CN114414529A - Multi-band double-optical-fiber end-face interference salinity detection method, computer device and computer readable storage medium - Google Patents
Multi-band double-optical-fiber end-face interference salinity detection method, computer device and computer readable storage medium Download PDFInfo
- Publication number
- CN114414529A CN114414529A CN202111489053.0A CN202111489053A CN114414529A CN 114414529 A CN114414529 A CN 114414529A CN 202111489053 A CN202111489053 A CN 202111489053A CN 114414529 A CN114414529 A CN 114414529A
- Authority
- CN
- China
- Prior art keywords
- salinity
- wireless signal
- optical
- value
- initial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 61
- 239000013307 optical fiber Substances 0.000 title claims abstract description 33
- 238000003860 storage Methods 0.000 title claims abstract description 13
- 239000013535 sea water Substances 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 238000010183 spectrum analysis Methods 0.000 claims abstract description 7
- 230000000875 corresponding effect Effects 0.000 claims description 54
- 239000000835 fiber Substances 0.000 claims description 44
- 238000004590 computer program Methods 0.000 claims description 21
- 238000010295 mobile communication Methods 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 description 72
- 238000002265 electronic spectrum Methods 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012088 reference solution Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/45—Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及海水的盐度检测领域,具体地说,是涉及一种多波段双光纤端面干涉盐度检测方法以及实现这种方法的计算机装置、计算机可读存储介质。The invention relates to the field of seawater salinity detection, in particular to a multi-band dual-fiber end-face interference salinity detection method, a computer device and a computer-readable storage medium for implementing the method.
背景技术Background technique
不同的区域海水盐度往往不相同,而海水盐度变化往往对海洋生态有重大影响,为此,需要对海水盐度进行监测,例如需要定期对一些特定区域的海水盐度进行检测。现有用于对海水盐度进行检测的系统(SDS)往往设置有一个海水盐度检测的装置。The salinity of seawater is often different in different regions, and the change of seawater salinity often has a significant impact on marine ecology. Therefore, it is necessary to monitor the seawater salinity. For example, it is necessary to regularly detect the seawater salinity in some specific areas. The existing system (SDS) for detecting the salinity of seawater is often provided with a device for detecting the salinity of seawater.
参见图1,现有的海水盐度检测装置包括掺铒光纤放大器11、电光调制器12、盐度传感器13、光环形器14、光电转换器15以及电子频谱分析仪16。掺铒光纤放大器11向电光调制器12输出光信号,电光调制器12还接收无线射频信号,例如连接至射频(RF)信号源并接收射频信号。可见,现有的海水盐度检测装置使用放大的自发辐射信号(ASE)是由掺铒光纤放大器11发射,然后由电光调制器12利用射频信号源产生的电信号进行电光调制,调制后的光信号随后被送入光环行器14的第一端口141,并通过第二端口142进入到盐度传感器13。检测时,盐度传感器13的一部分浸泡在待检测的海水中,由于光信号经过具有不同盐度的海水后,光信号的频率将发生变化,这些发生变化的光信号由光环形器14的第二端口142传送至第三端口143,并经过第三端口143后入射到光电转换器15。Referring to FIG. 1 , the existing seawater salinity detection device includes an erbium-doped fiber amplifier 11 , an electro-
光电转换器15对经过盐度传感器13的光信号进行光电转换,将光信号转换成电信号,并且将获得的电信号输出至电子频谱分析仪16,由电子频谱分析仪对经过光电转换后的信号进行频谱分析,进而计算出海水的盐度。The
然而,由于现有的海水盐度检测方法仅仅使用单一的频率波段的信号进行检测,例如经过电光调制器所获得的光信号的频率往往是固定的,且光信号的频率往往与电光调制的射频信号相关,因此,如果射频信号受到干扰,例如受到电磁干扰时,将影响电光调制后的光信号的稳定性,进而影响海水盐度的检测,有可能导致海水盐度检测不够准确。However, because the existing seawater salinity detection method only uses a single frequency band signal for detection, for example, the frequency of the optical signal obtained by the electro-optical modulator is often fixed, and the frequency of the optical signal is often different from the radio frequency of the electro-optical modulation. Therefore, if the radio frequency signal is interfered, such as electromagnetic interference, the stability of the electro-optically modulated optical signal will be affected, which will affect the detection of seawater salinity, which may lead to inaccurate detection of seawater salinity.
发明内容SUMMARY OF THE INVENTION
本发明的第一目的是提供一种能够提高海水盐度检测精确度的多波段双光纤端面干涉盐度检测方法。The first object of the present invention is to provide a multi-band dual-fiber end-face interference salinity detection method capable of improving the detection accuracy of seawater salinity.
本发明的第二目的是提供一种实现上述多波段双光纤端面干涉盐度检测方法的计算机装置。The second object of the present invention is to provide a computer device for realizing the above-mentioned multi-band dual-fiber end-face interference salinity detection method.
本发明的第三目的是提供一种实现上述多波段双光纤端面干涉盐度检测方法的计算机可读存储介质。The third object of the present invention is to provide a computer-readable storage medium for realizing the above-mentioned multi-band dual-fiber end-face interference salinity detection method.
为实现上述的第一目的,本发明提供的多波段双光纤端面干涉盐度检测方法包括获取多个无线信号,多个无线信号具有不同的频率波段,将每一无线信号进行电光调制后输出至盐度检测传感器,盐度检测传感器的至少一部分浸泡于待检测海水中;将经过盐度检测传感器输出的返回光信号进行光电转换后进行频谱分析,获得每一无线信号频谱分析后计算得到待检测海水的初始盐度数值;计算多个无线信号对应的初始盐度数值的平均值,使用该平均值作为待检测海水的最终盐度数值。In order to achieve the above-mentioned first purpose, the multi-band dual-fiber end-face interference salinity detection method provided by the present invention includes acquiring a plurality of wireless signals, the plurality of wireless signals having different frequency bands, and outputting each wireless signal after electro-optical modulation to a The salinity detection sensor, at least a part of the salinity detection sensor is immersed in the seawater to be detected; the returned light signal output by the salinity detection sensor is subjected to photoelectric conversion and then subjected to spectrum analysis, and the spectrum analysis of each wireless signal is obtained and calculated to obtain the to-be-detected The initial salinity value of seawater; the average value of the initial salinity values corresponding to multiple wireless signals is calculated, and the average value is used as the final salinity value of the seawater to be detected.
由上述方案可见,通过获取多个不同的频率波段的无线信号并进行电光调制,所获得的多个不同频率的光信号分别经过盐度传感器并分别获得多个相应的初始盐度值,然后,通过计算多个初始盐度值的平均值来确定待检测海水的最终盐度值。可见,计算获得的最终盐度值是由多个不同频率波段的无线信号对应的初始盐度值计算获得,即使某一个频率波段的无线信号受到干扰,仍可以使用其他频率波段对应的初始盐度值进行弥补,不会导致最终盐度值严重偏离真实情况,从而提高海水盐度检测的准确性。It can be seen from the above scheme that by obtaining multiple wireless signals of different frequency bands and performing electro-optic modulation, the obtained multiple optical signals of different frequencies pass through the salinity sensor and obtain multiple corresponding initial salinity values respectively, and then, The final salinity value of the seawater to be detected is determined by calculating the average value of a plurality of initial salinity values. It can be seen that the final salinity value obtained by calculation is obtained by calculating the initial salinity value corresponding to the wireless signals of multiple different frequency bands. Even if the wireless signal of a certain frequency band is interfered, the initial salinity corresponding to other frequency bands can still be used. It will not cause the final salinity value to seriously deviate from the real situation, thereby improving the accuracy of seawater salinity detection.
一个优选的方案是,获取多个无线信号包括:使用无线信号收发模块从空中获取多个无线信号,无线信号收发模块具有多个带通滤波器,每一带通滤波器对应于一个频率波段。A preferred solution is that acquiring a plurality of wireless signals includes: using a wireless signal transceiving module to acquire a plurality of wireless signals from the air, the wireless signal transceiving module having a plurality of bandpass filters, each bandpass filter corresponding to a frequency band.
进一步的方案是,无线信号收发模块所获取的无线信号为移动通信无线信号。In a further solution, the wireless signal acquired by the wireless signal transceiver module is a mobile communication wireless signal.
由此可见,通过从空中获取无线射频信号,尤其是移动通信的无线信号,使得多个无线信号的获取非常简单、方便,从而降低获取多个不同频率波段的无线信号的成本。It can be seen that by acquiring wireless radio frequency signals from the air, especially wireless signals of mobile communication, the acquisition of multiple wireless signals is very simple and convenient, thereby reducing the cost of acquiring multiple wireless signals in different frequency bands.
进一步的方案是,计算多个无线信号对应的初始盐度数值的平均值包括:计算多个无线信号对应的初始盐度数值的加权平均值。In a further solution, calculating the average value of the initial salinity values corresponding to the plurality of wireless signals includes: calculating a weighted average value of the initial salinity values corresponding to the plurality of wireless signals.
更进一步的方案是,计算加权平均值前,还执行:设置每一无线信号对应的初始盐度值对应的加权系数,至少一个初始盐度值的加权系数不同于另一个初始盐度值的加权系数。A further solution is, before calculating the weighted average value, also perform: setting a weighting coefficient corresponding to the initial salinity value corresponding to each wireless signal, and the weighting coefficient of at least one initial salinity value is different from the weighting of another initial salinity value. coefficient.
可见,不用的无线信号对应的初始盐度值的加权系数不相同,这样,可以根据不同无线信号的实际情况灵活的调节相应的加权系数,有利于准确的计算海水的盐度值。It can be seen that the weighting coefficients of the initial salinity values corresponding to the unused wireless signals are not the same. In this way, the corresponding weighting coefficients can be flexibly adjusted according to the actual situation of different wireless signals, which is beneficial to accurately calculate the salinity value of seawater.
更进一步的方案是,获取多个无线信号后,计算每一无线信号的功率,无线信号对应的初始盐度值对应的加权系数与该无线信号的功率正相关。A further solution is that after acquiring a plurality of wireless signals, the power of each wireless signal is calculated, and the weighting coefficient corresponding to the initial salinity value corresponding to the wireless signal is positively correlated with the power of the wireless signal.
这样,功率较高的无线信号对应的初始盐度值具有较高的加权系数,可以使得海水盐度值的计算以较高功率的无线信号作为基准,有利于提高海水盐度计算的准确性。In this way, the initial salinity value corresponding to the wireless signal with higher power has a higher weighting coefficient, so that the calculation of the seawater salinity value can be based on the wireless signal with higher power, which is beneficial to improve the accuracy of seawater salinity calculation.
更进一步的方案是,如无线信号的功率小于预设的功率阈值,则将该无线信号对应的初始盐度值的加权系数设置为零。In a further solution, if the power of the wireless signal is less than a preset power threshold, the weighting coefficient of the initial salinity value corresponding to the wireless signal is set to zero.
由此可见,如果某一无线信号的功率过低,则直接放弃该无线信号对应的初始盐度值,即不需要该无线信号对应的初始盐度值作为最终盐度值计算的因子,避免所计算的最终盐度值受到功率较低的无线信号对应的初始盐度值的影响。It can be seen that if the power of a wireless signal is too low, the initial salinity value corresponding to the wireless signal is directly discarded, that is, the initial salinity value corresponding to the wireless signal does not need to be used as a factor for the calculation of the final salinity value, so as to avoid any The calculated final salinity value is influenced by the initial salinity value corresponding to the lower power wireless signal.
可选的方案是,无线信号对应的初始盐度值对应的加权系数为预先设定的固定值。An optional solution is that the weighting coefficient corresponding to the initial salinity value corresponding to the wireless signal is a preset fixed value.
为实现上述的第二目的,本发明提供的计算机装置包括处理器以及存储器,存储器存储有计算机程序,计算机程序被处理器执行时实现上述多波段双光纤端面干涉盐度检测方法的各个步骤。In order to achieve the above-mentioned second purpose, the computer device provided by the present invention includes a processor and a memory, and the memory stores a computer program. When the computer program is executed by the processor, each step of the above-mentioned multi-band dual-fiber end face interference salinity detection method is realized.
为实现上述的第三目的,本发明提供计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述多波段双光纤端面干涉盐度检测方法的各个步骤。In order to achieve the above-mentioned third object, the present invention provides a computer-readable storage medium with a computer program stored thereon, and when the computer program is executed by a processor, realizes each step of the above-mentioned multi-band dual-fiber end-face interference salinity detection method.
附图说明Description of drawings
图1是现有对海水盐度进行检测的装置的结构框图。FIG. 1 is a structural block diagram of a conventional apparatus for detecting seawater salinity.
图2是本发明多波段双光纤端面干涉盐度检测方法实施例所使用的海水盐度检测装置的结构框图。2 is a structural block diagram of a seawater salinity detection device used in an embodiment of the multi-band dual-fiber end-face interference salinity detection method of the present invention.
图3是本发明多波段双光纤端面干涉盐度检测方法实施例所使用的海水盐度检测装置中盐度传感器的结构框图。3 is a structural block diagram of the salinity sensor in the seawater salinity detection device used in the embodiment of the multi-band dual-fiber end-face interference salinity detection method of the present invention.
图4是本发明多波段双光纤端面干涉盐度检测方法实施例的流程图。FIG. 4 is a flow chart of an embodiment of the multi-band dual-fiber end-face interference salinity detection method of the present invention.
图5是本发明多波段双光纤端面干涉盐度检测方法实施例中计算最终盐度值的流程图。5 is a flow chart of calculating the final salinity value in the embodiment of the multi-band dual-fiber end face interference salinity detection method of the present invention.
图6是本发明多波段双光纤端面干涉盐度检测方法实施例中确定初始盐度值加权系数的流程图。6 is a flow chart of determining the weighting coefficient of initial salinity value in an embodiment of the multi-band dual-fiber end face interference salinity detection method of the present invention.
以下结合附图及实施例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
具体实施方式Detailed ways
本发明多波段双光纤端面干涉盐度检测方法用于对海水盐度进行检测,尤其是从空中获取多个不同频率波段的无线信号作为电光调制的射频信号,并以此形成多个不同频率的光信号,以不同频率的光信号入射到盐度传感器中以获得多个不同的初始盐度值,最后依据多个初始盐度值计算最终盐度值。The multi-band double-fiber end-face interference salinity detection method of the present invention is used to detect the salinity of seawater, in particular, a plurality of wireless signals of different frequency bands are obtained from the air as electro-optically modulated radio frequency signals, and a plurality of different frequency bands are formed thereby. The light signal is incident into the salinity sensor with light signals of different frequencies to obtain a plurality of different initial salinity values, and finally the final salinity value is calculated according to the plurality of initial salinity values.
本实施例的方法应用如图2所示的海水盐度检测装置对海水盐度进行检测,该海水盐度检测装置包括无线信号收发模块20、盐度传感器23、光环形器24、光电转换器25以及电子频谱分析仪26。其中,无线信号收发模块20包括多个带通滤波器21、22,还包括信号放大器27以及光电直调器28,优选的,每一个带通滤波器所过滤的无线信号的频率不同,例如带通滤波器21过滤的无线信号是5G通信频率波段内的无线信号,带通滤波器22过滤的无线信号是4G通信频率波段内的无线信号。当然,无线信号收发模块20还可以设置更多的带通滤波器,其他带通滤波器可以过滤3G通信频率波段内的无线信号或者2G通信频率波段内的无线信号。此外,多个带通滤波器输出的信号均被信号放大器27接收。The method of this embodiment uses the seawater salinity detection device shown in FIG. 2 to detect the seawater salinity. The seawater salinity detection device includes a wireless signal transceiver module 20 , a
信号放大器27对带通滤波器21、22获取的无线信号进行放大,并将放大后的信号将输出至光电直调器28。优选的,无线信号收发模块20内设置有功率检测模块,用于对带通滤波器21、22所获取的无线信号的功率进行检测,并且记录各个无线信号的功率。The signal amplifier 27 amplifies the wireless signals obtained by the band-pass filters 21 and 22 , and outputs the amplified signals to the photoelectric straightener 28 . Preferably, the wireless signal transceiver module 20 is provided with a power detection module for detecting the power of the wireless signals obtained by the band-pass filters 21 and 22 and recording the power of each wireless signal.
光电直调器28接收经过放大后的无线信号,且光电直调器28内设置有一个光源以产生光信号,例如,该光源可以是发光二极管或者激光器,通过发光二极管或者激光器产生光信号。并且,光电直调器28使用放大后的无线信号对光源的电压或者电流进行直接调制,由于带通滤波器21从空中接收的无线信号是无线射频信号,通过无线射频信号可以直接对光源的电压或者电流进行调制以改变输出光信号的频率,因此采用光电直接调制的方式可以降低电光调制的难度。此外,由于通过光电直接调制的方式对光信号进行调制,因此不需要设置掺铒光纤放大器。The photoelectric straightener 28 receives the amplified wireless signal, and a light source is arranged in the photoelectric straightener 28 to generate an optical signal. In addition, the photoelectric direct modulator 28 directly modulates the voltage or current of the light source by using the amplified wireless signal. Since the wireless signal received from the air by the bandpass filter 21 is a radio frequency signal, the voltage of the light source can be directly adjusted by the radio frequency signal. Or the current is modulated to change the frequency of the output optical signal, so the difficulty of electro-optical modulation can be reduced by using the direct optoelectronic modulation. In addition, since the optical signal is modulated by means of photoelectric direct modulation, no erbium-doped fiber amplifier is required.
优选的,无线信号收发模块20可以采用移动通信无线信号收发模块,例如采用5G信号收发模块实现。例如,5G信号收发模块可以是一个5G基站,这样,无线信号收发模块20体积可以做到很小,并且生产成本很低,相比起采用掺铒光纤放大器,本实施例能够大幅度降低海水盐度检测装置的生产成本,并且能够减小海水盐度检测装置的体积。此外,由于5G信号收发模块通常能够适应恶劣的环境,因此,可以将无线信号收发模块20安装在靠近海边的位置,并且能够保持长时间使用。Preferably, the wireless signal transceiver module 20 may be implemented by a mobile communication wireless signal transceiver module, for example, a 5G signal transceiver module. For example, the 5G signal transceiver module can be a 5G base station, so that the wireless signal transceiver module 20 can be made small in volume and low in production cost. Compared with using an erbium-doped fiber amplifier, this embodiment can greatly reduce seawater salt The production cost of the salinity detection device can be reduced, and the volume of the seawater salinity detection device can be reduced. In addition, since the 5G signal transceiver module can generally adapt to harsh environments, the wireless signal transceiver module 20 can be installed near the seaside and can be used for a long time.
光环形器24具有三个端口,分别是第一端口241、第二端口242以及第三端口243,光信号从第一端口241入射到光环形器24后,只能够从第二端口242出射,从第二端口242入射到光环形器24的光信号只能够从第三端口243出射,不能够逆向传输。The
光电直调器28使用无线射频信号对光信号进行调制后获得输入光信号,光电直调器28的输出端与光环形器24的第一端口241连接,因此,输入光信号从第一端口241入射后从第二端口242出射。盐度传感器23连接到光环形器24的第二端口242,因此,输入光信号从第二端口242入射到盐度传感器23。The photoelectric direct modulator 28 modulates the optical signal with the radio frequency signal to obtain the input optical signal, and the output end of the photoelectric direct modulator 28 is connected to the
参见图3,盐度传感器23内设置有光纤231、APC接头232、第一段物理接触光纤235、单模光纤236、第二段物理接触光纤237,其中,光纤231的第一端连接至光环行器24的第二端口242,APC接头232设置在光纤23的第二端。其中,APC接头232外侧端面形成8°的倾斜面,即APC接头的外端面与轴线之间的夹角为8°。第一段物理接触光纤235的第一端面234为普通的PC接头,即打磨成微球面的端面,因此,第一端面234将形成第一反射面。第一段物理接触光纤235的第二端为APC接头,并且与单模光纤236连接。第二段物理接触光纤237具有第二端面239,第二端面239为第二段物理接触光纤237的自由端,第二端面239也是普通的PC接头,即打磨成微球面的端面,因此,第二端面239将形成第二反射面。第二段物理接触光纤237的另一端设置有APC接头,该APC接头与单模光纤236连接。另外,第二段物理接触光纤237的第二端面239伸入到容纳腔238内,容纳腔238内装有待检测海水,优选的,第二端面239完全浸泡于待检测海水中。Referring to FIG. 3, the
另外,在APC接头232与第一段物理接触光纤231的第一端面234之间设置有容纳腔233,容纳腔233内装有预设盐度的基准溶液,例如已知盐度的海水。输入光信号经过光纤231后从APC接头232出射并穿透基准溶液,一部分光信号在第一端面234上发生反射并入射到光纤231,形成第一反射信号。输入光信号的另一部分将穿过第一端面234并入射到第一段物理接触光纤235,然后经过单模光纤236传送到第二段物理接触光纤237,并且在第二端面239上发生反射形成第二反射信号,第二反射信号依次经过第二段物理接触光纤237、单模光纤236、第一段物理接触光纤235并入射到光纤231,再入射到光环形器24的第二端口242。因此,第一反射信号和第二反射信号实际上是先后经过光环形器24,第一反射信号和第二反射信号经过光环形器24的第三端口243时存在时间差异。这样,在光环形器24的第三端口243处构成微波光子滤波器。In addition, an
本实施例中,单模光纤236的长度在1.5千米到2.5千米之间,优选的,单模光纤236的长度为2千米,而第一段物理接触光纤235、第二段物理接触光纤237的长度相等,并且都不超过5米,优选的,第一段物理接触光纤235、第二段物理接触光纤237的长度均是2米到3米之间。可见,单模光纤236的长度远大于第一段物理接触光纤235、第二段物理接触光纤237的长度。In this embodiment, the length of the single-mode
这样,在盐度传感器23内,由于第二段物理接触光纤237第二端面239完全浸泡于待检测海水中,在第一端面234与APC接头232之间具有已知盐度的海水,这样,第一反射信号与第二反射信号在在光环形器24的第三端口243处形成微波干涉。根据微波干涉原理,只有特定波长的光信号才能够通过微波干涉仪,因此,第一反射信号与第二反射信号形成的干涉信号中,只有特定波长的光信号从光环形器24的第三端口243输出,输出的光信号被光电转换器25接收,光电转换器25对所接收到的光信号进行光电转换,将光信号转换成电信号从而形成测量电信号。光电转换器25将测量电信号输出至电子频谱分析仪26,由电子频谱分析仪26对经过光电转换后的测量电信号进行频谱分析,进而计算出待检测海水的盐度。In this way, in the
具体的,电子频谱分析仪26所分析的光环形器24的第三端口243处光信号对应的电子频谱P(2πfm)满足下面的公式:Specifically, the electronic spectrum P(2πf m ) corresponding to the optical signal at the
式1中,fm是微波频率,R1为光信号经过第一端面234与APC接头232之间的已知盐度的海水后在第一端面234处的反射系数,由于基准溶液的盐度是已知的,因此该反射系数R1也是一个已知的系数。R2是光信号在第二段物理接触光纤237的第二端面239处的反射系数,该反射系数与待检测海水的盐度有关。而A(λ)表示经过光电直调器28后的输出光谱,因此R1A(λ)是第一端面234上反射的光谱,A(λ(1-R1)α2R2是通过第一端面234后并透射然后被第二端面239反射的光谱,α是光纤中光功率的传输损耗,k是与光电转换器25的光子到电子转换效率相关的常数。τ(λ)是第一反射信号与第二反射信号之间的时延,即第一反射信号到达光环形器24的第三端口234处的时间与第二反射信号到达光环形器24的第三端口234处的时间之间的差值。具体的,τ(λ)可以采用下面的公式表示:In formula 1, f m is the microwave frequency, and R 1 is the reflection coefficient at the
τ(λ)=ng(λ)2L/c (式2)τ(λ)=n g (λ)2L/c (Equation 2)
其中,ng(λ)是频谱范围[λ1,λ2]内的群速度分布,L是第一端面234和第二端面239之间的光纤长度,c是真空中的光速。根据积分的均值定理,在[λ1,λ2]的频谱范围内,可以将公式1的第二项可简化为以下等式:where n g (λ) is the group velocity distribution in the spectral range [λ1, λ2], L is the fiber length between the
其中,λ0是频谱范围[λ1,λ2]的中间值。where λ0 is the middle value of the spectral range [λ1, λ2].
由于公式1的第一项与微波频率fm无关,因此在微波频率fmr处,如果满足2πfmrτ(λ0)=(2n-1)π的条件时,则可以获得电子频谱P(2πfm)的最小值,其中,n是整数。结合公式1至公式3,电子频谱P(2πfm)的最小值可以表示如下:Since the first term of Equation 1 has nothing to do with the microwave frequency f m , at the microwave frequency f mr , if the condition of 2πf mr τ(λ 0 )=(2n-1)π is satisfied, the electronic spectrum P(2πf) can be obtained m ), where n is an integer. Combining Equation 1 to Equation 3, the minimum value of the electronic spectrum P(2πf m ) can be expressed as:
由于反射系数R2是与待检测海水盐度相关的系数,根据菲涅耳反射定律可以表示为以下公式:Since the reflection coefficient R 2 is a coefficient related to the salinity of the seawater to be detected, it can be expressed as the following formula according to the Fresnel reflection law:
R2(S)=(nsilica-nwater(S))2/(nsilica+nwater(S))2 (式5)R 2 (S)=(n silica -n water (S)) 2 /(n silica +n water (S)) 2 (Formula 5)
其中nsilica和nwater分别是光束在光纤和海水中传输的折射率,而光束在光纤中传输的折射率nsilica与盐度S的关系可表示为:where n silica and n water are the refractive indices of the light beam propagating in the fiber and seawater, respectively, and the relationship between the refractive index n silica and the salinity S of the light beam propagating in the fiber can be expressed as:
nwater(S)=nwater0+k2S (式6)n water (S)=n water0 +k 2 S (Equation 6)
其中,k2是一个预先设定的常数,例如取值可以是1.779×10-4,nwater0是光束在纯水中传输的折射率。因此,结合公式4到公式6,可以推导出在微波频率fmr处的最小Rf功率如下:Wherein, k 2 is a preset constant, for example, the value can be 1.779×10 -4 , and n water0 is the refractive index of the light beam propagating in pure water. Therefore, combining Equation 4 to
其中,in,
当待检测海水的盐度发生变化时,反射系数R2也会发生相应的变化,进而改变电子频谱的值。因此,可以通过测量微波频率fmr处的最小功率Rf的功率差来检测海水盐度的变化。根据上述的公式7至公式10,海水盐度数值随微波频率的变化理论上不是线性的,其关键指标为传感灵敏度Q1和二阶非线性项Q1,可拟合为原始数据在实验中加入噪声后的测量结果。为了评估盐度检测装置的线性度,理论上可以计算参数|Q2/Q1|:When the salinity of the seawater to be detected changes, the reflection coefficient R 2 will also change accordingly, thereby changing the electronic spectrum value of . Therefore, changes in seawater salinity can be detected by measuring the power difference of the minimum power R f at the microwave frequency f mr . According to the above formulas 7 to 10, the change of seawater salinity value with microwave frequency is not linear in theory, and its key indicators are the sensing sensitivity Q 1 and the second-order nonlinear term Q 1 , which can be fitted to the original data in the experiment. Measured results after adding noise. To evaluate the linearity of the salinity detection device, the parameter |Q 2 /Q 1 | can be calculated theoretically:
|Q2/Q1|=k2/(2(nsilica-nwater0)) (式11)|Q 2 /Q 1 |=k 2 /(2(n silica -n water0 )) (Formula 11)
可见,对于不同盐度的待检测海水,电子频谱分析仪26所检测到的电子频谱P(2πfm)的数值也就不同,因此根据电子频谱分析仪26所获得的电子频谱的数值可以计算出待检测海水的盐度。It can be seen that, for the seawater to be detected with different salinities, the numerical value of the electronic spectrum P(2πf m ) detected by the electronic spectrum analyzer 26 is also different, so the numerical value of the electronic spectrum obtained according to the electronic spectrum analyzer 26 can be calculated. The salinity of the seawater to be tested.
实际应用时,预先设定好电子频谱分析仪的分辨率,如果带通滤波器针对的频率波段是5G的频率波段,则将电子频谱分析的频率扫描范围设定为3.48GHz至3.52GGHz。另外,设置在第一端面234与APC接头232之间的基准溶液的盐度为基准值,以形成微波光子滤波器的深陷滤波器。优选的,深陷滤波器的深度大于10dB。微波光子滤波器的深度定义为射频响应曲线最大值和最小值之间的差值。In practical application, the resolution of the electronic spectrum analyzer is preset. If the frequency band targeted by the bandpass filter is the 5G frequency band, the frequency scanning range of the electronic spectrum analysis is set to 3.48GHz to 3.52GHz. In addition, the salinity of the reference solution disposed between the
下面结合图4介绍基于微波光子信号的双光纤端面干涉盐度检测方法的具体步骤。首先,执行步骤S1,利用无线信号收发模块从空中获取多个无线信号,多个无线信号均是移动通信的无线信号,具体的,多个无线信号分别是2G信号、3G信号、4G信号或者5G信号等。并且,在获取每一个无线信号后,还对每一个无线信号的功率进行检测、计算,同时记录每一个无线信号的数据。The specific steps of the method for detecting the salinity of double-fiber end-face interference based on microwave photon signals are described below with reference to FIG. 4 . First, step S1 is performed, using the wireless signal transceiver module to obtain multiple wireless signals from the air, and the multiple wireless signals are wireless signals of mobile communication. Specifically, the multiple wireless signals are 2G signals, 3G signals, 4G signals or 5G signals respectively. signal etc. Moreover, after acquiring each wireless signal, the power of each wireless signal is also detected and calculated, and the data of each wireless signal is recorded at the same time.
然后,执行步骤S2,将获取的无线信号进行放大处理,例如使用信号放大器对所接收到的无线信号进行放大,并且将放大后的信号进行直接电光调制。优选的,无线信号收发模块设置有光电直调器,光电直调器设置有光源,例如发光二极管或者激光器,利用放大后的无线射频信号对光源的电压或者电流进行直接调制,从而改变光信号的频率,光电直调器输出的光信号就是本实施例的输入光信号。Then, step S2 is performed to amplify the acquired wireless signal, for example, a signal amplifier is used to amplify the received wireless signal, and the amplified signal is subjected to direct electro-optic modulation. Preferably, the wireless signal transceiver module is provided with a photoelectric direct regulator, and the photoelectric direct regulator is provided with a light source, such as a light-emitting diode or a laser, and the amplified radio frequency signal is used to directly modulate the voltage or current of the light source, thereby changing the optical signal's voltage or current. frequency, and the optical signal output by the photoelectric straight modulator is the input optical signal in this embodiment.
接着,执行步骤S3,将经过电光调制获得的输入光信号发送至光环形器的第一端口,输入光信号从第一端口传送至第二端口,然后,执行步骤S4,输入光信号从第二端口入射到盐度传感器。输入光信号在盐度传感器的第一段物理接触光纤的第一端面上形成第一反射信号,并且在第二段物理接触光纤的第二端面上形成第二反射信号,由于第二反射信号需要经过较长的单模光纤,因此第一反射信号先经过光环形器的第二端口并从第三端口出射,而第二反射信号晚于第一反射信号从光环形器的第二端口、第三端口出射,因此,在光环形器的第三端口处形成微波干涉,相当于构成一个微波光子干涉仪。Next, step S3 is performed, the input optical signal obtained by electro-optical modulation is sent to the first port of the optical circulator, and the input optical signal is transmitted from the first port to the second port, and then step S4 is performed, the input optical signal is sent from the second port The port is incident on the salinity sensor. The input optical signal forms a first reflected signal on the first end face of the first section of the salinity sensor that physically contacts the optical fiber, and forms a second reflected signal on the second end face of the second section of the optical fiber that physically contacts, because the second reflected signal needs After passing through a long single-mode fiber, the first reflected signal first passes through the second port of the optical circulator and exits from the third port, while the second reflected signal is later than the first reflected signal from the second port, the third port of the optical circulator. Three ports are emitted, therefore, microwave interference is formed at the third port of the optical circulator, which is equivalent to forming a microwave photon interferometer.
然后,执行步骤S5,从光环形器第三端口出射的返回光信号被光电转换器接收,光电转换器对返回光信号进行调制,获得测量电信号。接着,执行步骤S6,将测量电信号发送至电子频谱分析仪,由电子频谱分析仪计算电信号的频谱信息。由于步骤S1中获取多个无线信号,每一个无线信号均可以对光源进行直接调制以形成不同频率的光信号,多个光信号通过盐度传感器后可以获得多个返回光信号,因此,电子频谱分析仪可以计算得到每一个无线信号对应的盐度值,该盐度值称为初始盐度值,即一个无线信号对应于一个初始盐度值。Then, step S5 is performed, the return optical signal emitted from the third port of the optical circulator is received by the photoelectric converter, and the photoelectric converter modulates the return optical signal to obtain the measurement electrical signal. Next, step S6 is performed, and the measured electrical signal is sent to the electronic spectrum analyzer, and the electronic spectrum analyzer calculates the spectrum information of the electrical signal. Since multiple wireless signals are acquired in step S1, each wireless signal can directly modulate the light source to form optical signals of different frequencies, and after the multiple optical signals pass through the salinity sensor, multiple returned optical signals can be obtained. Therefore, the electronic spectrum The analyzer can calculate the salinity value corresponding to each wireless signal, which is called the initial salinity value, that is, a wireless signal corresponds to an initial salinity value.
最后,执行步骤S7,根据多个初始盐度值计算待检测海水的最终盐度值,例如,将多个初始盐度值进行加权平均计算,所计算获得的结果是最终盐度值。进一步的,可以设置多个不同的初始盐度值对应的加权系数,也就是预先设置每一无线信号对应的初始盐度值对应的加权系数,并且至少一个初始盐度值的加权系数不同于另一个初始盐度值的加权系数。Finally, step S7 is performed to calculate the final salinity value of the seawater to be detected according to the plurality of initial salinity values. For example, the weighted average calculation of the plurality of initial salinity values is performed, and the calculated result is the final salinity value. Further, weighting coefficients corresponding to a plurality of different initial salinity values can be set, that is, the weighting coefficients corresponding to the initial salinity values corresponding to each wireless signal are preset, and the weighting coefficients of at least one initial salinity value are different from another. A weighting factor for the initial salinity value.
下面结合图5介绍计算最终盐度值的过程。首先,执行步骤S11,获取每一个无线信号的功率,即获取步骤S1所记录的每一个无线信号的功率。优选的,无线信号收发模块记录每一个无线信号的功率,并且在电子频谱分析仪计算每一个初始盐度值后,分别计算获得每一个初始盐度值对应的无线信号的功率,即执行步骤S12。The following describes the process of calculating the final salinity value with reference to Figure 5. First, step S11 is performed to obtain the power of each wireless signal, that is, the power of each wireless signal recorded in step S1 is obtained. Preferably, the wireless signal transceiver module records the power of each wireless signal, and after the electronic spectrum analyzer calculates each initial salinity value, calculates and obtains the power of the wireless signal corresponding to each initial salinity value, that is, executes step S12 .
然后,执行步骤S13,根据无线信号的功率确定每一个初始盐度值的加权系数。本实施例中,无线信号对应的初始盐度值对应的加权系数与该无线信号的功率正相关,也就是,如果无线信号的功率越大,则该无线信号对应的初始盐度值的加权系数越大,如果无线信号的功率越小,则该无线信号对应的初始盐度值的加权系数越小。进一步的,如果某一无线信号的功率小于预设的功率阈值,则将该无线信号对应的初始盐度值的加权系数设置为零。这样,对于功率过小的无线信号,在计算最终盐度值时,是直接放弃该无线信号对应的初始盐度值。Then, step S13 is performed, and the weighting coefficient of each initial salinity value is determined according to the power of the wireless signal. In this embodiment, the weighting coefficient corresponding to the initial salinity value corresponding to the wireless signal is positively correlated with the power of the wireless signal, that is, if the power of the wireless signal is larger, the weighting coefficient corresponding to the initial salinity value of the wireless signal is positively correlated. The larger the value is, the smaller the power of the wireless signal is, the smaller the weighting coefficient of the initial salinity value corresponding to the wireless signal is. Further, if the power of a certain wireless signal is less than the preset power threshold, the weighting coefficient of the initial salinity value corresponding to the wireless signal is set to zero. In this way, for a wireless signal with too low power, when calculating the final salinity value, the initial salinity value corresponding to the wireless signal is directly discarded.
由于不同无线信号的功率通常不相同,因此,多个无线信号的加权系数往往不相同,即至少有一个无线信号对应的初始盐度值的加权系数不同于另一个无线信号对应的初始盐度值的加权系数。Since the powers of different wireless signals are usually different, the weighting coefficients of multiple wireless signals are often different, that is, the weighting coefficient of the initial salinity value corresponding to at least one wireless signal is different from the initial salinity value corresponding to another wireless signal weighting factor.
最后,执行步骤S14,以多个初始盐度值以及对应的加权系数计算最终盐度值,例如将每一个初始盐度值乘以对应的加权系数,然后求取加权平均值作为最终盐度值。这样,海水的最终盐度值的计算采用多个无线信号调制的光信号作为检测的基础,能够提高海水盐度的检测准确性。例如,假设某一频率波段的无线信号受到干扰,该频率波段的无线信号功率较低,计算最终盐度值时,该无线信号对应的初始盐度值的加权系数较小,即该无线信号对应的初始盐度值在最终盐度值中的比重较小,对最终盐度值的计算影响也较小。Finally, step S14 is performed to calculate the final salinity value by using the multiple initial salinity values and the corresponding weighting coefficients, for example, multiplying each initial salinity value by the corresponding weighting coefficient, and then obtaining the weighted average value as the final salinity value . In this way, the calculation of the final salinity value of seawater uses optical signals modulated by a plurality of wireless signals as the detection basis, which can improve the detection accuracy of seawater salinity. For example, assuming that the wireless signal of a certain frequency band is interfered, and the wireless signal power of this frequency band is low, when calculating the final salinity value, the weighting coefficient of the initial salinity value corresponding to the wireless signal is small, that is, the wireless signal corresponds to The proportion of the initial salinity value in the final salinity value is small, and the influence on the calculation of the final salinity value is also small.
可选的,本实施例还可以排除明显异常的初始盐度值。参见图6,排除明显异常的初始盐度值时,首先执行步骤S21,获取每一个无线信号对应的初始盐度值,然后执行步骤S22,计算多个初始盐度值的平均值,即将多个初始盐度值相加并除以初始盐度值的数量。接着,执行步骤S23,判断当前的初始盐度值与盐度值的平均值之间的差值是否大于预设的阈值,如是,则确定该初始盐度值对应的无线信号收到强烈的干扰而导致所计算的初始盐度值明显偏离真实数据,因此,执行步骤S24,将该当前初始盐度值的加权系数设置为零,这样,在计算最终盐度值时,是直接放弃该无线信号对应的初始盐度值。Optionally, this embodiment can also exclude obviously abnormal initial salinity values. Referring to FIG. 6 , when excluding obviously abnormal initial salinity values, step S21 is first performed to obtain the initial salinity value corresponding to each wireless signal, and then step S22 is performed to calculate the average value of multiple initial salinity values, that is, multiple initial salinity values. The initial salinity values are added and divided by the number of initial salinity values. Next, step S23 is performed to determine whether the difference between the current initial salinity value and the average value of the salinity value is greater than a preset threshold, and if so, it is determined that the wireless signal corresponding to the initial salinity value has received strong interference As a result, the calculated initial salinity value obviously deviates from the real data. Therefore, step S24 is executed to set the weighting coefficient of the current initial salinity value to zero, so that when calculating the final salinity value, the wireless signal is directly discarded. The corresponding initial salinity value.
如果步骤S23的判断结果为否,则表示当前的初始盐度值并没有受到强烈的干扰,则执行步骤S25,根据无线信号的功率来确定该初始盐度值对应的加权系数。优选的,所有初始盐度值对应的加权系数的总和为1。If the judgment result of step S23 is no, it means that the current initial salinity value is not strongly interfered, then step S25 is executed, and the weighting coefficient corresponding to the initial salinity value is determined according to the power of the wireless signal. Preferably, the sum of the weighting coefficients corresponding to all initial salinity values is 1.
当然,在可选的方案中,多个无线信号对应的初始盐度值的加权系数可以是一个固定值。Of course, in an optional solution, the weighting coefficient of the initial salinity values corresponding to the multiple wireless signals may be a fixed value.
可见,对应明显异常的初始盐度值,本实施例通过将其加权系数设置为零的方式来排除该初始盐度值,从而确保所计算的最终盐度值能够反映海水盐度真实情况。It can be seen that, corresponding to an obviously abnormal initial salinity value, this embodiment excludes the initial salinity value by setting its weighting coefficient to zero, thereby ensuring that the calculated final salinity value can reflect the real situation of seawater salinity.
本实施例中,由于盐度传感器的两段物理接触光纤的端面处形成的第一反射信号、第二反射信号构成了微波光子干涉,实际上是一种双端面的光信号干涉检测方法。与传统的基于光谱测量的海水盐度测量方法相比,本实施例通过提前微波光子干涉的射频响应曲线的最小值,可以测量海水的盐度值。通过实验可知,当海水的盐度在30.0‰~35.5‰范围内时,盐度检测的敏感度较高,具有良好的线性和稳定性。In this embodiment, since the first reflection signal and the second reflection signal formed at the end face of the optical fiber physically contact with the two sections of the salinity sensor constitute microwave photon interference, it is actually a double end face optical signal interference detection method. Compared with the traditional seawater salinity measurement method based on spectral measurement, the present embodiment can measure the salinity value of seawater by advancing the minimum value of the radio frequency response curve of microwave photon interference. It can be seen from the experiments that when the salinity of seawater is in the range of 30.0‰~35.5‰, the sensitivity of salinity detection is high, and it has good linearity and stability.
另外,由于本实施例从空中获取无线信号,使用无线信号对光源的电压或者电流进行直接调制来改变光信号的频率,这样,不需要使用掺铒光纤放大器产生光信号。由于无线信号收发模块的生产成本低,且体积小,能够大幅度降低海水盐度检测装置的生产成本,并且减少整个设备的体积,可以方便在户外进行海水盐度的检测。In addition, since the wireless signal is obtained from the air in this embodiment, the voltage or current of the light source is directly modulated by the wireless signal to change the frequency of the optical signal, so that an erbium-doped fiber amplifier does not need to be used to generate the optical signal. Due to the low production cost and small size of the wireless signal transceiver module, the production cost of the seawater salinity detection device can be greatly reduced, and the volume of the entire device can be reduced, which can facilitate the detection of seawater salinity outdoors.
而且,通过获取多个不同的频率波段的无线信号并分别进行电光调制以获得多个不同频率的光信号,多个不同频率的光信号分别经过盐度传感器并分别获得多个相应的初始盐度值,然后,通过计算多个初始盐度值的平均值来确定待检测海水的最终盐度值。因而,即使某一个频率波段的无线信号受到干扰,不会导致最终盐度值严重偏离真实情况,从而提高海水盐度检测的准确性。Moreover, by acquiring multiple wireless signals of different frequency bands and performing electro-optic modulation respectively to obtain multiple optical signals of different frequencies, the multiple optical signals of different frequencies pass through the salinity sensor and obtain multiple corresponding initial salinities respectively. Then, the final salinity value of the seawater to be detected is determined by calculating the average value of a plurality of initial salinity values. Therefore, even if the wireless signal of a certain frequency band is interfered, the final salinity value will not be seriously deviated from the real situation, thereby improving the accuracy of seawater salinity detection.
计算机装置实施例:Examples of computer devices:
本实施例的计算机装置是具有数据处理能力的电子设备,该计算机装置包括有处理器、存储器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述多波段双光纤端面干涉盐度检测方法的各个步骤。The computer device of this embodiment is an electronic device with data processing capability. The computer device includes a processor, a memory, and a computer program stored in the memory and running on the processor. When the processor executes the computer program, the above-mentioned multi-band is realized. The individual steps of the double-fiber end-face interference salinity detection method.
例如,计算机程序可以被分割成一个或多个模块,一个或者多个模块被存储在存储器中,并由处理器执行,以完成本发明的各个模块。一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序在终端设备中的执行过程。For example, a computer program may be divided into one or more modules, which are stored in a memory and executed by a processor to implement the various modules of the present invention. One or more modules may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program in the terminal device.
本发明所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,处理器是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分。The processor referred to in the present invention may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC) , Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. The general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc. The processor is the control center of the terminal device, and uses various interfaces and lines to connect various parts of the entire terminal device.
存储器可用于存储计算机程序和/或模块,处理器通过运行或执行存储在存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现终端设备的各种功能。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据手机的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(FlashCard)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。The memory can be used to store computer programs and/or modules, and the processor implements various functions of the terminal device by running or executing the computer programs and/or modules stored in the memory and calling data stored in the memory. The memory may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function, and the like; the storage data area may store data created according to the use of the mobile phone. In addition, the memory may include high-speed random access memory, and may also include non-volatile memory such as hard disk, internal memory, plug-in hard disk, Smart Media Card (SMC), Secure Digital (SD) card , a flash memory card (FlashCard), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
计算机可读存储介质实施例:Computer-readable storage medium embodiments:
上述计算机装置所存储的计算机程序如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述多波段双光纤端面干涉盐度检测方法的各个步骤。If the computer program stored in the above-mentioned computer device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium. When executed by the processor, each step of the above-mentioned multi-band dual-fiber end-face interference salinity detection method can be realized.
其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate forms, and the like. The computer readable medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in computer-readable media may be appropriately increased or decreased in accordance with the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer-readable media does not include Electrical carrier signals and telecommunication signals.
最后需要强调的是,以上仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be emphasized that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various changes and modifications, all within the spirit and principle of the present invention. Any modification, equivalent replacement, improvement, etc. made within the scope of the present invention shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111489053.0A CN114414529B (en) | 2021-12-07 | 2021-12-07 | Salinity detection method, computer device and computer-readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111489053.0A CN114414529B (en) | 2021-12-07 | 2021-12-07 | Salinity detection method, computer device and computer-readable storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114414529A true CN114414529A (en) | 2022-04-29 |
CN114414529B CN114414529B (en) | 2023-09-19 |
Family
ID=81265067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111489053.0A Active CN114414529B (en) | 2021-12-07 | 2021-12-07 | Salinity detection method, computer device and computer-readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114414529B (en) |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990009637A1 (en) * | 1989-02-13 | 1990-08-23 | Research Corporation Technologies, Inc. | Method and means for parallel frequency acquisition in frequency domain fluorometry |
JP2000037371A (en) * | 1998-07-24 | 2000-02-08 | Nippon Koden Corp | Blood light absorptive material concentration measuring instrument |
CN101688819A (en) * | 2007-03-28 | 2010-03-31 | 爱斯福光电工程公司 | Be used for determining the method and the facility of Differential Group Delay and polarization mode dispersion |
CN102159937A (en) * | 2008-09-19 | 2011-08-17 | 三井造船株式会社 | Fluorescence detection device by means of intensity moludated laser light and method for detecting fluorscence |
CN102175647A (en) * | 2011-01-27 | 2011-09-07 | 哈尔滨工业大学 | Device and method for measuring electrostriction coefficient by multi-beam laser heterodyne method |
CN102323239A (en) * | 2011-08-09 | 2012-01-18 | 哈尔滨工程大学 | Refractive index sensor based on asymmetric double-core optical fiber |
CN103267743A (en) * | 2013-04-08 | 2013-08-28 | 辽宁科旺光电科技有限公司 | Measuring refractive index device and method thereof |
CN103562684A (en) * | 2011-05-16 | 2014-02-05 | 莎朗激光声学有限公司 | Optical sensor |
CN104155246A (en) * | 2014-08-26 | 2014-11-19 | 中国海洋大学 | Detection device and detection method of sea water salinity |
CN105891434A (en) * | 2016-06-03 | 2016-08-24 | 深圳职业技术学院 | Seawater salinity online detection method and device |
CN106645030A (en) * | 2016-12-26 | 2017-05-10 | 哈尔滨工程大学 | Integrated multiband mach-zehnder interferometer and application method |
DE102017210637A1 (en) * | 2017-06-23 | 2017-08-17 | Carl Zeiss Smt Gmbh | Measuring device for the interferometric measurement of a change in position |
US20170276470A1 (en) * | 2016-03-28 | 2017-09-28 | Anritsu Corporation | Optical frequency domain reflectometer and optical frequency domain reflectometry |
WO2018104938A1 (en) * | 2016-12-05 | 2018-06-14 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | A radio-frequency (rf) system and a method thereof |
CN108286962A (en) * | 2018-01-31 | 2018-07-17 | 中国科学院遥感与数字地球研究所 | A kind of method for building up and system of water environment library of spectra |
CN108548787A (en) * | 2018-04-11 | 2018-09-18 | 黑龙江工程学院 | A kind of method that spectrometer accurately measures sulfureted hydrogen gas concentration |
CN109142278A (en) * | 2018-09-14 | 2019-01-04 | 华北电力大学(保定) | A kind of measurement method of seawater salinity |
CN110752877A (en) * | 2019-11-04 | 2020-02-04 | 深圳市慧宇系统有限公司 | System and method for transmitting time frequency signal in optical fiber |
CN113218632A (en) * | 2021-04-30 | 2021-08-06 | 宁波法里奥光学科技发展有限公司 | Lens multi-wavelength refractive index testing device and method |
-
2021
- 2021-12-07 CN CN202111489053.0A patent/CN114414529B/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990009637A1 (en) * | 1989-02-13 | 1990-08-23 | Research Corporation Technologies, Inc. | Method and means for parallel frequency acquisition in frequency domain fluorometry |
JP2000037371A (en) * | 1998-07-24 | 2000-02-08 | Nippon Koden Corp | Blood light absorptive material concentration measuring instrument |
CN101688819A (en) * | 2007-03-28 | 2010-03-31 | 爱斯福光电工程公司 | Be used for determining the method and the facility of Differential Group Delay and polarization mode dispersion |
CN102159937A (en) * | 2008-09-19 | 2011-08-17 | 三井造船株式会社 | Fluorescence detection device by means of intensity moludated laser light and method for detecting fluorscence |
CN102175647A (en) * | 2011-01-27 | 2011-09-07 | 哈尔滨工业大学 | Device and method for measuring electrostriction coefficient by multi-beam laser heterodyne method |
CN103562684A (en) * | 2011-05-16 | 2014-02-05 | 莎朗激光声学有限公司 | Optical sensor |
CN102323239A (en) * | 2011-08-09 | 2012-01-18 | 哈尔滨工程大学 | Refractive index sensor based on asymmetric double-core optical fiber |
CN103267743A (en) * | 2013-04-08 | 2013-08-28 | 辽宁科旺光电科技有限公司 | Measuring refractive index device and method thereof |
CN104155246A (en) * | 2014-08-26 | 2014-11-19 | 中国海洋大学 | Detection device and detection method of sea water salinity |
US20170276470A1 (en) * | 2016-03-28 | 2017-09-28 | Anritsu Corporation | Optical frequency domain reflectometer and optical frequency domain reflectometry |
CN105891434A (en) * | 2016-06-03 | 2016-08-24 | 深圳职业技术学院 | Seawater salinity online detection method and device |
US20180356340A1 (en) * | 2016-06-03 | 2018-12-13 | Shenzhen Polytechnic | Method and device for on-line detection of salinity of seater |
WO2018104938A1 (en) * | 2016-12-05 | 2018-06-14 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | A radio-frequency (rf) system and a method thereof |
CN106645030A (en) * | 2016-12-26 | 2017-05-10 | 哈尔滨工程大学 | Integrated multiband mach-zehnder interferometer and application method |
DE102017210637A1 (en) * | 2017-06-23 | 2017-08-17 | Carl Zeiss Smt Gmbh | Measuring device for the interferometric measurement of a change in position |
CN108286962A (en) * | 2018-01-31 | 2018-07-17 | 中国科学院遥感与数字地球研究所 | A kind of method for building up and system of water environment library of spectra |
CN108548787A (en) * | 2018-04-11 | 2018-09-18 | 黑龙江工程学院 | A kind of method that spectrometer accurately measures sulfureted hydrogen gas concentration |
CN109142278A (en) * | 2018-09-14 | 2019-01-04 | 华北电力大学(保定) | A kind of measurement method of seawater salinity |
CN110752877A (en) * | 2019-11-04 | 2020-02-04 | 深圳市慧宇系统有限公司 | System and method for transmitting time frequency signal in optical fiber |
CN113218632A (en) * | 2021-04-30 | 2021-08-06 | 宁波法里奥光学科技发展有限公司 | Lens multi-wavelength refractive index testing device and method |
Non-Patent Citations (3)
Title |
---|
程虎: "水下环境多参数测量及三维成像的方法研究与系统设计", 《中国优秀硕士学位论文全文数据库信息科技辑》, no. 3 * |
程虎: "水下环境多参数测量及三维成像的方法研究与系统设计", 信息科技, no. 3 * |
赵鲁梅 等: "海水折射率与温度、盐度关系的实验研究", 中国现代教育装备, no. 9 * |
Also Published As
Publication number | Publication date |
---|---|
CN114414529B (en) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101324424B (en) | Fiber Brillouin Optical Time Domain Analyzer | |
CN102607451B (en) | Wavelength-scanning type Brillouin optical time-domain reflectometer | |
CN102109362B (en) | Distributed optical fiber Brillouin sensor fused with optical fiber Brillouin frequency shifter | |
CN106768277B (en) | A demodulation method for a distributed optical fiber vibration sensing device | |
CN106949850B (en) | A kind of the optical fiber shape sensing measuring method and system of HIGH SENSITIVITY AND HIGH PRECISION | |
CN106352905A (en) | Fiber bragg grating demodulating system and demodulator | |
CN102322884A (en) | Merge the very-long-range pulse code distribution type fiber-optic Brillouin sensing device of optical fiber Brillouin frequency shifter | |
CN101419317B (en) | A Double Edge Filter Based on Fiber Bragg Grating | |
CN203310428U (en) | Distributed Brillouin optical fiber sensing system based on coherent detection | |
CN103674082B (en) | A kind of High-spatial-resolutoptical optical frequency domain reflectometer system based on four-wave mixing process | |
CN104316090B (en) | A kind of temperature self-compensation method of temperature self-compensation high-resolution high frequency optical fiber grating regulating system | |
CN204439100U (en) | Dynamic distributed Brillouin light fiber sensing equipment | |
CN108801305B (en) | Method and device of Brillouin optical time domain reflectometer based on step pulse self-amplification | |
CN114279476A (en) | Distributed optical fiber sensing device based on phase type chaotic laser and measuring method thereof | |
CN204718706U (en) | A kind of high sensitivity optical fiber temp measuring system | |
CN201885732U (en) | Distributed optical fiber Brillouin sensor integrating optical fiber Brillouin frequency shifter | |
CN108613690A (en) | Based on differential pulse pair and the temperature of Raman amplifiction or the sensor of strain and method | |
CN106596055A (en) | Fiber dispersion measuring method based on F-P adjustable filter | |
CN111189556A (en) | Real-time multichannel fiber grating temperature measurement system based on AWG | |
CN114414528A (en) | Double-optical-fiber end-face interference salinity detection method based on 5G microwave photon signal | |
CN114414529B (en) | Salinity detection method, computer device and computer-readable storage medium | |
CN111637910B (en) | Time-domain differential high-speed chaotic Brillouin optical coherent domain monitoring device and method | |
CN205449354U (en) | Device for stress measurement with multimode fiber | |
CN213238958U (en) | Sensing demultiplexing device based on photoelectric oscillator and fiber Bragg grating array | |
JP2014077712A (en) | Optical resonator measuring method and measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |