CN114415435A - Multicolor electrochromic device and method of making the same, display panel, and display device - Google Patents
Multicolor electrochromic device and method of making the same, display panel, and display device Download PDFInfo
- Publication number
- CN114415435A CN114415435A CN202111520807.4A CN202111520807A CN114415435A CN 114415435 A CN114415435 A CN 114415435A CN 202111520807 A CN202111520807 A CN 202111520807A CN 114415435 A CN114415435 A CN 114415435A
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- substrate
- electrochromic
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 239000000758 substrate Substances 0.000 claims description 127
- 229910052751 metal Inorganic materials 0.000 claims description 116
- 239000002184 metal Substances 0.000 claims description 116
- 239000000463 material Substances 0.000 claims description 72
- 239000003792 electrolyte Substances 0.000 claims description 40
- 238000010521 absorption reaction Methods 0.000 claims description 35
- 229910052719 titanium Inorganic materials 0.000 claims description 20
- 239000011521 glass Substances 0.000 claims description 18
- 229910052737 gold Inorganic materials 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 229910000510 noble metal Inorganic materials 0.000 claims description 12
- 229910052723 transition metal Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 150000003624 transition metals Chemical class 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 229910005329 FeSi 2 Inorganic materials 0.000 claims description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 7
- 239000011888 foil Substances 0.000 claims description 7
- 239000011244 liquid electrolyte Substances 0.000 claims description 6
- 230000005684 electric field Effects 0.000 claims description 5
- 239000011245 gel electrolyte Substances 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000007784 solid electrolyte Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 abstract description 13
- 238000002310 reflectometry Methods 0.000 abstract description 11
- 230000008859 change Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 67
- 239000010931 gold Substances 0.000 description 31
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 25
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 25
- 238000010586 diagram Methods 0.000 description 24
- 239000013225 prussian blue Substances 0.000 description 23
- 229960003351 prussian blue Drugs 0.000 description 22
- 239000003086 colorant Substances 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 229920000128 polypyrrole Polymers 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 10
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910000314 transition metal oxide Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 7
- 239000000565 sealant Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229920001940 conductive polymer Polymers 0.000 description 6
- 238000004070 electrodeposition Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 150000002902 organometallic compounds Chemical class 0.000 description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000005566 electron beam evaporation Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000009877 rendering Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000013522 chelant Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000002077 nanosphere Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- FIKAKWIAUPDISJ-UHFFFAOYSA-L paraquat dichloride Chemical compound [Cl-].[Cl-].C1=C[N+](C)=CC=C1C1=CC=[N+](C)C=C1 FIKAKWIAUPDISJ-UHFFFAOYSA-L 0.000 description 3
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000002207 thermal evaporation Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910005331 FeSi2 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002042 Silver nanowire Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000002238 carbon nanotube film Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- MZSDGDXXBZSFTG-UHFFFAOYSA-M sodium;benzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC=C1 MZSDGDXXBZSFTG-UHFFFAOYSA-M 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/155—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/157—Structural association of cells with optical devices, e.g. reflectors or illuminating devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/155—Electrodes
- G02F2001/1552—Inner electrode, e.g. the electrochromic layer being sandwiched between the inner electrode and the support substrate
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及显示技术领域,尤其涉及一种多色电致变色器件及其制作方法、显示面板、显示装置。The present invention relates to the field of display technology, and in particular, to a multi-color electrochromic device and a manufacturing method thereof, a display panel and a display device.
背景技术Background technique
传统的显示屏(如液晶显示器、有机发光二极管显示)使用背光或自发光在屏幕上显示文本或图像,这种显示在室内弱环境光下使用效果很好,但在室外强环境光下使用时,由于环境光在屏幕表面的反射光强大幅增加,降低了显示屏对比度,严重影响观看效果。Traditional displays (such as liquid crystal displays, organic light-emitting diode displays) use backlighting or self-illumination to display text or images on the screen. Such displays work well in low ambient light indoors, but when used outdoors in strong ambient light , because the reflected light intensity of ambient light on the screen surface is greatly increased, the contrast of the display screen is reduced, and the viewing effect is seriously affected.
反射显示由于其低功耗、优异的户外可读性、质量轻和护眼等优势,一直受到显示技术研究者的青睐。但反射显示由于在光学设计上存在诸多挑战,一直无法实现与用于室内显示的传统显示屏相同的显示效果。在透射显示或自发光显示中,光效低的问题可简单的通过增加功耗来解决。但对于反射显示技术,因其不需要内部光源,像素的低光效将直接导致图像质量的下降。Reflective displays have always been favored by display technology researchers due to their low power consumption, excellent outdoor readability, light weight, and eye protection. However, reflective displays have been unable to achieve the same display effect as traditional displays used for indoor displays due to many challenges in optical design. In transmissive display or self-luminous display, the problem of low light efficiency can be solved simply by increasing the power consumption. However, for reflective display technology, because it does not require an internal light source, the low light efficiency of the pixel will directly lead to the degradation of image quality.
常见的反射显示技术有反射液晶显示技术和电子墨水(E-ink) 显示。反射液晶显示具有高刷新率、可彩色显示等优点,已被用于教育平板、户外工控显示等领域,但由于其在偏光片和彩膜上的光效损失,以及增加定向散射膜或漫反射结构后,光效和视角的平衡问题,导致其显示效果较差。电子墨水显示具有黑白显示高对比度和大视角的优点,已被用于电子书显示屏、电子价签和智能会议显示屏等领域,但在开发彩色显示屏时也面临低光效的问题,以及其自身工作原理限制的低刷新率问题,极大地限制了电子墨水显示在其他领域的广泛应用。Common reflective display technologies include reflective liquid crystal display technology and electronic ink (E-ink) display. Reflective liquid crystal displays have the advantages of high refresh rate and color display, and have been used in educational flat panel, outdoor industrial control display and other fields, but due to the loss of light efficiency on polarizers and color filters, and the addition of directional scattering films or diffuse reflections After the structure, the balance of light effect and viewing angle leads to poor display effect. E-ink display has the advantages of high contrast ratio and large viewing angle of black and white display, and has been used in the fields of e-book display, electronic price tag and smart conference display, but it also faces the problem of low light efficiency when developing color display, and The problem of low refresh rate limited by its own working principle greatly limits the wide application of electronic ink display in other fields.
电致变色器件是通过控制外加电场调节电致变色层材料的结构和光学常数(折射率和消光系数),使电致变色器件的光学属性(反射率、透过率或吸收率)发生改变,在外观上表现为稳定、可逆的颜色变化。因此,电致变色器件在原理上可以用于透射显示或反射显示。然而,对于特定电致变色材料或用其制备的电致变色器件,其颜色变化有限,尤其是性能较稳定的无机电致变色材料一般只有两种颜色的变化,这大大限制了电致变色在显示、伪装和成像设备等领域的应用。The electrochromic device is to adjust the structure and optical constants (refractive index and extinction coefficient) of the electrochromic layer material by controlling the external electric field, so that the optical properties (reflectivity, transmittance or absorptivity) of the electrochromic device are changed. Appears as a stable, reversible color change. Therefore, electrochromic devices can in principle be used for transmissive or reflective displays. However, for specific electrochromic materials or electrochromic devices prepared with them, the color change is limited, especially for inorganic electrochromic materials with relatively stable properties, which generally only have two color changes, which greatly limits the application of electrochromic Applications in display, camouflage, and imaging devices.
专利CN104423114A公开了一种全固态电致变色复合器件,通过 PVD装饰镀颜色层与电致变色层复合形成多种颜色,但调制颜色范围有限,如浅绿色到蓝色之间变换、黑色到墨蓝色之间变换等。专利 CN111624829A公开了一种多彩电致变色结构,由金属反射层和电致变色材料层组成光学腔,通过调控外加电压改变电致变色层材料的光学常数,从而实现多种结构色,但这种方案的颜色调制范围仍然有限,而且其反射率小于50%,因而无法形成实用的反射显示。Patent CN104423114A discloses an all-solid-state electrochromic composite device, which forms a variety of colors through the combination of a PVD decorative plating color layer and an electrochromic layer, but the modulation color range is limited, such as changing from light green to blue, black to ink. Change between blue and so on. Patent CN111624829A discloses a colorful electrochromic structure, which consists of a metal reflective layer and an electrochromic material layer to form an optical cavity. The color modulation range of the scheme is still limited, and its reflectivity is less than 50%, making it impossible to form a practical reflection display.
如何开发出具有多基色(如三基色、五基色或六基色等)调制特性的多色电致变色器件,已经成为本领域函待解决的难题。How to develop a multi-color electrochromic device with modulation characteristics of multiple primary colors (such as three primary colors, five primary colors, or six primary colors, etc.) has become a difficult problem to be solved in the art.
发明内容SUMMARY OF THE INVENTION
第一方面,本发明实施例提供了一种多色电致变色器件,包括:第一基板、第二基板、设置于第一基板和第二基板之间的电解质层,所述第一基板包括第一衬底、设置在所述第一衬底朝向所述电解质层侧的工作电极;所述第二基板包括第二衬底、设置在所述第二衬底朝向所述电解质层侧的对电极;其中,所述工作电极为谐振腔结构,所述谐振腔结构包括依次层叠设置的金属反射层、介质层和宽带吸收层,通过调节所述介质层的厚度,所述谐振腔结构可实现不同反射型结构色调节,通过外加电场调制可实现多种颜色变化。In a first aspect, an embodiment of the present invention provides a multi-color electrochromic device, comprising: a first substrate, a second substrate, and an electrolyte layer disposed between the first substrate and the second substrate, the first substrate comprising: a first substrate, a working electrode disposed on the side of the first substrate facing the electrolyte layer; the second substrate includes a second substrate, a pair of electrodes disposed on the side of the second substrate facing the electrolyte layer electrode; wherein, the working electrode is a resonant cavity structure, and the resonant cavity structure includes a metal reflection layer, a dielectric layer and a broadband absorption layer that are stacked in sequence, and the resonant cavity structure can be realized by adjusting the thickness of the dielectric layer. Different reflective structural color adjustment, through the modulation of the external electric field, can realize a variety of color changes.
作为优选,所述金属反射层的材料为非活泼金属;优选地,所述非活泼金属包括金(Au)、银(Ag)、铜(Cu)、铂(Pt)、铝(Al) 或钛(Ti),及多种金属形成的复合金属;所述金属反射层的厚度在 20nm以上,优选50~500nm;Preferably, the material of the metal reflective layer is an inactive metal; preferably, the inactive metal includes gold (Au), silver (Ag), copper (Cu), platinum (Pt), aluminum (Al) or titanium (Ti), and a composite metal formed by a variety of metals; the thickness of the metal reflective layer is above 20 nm, preferably 50-500 nm;
所述介质层的材料为无机电致变色材料和/或有机电致变色材料;所述介质层的厚度为10~3000nm,优选50~800nm;The material of the dielectric layer is an inorganic electrochromic material and/or an organic electrochromic material; the thickness of the dielectric layer is 10-3000 nm, preferably 50-800 nm;
所述宽带吸收层的材料包括过渡金属,FeSi2,非晶硅,或贵金属;所述过渡金属优选Cr、Ni、Ti,所述贵金属优选Au、Pt;所述宽带吸收层的厚度为5~50nm,优选5~15nm;The material of the broadband absorption layer includes transition metal, FeSi 2 , amorphous silicon, or noble metal; the transition metal is preferably Cr, Ni, Ti, and the noble metal is preferably Au, Pt; the thickness of the broadband absorption layer is 5~ 50nm, preferably 5-15nm;
所述电解质层的材料包括液态电解质、凝胶电解质、固态电解质;所述液态电解质层厚度为0.01~3mm;所述凝胶电解质层厚度为0.1~500μm;所述固态电解质层厚度为10~500nm;The material of the electrolyte layer includes liquid electrolyte, gel electrolyte and solid electrolyte; the thickness of the liquid electrolyte layer is 0.01-3 mm; the thickness of the gel electrolyte layer is 0.1-500 μm; the thickness of the solid electrolyte layer is 10-500 nm ;
所述对电极包括依次层叠设置的透明导电电极和电致变色层;所述对电极中的电致变色层兼有离子存储功能;所述电致变色层的材料包括无机电致变色材料和/或有机电致变色材料;所述电致变色层的厚度为10~1000nm,优选50~800nm。The counter electrode includes a transparent conductive electrode and an electrochromic layer that are stacked in sequence; the electrochromic layer in the counter electrode has both an ion storage function; the material of the electrochromic layer includes inorganic electrochromic materials and/or Or an organic electrochromic material; the thickness of the electrochromic layer is 10-1000 nm, preferably 50-800 nm.
作为优选,所述金属反射层为网状镂空结构;所述金属反射层的材料为非活泼金属;优选地,所述非活泼金属包括Au、Ag、Cu、Pt、 Al或Ti,及多种金属形成的复合金属;Preferably, the metal reflective layer is a reticulated hollow structure; the material of the metal reflective layer is an inactive metal; preferably, the inactive metal includes Au, Ag, Cu, Pt, Al or Ti, and various Composite metals formed from metals;
和/或,所述金属反射层的厚度为20nm以上,优选50~500nm;所述网状镂空线宽为0.1~20μm,优选1~10μm。And/or, the thickness of the metal reflective layer is 20 nm or more, preferably 50-500 nm; the line width of the mesh-shaped hollow is 0.1-20 μm, preferably 1-10 μm.
作为第一种优选,所述宽带吸收层为金属纳米孔结构层;所述金属为贵金属,优选Au、Pt;As a first preference, the broadband absorption layer is a metal nanoporous structure layer; the metal is a noble metal, preferably Au and Pt;
和/或,所述金属纳米孔结构层的厚度为5~50nm,优选10~20nm;所述纳米孔的孔径为10~500nm,优选100~300nm。And/or, the thickness of the metal nanopore structure layer is 5-50 nm, preferably 10-20 nm; the diameter of the nanopore is 10-500 nm, preferably 100-300 nm.
作为第二种优选,所述宽带吸收层为网状镂空结构;所述宽带吸收层材料为过渡金属,FeSi2,非晶硅,或贵金属;所述过渡金属优选Cr、Ni、Ti,所述贵金属优选Au、Pt;As a second preference, the broadband absorption layer is a network hollow structure; the broadband absorption layer is made of transition metal, FeSi 2 , amorphous silicon, or noble metal; the transition metal is preferably Cr, Ni, Ti, and the Preferable precious metals are Au and Pt;
和/或,所述宽带吸收层的厚度为5~50nm,优选5~15nm;所述网状镂空线宽为0.1~20μm,优选1~10μm。And/or, the thickness of the broadband absorption layer is 5-50 nm, preferably 5-15 nm; the width of the mesh-shaped hollow line is 0.1-20 μm, preferably 1-10 μm.
作为优选,所述第一衬底和第二衬底的材料包括玻璃、高分子塑料材料、金属箔(如不锈钢箔)。Preferably, the materials of the first substrate and the second substrate include glass, polymer plastic materials, and metal foils (eg, stainless steel foils).
第二方面,本发明实施例提供了上述的多色电致变色器件的制备方法,包括如下步骤:In a second aspect, an embodiment of the present invention provides the above-mentioned method for preparing a multicolor electrochromic device, comprising the following steps:
在第一衬底上依次形成金属反射层、介质层和宽带吸收层,得到第一基板;forming a metal reflective layer, a dielectric layer and a broadband absorbing layer in sequence on the first substrate to obtain a first substrate;
在第二衬底上依次形成透明导电电极和电致变色层,得到第二基板;forming a transparent conductive electrode and an electrochromic layer in sequence on the second substrate to obtain a second substrate;
将所述第一基板和第二基板沿其外周区域进行密封,并限定出一空腔;以及sealing the first and second substrates along their peripheral regions and defining a cavity; and
将电解质设置在所述空腔中。An electrolyte is disposed in the cavity.
第三方面,本发明实施例还提供了一种显示面板,包括:如上述的多色电致变色器件。In a third aspect, an embodiment of the present invention further provides a display panel, comprising: the above-mentioned multi-color electrochromic device.
作为优选,所述显示面板包括:若干个子像素,每一所述子像素包括依次层叠的至少一个所述多色电致变色器件。Preferably, the display panel includes: a plurality of sub-pixels, and each of the sub-pixels includes at least one of the multi-color electrochromic devices stacked in sequence.
第四方面,本发明实施例还提供了一种显示装置,包括:如上述的显示面板。In a fourth aspect, an embodiment of the present invention further provides a display device, including: the above-mentioned display panel.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明提供的谐振腔结构提升了电致变色器件的反射率和颜色显示范围,谐振腔结构与对电极的电致变色层形成互补型电致变色器件进一步拓展了颜色变化范围。基于本发明的多色电致变色器件的显示面板采用1个或2个子像素即可实现彩色显示,并大幅提升显示面板的反射显示亮度。The resonant cavity structure provided by the invention improves the reflectivity and color display range of the electrochromic device, and the resonant cavity structure and the electrochromic layer of the counter electrode form a complementary electrochromic device to further expand the color variation range. The display panel based on the multi-color electrochromic device of the present invention can realize color display by using one or two sub-pixels, and greatly improves the reflective display brightness of the display panel.
附图说明Description of drawings
图1为本发明实施例提供的多色电致变色器件的结构示意图;1 is a schematic structural diagram of a multicolor electrochromic device provided by an embodiment of the present invention;
图2为本发明实施例提供的第一基板(金属反射层/介质层/宽带吸收层)的结构示意图;2 is a schematic structural diagram of a first substrate (metal reflection layer/dielectric layer/broadband absorption layer) provided by an embodiment of the present invention;
图3为本发明实施例提供的反射金属层或宽带吸收层的网状镂空结构示意图;3 is a schematic diagram of a mesh hollow structure of a reflective metal layer or a broadband absorption layer provided by an embodiment of the present invention;
图4为本发明实施例提供的另一第一基板(金属反射层/介质层/ 金属纳米孔结构层)的结构示意图;4 is a schematic structural diagram of another first substrate (metal reflective layer/dielectric layer/metal nanoporous structure layer) provided by an embodiment of the present invention;
图5为本发明实施例提供的另一第一基板(宽带吸收层/介质层/ 金属纳米孔结构层)的结构示意图;5 is a schematic structural diagram of another first substrate (broadband absorption layer/dielectric layer/metal nanoporous structure layer) provided by an embodiment of the present invention;
图6为本发明实施例提供的第二基板的结构示意图;6 is a schematic structural diagram of a second substrate provided by an embodiment of the present invention;
图7为本发明实施例提供的基于两个多色电致变色器件组成的显示面板的结构示意图;7 is a schematic structural diagram of a display panel based on two multi-color electrochromic devices according to an embodiment of the present invention;
图8为本发明实施例提供的基于三个多色电致变色器件组成的显示面板的结构示意图;8 is a schematic structural diagram of a display panel based on three multi-color electrochromic devices according to an embodiment of the present invention;
图9为本发明实施例提供的另一基于三个多色电致变色器件组成的显示面板的结构示意图;9 is a schematic structural diagram of another display panel based on three multicolor electrochromic devices according to an embodiment of the present invention;
图10为本发明实施例提供的谐振腔(Ag/WO3/Au纳米孔薄膜) 与类普鲁士蓝互补型电致变色器件的结构示意图;10 is a schematic structural diagram of a resonant cavity (Ag/WO 3 /Au nanoporous film) and a Prussian blue-like complementary electrochromic device provided in an embodiment of the present invention;
图11为本发明实施例提供的胶体刻蚀工艺制备非均匀Au纳米孔阵列示意图;11 is a schematic diagram of a non-uniform Au nanopore array prepared by a colloidal etching process according to an embodiment of the present invention;
图12为本发明实施例提供的谐振腔(Al/WO3/Cr)与类普鲁士蓝薄膜互补型多色柔性电致变色器件的结构示意图;12 is a schematic structural diagram of a resonant cavity (Al/WO 3 /Cr) and a Prussian blue-like thin film complementary multicolor flexible electrochromic device provided in an embodiment of the present invention;
图13为本发明实施例提供在不同三氧化钨厚度下, Glass/ITO/Al/WO3/Cr的反射光谱;FIG. 13 provides reflection spectra of Glass/ITO/Al/WO 3 /Cr under different thicknesses of tungsten trioxide according to an embodiment of the present invention;
图14为本发明实施例提供的反射型(Glass/Cr/WO3/Al纳米孔薄膜)底显色多色电致变色器件结构示意图;14 is a schematic structural diagram of a reflective type (Glass/Cr/WO 3 /Al nanoporous film) bottom color multicolor electrochromic device provided by an embodiment of the present invention;
图15为本发明实施例提供的纳米压印工艺制备非均匀Au纳米孔阵列示意图;FIG. 15 is a schematic diagram of a non-uniform Au nanohole array prepared by a nanoimprint process provided in an embodiment of the present invention;
附图标记:1第一基板;11第一衬底;12工作电极;121金属反射层;122介质层;123宽带吸收层;124金属纳米孔结构层;2第二基板;21第二衬底;22对电极;221透明导电电极;222电致变色层; 3电解质层;4封框胶。Reference numerals: 1 first substrate; 11 first substrate; 12 working electrode; 121 metal reflection layer; 122 dielectric layer; 123 broadband absorption layer; 124 metal nanoporous structure layer; 2 second substrate; 21 second substrate 22 pairs of electrodes; 221 transparent conductive electrodes; 222 electrochromic layers; 3 electrolyte layers; 4 sealants.
具体实施方式Detailed ways
为了使本发明的目的,技术方案和优点更加清楚,下面结合附图,对本发明实施例提供的多色电致变色器件及其制作方法、显示面板、显示装置的具体实施方式进行详细地说明。In order to make the purpose, technical solutions and advantages of the present invention clearer, the specific implementations of the multi-color electrochromic device and its manufacturing method, display panel, and display device provided by the embodiments of the present invention are described in detail below with reference to the accompanying drawings.
本发明实施例第一方面提供了一种多色电致变色器件,用以解决现有技术中电致变色器件可变颜色种类少,以及反射率低导致光效利用率低,无法用于成熟工业应用的问题。The first aspect of the embodiments of the present invention provides a multi-color electrochromic device, which is used to solve the problem that the electrochromic device in the prior art has few types of variable colors, and the low reflectivity leads to low light efficiency utilization, which cannot be used for mature problems for industrial applications.
针对上述技术问题,本发明实施例提供了如下技术方案:In view of the above technical problems, the embodiments of the present invention provide the following technical solutions:
图1为本发明实施例提供的多色电致变色器件的结构示意图,图 2为本发明实施例提供的第一基板的结构示意图。参见图1和图2,该多色电致变色器件包括:第一基板1(包括第一衬底11、工作电极 12)、第二基板2(包括第二衬底21、对电极22)、位于工作电极12和对电极22之间的电解质层3,以及用于将工作电极12、对电极22 进行密封的封框胶4。FIG. 1 is a schematic structural diagram of a multicolor electrochromic device provided by an embodiment of the present invention, and FIG. 2 is a schematic structural schematic diagram of a first substrate provided by an embodiment of the present invention. 1 and 2, the multi-color electrochromic device includes: a first substrate 1 (including a
其中,工作电极12为谐振腔结构,包括依次层叠设置的金属反射层121、介质层122和宽带吸收层123,通过调节介质层的厚度,谐振腔结构可实现不同反射型结构色调节,通过外加电场调制可实现多种颜色变化。The working electrode 12 is a resonant cavity structure, including a metal
本发明发现,采用上述的谐振腔结构能够实现波长选择功能,进而可得到全彩色。It is found in the present invention that the wavelength selection function can be realized by using the above-mentioned resonant cavity structure, and then full color can be obtained.
具体地,参见图2,第一基板1包括依次层叠设置的第一衬底11、金属反射层121、介质层122和宽带吸收层123。其中,Specifically, referring to FIG. 2 , the
第一衬底为玻璃、高分子塑料材料、金属箔(如不锈钢箔)。The first substrate is glass, polymer plastic material, metal foil (eg stainless steel foil).
金属反射层的材料为非活泼金属;优选非活泼金属包括Au、Ag、 Cu、Pt、Al或Ti,及多种金属形成的复合金属;金属反射层厚度在 20nm以上,优选为50~500nm。本发明进一步发现,采用上述非活泼金属,所形成的谐振腔结构不仅能实现波长选择功能,同时还具有更高的反射率。The material of the metal reflective layer is an inactive metal; preferably, the inactive metal includes Au, Ag, Cu, Pt, Al or Ti, and a composite metal formed by a variety of metals; the thickness of the metal reflective layer is above 20 nm, preferably 50-500 nm. The present invention further finds that by using the above inactive metal, the formed resonant cavity structure can not only realize the wavelength selection function, but also have higher reflectivity.
介质层主要由电致变色材料组成,包括无机电致变色材料和/或有机电致变色材料。其中,无机电致变色材料包括过渡金属氧化物、普鲁士蓝或其衍生物、杂多酸中的任意一种或多种的组合;优选过渡金属氧化物,过渡金属氧化物包括W、Ni、Ti、Nb、Fe、Co或Mo 元素中的任意一种或多种组合与氧形成的化合物。有机电致变色材料包括有机小分子、导电聚合物、金属有机化合物中的任意一种或多种的组合。作为示例,有机小分子包括紫罗精、甲基紫精;导电聚合物包括聚苯胺、聚噻吩、聚吡咯中的任意一种或多种的组合;金属有机化合物为金属有机螯合物。介质层厚度为10~3000nm,优选50~800 nm。The dielectric layer is mainly composed of electrochromic materials, including inorganic electrochromic materials and/or organic electrochromic materials. Wherein, the inorganic electrochromic material includes any one or a combination of transition metal oxides, Prussian blue or its derivatives, and heteropolyacids; preferably transition metal oxides, transition metal oxides include W, Ni, Ti , Nb, Fe, Co or Mo elements in combination with any one or more of the compounds formed with oxygen. Organic electrochromic materials include any one or a combination of organic small molecules, conductive polymers, and metal-organic compounds. As an example, the organic small molecule includes viologen and methyl viologen; the conductive polymer includes any one or a combination of polyaniline, polythiophene, and polypyrrole; and the metal-organic compound is a metal-organic chelate. The thickness of the dielectric layer is 10-3000 nm, preferably 50-800 nm.
宽带吸收层的材料包括过渡金属,如Cr、Ni、Ti,FeSi2,非晶硅或贵金属,如Au、Pt。宽带吸收层的厚度为5~50nm,优选5~15nm。The materials of the broadband absorption layer include transition metals such as Cr, Ni, Ti, FeSi 2 , amorphous silicon or noble metals such as Au and Pt. The thickness of the broadband absorption layer is 5 to 50 nm, preferably 5 to 15 nm.
在一些优选的实施例中,宽带吸收层为网状镂空结构,图3所示为宽带吸收层的网状镂空结构示意图;宽带吸收层材料为Cr、Ni、 Ti等过渡金属,FeSi2,非晶硅,或Au、Pt等贵金属;宽带吸收层的厚度为5~50nm,优选5~15nm;网状镂空线宽为0.1~20μm,优选 1~10μm。本发明进一步发现,网状镂空结构宽带吸收层的镂空区域连通了电致变色材料和电解质,减少了多色电致变色器件的响应时间。In some preferred embodiments, the broadband absorbing layer is a reticulated hollow structure, and FIG. 3 shows a schematic diagram of the reticulated hollow structure of the broadband absorbing layer; the materials of the broadband absorbing layer are transition metals such as Cr, Ni, Ti, FeSi 2 , non-metallic Crystalline silicon, or noble metals such as Au and Pt; the thickness of the broadband absorption layer is 5-50 nm, preferably 5-15 nm; the width of the mesh hollow line is 0.1-20 μm, preferably 1-10 μm. The present invention further finds that the hollow area of the broadband absorption layer of the network hollow structure is connected with the electrochromic material and the electrolyte, thereby reducing the response time of the multicolor electrochromic device.
在一些优选的实施例中,为增加金属反射层与第一衬底的粘附力,可在第一衬底与金属反射层之间增加过渡层。优选的,过渡层的材料为Cr、Ti,过渡层的厚度为1~20nm。In some preferred embodiments, in order to increase the adhesion between the metal reflective layer and the first substrate, a transition layer can be added between the first substrate and the metal reflective layer. Preferably, the materials of the transition layer are Cr and Ti, and the thickness of the transition layer is 1-20 nm.
图4为本发明实施例提供的另一第一基板(金属反射层/介质层/ 金属纳米孔结构层)的结构示意图。参见图4,第一基板包括依次层叠设置的第一衬底11、金属反射层121、介质层122和金属纳米孔结构层124。其中,FIG. 4 is a schematic structural diagram of another first substrate (metal reflective layer/dielectric layer/metal nanoporous structure layer) according to an embodiment of the present invention. Referring to FIG. 4 , the first substrate includes a
第一衬底为玻璃、高分子塑料材料、金属箔(如不锈钢箔)。The first substrate is glass, polymer plastic material, metal foil (eg stainless steel foil).
金属反射层为非活泼金属;优选非活泼金属包括金、银、铜或钛;金属层厚度在20nm以上,优选为50~500nm。The metal reflective layer is an inactive metal; preferably, the inactive metal includes gold, silver, copper or titanium; the thickness of the metal layer is above 20 nm, preferably 50-500 nm.
介质层主要由电致变色材料组成,包括无机电致变色材料和有机电致变色材料。其中,无机电致变色材料包括过渡金属氧化物、普鲁士蓝或其衍生物、杂多酸中的任意一种或多种的组合;优选过渡金属氧化物,过渡金属氧化物包括W、Ni、Ti、Nb、Fe、Co或Mo元素中的任意一种或多种组合与氧形成的化合物。有机电致变色材料包括有机小分子、导电聚合物、金属有机化合物中的任意一种或多种的组合;作为示例,有机小分子包括紫罗精、甲基紫精;导电聚合物包括聚苯胺、聚噻吩、聚吡咯中的任意一种或多种的组合;金属有机化合物为金属有机螯合物。介质层厚度为1~3000nm,优选50~500nm。The dielectric layer is mainly composed of electrochromic materials, including inorganic electrochromic materials and organic electrochromic materials. Wherein, the inorganic electrochromic material includes any one or a combination of transition metal oxides, Prussian blue or its derivatives, and heteropolyacids; preferably transition metal oxides, transition metal oxides include W, Ni, Ti , Nb, Fe, Co or Mo elements in combination with any one or more compounds formed by oxygen. The organic electrochromic material includes any one or a combination of small organic molecules, conductive polymers, and metal-organic compounds; as an example, the small organic molecules include viologen and methyl viologen; the conductive polymer includes polyaniline A combination of any one or more of , polythiophene and polypyrrole; the metal organic compound is a metal organic chelate compound. The thickness of the dielectric layer is 1-3000 nm, preferably 50-500 nm.
金属纳米孔结构层的材料为贵金属,优选金、铂。金属纳米孔结构层的厚度为5~50nm,优选10~20nm。金属纳米孔结构层的纳米孔直径为50~500nm,优选100~300nm。The material of the metal nanoporous structure layer is noble metal, preferably gold and platinum. The thickness of the metal nanoporous structure layer is 5-50 nm, preferably 10-20 nm. The nanopore diameter of the metal nanopore structure layer is 50-500 nm, preferably 100-300 nm.
本发明进一步发现,金属纳米孔结构层具有以下功能:形成谐振腔结构,实现波长选择功能,且反射率高;具有等离子体增强效果,可以增加谐振腔的反射率;可以起到光散射效果,能增加谐振腔的观看视角;可以起到消色偏的效果;金属纳米孔结构中的纳米孔连通了电致变色层与电解质层,使得离子可以快速注入或脱出电致变色层,增加电致变色的响应时间。The present invention further finds that the metal nanoporous structure layer has the following functions: forming a resonant cavity structure, realizing the wavelength selection function, and high reflectivity; having a plasma enhancement effect, which can increase the reflectivity of the resonant cavity; It can increase the viewing angle of the resonant cavity; it can have the effect of decolorization; the nanopores in the metal nanopore structure connect the electrochromic layer and the electrolyte layer, so that ions can be quickly injected into or out of the electrochromic layer, increasing the electrochromic layer. Color change response time.
同样地,为增加金属反射层与第一衬底的粘附力,可在第一衬底与金属反射层之间设置过渡层。优选的,过渡层材料为Cr、Ti,过渡层的厚度为1~20nm。Likewise, in order to increase the adhesion between the metal reflective layer and the first substrate, a transition layer may be provided between the first substrate and the metal reflective layer. Preferably, the materials of the transition layer are Cr and Ti, and the thickness of the transition layer is 1-20 nm.
图5为本发明实施例提供的另一第一基板(宽带吸收层/介质层/ 金属纳米孔结构层)的结构示意图。本发明进一步发现,金属反射层与宽带吸收层可颠倒位置,参见图5,第一基板包括依次层叠设置的第一衬底11、宽带吸收层123、介质层122和金属纳米孔结构层124。通过调节介质层厚度,可以实现不同反射型结构色调节。本实施例的宽带吸收层/介质层/金属纳米孔薄膜结构的反射结构色属于底反射型结构,即入光和出光均透过第一衬底。其中,FIG. 5 is a schematic structural diagram of another first substrate (broadband absorption layer/dielectric layer/metal nanoporous structure layer) according to an embodiment of the present invention. The present invention further finds that the metal reflective layer and the broadband absorbing layer can be reversed in position, referring to FIG. By adjusting the thickness of the dielectric layer, different reflective structural colors can be adjusted. The reflection structure color of the broadband absorption layer/dielectric layer/metal nanoporous film structure in this embodiment belongs to the bottom reflection type structure, that is, both incoming light and outgoing light pass through the first substrate. in,
宽带吸收层的材料包括Cr、Ni、Ti、FeSi2、非晶硅。宽带吸收层的厚度为5~50nm,优选5~15nm。The materials of the broadband absorption layer include Cr, Ni, Ti, FeSi 2 , and amorphous silicon. The thickness of the broadband absorption layer is 5 to 50 nm, preferably 5 to 15 nm.
介质层主要由电致变色材料组成,包括无机电致变色材料和有机电致变色材料。无机电致变色材料包括过渡金属氧化物、普鲁士蓝或其衍生物、杂多酸中的任意一种或多种的组合;优选过渡金属氧化物,包括W、Ni、Ti、Nb、Fe、Co或Mo元素中的任意一种或多种组合与氧形成的化合物。有机电致变色材料包括有机小分子、导电聚合物、金属有机化合物中的任意一种或多种的组合;优选的,有机小分子包括紫罗精、甲基紫精;导电聚合物包括聚苯胺、聚噻吩、聚吡咯中的任意一种或多种的组合;金属有机化合物为金属有机螯合物。介质层的厚度为0~3000nm,优选50~500nm。The dielectric layer is mainly composed of electrochromic materials, including inorganic electrochromic materials and organic electrochromic materials. Inorganic electrochromic materials include transition metal oxides, Prussian blue or its derivatives, and a combination of any one or more of heteropolyacids; preferably transition metal oxides, including W, Ni, Ti, Nb, Fe, Co Or a compound formed by any one or more combination of Mo elements and oxygen. The organic electrochromic material includes any one or a combination of small organic molecules, conductive polymers, and metal-organic compounds; preferably, the small organic molecules include viologen and methyl viologen; the conductive polymer includes polyaniline A combination of any one or more of , polythiophene and polypyrrole; the metal organic compound is a metal organic chelate compound. The thickness of the dielectric layer is 0 to 3000 nm, preferably 50 to 500 nm.
金属纳米孔结构层的材料包括金、铂、银、铝、铜;金属纳米孔薄膜厚度为20~200nm,优选50~100nm;纳米孔直径为50~500nm,优选100~300nm;纳米孔周期50~1000nm,优选100~500nm。The material of the metal nanopore structure layer includes gold, platinum, silver, aluminum and copper; the thickness of the metal nanopore film is 20-200 nm, preferably 50-100 nm; the diameter of the nano-pore is 50-500 nm, preferably 100-300 nm; the nano-pore period is 50 ~1000 nm, preferably 100 to 500 nm.
在一些优选的实施例中,金属反射层为网状镂空结构,图3所示为金属反射层的网状镂空结构示意图;反射层的材料为非活泼金属;非活泼金属材料包括Au、Ag、Cu、Pt、Al或Ti,及多种金属形成的复合金属;金属反射层的厚度为20nm以上,优选50~500nm;所述网状镂空线宽为0.1~20μm,优选1~10μm。本发明进一步发现,网状镂空结构反射层的镂空区域连通了电致变色材料和电解质,减少了多色电致变色器件的响应时间。In some preferred embodiments, the metal reflective layer is a reticulated hollow structure, and FIG. 3 shows a schematic diagram of the reticulated hollow structure of the metal reflective layer; the material of the reflective layer is an inactive metal; the inactive metal material includes Au, Ag, A composite metal formed of Cu, Pt, Al or Ti, and various metals; the thickness of the metal reflective layer is more than 20 nm, preferably 50-500 nm; the width of the mesh hollow line is 0.1-20 μm, preferably 1-10 μm. The present invention further finds that the hollow area of the reflective layer of the mesh hollow structure is connected with the electrochromic material and the electrolyte, thereby reducing the response time of the multi-color electrochromic device.
图6为本发明实施例提供的第二基板的结构示意图。参见图6,第二基板包括依次层叠设置的第二衬底21、透明导电电极221和电致变色层222。其中:FIG. 6 is a schematic structural diagram of a second substrate according to an embodiment of the present invention. Referring to FIG. 6 , the second substrate includes a
第二衬底为可见光透明材料,包括玻璃,高分子塑料材料,如聚对苯二甲酸乙二酯(PET)、聚酰亚胺(PI)、聚碳酸酯(PC)中的任一种。The second substrate is a visible light transparent material, including glass, and a polymer plastic material, such as any one of polyethylene terephthalate (PET), polyimide (PI), and polycarbonate (PC).
透明导电电极包括氧化铟锡(ITO)、氟掺杂氧化锡(FTO)、铝掺杂氧化锌(AZO)、银纳米线薄膜、碳纳米管薄膜中的任一种。The transparent conductive electrode includes any one of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), silver nanowire film, and carbon nanotube film.
电致变色层的材料包括无机电致变色材料和/或有机电致变色材料。优选地,电致变色层的材料为阳极电致变色材料,包括普鲁士蓝、氧化镍。更优选的,阳极电致变色材料为类普鲁士蓝;进一步地,类普鲁士蓝包括普鲁士蓝、普鲁士蓝类似物及其衍生物中的至少一种。类普鲁士蓝薄膜的厚度优选为50~800nm。Materials of the electrochromic layer include inorganic electrochromic materials and/or organic electrochromic materials. Preferably, the material of the electrochromic layer is an anode electrochromic material, including Prussian blue and nickel oxide. More preferably, the anodic electrochromic material is a Prussian blue-like material; further, the Prussian blue-like material includes at least one of Prussian blue, Prussian blue analogs and derivatives thereof. The thickness of the Prussian blue-like thin film is preferably 50 to 800 nm.
其中,普鲁士蓝的化学式为Fe4[Fe(CN)6]3·mH2O(m=14~16);普鲁士蓝类似物的通式为AxMA[MB(CN)6]y·nH2O(x,y,n为化学元素计量比),A是K+、Na+传导离子,MA和MB是过渡金属元素,比如, Mn、Fe、Co、Ni或Cu;或者NaxM[Fe(CN)6]·nH2O(n为化学元素计量比),这里M为Mn、Fe、Co、Ni或Cu中的一种;普鲁士蓝及其类似物的衍生物为利用普鲁士蓝及其类似物作为牺牲模板,设计出各种不同形貌、组分、尺寸、形状和化学性质的核-壳,中空壳层等纳米结构材料的统称。Among them, the chemical formula of Prussian blue is Fe 4 [Fe(CN) 6 ] 3 ·mH 2 O (m=14-16); the general formula of Prussian blue analogs is A x M A [M B (CN) 6 ] y nH 2 O (x, y, n are stoichiometric ratios), A is K + , Na + conducting ions, MA and MB are transition metal elements such as Mn, Fe, Co, Ni or Cu; or Na x M[Fe(CN) 6 ]·nH 2 O (n is the stoichiometric ratio), where M is one of Mn, Fe, Co, Ni or Cu; the derivatives of Prussian blue and its analogs are Using Prussian blue and its analogs as sacrificial templates, various core-shell, hollow-shell and other nanostructured materials with different morphologies, compositions, sizes, shapes and chemical properties were designed.
本发明提供的电解质层在多色电致变色器件中的作用是为变色电极提供相互连接的活性离子通道,并隔绝电子传导。电解质层的材料包括液态电解质、凝胶电解质、固态电解质;作为优选,液态电解质以碳酸丙烯酯为溶剂,高氯酸锂和有机弱酸为溶质,进一步优选,按摩尔浓度计,其中高氯酸锂为0.08~0.12mol/L、有机弱酸为 0.008~0.012mol/L。The function of the electrolyte layer provided in the present invention in the multi-color electrochromic device is to provide active ion channels connected to each other for the color-changing electrodes, and to isolate electron conduction. The material of the electrolyte layer includes liquid electrolyte, gel electrolyte, and solid electrolyte; preferably, the liquid electrolyte uses propylene carbonate as solvent, lithium perchlorate and organic weak acid as solutes, and further preferably, in molar concentration, lithium perchlorate is used as the solute. It is 0.08 to 0.12 mol/L, and the organic weak acid is 0.008 to 0.012 mol/L.
本发明进一步发现,在基于Li+电解质体系中引入有机弱酸,优化电解质的PH值,抑制电解质中的OH–与普鲁士蓝中的铁离子结合,从而改善了普鲁士蓝薄膜的电致变色性能稳定性。作为优选,有机弱酸为柠檬酸、草酸和醋酸中的至少一种。上述有机弱酸不仅可有效抑制电解质中的OH–与普鲁士蓝中的铁离子结合,同时不会破坏其他的化学反应,避免造成电解质体系失效。The present invention further finds that the electrochromic performance stability of the Prussian blue film is improved by introducing an organic weak acid into the Li + electrolyte system to optimize the pH value of the electrolyte and inhibit the combination of OH in the electrolyte and the iron ions in Prussian blue. . Preferably, the weak organic acid is at least one of citric acid, oxalic acid and acetic acid. The above organic weak acid can not only effectively inhibit the combination of OH in the electrolyte and the iron ion in Prussian blue, but also will not destroy other chemical reactions and avoid the failure of the electrolyte system.
本发明实施例第二方面提供了上述的多色电致变色器件的制备方法,包括如下步骤:A second aspect of the embodiment of the present invention provides the above-mentioned preparation method of a multicolor electrochromic device, comprising the following steps:
在第一衬底上依次形成金属反射层、介质层和宽带吸收层,得到第一基板;forming a metal reflective layer, a dielectric layer and a broadband absorbing layer in sequence on the first substrate to obtain a first substrate;
在第二衬底上依次形成透明导电电极和电致变色层,得到第二基板;forming a transparent conductive electrode and an electrochromic layer in sequence on the second substrate to obtain a second substrate;
将所述第一基板和第二基板沿其外周区域进行密封,并限定出一空腔;以及sealing the first and second substrates along their peripheral regions and defining a cavity; and
将电解质设置在所述空腔中。An electrolyte is disposed in the cavity.
其中,金属反射层的制备方法,包括但不限于磁控溅射、热蒸发、电子束蒸发、离子镀、电化学沉积中的任一种方式;Wherein, the preparation method of the metal reflective layer includes but is not limited to any one of magnetron sputtering, thermal evaporation, electron beam evaporation, ion plating, and electrochemical deposition;
介质层的制备方法,包括但不限于磁控溅射、热蒸发、电子束蒸发、离子镀、电化学沉积、化学气相沉积中的任一种方式。The preparation method of the dielectric layer includes, but is not limited to, any one of magnetron sputtering, thermal evaporation, electron beam evaporation, ion plating, electrochemical deposition, and chemical vapor deposition.
当宽带吸收层的材料包括Cr、Ni、Ti、FeSi2或非晶硅时,宽带吸收层的制备方法,包括但不限于磁控溅射、热蒸发、电子束蒸发、离子镀、化学气相沉积、电化学沉积中的任一种方式。When the material of the broadband absorption layer includes Cr, Ni, Ti, FeSi2 or amorphous silicon, the preparation method of the broadband absorption layer includes but is not limited to magnetron sputtering, thermal evaporation, electron beam evaporation, ion plating, chemical vapor deposition , any method in electrochemical deposition.
当宽带吸收层为金属纳米孔结构层时,其制备方法包括但不限于胶体刻蚀、纳米压印。When the broadband absorption layer is a metal nanoporous structure layer, its preparation method includes but is not limited to colloidal etching and nanoimprinting.
当宽带吸收层为网状镂空结构时,其制备方法包括但不限于掩膜版蒸镀,以及半导体工艺中常用的曝光、显影、刻蚀工艺。When the broadband absorption layer is a network hollow structure, its preparation method includes but is not limited to mask evaporation, and exposure, development, and etching processes commonly used in semiconductor technology.
本发明实施例第三方面提供基于上述的多色电致变色器件的显示面板。A third aspect of the embodiments of the present invention provides a display panel based on the above-mentioned multi-color electrochromic device.
传统彩色显示一般引入子像素来组成显示的像素,亚像素数目一般取三个,即采用三基色的显示方式,三基色选用红、绿、蓝或青、品红、黄。以反射显示中应用最广的电子墨水显示为例,其灰度通过黑色粒子的面积占比来调节,而彩色通过加彩膜的方式实现。电子墨水显示的每个子像素的反射率小于50%,为形成彩色,像素的反射率还要降低3倍以上,因此,彩色显示效果较差。Traditional color display generally introduces sub-pixels to form display pixels, and the number of sub-pixels is generally three, that is, a display mode of three primary colors is used, and the three primary colors are red, green, blue or cyan, magenta, and yellow. Taking the most widely used electronic ink display in reflective display as an example, its grayscale is adjusted by the area ratio of black particles, and the color is realized by adding a color filter. The reflectivity of each sub-pixel displayed by the electronic ink is less than 50%. In order to form a color, the reflectivity of the pixel needs to be reduced by more than 3 times. Therefore, the color display effect is poor.
由于单个本发明的多色电致变色器件即可显示多种颜色。因此,由多色电致变色器件组成显示面板的显示方式则与传统显示的显示方式不同。基于多色电致变色器件的显示面板采用1个或2个子像素即可实现彩色显示,可以大幅提升显示面板的反射显示亮度。本发明设计了基于多色电致变色器件的显示面板。Since a single multi-color electrochromic device of the present invention can display multiple colors. Therefore, the display mode of the display panel composed of multi-color electrochromic devices is different from that of the conventional display. A display panel based on a multi-color electrochromic device can realize color display by using one or two sub-pixels, which can greatly improve the reflective display brightness of the display panel. The present invention designs a display panel based on a multicolor electrochromic device.
基于多色电致变色器件的第一种显示面板采用两个子像素。图7 为本发明实施例提供的基于两个多色电致变色器件组成的显示面板的结构示意图。参见图7,每个子像素可以显示红色、黄色、绿色和蓝色等其他颜色,当两个子像素都显示红色时,像素显示红色;当两个子像素都显示绿色时,像素显示绿色;当两个子像素都显示蓝色时,像素显示蓝色;当两个子像素分别显示蓝色和黄色时,像素显示白色;由于本发明的多色电致变色器件除了显示红色、黄色、绿色和蓝色外,还可以显示橙色、黄绿色和蓝绿色等颜色,因此通过两个子像素的组合,像素可以显示丰富的颜色。The first display panels based on multicolor electrochromic devices employed two sub-pixels. FIG. 7 is a schematic structural diagram of a display panel composed of two multicolor electrochromic devices according to an embodiment of the present invention. Referring to Figure 7, each sub-pixel can display other colors such as red, yellow, green and blue. When both sub-pixels display red, the pixel displays red; when both sub-pixels display green, the pixel displays green; when both sub-pixels display green, the pixel displays green; When all the pixels display blue, the pixel displays blue; when the two sub-pixels display blue and yellow respectively, the pixel displays white; since the multicolor electrochromic device of the present invention displays red, yellow, green and blue, Colors such as orange, yellow-green, and cyan can also be displayed, so with the combination of two sub-pixels, the pixel can display rich colors.
图8为本发明实施例提供的基于三个多色电致变色器件组成的显示面板的结构示意图。参见图8,该显示面板的像素由三个子像素组成,每个子像素可以显示红色、绿色和蓝色等其他颜色,当三个子像素都显示红色时,像素显示红色;当三个子像素都显示绿色时,像素显示绿色;当三个子像素都显示蓝色时,像素显示蓝色;当三个子像素分别显示红色、绿色和蓝色时,像素显示白色;当三个子像素分别显示红色、红色和绿色时,像素显示黄色;由于多色电致变色器件除了红色、绿色和蓝色,还可以显示橙色、黄绿色和蓝绿色等颜色,因此通过三个子像素的组合,像素可以显示丰富的颜色。FIG. 8 is a schematic structural diagram of a display panel based on three multicolor electrochromic devices according to an embodiment of the present invention. Referring to Fig. 8, the pixel of the display panel is composed of three sub-pixels, each sub-pixel can display other colors such as red, green and blue, when all three sub-pixels display red, the pixel displays red; when all three sub-pixels display green When the three sub-pixels display blue, the pixel displays blue; when the three sub-pixels display red, green, and blue, respectively, the pixel displays white; when the three sub-pixels display red, red, and green, respectively When , the pixel displays yellow; since the multi-color electrochromic device can display orange, yellow-green, and blue-green colors in addition to red, green, and blue, the pixel can display rich colors through the combination of three sub-pixels.
图9为本发明实施例提供的另一基于三个多色电致变色器件组成的显示面板的结构示意图。参见图9,该显示面板的像素由三个子像素组成,三个子像素包括红色、绿色和蓝色像素,三个子像素可分别在红色/黑色、绿色/黑色和蓝色/黑色之间切换。当开启红色子像素,关闭绿和蓝子像素时,像素显示红色;当开启绿色子像素,关闭红和蓝子像素时,像素显示绿色;当开启蓝色子像素,关闭绿和红子像素时,像素显示蓝色;当红色、绿色和蓝色子像素全部开启时,像素显示白色;当红色、绿色和蓝色子像素全部关闭时,像素显示黑色;由于多色电致变色器件可以通过调节电压或时间来调节反射率的高低,因此通过三个子像素的组合,像素可以在彩色/黑色自由切换,显示丰富的颜色。FIG. 9 is a schematic structural diagram of another display panel based on three multi-color electrochromic devices according to an embodiment of the present invention. Referring to FIG. 9 , the pixels of the display panel are composed of three sub-pixels, the three sub-pixels include red, green and blue pixels, and the three sub-pixels can be switched between red/black, green/black and blue/black respectively. When the red sub-pixel is turned on and the green and blue sub-pixels are turned off, the pixel displays red; when the green sub-pixel is turned on and the red and blue sub-pixels are turned off, the pixel displays green; when the blue sub-pixel is turned on and the green and red sub-pixels are turned off , the pixel displays blue; when the red, green and blue sub-pixels are all turned on, the pixel displays white; when the red, green and blue sub-pixels are all turned off, the pixel displays black; since the multi-color electrochromic device can be adjusted by adjusting The reflectivity can be adjusted by voltage or time, so through the combination of three sub-pixels, the pixels can be freely switched between color and black to display rich colors.
本发明实施例第四方面提供基于上述的显示面板的显示装置。该显示装置可以为电子书、手机、平板电脑、电视、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。A fourth aspect of the embodiments of the present invention provides a display device based on the above-mentioned display panel. The display device can be any product or component with a display function, such as an electronic book, a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame or a navigator.
实施例1Example 1
如图10所示,本实施例提供一种谐振腔(Ag/WO3/Au纳米孔薄膜)与类普鲁士蓝薄膜组成的互补型多色电致变色器件,属于反射型顶显色结构,包括:As shown in FIG. 10 , this embodiment provides a complementary multi-color electrochromic device composed of a resonant cavity (Ag/WO 3 /Au nanoporous film) and a Prussian blue-like film, which belongs to a reflective top color rendering structure, including :
第一基板,依层叠顺序包括第一衬底11、金属反射层121、介质层122、金属纳米孔结构层124,其中,第一衬底为玻璃,金属反射层为金属Ag薄膜,介质层为三氧化钨薄膜,金属纳米孔结构层为金纳米孔薄膜;The first substrate includes a
第二基板,依层叠顺序包括第二衬底21、透明导电电极221、电致变色层222,其中,第二衬底为玻璃,透明导电电极为ITO透明导电层,电致变色层为类普鲁士蓝薄膜;The second substrate includes a
封框胶4,基本沿周向设置在第一基板和第二基板的外周区域之间,以将金属纳米孔结构层124的上表面和电致变色层222的下表面密封地相互结合并限定一空腔;以及The
电解质3设置在空腔中。该电解质以碳酸丙烯脂为溶剂,高氯酸锂和醋酸为溶质,按摩尔浓度计,其中高氯酸锂为0.1mol/L、醋酸为0.01mol/L;电解质的PH值为3。
本实施例的谐振腔与普鲁士蓝互补型电致变色器件的工作机理为:谐振腔中的三氧化钨为阴极变色材料,通电时,三氧化钨得到电子,材料的光学常数发生变化,进而导致谐振腔出现不通过的结构色;而普鲁士蓝为阳极电致变色材料,其是一种配位化合物,可与电解质中的Li+和H+配位结合,通电时,配位结合Li+和H+的普鲁士蓝薄膜失去电子,由透明态变为蓝色着色态;电解质中的Li+和H+起到离子传输的协同作用;谐振腔由电场调控的结构色与普鲁士蓝的电致变色复合,实现了单一器件多种颜色调控的效果。The working mechanism of the resonant cavity and the Prussian blue complementary electrochromic device in this embodiment is as follows: the tungsten trioxide in the resonant cavity is a cathodic color changing material. When the power is turned on, the tungsten trioxide obtains electrons, and the optical constant of the material changes, which in turn causes The resonant cavity has a structural color that does not pass through; while Prussian blue is an anodic electrochromic material, which is a coordination compound that can coordinately combine with Li + and H + in the electrolyte. When electrified, the coordination combines Li + and H + The Prussian blue film of H + loses electrons and changes from a transparent state to a blue colored state; Li + and H + in the electrolyte play a synergistic role in ion transport; the structural color of the resonant cavity is controlled by the electric field and the electrochromic state of Prussian blue Composite, to achieve the effect of multiple color regulation of a single device.
本实施例的谐振腔与普鲁士蓝互补型多色电致变色器件的制备方法,其包括以下步骤:The preparation method of the resonant cavity and the Prussian blue complementary multicolor electrochromic device of the present embodiment includes the following steps:
第一基板的制备:Preparation of the first substrate:
玻璃衬底于真空室内,背底真空抽至3×10-4Pa以下,氩气流量 50sccm,沉积气压1.5Pa,溅射功率50W,靶材为金属Ag靶,通过直流溅射在玻璃衬底上沉积Ag膜层,Ag膜层的厚度控制为150nm;The glass substrate is placed in a vacuum chamber, the back is vacuumed to below 3×10 -4 Pa, the argon flow rate is 50sccm, the deposition pressure is 1.5Pa, the sputtering power is 50W, the target is a metal Ag target, and the glass substrate is sputtered on the glass substrate by DC sputtering. Ag film layer is deposited on the top, and the thickness of the Ag film layer is controlled to 150nm;
背底真空抽至3×10-4Pa以下,氩气流量80sccm,氧气流量10 sccm,沉积气压3.0Pa,溅射功率50W,靶材为三氧化钨靶,通过射频溅射在Ag膜层上沉积三氧化钨膜层,三氧化钨膜层的厚度控制为120nm;The backside was evacuated to less than 3×10 -4 Pa, the flow rate of argon gas was 80 sccm, the flow rate of oxygen gas was 10 sccm, the deposition pressure was 3.0 Pa, the sputtering power was 50 W, and the target was tungsten trioxide, which was sputtered on the Ag film by radio frequency. A tungsten trioxide film is deposited, and the thickness of the tungsten trioxide film is controlled to be 120nm;
将三氧化钨膜在弱氧等离子体(50W)中处理60秒以增加表面润湿性;然后将玻璃/Ag/WO3浸入2.5wt.%的聚二烯丙基二甲基氯化铵(PDDA)溶液中浸泡2分钟,在三氧化钨薄膜表面形成单一聚合电解质层,并在去离子水中仔细冲洗底物以去除多余的PDDA,氮气吹干;其次,在PDDA修饰的基底上覆盖一层20μL/cm2的聚苯乙烯纳米颗粒溶液(0.5wt.%),30分钟后,将基底倾斜到近90°,并保持在5秒,让多余的溶液流出,接着,将衬底浸入沸水中5s,用氮气吹干;随后,采用直流溅射,靶材为Au靶,背底真空抽至3×10-4Pa 以下,氩气流量50sccm,沉积气压1.5Pa,溅射功率50W,在聚苯乙烯纳米孔阵列表面沉积Au膜,Au膜层厚度控制为20nm;最后,样品在甲苯中浸泡和超声30分钟,以去除所有聚苯乙烯纳米球,从而形成非均匀的Au纳米孔阵列。其中,聚苯乙烯纳米颗粒溶液的制作步骤为:在250mL的三颈圆底烧瓶中加入90mL去离子水,油浴加热到80℃;然后加入8.5mL清洁的苯乙烯,形成200nm的纳米球,混合溶液在恒定的氮气吹扫和回流下在80℃保持5分钟;350mg 过硫酸钾和50mg十二烷基硫酸钠溶解于10mL去离子水中,保持在 65℃,然后将溶液加入到三颈烧瓶中开始合成,4小时后完成合成;将合成的聚苯乙烯纳米球溶液在6000rpm下离心,使用前用去离子水洗涤4次,把得到的聚苯乙烯溶液与乙醇1:1混合,调整到大约1wt.% (具体过程参见图11)。The tungsten trioxide film was treated in a weak oxygen plasma (50W) for 60 s to increase the surface wettability; then the glass/ Ag /WO3 was immersed in 2.5 wt.% polydiallyldimethylammonium chloride ( PDDA) solution for 2 minutes to form a single polyelectrolyte layer on the surface of the tungsten trioxide film, and the substrate was carefully rinsed in deionized water to remove excess PDDA, and dried with nitrogen; secondly, a layer of PDDA-modified substrate was covered 20 μL/cm of polystyrene nanoparticle solution (0.5 wt.%), after 30 min, tilt the substrate to nearly 90° and hold for 5 s to let the excess solution flow out, then, immerse the substrate in boiling water 5s, blow dry with nitrogen; then, DC sputtering is used, the target is Au target, the back is vacuumed to below 3 × 10 -4 Pa, the flow rate of argon is 50sccm, the deposition pressure is 1.5Pa, the sputtering power is 50W, and the sputtering power is 50W. An Au film was deposited on the surface of the styrene nanopore array, and the thickness of the Au film layer was controlled to be 20 nm; finally, the sample was soaked in toluene and sonicated for 30 minutes to remove all polystyrene nanospheres, thereby forming a non-uniform Au nanopore array. Among them, the preparation steps of the polystyrene nanoparticle solution are: add 90mL of deionized water to a 250mL three-necked round bottom flask, heat the oil bath to 80°C; then add 8.5mL of clean styrene to form 200nm nanospheres, The mixed solution was kept at 80 °C for 5 minutes under constant nitrogen purge and reflux; 350 mg of potassium persulfate and 50 mg of sodium dodecyl sulfate were dissolved in 10 mL of deionized water, kept at 65 °C, and the solution was added to a three-necked flask The synthesis was started in 2000, and the synthesis was completed after 4 hours; the synthesized polystyrene nanosphere solution was centrifuged at 6000 rpm, washed 4 times with deionized water before use, and the obtained polystyrene solution was mixed with ethanol 1:1, adjusted to About 1 wt.% (see Figure 11 for the specific process).
所述制作形成的谐振腔膜层在自然光下显示为红色。The resonant cavity film layer formed by the fabrication is displayed in red under natural light.
第二基板的制备:Preparation of the second substrate:
通过磁控溅射在玻璃衬底上磁控溅射沉积ITO透明导电电极、电化学沉积法制备类普鲁士蓝电致变色薄膜;Prussian blue-like electrochromic thin films were prepared by magnetron sputtering on glass substrate by magnetron sputtering deposition of ITO transparent conductive electrode and electrochemical deposition method;
配置由10mmol/L的FeCl3·6H2O、10mmol/L的K3Fe(CN)6、0.1 mol/L的KCl和0.1mol/L的HCl组成的前驱体溶液;然后,以第二导电衬底为工作电极,Pt片作为对电极,组成电化学沉积工作池,加入配好的前驱体溶液;利用直流稳压电源在9V的条件下进行电化学沉积,在ITO透明导电电极上沉积Fe4[Fe(CN)6]3类普鲁士蓝薄膜,该类普鲁士蓝薄膜的厚度为500nm;Prepare a precursor solution consisting of 10 mmol/L FeCl 3 ·6H 2 O, 10 mmol/L K 3 Fe(CN) 6 , 0.1 mol/L KCl and 0.1 mol/L HCl; The substrate is the working electrode, and the Pt sheet is used as the counter electrode to form an electrochemical deposition working cell, and the prepared precursor solution is added. 4 [Fe(CN) 6 ] type 3 Prussian blue film, the thickness of this type of Prussian blue film is 500 nm;
所述制作形成的类普鲁士蓝薄膜为深蓝色;The Prussian blue-like film formed by the fabrication is dark blue;
对盒处理:将上述的第一基板和第二基板沿其外周区域,通过封框胶进行粘接,并限定出一空腔;Box assembling process: the above-mentioned first substrate and second substrate are bonded along their peripheral regions by a frame sealant, and a cavity is defined;
电解液灌注:将0.1mol/L的高氯酸锂和0.01mol/L的醋酸加入碳酸丙烯酯中,配置成PH值为3的电解液;然后将其真空灌注到对盒的空腔中;封装后,即得到谐振腔与普鲁士蓝互补型多色电致变色器件。Electrolyte perfusion: add 0.1 mol/L lithium perchlorate and 0.01 mol/L acetic acid to propylene carbonate to configure an electrolyte with a pH value of 3; then vacuum it into the cavity of the box; After packaging, the resonant cavity and Prussian blue complementary multicolor electrochromic device is obtained.
本实施例的谐振腔与普鲁士蓝互补型多色电致变色器件通过调节电压,可得到全彩色,如红色、橙色、黄色、绿色、蓝绿色和蓝色。具体为:利用直流稳压电源施加正电压时,普鲁士蓝褪色,器件由蓝色变为红色;施加负电压时,通过调节电压或时间,器件可显示红色、橙色、黄色、绿色、蓝绿色和蓝色。The resonant cavity of this embodiment and the Prussian blue complementary multi-color electrochromic device can obtain full colors, such as red, orange, yellow, green, blue-green and blue, by adjusting the voltage. Specifically: when a positive voltage is applied by a DC regulated power supply, the Prussian blue fades, and the device changes from blue to red; when a negative voltage is applied, by adjusting the voltage or time, the device can display red, orange, yellow, green, blue-green and blue.
实施例2Example 2
如图12所示,本实施例提供一种谐振腔(Al/WO3/Cr)与类普鲁士蓝薄膜组成的互补型多色柔性电致变色器件,属于反射型顶显色结构,包括:As shown in FIG. 12 , this embodiment provides a complementary multi-color flexible electrochromic device composed of a resonant cavity (Al/WO 3 /Cr) and a Prussian blue-like film, which belongs to a reflective top color rendering structure, including:
第一基板,依层叠顺序包括第一衬底11、金属反射层121、介质层122、宽带吸收层123,其中,第一衬底为聚酰亚胺薄膜,金属反射层为金属Al薄膜,介质层为三氧化钨薄膜,宽带吸收层为金属Cr 薄膜;The first substrate includes a
第二基板,依层叠顺序包括第二衬底21、透明导电电极221、电致变色层222,其中,第二衬底为透明聚酰亚胺薄膜;透明导电电极为ITO透明导电层;电致变色层为类普鲁士蓝薄膜;The second substrate includes a
封框胶,基本沿周向设置在第一基板和第二基板的外周区域之间,以将宽带吸收层123的上表面和电致变色层222的下表面密封地相互结合并限定一空腔;以及a frame sealant, arranged between the peripheral regions of the first substrate and the second substrate substantially along the circumferential direction, so as to seal the upper surface of the
电解液设置在空腔中。该电解液以碳酸丙烯脂为溶剂,高氯酸锂和醋酸为溶质,按摩尔浓度计,其中高氯酸锂为0.1mol/L、醋酸为0.01mol/L;所述电解液的PH值为3。The electrolyte is provided in the cavity. The electrolyte uses propylene carbonate as a solvent, lithium perchlorate and acetic acid as solutes, and in terms of molar concentration, lithium perchlorate is 0.1 mol/L and acetic acid is 0.01 mol/L; the pH of the electrolyte is 3.
如图13所示,通过改变工作电极中三氧化钨薄膜厚度,第一衬底的反射光谱不同,可以反射显示不同的颜色。As shown in FIG. 13 , by changing the thickness of the tungsten trioxide film in the working electrode, the reflection spectrum of the first substrate is different, and different colors can be reflected and displayed.
本实施例的谐振腔与普鲁士蓝互补型多色电致变色器件的制备方法,其包括以下步骤:The preparation method of the resonant cavity and the Prussian blue complementary multicolor electrochromic device of the present embodiment includes the following steps:
第一基板的制备:Preparation of the first substrate:
所述电子束蒸发法制备金属Cr/Al/WO3/Cr膜层的制作步骤为:将盛有金属Cr、Al和WO3蒸发料的坩埚和第一聚酰亚胺衬底放置于真空室内,真空室背底真空抽至3×10-4Pa以下,衬底温度保持在 250℃,控制电子枪加速工作电压在6kV依次进行电子束蒸发沉积Cr、Al、WO3和Cr;所得Cr膜、Al膜、WO3膜和Cr膜的厚度分别控制为20nm、150nm、250nm和10nm;The manufacturing steps of preparing the metal Cr/Al/WO 3 /Cr film layer by the electron beam evaporation method are as follows: placing the crucible containing the metal Cr, Al and WO 3 evaporation materials and the first polyimide substrate in a vacuum chamber , the back of the vacuum chamber was evacuated to below 3×10 -4 Pa, the substrate temperature was kept at 250 °C, and the accelerated working voltage of the electron gun was controlled at 6kV to sequentially deposit Cr, Al, WO 3 and Cr by electron beam evaporation; the obtained Cr film, The thicknesses of Al film, WO 3 film and Cr film are controlled to be 20 nm, 150 nm, 250 nm and 10 nm, respectively;
所述制作形成的谐振腔膜层在自然光下显示为红色。The resonant cavity film layer formed by the fabrication is displayed in red under natural light.
第二基板的制备:通过水热法在聚酰亚胺/FTO衬底上沉积类普鲁士蓝薄膜;所述类普鲁士蓝薄膜具体为Na1.92Fe[Fe(CN)6]·nH2O(n 为化学元素计量比);Preparation of the second substrate: a Prussian blue-like film is deposited on a polyimide/FTO substrate by a hydrothermal method; the Prussian blue-like film is specifically Na 1.92 Fe[Fe(CN) 6 ]·nH 2 O(n is the stoichiometric ratio of chemical elements);
所述类普鲁士蓝薄膜Na1.92Fe[Fe(CN)6]·nH2O的制作步骤为:将3 mmol的Na4Fe(CN)6溶于100mL去离子水中,用抗坏血酸调节溶液 PH值为6.5;然后将溶液转移至高压反应釜中,放入聚酰亚胺/FTO 柔性导电衬底;密封反应釜在140℃维持20小时;待反应釜自然冷却后,取出第二导电衬底,用去离子水冲洗2次,丙酮漂洗1次;然后,放入真空干燥箱中,在120℃真空干燥12小时,即得到类普鲁士蓝薄膜Na1.92Fe[Fe(CN)6]·nH2O;所述类普鲁士蓝薄膜厚度为120nm;The preparation steps of the Prussian blue-like film Na 1.92 Fe[Fe(CN) 6 ]·nH 2 O are: dissolving 3 mmol of Na 4 Fe(CN) 6 in 100 mL of deionized water, and adjusting the pH of the solution with ascorbic acid. 6.5; then transfer the solution to the autoclave and put it into the polyimide/FTO flexible conductive substrate; seal the reaction kettle and maintain it at 140°C for 20 hours; after the reaction kettle is naturally cooled, take out the second conductive substrate and use Rinse twice with deionized water and once with acetone; then, put it in a vacuum drying oven and vacuum dry at 120°C for 12 hours to obtain a Prussian blue-like film Na 1.92 Fe[Fe(CN) 6 ]·nH 2 O; The thickness of the Prussian blue-like film is 120 nm;
对盒处理步骤与实施例1所述对盒工艺相同;The process steps of box matching are the same as those of the box matching process described in Example 1;
将0.08mol/L的高氯酸锂和0.008mol/L的柠檬酸加入碳酸丙烯酯溶剂中,配置成PH值为2的电解液;然后将所述电解液真空灌注到所述对盒的空腔中;封装后,即得到所述谐振腔与类普鲁士蓝互补型多色电致变色器件。Lithium perchlorate of 0.08mol/L and citric acid of 0.008mol/L were added to the propylene carbonate solvent, and configured into an electrolyte with a pH value of 2; then the electrolyte was vacuum-perfused into the empty space of the pair of boxes. After encapsulation, the resonant cavity and the Prussian blue-like complementary multicolor electrochromic device are obtained.
本实施例的谐振腔(Al/WO3/Cr)与普鲁士蓝互补型多色电致变色器件通过调节电压,可得到全彩色。The resonant cavity (Al/WO 3 /Cr) of this embodiment and the Prussian blue complementary multi-color electrochromic device can obtain full color by adjusting the voltage.
实施例3Example 3
如图14所示,本实施例提供一种谐振腔(Cr/WO3/Al纳米孔薄膜)与NiO薄膜组成的多色电致变色器件,属于反射型底显色结构,包括:As shown in FIG. 14 , this embodiment provides a multi-color electrochromic device composed of a resonant cavity (Cr/WO 3 /Al nanoporous film) and a NiO film, which belongs to a reflective bottom color rendering structure, including:
第一基板,依层叠顺序包括第一衬底11、宽带吸收层123、介质层122、金属纳米孔结构层124,其中,第一衬底为玻璃;宽带吸收层为厚10nm的金属Cr膜;介质层为厚250nm的三氧化钨薄膜;金属纳米孔结构层为厚100nm的金属Al纳米孔薄膜;The first substrate includes a
第二基板,依层叠顺序包括第二衬底21、透明导电电极221、电致变色层222,其中,第二衬底为玻璃;透明导电电极为ITO透明导电层;电致变色层为NiO离子存储层;The second substrate includes a
封框胶,基本沿周向设置在第一基板和第二基板的外周区域之间,以将金属纳米孔结构层124上表面和电致变色层222下表面密封地相互结合并限定一空腔;以及The frame sealant is arranged between the peripheral regions of the first substrate and the second substrate in the circumferential direction, so as to seal the upper surface of the metal
电解液设置在所述空腔中。该电解液以碳酸丙烯脂为溶剂,高氯酸锂为溶质,按摩尔浓度计,高氯酸锂为0.1mol/L。Electrolyte is provided in the cavity. The electrolyte uses propylene carbonate as a solvent, lithium perchlorate as a solute, and in molar concentration, lithium perchlorate is 0.1 mol/L.
本实施例的反射型底显色多色电致变色器件,通过控制电压值和时间可显示红色、橙色、黄色和绿色。The reflective bottom-color multicolor electrochromic device of this embodiment can display red, orange, yellow and green by controlling the voltage value and time.
实施例4Example 4
本实施例提供一种谐振腔(Al/SiO2/Au纳米孔薄膜)与聚吡咯薄膜组成的多色电致变色器件,属于反射型顶显色结构,其结构同实施例1,包括:This embodiment provides a multi-color electrochromic device composed of a resonant cavity (Al/SiO 2 /Au nanoporous film) and a polypyrrole film, which belongs to a reflective top color rendering structure, and its structure is the same as that of
第一基板,依层叠顺序包括第一衬底11、金属反射层121、介质层122和金属纳米孔结构层124,其中,第一衬底为玻璃;金属反射层为厚150nm的金属Al膜,介质层为厚50nm的SiO2薄膜,金属纳米孔结构层为厚20nm的Au纳米孔薄膜;The first substrate includes a
第二基板,依层叠顺序包括第二衬底21、透明导电电极221和厚500nm的聚吡咯薄膜222,其中,第二衬底为玻璃;透明导电电极为FTO透明导电层;电致变色层为聚吡咯薄膜;The second substrate includes a
封框胶,基本沿周向设置在第一基板和第二基板的外周区域之间,以将金属纳米孔结构层124上表面和电致变色层222下表面密封地相互结合并限定一空腔;以及the frame sealant is arranged between the peripheral regions of the first substrate and the second substrate in the circumferential direction, so as to seal the upper surface of the metal
电解液设置在空腔中;该电解液为1mol/L的氯化钾水溶液。The electrolyte is arranged in the cavity; the electrolyte is a 1 mol/L potassium chloride aqueous solution.
所述Au纳米孔薄膜可采用纳米压印工艺,纳米压印工艺可用于大面积金属纳米孔阵列制作。The Au nanoporous film can adopt a nanoimprinting process, and the nanoimprinting process can be used for the fabrication of a large-area metal nanopore array.
如图15所示,纳米压印工艺制备Au纳米孔阵列薄膜的制作步骤为:1、硬模板制作和表面处理;2、软模板复制;3、图形压印工艺;4、图形干刻。As shown in FIG. 15 , the fabrication steps for preparing the Au nanopore array film by the nanoimprinting process are: 1. hard template fabrication and surface treatment; 2. soft template replication; 3. pattern imprinting process; 4. pattern dry engraving.
所述硬模板制作和表面处理的具体步骤为:首先在硅片上采用电子束曝光刻蚀工艺制作主模板图形;主模板图形制作完成后,在主模板表面涂敷抗粘剂;涂敷抗粘剂的主模板在加热台上120℃烘烤10 分钟。The specific steps of making and surface treatment of the hard template are: first, use an electron beam exposure and etching process to make a master template pattern on the silicon wafer; The master template of the adhesive was baked on a heating table at 120°C for 10 minutes.
所述软模板复制的具体步骤为:在上述经过抗粘剂处理的主模板上涂敷模板胶,120℃预烘烤5~10s;在涂敷模板胶的主模板上放置基片,利用滚轮进行压印;压印后经过紫外光照和脱模,即得到软模板。The specific steps of duplicating the soft template are as follows: coating template glue on the main template treated with the anti-adhesive agent, pre-baking at 120° C. for 5-10 s; placing a substrate on the main template coated with template glue, using a roller Imprinting is performed; after imprinting, a soft template is obtained after UV irradiation and demoulding.
所述图形压印的具体步骤为:沉积了20nm Au膜的基底经过清洗后涂敷压印胶;预烘后,放置软模板进行压印;经过紫外光照处理后,进行脱模,脱模速度40mm/s;脱模后即将软膜图形转移到基底上;The specific steps of the pattern imprinting are as follows: the substrate on which the 20nm Au film is deposited is cleaned and then coated with imprinting glue; after pre-baking, placing a soft template for imprinting; 40mm/s; transfer the soft film pattern to the substrate after demolding;
所述图形干刻的具体步骤为:经过图案转移的基底采用电感耦合等离子体(ICP)刻蚀在基底上刻蚀出图形所需的高度;基底经过灰化处理去除剩余的压印胶后即得到非均匀Au纳米孔阵列。The specific steps of the pattern dry etching are as follows: the pattern-transferred substrate is etched by inductively coupled plasma (ICP) etching to obtain the required height of the pattern; A non-uniform Au nanopore array was obtained.
所述电沉积聚吡咯薄膜的制作步骤为:采用电化学氧化中的恒电流法,Au纳米孔导电基体作为工作电极,Pt片电极作为对电极,饱和甘汞电极作为参比电极,沉积电流密度为0.05mA/cm2,沉积时间为15s;The preparation steps of the electrodeposited polypyrrole film are as follows: using a galvanostatic method in electrochemical oxidation, the Au nanoporous conductive substrate is used as a working electrode, a Pt sheet electrode is used as a counter electrode, a saturated calomel electrode is used as a reference electrode, and the deposition current density is is 0.05mA/cm 2 , and the deposition time is 15s;
所述电沉积聚吡咯薄膜的沉积液的制备步骤为:将1.05mL吡咯加入150mL去离子水中;待吡咯溶解后,加入1.92g对苯磺酸钠;待对苯磺酸钠溶解后,得到电沉积聚吡咯薄膜的沉积液。The preparation steps of the deposition solution of the electrodeposited polypyrrole film are as follows: adding 1.05 mL of pyrrole to 150 mL of deionized water; after the pyrrole is dissolved, adding 1.92 g of sodium p-benzenesulfonate; A deposition solution for the deposition of polypyrrole films.
本实施例的谐振腔(Al/SiO2/Au纳米孔薄膜)与聚吡咯薄膜组成的反射型顶显色多色电致变色器件,通过控制电压值和时间可在红色和黑色之间切换。The reflective top-color multicolor electrochromic device composed of the resonant cavity (Al/SiO 2 /Au nanoporous film) and the polypyrrole film of this embodiment can be switched between red and black by controlling the voltage value and time.
所述聚吡咯薄膜还可以位于Au纳米孔薄膜的顶部、朝向电解质侧,可形成与本实施例相同的效果。The polypyrrole film can also be located on the top of the Au nanoporous film, facing the electrolyte side, which can achieve the same effect as this embodiment.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111520807.4A CN114415435A (en) | 2021-12-13 | 2021-12-13 | Multicolor electrochromic device and method of making the same, display panel, and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111520807.4A CN114415435A (en) | 2021-12-13 | 2021-12-13 | Multicolor electrochromic device and method of making the same, display panel, and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114415435A true CN114415435A (en) | 2022-04-29 |
Family
ID=81266312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111520807.4A Pending CN114415435A (en) | 2021-12-13 | 2021-12-13 | Multicolor electrochromic device and method of making the same, display panel, and display device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114415435A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115268159A (en) * | 2022-09-13 | 2022-11-01 | 义乌清越光电技术研究院有限公司 | Electrochromic regulation and control grating and display panel |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5631765A (en) * | 1991-05-16 | 1997-05-20 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Electrochromic light valve and method of manufacturing it as well as its use |
EP0818706A2 (en) * | 1996-07-09 | 1998-01-14 | Lucent Technologies Inc. | Switchable devices with an optical cavity |
US20100079844A1 (en) * | 2008-09-30 | 2010-04-01 | Kurman Eric W | Resonant cavity electrochromic device |
CN206162022U (en) * | 2016-06-30 | 2017-05-10 | 浙江上方电子装备有限公司 | Electrochromic module |
CN111381412A (en) * | 2020-04-01 | 2020-07-07 | 宁波祢若电子科技有限公司 | Complementary electrochromic device and preparation method thereof |
CN111624829A (en) * | 2019-02-27 | 2020-09-04 | 中国科学院苏州纳米技术与纳米仿生研究所 | Colorful electrochromic structure, preparation method and application thereof |
CN112180648A (en) * | 2019-07-03 | 2021-01-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | Optical film structure, its preparation method and application |
-
2021
- 2021-12-13 CN CN202111520807.4A patent/CN114415435A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5631765A (en) * | 1991-05-16 | 1997-05-20 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Electrochromic light valve and method of manufacturing it as well as its use |
EP0818706A2 (en) * | 1996-07-09 | 1998-01-14 | Lucent Technologies Inc. | Switchable devices with an optical cavity |
US20100079844A1 (en) * | 2008-09-30 | 2010-04-01 | Kurman Eric W | Resonant cavity electrochromic device |
CN206162022U (en) * | 2016-06-30 | 2017-05-10 | 浙江上方电子装备有限公司 | Electrochromic module |
CN111624829A (en) * | 2019-02-27 | 2020-09-04 | 中国科学院苏州纳米技术与纳米仿生研究所 | Colorful electrochromic structure, preparation method and application thereof |
CN112180648A (en) * | 2019-07-03 | 2021-01-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | Optical film structure, its preparation method and application |
CN111381412A (en) * | 2020-04-01 | 2020-07-07 | 宁波祢若电子科技有限公司 | Complementary electrochromic device and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
ERIC HOPMANN: "Plasmochromic Nanocavity Dynamic Light Color Switching Eric Hopmann* and Abdulhakem Y. Elezzabi Cite This:", vol. 20, no. 3, pages 1876 - 1882 * |
MARIKA GUGOLE: "Electrochromic Inorganic Nanostructures with High Chromaticity and Superior Brightness", vol. 21, no. 10, pages 4343 - 4350 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115268159A (en) * | 2022-09-13 | 2022-11-01 | 义乌清越光电技术研究院有限公司 | Electrochromic regulation and control grating and display panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances | |
CN111624829B (en) | Colorful electrochromic structure, preparation method and application thereof | |
Bonhôte et al. | Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films | |
JP5512880B2 (en) | Privacy protection filter and manufacturing method thereof | |
Sun et al. | Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode | |
Bonhote et al. | Nanocrystalline electrochromic displays | |
CN205405029U (en) | High electrochromic film who changes speed | |
Ju et al. | Zinc ion intercalation/deintercalation of metal organic framework-derived nanostructured NiO@ C for low-transmittance and high-performance electrochromism | |
Wang et al. | High performance visible and near-infrared region electrochromic smart windows based on the different structures of polyoxometalates | |
CN104407483A (en) | Electrochromic device and preparation method and application thereof | |
CN105060733A (en) | Electrochromic film adopting amorphous/crystalline tungsten trioxide core-shell structure and preparation method of film | |
WO2022262463A1 (en) | Electrochromic apparatus based on polymer dispersed liquid crystals, and preparation method and electronic device | |
WO2022061953A1 (en) | Multi-color electrochromic structure having high brightness, saturation and purity, multi-color electrochromic device, and method for preparing structure | |
KR20160127866A (en) | Method for manufacturing electrochromic layer and electrochromic device | |
JP2010014917A (en) | Electrochromic element and method for manufacturing the same | |
Jiang et al. | Multicolored inorganic electrochromic materials: status, challenge, and prospects | |
CN112117442A (en) | Multicolor metal oxide electrochromic battery, and preparation method and application thereof | |
Zhao et al. | Nickel Oxide Electrochromic Films: Mechanisms, Preparation Methods, and Modification Strategies-A Review | |
CN114415435A (en) | Multicolor electrochromic device and method of making the same, display panel, and display device | |
TWI710841B (en) | Electrochromic device and method for fabricating electrochromic device | |
Wu et al. | Electrochromic materials: Scope for the cyclic decay mechanisms and performance stability optimisation strategies | |
TW201537274A (en) | Electrochromic device and method of manufacturing the same | |
Wang et al. | Recent advance in electrochromic materials and devices for display applications | |
Liu et al. | Fabrication of TiO2: Nb array films and their enhanced electrochromic performance | |
US20230367167A1 (en) | Multicolor electrochromic structure, fabrication method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |