位时间单位体积内,熔融物向蒸汽传递的热量/W·m-3 Q mv —— heat transfer from melt to steam in unit time and unit volume/W·m -3 Qml——单位时间单位体积内,熔融物向水传递的热量/W·m-3 Q ml ——the heat transferred from melt to water in unit time and unit volume/W·m -3 hvi——蒸汽与相界面的传热系数/W·m-3·K-1 h vi ——heat transfer coefficient between steam and phase interface/W m -3 K -1 hli——水与相界面的传热系数/W·m-3·K-1 h li ——heat transfer coefficient between water and phase interface/W m -3 K -1 hmv——熔融物与蒸汽之间的传热系数/W·m-3·K-1 h mv ——Heat transfer coefficient between melt and steam/W m -3 K -1 hml——熔融物与水之间的传热系数/W·m-3·K-1 h ml ——Heat transfer coefficient between melt and water/W m -3 K -1 Avl——单位体积内水与蒸汽的传热面积/m2·m-3 A vl ——the heat transfer area of water and steam per unit volume/m 2 ·m -3 Amv——单位体积内熔融物与蒸汽的传热面积/m2·m-3 A mv ——heat transfer area of melt and steam per unit volume/m 2 ·m -3 Aml——单位体积内熔融物与水的传热面积/m2·m-3 A ml ——Heat transfer area between melt and water per unit volume/m 2 ·m -3 Tv——蒸汽温度/KT v —— steam temperature/K Tl——水的温度/KT l ——water temperature/K Tsat——水的饱和温度/KT sat ——water saturation temperature/K Tm——熔融物的温度/KT m ——The temperature of the melt/K αm——熔融物的体积份额α m ——The volume fraction of the melt αv——蒸汽的体积份额α v ——Volume fraction of steam αl——水的体积份额α l ——volume fraction of water Dm——熔融物液滴的直径/mD m ——the diameter of the melt droplet/m S——水饱和度,即水占除熔融物外流体的体积分数S—water saturation, that is, the volume fraction of water in fluids other than melt 根据流动形态和沸腾方式不同,相间传热系数和传热面积的计算方式也不同,分为以下几种情况:According to different flow patterns and boiling methods, the calculation methods of interphase heat transfer coefficient and heat transfer area are also different, which can be divided into the following situations: 1)泡状流条件下水和蒸汽与相界面的传热系数以及传热面积1) Heat transfer coefficient and heat transfer area between water and steam and phase interface under bubbly flow conditions hvi=1000 (10)h vi =1000 (10)
Figure FDA0004035878210000031
Figure FDA0004035878210000031
Figure FDA0004035878210000032
Figure FDA0004035878210000032
Figure FDA0004035878210000033
Figure FDA0004035878210000033
式中:In the formula: Nul——水的努塞尔数Nu l - Nusselt number of water Dv——泡状流中气泡的直径/mD v ——diameter of bubbles in bubbly flow/m kl——水的导热系数/W·m-1·K-1 k l ——The thermal conductivity of water/W m -1 K -1 Prl——水的普朗特数Pr l — Prandtl number of water Rel——水的雷诺数Re l - Reynolds number of water vol——控制体的体积/m-3 vol - the volume of the control body/m -3 2)弥散流条件下水和蒸汽与相界面的传热系数以及传热面积2) Heat transfer coefficient and heat transfer area between water and steam and phase interface under the condition of diffuse flow
Figure FDA0004035878210000041
Figure FDA0004035878210000041
Figure FDA0004035878210000042
Figure FDA0004035878210000042
Figure FDA0004035878210000043
Figure FDA0004035878210000043
Figure FDA0004035878210000044
Figure FDA0004035878210000044
式中:In the formula: Nuv——蒸汽的努塞尔数Nu v —— Nusselt number of steam Dl——弥散流水滴直径/mD l ——diameter of dispersed water droplet/m kv——蒸汽的热传导系数/W·m-1·K-1 k v ——heat transfer coefficient of steam/W m -1 K -1 Prv——蒸汽的普朗特数Pr v —— Prandtl number of steam Rev——蒸汽的雷诺数Rev - Reynolds number of steam ρl——水的密度/kg·m-3 ρ l ——density of water/kg·m -3 Cpl——水的比热/J·kg-1·K-1 Cp l ——Specific heat of water/J kg -1 K -1
Figure FDA0004035878210000045
——水与蒸汽的相对速度/m·s-1
Figure FDA0004035878210000045
——The relative speed of water and steam/m·s -1
3)过渡流条件下水和蒸汽与相界面的传热系数以及传热面积3) Heat transfer coefficient and heat transfer area between water and steam and phase interface under transitional flow conditions 当水饱和度在0.25到0.75的范围内时,认为当前为过渡流状态;在这种状态下,通过在临界泡状流即水饱和度S=0.75,和临界弥散流即水饱和度S=0.25计算的值之间进行线性插值,得到传热系数和传热面积;When the water saturation is in the range of 0.25 to 0.75, it is considered to be a transitional flow state; in this state, through the critical bubbly flow, that is, the water saturation S=0.75, and the critical diffuse flow, that is, the water saturation S= Perform linear interpolation between the values calculated at 0.25 to obtain the heat transfer coefficient and heat transfer area; hvi=(1-f1)hvi,mist+f1hvi,bubbly (18)h vi =(1-f 1 )h vi,mist +f 1 h vi,bubbly (18) hli=(1-f1)hli,mist+f1hli,bubbly (19)h li =(1-f 1 )h li,mist +f 1 h li,bubbly (19) Avl=(1-f1)Avl,mist+f1Avl,bubbly (20)A vl =(1-f 1 )A vl,mist +f 1 A vl,bubbly (20)
Figure FDA0004035878210000051
Figure FDA0004035878210000051
式中:In the formula: hvi,mist——弥散流蒸汽与相界面的传热系数/W·m-3·K-1 h vi,mist ——heat transfer coefficient between diffuse flow steam and phase interface/W m -3 K -1 hvi,bubbly——泡状流蒸汽与相界面的传热系数/W·m-3·K-1 h vi,bubbly ——heat transfer coefficient between bubbly steam and phase interface/W m -3 K -1 hli,mist——弥散流水与相界面的传热系数/W·m-3·K-1 h li,mist ——heat transfer coefficient between dispersed flowing water and phase interface/W m -3 K -1 hli,bubbly——泡状流水与相界面的传热系数/W·m-3·K-1 h li,bubbly ——heat transfer coefficient between bubbly flowing water and phase interface/W m -3 K -1 Avl,mist——单位体积内弥散流状态水与蒸汽的传热面积/m2·m-3 A vl,mist — heat transfer area of water and steam in diffuse flow state per unit volume/m 2 ·m -3 Avl,bubbly——单位体积内泡状流状态水与蒸汽的传热面积/m2·m-3 A vl,bubbly ——the heat transfer area of water and steam in bubbly flow state per unit volume/m 2 ·m -3 4)对流条件下熔融物与冷却剂的传热系数4) Heat transfer coefficient between melt and coolant under convective conditions
Figure FDA0004035878210000052
Figure FDA0004035878210000052
Figure FDA0004035878210000053
Figure FDA0004035878210000053
自然对流:Natural convection: Nunc=2.0+0.6Grco 1/4Prco 1/3 (24)Nu nc =2.0+0.6Gr co 1/4 Pr co 1/3 (24) 强迫对流:Forced convection:
Figure FDA0004035878210000061
Figure FDA0004035878210000061
式中:In the formula: hm,co——熔融物与冷却剂的传热系数/W·m-3·K-1 h m,co ——Heat transfer coefficient between melt and coolant/W m -3 K -1 Nuco——冷却剂的努塞尔数Nu co — Nusselt number of coolant Nunc——自然对流条件下冷却剂的努塞尔数Nu nc — Nusselt number of the coolant under natural convection conditions Nufc——强迫对流条件下冷却剂的努塞尔数Nu fc — Nusselt number of the coolant under forced convection conditions kco——冷却剂的热传导系数/W·m-1·K-1 k co ——Coefficient of thermal conductivity of coolant/W m -1 K -1 Grco——冷却剂的格拉晓夫数Gr co - the Grashof number of the coolant Prco——冷却剂的普朗特数Pr co - the Prandtl number of the coolant Reco——冷却剂的雷诺数Re co - the Reynolds number of the coolant 5)核态沸腾条件下熔融物与冷却剂的传热系数5) Heat transfer coefficient between melt and coolant under nucleate boiling conditions 核态沸腾条件下,使用陈氏公式计算熔融物和水之间的传热系数;使用插值方法计算熔融物与蒸汽的传热系数,使熔融物与蒸汽的传热系数在Tm=Tsat时为零,在Tm=TCHF时为CHF点的传热系数值,Tm在Tsat和TCHF之间时,熔融物与蒸汽的传热系数通过插值方式计算:Under nucleate boiling conditions, use Chen's formula to calculate the heat transfer coefficient between the melt and water; use the interpolation method to calculate the heat transfer coefficient between the melt and steam, so that the heat transfer coefficient between the melt and steam is at T m = T sat When T m = T CHF , it is the value of the heat transfer coefficient at the CHF point. When T m is between T sat and T CHF , the heat transfer coefficient between the melt and the steam is calculated by interpolation: hmv=(3y2-2y3)hmv,film(TCHF) (26)h mv =(3y 2 -2y 3 )h mv,film (T CHF ) (26)
Figure FDA0004035878210000062
Figure FDA0004035878210000062
式中:In the formula: hmv,film(TCHF)——Tm=TCHF时CHF点对应的熔融物与蒸汽的传热系数/W·m-3·K-1 h mv,film (T CHF )——Heat transfer coefficient between melt and steam corresponding to CHF point when T m =T CHF /W·m -3 ·K -1 TCHF——发生临界热流密度时的熔融物温度/KT CHF ——melt temperature when critical heat flux occurs/K 6)膜态沸腾条件下熔融物与冷却剂的传热系数6) Heat transfer coefficient between melt and coolant under film boiling conditions 膜态沸腾条件下,熔融物与水的传热系数使用下式计算:Under film boiling conditions, the heat transfer coefficient between the melt and water is calculated using the following formula: hml=max(hfree,hforce)+hrad (28)h ml =max(h free ,h force )+h rad (28) 使用Dhir-Purohit关系式计算hfree,使用Epstein-Hauser关系式计算hforce,熔融物与水的辐射传热系数hrad为:Use the Dhir-Purohit relation to calculate h free , use the Epstein-Hauser relation to calculate h force , and the radiation heat transfer coefficient h rad between the melt and water is:
Figure FDA0004035878210000071
Figure FDA0004035878210000071
ε=αvl (30)ε=α vl (30) 在膜沸腾中,熔融物到蒸汽的传热系数设置为零;In film boiling, the melt-to-vapor heat transfer coefficient is set to zero; 式中:In the formula: hfree——熔融物与水的相对速度很小时的传热系数/W·m-3·K-1 h free ——Heat transfer coefficient when the relative velocity between melt and water is small/W m -3 K -1 hforce——熔融物与水的相对速度差较大时的传热系数/W·m-3·K-1 h force ——the heat transfer coefficient when the relative speed difference between the melt and water is large/W m -3 K -1 σ——玻尔兹曼常数/W·m-2·K-4 σ——Boltzmann constant/W m -2 K -4 ε——冷却剂体积份额ε——coolant volume fraction 7)过渡沸腾条件下熔融物与冷却剂的传热系数7) Heat transfer coefficient between melt and coolant under transition boiling conditions 假设熔融物与水的热流密度近似为临界热流密度qCHF和最小稳定膜沸腾热流密度qmin之间的插值;应用的插值公式为:The heat flux of the melt to water is assumed to be approximately an interpolation between the critical heat flux qCHF and the minimum stable film boiling heat flux qmin ; the interpolation formula applied is:
Figure FDA0004035878210000072
Figure FDA0004035878210000072
f1=(3y2-2y3) (32)f 1 =(3y 2 -2y 3 ) (32)
Figure FDA0004035878210000073
Figure FDA0004035878210000073
Figure FDA0004035878210000081
Figure FDA0004035878210000081
假设熔融物与蒸汽的传热系数能够通过在临界热流密度传热系数和最小稳定膜沸腾传热系数之间进行插值来近似计算;应用的插值公式为:It is assumed that the heat transfer coefficient of the melt to the steam can be approximated by interpolating between the critical heat flux heat transfer coefficient and the minimum stable film boiling heat transfer coefficient; the interpolation formula applied is: hmv=f1hmvCHF+(1-f1)hmvmin (35)h mv =f 1 h mvCHF +(1-f 1 )h mvmin (35) 式中:In the formula: qCHF——临界热流密度/W·m-2 q CHF ——Critical Heat Flux/W·m -2 qmin,rad——考虑辐射传热的最小膜态沸腾热流密度/W·m-2 q min,rad ——minimum film boiling heat flux considering radiation heat transfer/W·m -2 qmin——不考虑辐射传热的最小膜态沸腾热流密度/W·m-2 q min ——Minimum film boiling heat flux without considering radiation heat transfer/W·m -2 Tmin——最小稳定膜态沸腾温度/KT min ——Minimum stable film boiling temperature/K hmvCHF——临界热流密度时熔融物与蒸汽的传热系数/W·m-3·K-1 h mvCHF ——heat transfer coefficient between melt and steam at critical heat flux/W m -3 K -1 hmvmin——熔融物温度等于最小稳定膜态沸腾温度时熔融物与蒸汽的传热系数/W·m-3·K-1 h mvmin ——the heat transfer coefficient between the melt and steam when the melt temperature is equal to the minimum stable film boiling temperature/W m -3 K -1 步骤5:判定熔融物液滴是否碎裂,计算熔融物碎裂过程中的直径变化速率;Step 5: Determine whether the melt droplet is fragmented, and calculate the diameter change rate during the melt fragmentation process; 熔融物在冷却剂中的碎裂分为两种情况:(1)熔融物注入水中受到水力学不稳定性而发生的粗混合碎裂;(2)熔融物液滴受到热力学作用发生的细碎裂;The fragmentation of the melt in the coolant is divided into two situations: (1) the coarse mixing fragmentation of the melt injected into the water due to hydraulic instability; (2) the fine fragmentation of the melt droplets by the thermodynamic action crack; 粗混合情况下,只有满足下式碎裂准则,熔融物才会发生碎裂:In the case of coarse mixing, the melt will be fragmented only if the following fragmentation criterion is satisfied:
Figure FDA0004035878210000082
Figure FDA0004035878210000082
Figure FDA0004035878210000083
Figure FDA0004035878210000083
Ae*表示修正气动弹性系数:Ae * denotes the modified aeroelastic coefficient:
Figure FDA0004035878210000091
Figure FDA0004035878210000091
碎裂使用Pilch理论的碎裂模型计算粗混合情况下熔融物直径变化速率:Fragmentation Calculate the rate of change of melt diameter for coarse mixing using the fragmentation model of Pilch theory:
Figure FDA0004035878210000092
Figure FDA0004035878210000092
细碎裂发生期间,熔融物碎裂质量变化率由下式计算:During the occurrence of fine fragmentation, the mass change rate of melt fragmentation is calculated by the following formula:
Figure FDA0004035878210000093
Figure FDA0004035878210000093
式中:In the formula: vr——熔融物与冷却剂的相对速度/m·s-1 v r ——relative speed of melt and coolant/m·s -1 ρco——冷却剂的平均密度/kg·m-3 ρ co ——average density of coolant/kg·m -3 ρm——熔融物的密度/kg·m-3 ρ m ——density of melt/kg·m -3 We——韦伯数We - Weber number Wecri——临界韦伯数,取4πWe cri ——Critical Weber number, take 4π Ae——修正气动弹性系数Ae——Corrected aeroelastic coefficient Ae* cri——临界修正气动弹性系数,取8π3 Ae * cri ——Critical corrected aeroelastic coefficient, take 8π 3 σm——熔融物表面张力/N·s-1 σ m ——surface tension of melt/N·s -1 χ——熔融物材料的泊松比χ—Poisson’s ratio of the melt material δ——熔融物液滴表面凝固外壳厚度/mδ—thickness of the solidified shell on the surface of the melt droplet/m E——熔融物凝固后的杨氏模量/PaE——Young's modulus after solidification of the melt/Pa mfrag——已细碎裂的熔融物质量/kgm frag ——the amount of molten material that has been finely fragmented/kg Cf——细碎裂常数C f —— fine fragmentation constant mi——控制体内熔融物质量/kgm i ——the amount of molten material in the control body/kg P——压力/PaP——pressure/Pa Pth——细碎裂压力阈值/PaP th ——threshold of fine fragmentation pressure/Pa 步骤6:使用预估计算稳定法求解质量、动量、能量守恒方程,将数据保存到输出文件中,若未达到设置的结束时间,跳到步骤2进行下一时间步的计算,若已达到设置的结束时间,则停止计算;Step 6: Use the estimated stability method to solve the mass, momentum, and energy conservation equations, and save the data to the output file. If the set end time has not been reached, skip to step 2 to calculate the next time step. If it has reached the set the end time, stop calculation; 采用预估计算稳定法求解热工水力方程,该方法主要分三步:(1)使用上一时间步的压力求解动量守恒方程得到速度的预测值;(2)将预测的速度表示为这一时间步压力的函数,并与质量、能量守恒方程形成关于压力的方程组,该方程组通过压力迭代进行求解得到这一时间步的压力、速度、空泡份额及温度;(3)利用这一时间步的压力求解质量、能量守恒方程得到各相宏观密度,内能,作为下一时间步中质量、能量守恒方程中对应的量;The thermal-hydraulic equation is solved by the pre-estimation calculation stability method. This method is mainly divided into three steps: (1) use the pressure of the previous time step to solve the momentum conservation equation to obtain the predicted value of the velocity; (2) express the predicted velocity as this The function of the time step pressure, and form a pressure equation system with the mass and energy conservation equations, which can be solved by pressure iteration to obtain the pressure, velocity, void fraction and temperature of this time step; (3) use this Solve the mass and energy conservation equations for the pressure of the time step to obtain the macroscopic density and internal energy of each phase, which will be used as the corresponding quantities in the mass and energy conservation equations in the next time step; 采用圆柱坐标系下的多流体欧拉方法,考虑了蒸汽、水和熔融物三相之间的相互作用,对于第i相的守恒方程如(41)~(43)所示,j和k表示和i不同的相;Using the multi-fluid Euler method in the cylindrical coordinate system, the interaction among the three phases of steam, water and melt is considered. The conservation equation for the i-th phase is shown in (41)~(43), j and k represent phase different from i; 质量守恒方程:Mass Conservation Equation:
Figure FDA0004035878210000101
Figure FDA0004035878210000101
动量守恒方程:Momentum Conservation Equation:
Figure FDA0004035878210000102
Figure FDA0004035878210000102
能量守恒方程:Energy Conservation Equation:
Figure FDA0004035878210000103
Figure FDA0004035878210000103
式中:In the formula: t——时间/st——time/s αi——i相的体积份额α i ——volume fraction of phase i ρi——i相的密度/kg·m-3 ρ i ——density of phase i/kg·m -3
Figure FDA0004035878210000111
——i相的速度/m·s-1
Figure FDA0004035878210000111
——Velocity of phase i/m·s -1
Γji——单位时间单位体积内,j相转变为i相的质量/kg·m-3·s-1 Γ ji —mass of phase j transformed into phase i in unit time and unit volume/kg m -3 s -1 Γki——单位时间单位体积内,k相转变为i相的质量/kg·m-3·s-1 Γ ki —mass of phase k transformed into phase i per unit time and unit volume/kg m -3 s -1 Γs——单位时间单位体积内,外质量源产生的质量/kg·m-3·s-1 Γ s ——mass produced by the external mass source per unit time and unit volume/kg m -3 s -1 x——表示与i相不同的另外两相,即j相或k相x——Indicates the other two phases different from phase i, that is, phase j or phase k Cxi——x相与i相之间的摩擦系数C xi ——the coefficient of friction between phase x and phase i
Figure FDA0004035878210000112
——x相的速度/m·s-1
Figure FDA0004035878210000112
——Velocity of phase x/m s -1
Cwi——i相与墙壁之间的摩擦系数C wi —coefficient of friction between phase i and the wall
Figure FDA0004035878210000113
——重力加速度/m·s-2
Figure FDA0004035878210000113
——Gravity acceleration/m·s -2
ui——单位质量i相的内能/J·kg-1 u i ——internal energy per unit mass of phase i/J·kg -1 Hji——单位质量j相转变为i相的焓值变化量/J·kg-1 H ji ——The enthalpy change of phase j to phase i per unit mass/J kg -1 Hki——单位质量k相转变为i相的焓值变化量/J·kg-1 H ki ——the enthalpy change of unit mass phase k to phase i/J kg -1 Qji——单位时间单位体积内,j相向i相传递的热量/W·m-3 Q ji ——The amount of heat transferred from phase j to phase i in unit time and unit volume/W·m -3 Qki——单位时间单位体积内,k相向i相传递的热量/W·m-3 Q ki ——the heat transferred from phase k to phase i in unit time and unit volume/W·m -3 Qs——单位时间单位体积内,外热量源产生的热量/W·m-3Q s ——the heat generated by the external heat source per unit time and unit volume/W·m -3 .
CN202210089939.4A 2022-01-25 2022-01-25 Two-dimensional calculation method for nuclear reactor steam explosion Active CN114417229B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210089939.4A CN114417229B (en) 2022-01-25 2022-01-25 Two-dimensional calculation method for nuclear reactor steam explosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210089939.4A CN114417229B (en) 2022-01-25 2022-01-25 Two-dimensional calculation method for nuclear reactor steam explosion

Publications (2)

Publication Number Publication Date
CN114417229A CN114417229A (en) 2022-04-29
CN114417229B true CN114417229B (en) 2023-02-28

Family

ID=81276862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210089939.4A Active CN114417229B (en) 2022-01-25 2022-01-25 Two-dimensional calculation method for nuclear reactor steam explosion

Country Status (1)

Country Link
CN (1) CN114417229B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094219B2 (en) * 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
FR3004558B1 (en) * 2013-04-10 2015-05-15 Areva Np METHODS OF SIMULATING THE FLOW OF A FLUID IN A NUCLEAR REACTOR TANK AND CALCULATING THE MECHANICAL DEFORMATION OF ASSEMBLIES OF A NUCLEAR REACTOR HEART, AND ASSOCIATED COMPUTER PROGRAM PRODUCTS
CN107832573B (en) * 2017-07-28 2021-04-20 中冶华天工程技术有限公司 Numerical calculation method for predicting mass-thermal coupling process of flue gas circulation sintering
CN108563840B (en) * 2018-03-23 2019-02-26 西安交通大学 A Comprehensive Analysis Method of Nuclear Reactor Steam Explosion

Also Published As

Publication number Publication date
CN114417229A (en) 2022-04-29

Similar Documents

Publication Publication Date Title
Meignen et al. The challenge of modeling fuel–coolant interaction: Part II–Steam explosion
Yakush et al. Effects of water pool subcooling on the debris bed spreading by coolant flow
Zhang et al. Experimental investigation on the interaction characteristics of lead‑bismuth liquid metal and water
Zhang et al. Study of the heat transfer deterioration of supercritical CO2 in vertical pipes using a hybrid RANS/LES method
CN114417229B (en) Two-dimensional calculation method for nuclear reactor steam explosion
Davis et al. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with Lead-Bismuth coolant
Loktionov et al. Features of heat and deformation behavior of a VVER-600 reactor pressure vessel under conditions of inverse stratification of corium pool and worsened external vessel cooling during the severe accident. Part 2. Creep deformation and failure of the reactor pressure vessel
Li et al. Numerical study of flashing pipe flow using a TFM-PBM coupled method: Effect of interfacial heat transfer and bubble coalescence and breakup
Narayanan et al. Numerical predictions of the flow and heat transfer characteristics in the film boiling regime during tube quenching
Lucas et al. On the simulation of two-phase flow pressurized thermal shock (PTS)
Khalil et al. Aerodynamics of a trapped vortex combustor: A comparative assessment of RANS based CFD models
Chen et al. Development of a solidification model for TEXAS-VI code and application to FARO L14 analysis
Papukchiev et al. Extension and application of the coupled 1D-3D thermal-hydraulic code ATHLET-ANSYS CFX for the simulation of liquid metal coolant flows in advanced reactor concepts
Lei et al. Numerical analysis on heat-transfer deterioration of supercritical fluid in the vertical upward tubes
Ghione Improvement of the nuclear safety code CATHARE based on thermal-hydraulic experiments for the Jules Horowitz Reactor
Kim et al. Development of a semi-empirical model-based COrium COolability analysis tool (COCOA) validated against a large scale corium experiment, FARO
Bohl et al. The advanced fluid dynamics model program: scope and accomplishment
Park et al. Assessment of the CUPID code applicability to the thermal-hydraulic analysis of a CANDU moderator system
Tran et al. The effective convectivity model for simulation of molten metal layer heat transfer in a boiling water reactor lower head
Vasiliev et al. Possibility of Hydrogen Stratification under Accident Conditions with Loss of Coolant from the Cooling System into the Tokamak Vacuum Vessel
Wang et al. A neutronics–thermal coupling-based rapid assessment method for molten salt reactor fuel draining system
Hao et al. Thermal hydraulic analysis of china spallation neutron source target system under abnormal situations
Roth et al. Development of governing equations based on six fields for the RELAP code
Anglart Dry patch formation in diabatic annular two-phase flows
Ji et al. Computational Fluid Dynamics Simulation of Direct-Contact Condensation Phenomenon of Vapor Jet in Subcooled Water Tank

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant