CN114405438B - Photoelectrocatalysis reaction system - Google Patents
Photoelectrocatalysis reaction system Download PDFInfo
- Publication number
- CN114405438B CN114405438B CN202210200437.4A CN202210200437A CN114405438B CN 114405438 B CN114405438 B CN 114405438B CN 202210200437 A CN202210200437 A CN 202210200437A CN 114405438 B CN114405438 B CN 114405438B
- Authority
- CN
- China
- Prior art keywords
- port
- gas
- interface
- reactor
- communicated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 331
- 238000003860 storage Methods 0.000 claims abstract description 51
- 239000012495 reaction gas Substances 0.000 claims abstract description 31
- 239000011261 inert gas Substances 0.000 claims abstract description 14
- 238000004891 communication Methods 0.000 claims description 44
- 238000005070 sampling Methods 0.000 claims description 35
- 230000000087 stabilizing effect Effects 0.000 claims description 27
- 238000005406 washing Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 16
- 239000003014 ion exchange membrane Substances 0.000 claims 1
- 238000006555 catalytic reaction Methods 0.000 abstract description 29
- 238000011156 evaluation Methods 0.000 abstract description 13
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 238000004817 gas chromatography Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 35
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 25
- 238000013032 photocatalytic reaction Methods 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 238000005201 scrubbing Methods 0.000 description 15
- 229910021529 ammonia Inorganic materials 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000001699 photocatalysis Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000006837 decompression Effects 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-OUBTZVSYSA-N Ammonia-15N Chemical compound [15NH3] QGZKDVFQNNGYKY-OUBTZVSYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- -1 ammonium ions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000000618 nitrogen fertilizer Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明涉及光电催化技术领域,特别是涉及一种光电催化反应系统,包括阴极反应器和阳极反应器,阴极反应器的进气口依次连接有第一气泵和用于向第一气泵提供反应气体的第一储气装置,阴极反应器的出气口连接有第一背压阀;阳极反应器的进气口依次连接有第二气泵和用于向第二气泵提供惰性气体的第二储气装置,阳极反应器的出气口连接有第二背压阀,第一背压阀和第二背压阀的设置能够使得阴极反应器和阳极反应器内部的压力均匀一致,从而使得阴极反应器内反应气体的溶解度保持稳定状态,进而保证了光电催化效率的稳定受控,此外稳定的压力对于气相色谱测试的稳定性和重现性也有决定性影响,满足了对光电催化反应效率的精确评估要求。
The invention relates to the technical field of photoelectric catalysis, in particular to a photoelectric catalytic reaction system, comprising a cathode reactor and an anode reactor, and an air inlet of the cathode reactor is sequentially connected with a first air pump and a first air pump for supplying reaction gas to the first air pump The first gas storage device, the outlet of the cathode reactor is connected with a first back pressure valve; the inlet of the anode reactor is sequentially connected with a second gas pump and a second gas storage device for providing inert gas to the second gas pump , the outlet of the anode reactor is connected with a second back pressure valve, the setting of the first back pressure valve and the second back pressure valve can make the pressure inside the cathode reactor and the anode reactor uniform, so that the reaction in the cathode reactor can be made uniform. The solubility of the gas remains in a stable state, thereby ensuring the stable and controlled photoelectric catalytic efficiency. In addition, the stable pressure also has a decisive impact on the stability and reproducibility of the gas chromatography test, which meets the requirements for accurate evaluation of the photoelectric catalytic reaction efficiency.
Description
技术领域technical field
本发明涉及光电催化技术领域,特别是涉及一种光电催化反应系统。The invention relates to the technical field of photoelectric catalysis, in particular to a photoelectric catalysis reaction system.
背景技术Background technique
光电催化技术以清洁的太阳能为驱动力,在温和条件下(近大气压力和环境温度)高效进行催化反应,在生产高附加值化学品及分解有害污染物等领域有重要应用。相比光催化技术,光电催化过程中还原和氧化反应在空间上分离,避免半导体光电催化材料中的光生载流子在光催化剂表面复合;相比电催化技术,光电催化直接将光能转化为化学能,避免电催化过程中太阳能-电能-化学能多步转换导致的能量损失,因此光电催化技术在理论上的太阳能利用效率更高。Driven by clean solar energy, photoelectrocatalytic technology efficiently catalyzes reactions under mild conditions (near atmospheric pressure and ambient temperature), and has important applications in the production of high value-added chemicals and the decomposition of harmful pollutants. Compared with photocatalytic technology, the reduction and oxidation reactions in the photocatalytic process are spatially separated to avoid the recombination of photogenerated carriers in the semiconductor photocatalytic material on the surface of the photocatalyst; compared with electrocatalytic technology, photocatalytic directly converts light energy into Chemical energy, to avoid the energy loss caused by the multi-step conversion of solar energy-electric energy-chemical energy in the electrocatalytic process, so the theoretical solar energy utilization efficiency of photocatalytic technology is higher.
氨气是一种重要的基础化学品,在清洁燃料、氮肥生产、蛋白质合成等领域有重要应用。目前氨气的主要制备方法是哈博法,需要高温高压的反应条件,哈博法合成氨所需的氢气主要通过水汽转换反应或天然气重整方法制备,是能耗高、碳排放重的“灰氢”。因此,哈博法合成氨工艺已不符合当前国际社会对实现“碳中和、碳达峰”目标的需求。将光电催化技术应用于合成氨反应是一项极具潜力的低能耗、零碳排放新技术。光电催化合成氨过程在温和条件下进行,以氮气和水为原料合成氨,副产物仅为氧气,完全符合当今“碳中和、碳达峰”目标的需求。Ammonia is an important basic chemical, which has important applications in clean fuel, nitrogen fertilizer production, protein synthesis and other fields. At present, the main preparation method of ammonia is the Haber method, which requires high temperature and high pressure reaction conditions. The hydrogen required for the synthesis of ammonia by the Haber method is mainly prepared by water vapor shift reaction or natural gas reforming. It is a "ash" with high energy consumption and heavy carbon emissions. hydrogen". Therefore, the ammonia synthesis process by the Haber method no longer meets the needs of the current international community to achieve the goal of "carbon neutrality and carbon peak". Applying photoelectrocatalytic technology to ammonia synthesis reaction is a new technology with great potential for low energy consumption and zero carbon emission. The process of photocatalytic ammonia synthesis is carried out under mild conditions, using nitrogen and water as raw materials to synthesize ammonia, and the by-product is only oxygen, which fully meets the needs of today's "carbon neutrality and carbon peak" goals.
目前,光电催化合成氨时通过气泵向阴极反应器内注入氮气,氮气溶解在阴极反应器内的电解液中,进而吸附在浸没在电解液中的工作电极上,打开光源照射工作电极,从而生成溶解在电解液中的铵根离子。然而,从气泵流出的氮气存在脉动现象,脉动现象会导致阴极反应器内的压力变化,进而导致氮气在电解液中的溶解度产生波动,溶解度波动会导致氮气在光电极表面的吸附浓度发生变化,进而导致光电催化反应效率不受控,无法对光电催化反应效率进行精确评估。At present, nitrogen gas is injected into the cathode reactor through an air pump during photocatalytic synthesis of ammonia. The nitrogen gas is dissolved in the electrolyte in the cathode reactor, and then adsorbed on the working electrode immersed in the electrolyte. Turn on the light source to irradiate the working electrode, thereby generating dissolved ammonium ions in the electrolyte. However, there is a pulsation phenomenon in the nitrogen gas flowing out from the air pump, which will lead to pressure changes in the cathode reactor, which in turn will cause fluctuations in the solubility of nitrogen gas in the electrolyte, and solubility fluctuations will cause changes in the adsorption concentration of nitrogen gas on the surface of the photoelectrode. As a result, the photocatalytic reaction efficiency is not controlled, and it is impossible to accurately evaluate the photocatalytic reaction efficiency.
发明内容Contents of the invention
本发明的目的是提供一种光电催化反应系统,本发明所要解决的技术问题是:现有的光电催化反应系统,通过气泵向阴极反应器内通入反应气体存在脉动现象致使阴极反应器内的压力变化,以致无法对光电催化反应效率进行精确评估。The object of the present invention is to provide a kind of photoelectric catalysis reaction system, the technical problem to be solved by the present invention is: existing photocatalytic reaction system, passes into the reaction gas in the cathode reactor through the air pump and there is pulsation phenomenon, causes in the cathode reactor The pressure changes so that the precise evaluation of the photocatalytic reaction efficiency cannot be performed.
为了解决上述技术问题,本发明提供了一种光电催化反应系统,包括阴极反应器和阳极反应器,所述阴极反应器的进气口依次连接有第一气泵和用于向所述第一气泵提供反应气体的第一储气装置,所述阴极反应器的出气口连接有第一背压阀;所述阳极反应器的进气口依次连接有第二气泵和用于向所述第二气泵提供惰性气体的第二储气装置,所述阳极反应器的出气口连接有第二背压阀。In order to solve the above technical problems, the present invention provides a photoelectric catalytic reaction system, including a cathode reactor and an anode reactor, the air inlet of the cathode reactor is connected with a first air pump and a Provide the first gas storage device of reaction gas, the gas outlet of the cathode reactor is connected with the first back pressure valve; A second gas storage device for inert gas is provided, and a second back pressure valve is connected to the gas outlet of the anode reactor.
作为优选方案,所述第一气泵与所述阴极反应器之间连接有第一洗气稳压装置,所述第二气泵与所述阳极反应器之间连接有第二洗气稳压装置。As a preferred solution, a first gas scrubbing and pressure stabilizing device is connected between the first gas pump and the cathode reactor, and a second gas scrubbing and pressure stabilizing device is connected between the second gas pump and the anode reactor.
作为优选方案,所述第一洗气稳压装置与所述阴极反应器之间连接有第一流量控制器,所述第二洗气稳压装置与所述阴极反应器之间连接有第二流量控制器。As a preferred solution, a first flow controller is connected between the first gas scrubbing and pressure stabilizing device and the cathode reactor, and a second flow controller is connected between the second gas scrubbing and pressure stabilizing device and the cathode reactor. flow controller.
作为优选方案,所述光电催化反应系统包括第一气流切换装置,所述第一气流切换装置设有可切换连通状态的第一端口、第二端口、第三端口和第四端口;所述第一端口与所述第一背压阀的出气端连通,所述第二端口与所述第一气泵的进气端连通,所述第一储气装置的出气口和所述第二储气装置的出气口均所述第三端口与连通,所述第四端口连接有用于排气的第一单向阀;As a preferred solution, the photoelectric catalytic reaction system includes a first gas flow switching device, and the first gas flow switching device is provided with a first port, a second port, a third port and a fourth port that can switch communication states; One port communicates with the gas outlet of the first back pressure valve, the second port communicates with the intake port of the first air pump, the gas outlet of the first gas storage device and the second gas storage device The air outlets of the third port are connected with the third port, and the fourth port is connected with the first one-way valve for exhaust;
切换所述第一气流切换装置的连通状态可使所述第一端口与所述第四端口连通,且所述第二端口与所述第三端口连通,或者所述第一端口与所述第二端口连通,且所述第三端口与所述第四端口连通。Switching the communication state of the first airflow switching device can make the first port communicate with the fourth port, and the second port communicate with the third port, or the first port communicate with the fourth port. The two ports are connected, and the third port is connected with the fourth port.
作为优选方案,所述光电催化反应系统还包括第二气流切换装置,所述第二气流切换装置设有可切换连通状态的第五端口、第六端口、第七端口和第八端口,所述第二储气装置的出气口与所述第五端口连通;As a preferred solution, the photoelectric catalytic reaction system also includes a second gas flow switching device, the second gas flow switching device is provided with a fifth port, a sixth port, a seventh port and an eighth port that can switch the communication state, and the The gas outlet of the second gas storage device communicates with the fifth port;
所述第六端口与所述第二气泵的进气端连通,所述第七端口与所述第二背压阀的出气端连通;所述第八端口连接有用于排气的第二单向阀;The sixth port communicates with the intake end of the second air pump, the seventh port communicates with the outlet end of the second back pressure valve; the eighth port is connected with a second one-way valve for exhaust valve;
切换所述第二气流切换装置的连通状态,可使所述第五端口与所述第六端口连通且所述第七端口与所述第八端口连通,或者所述第六端口与所述第七端口连通且所述第五端口与所述第八端口连通。Switching the communication state of the second airflow switching device can make the fifth port communicate with the sixth port and the seventh port communicate with the eighth port, or the sixth port communicate with the first port The seven ports are in communication and the fifth port is in communication with the eighth port.
作为优选方案,所述光电催化反应系统还包括用于检测生成气体含量的气体检测系统和第三气流切换装置,所述气体检测系统设有第一进气管和第一出气管,所述第三气流切换装置设有可切换连通状态的第九端口、第十端口、第十一端口和第十二端口,所述第九端口与所述阴极反应器的出气口连通,所述第十端口与所述第一进气管连通,所述第十一端口与所述第一出气管连通,所述第十二端口与所述第一背压阀的进气端连通;As a preferred solution, the photoelectric catalytic reaction system also includes a gas detection system and a third gas flow switching device for detecting the generated gas content, the gas detection system is provided with a first air inlet pipe and a first air outlet pipe, and the third The gas flow switching device is provided with a ninth port, a tenth port, an eleventh port and a twelfth port which can switch the communication state, the ninth port communicates with the gas outlet of the cathode reactor, and the tenth port communicates with the gas outlet of the cathode reactor. The first air intake pipe communicates, the eleventh port communicates with the first air outlet pipe, and the twelfth port communicates with the intake end of the first back pressure valve;
切换所述第三气流切换装置的连通状态,可使所述第九端口与所述第十端口连通且所述第十一端口与所述第十二端口连通,或者所述第九端口与所述第十二端口连通且所述第十端口与所述第十一端口连通。Switching the communication state of the third airflow switching device can make the ninth port communicate with the tenth port and the eleventh port communicate with the twelfth port, or the ninth port communicate with the The twelfth port is in communication with the tenth port and the eleventh port is in communication.
作为优选方案,所述气体检测系统包括气相色谱仪、取样装置和用于向所述取样装置中通入惰性气体的第三储气装置;As a preferred solution, the gas detection system includes a gas chromatograph, a sampling device and a third gas storage device for feeding an inert gas into the sampling device;
所述取样装置设有可切换连通状态的第一接口、第二接口、第三接口、第四接口、第五接口和第六接口,所述第一接口与所述第三储气装置的出气口连通,所述第二接口连接有第一定量环,所述第一定量环的另一端连接所述第五接口,所述第三接口与所述第一进气管连通,所述第四接口与所述第一出气管连通,所述第六接口与所述气相色谱仪的进气口连通;The sampling device is provided with a first interface, a second interface, a third interface, a fourth interface, a fifth interface and a sixth interface that can switch the connection state, and the outlet of the first interface and the third gas storage device The air port is connected, the second interface is connected with the first quantitative loop, the other end of the first quantitative loop is connected with the fifth interface, the third interface is connected with the first intake pipe, and the first quantitative loop is connected with the fifth interface. The four ports are in communication with the first gas outlet pipe, and the sixth port is in communication with the air inlet of the gas chromatograph;
切换所述取样装置的连通状态,可使所述第三接口、所述第二接口、所述第一定量环、所述第五接口和所述第四接口依次连通,或者所述第一接口、所述第二接口、所述第一定量环、所述第五接口和所述第六接口依次连通。Switching the connection state of the sampling device can make the third interface, the second interface, the first quantitative loop, the fifth interface and the fourth interface communicate in sequence, or the first The interface, the second interface, the first quantitative loop, the fifth interface and the sixth interface are connected in sequence.
作为优选方案,所述光电催化反应系统包括第四气流切换装置,所述第四气流切换装置设有可切换连通状态的第十三端口、第十四端口、第十五端口和第十六端口,所述第十三端口与所述第二背压阀的进气端连通,所述第十四端口与所述阳极反应器的出气口连通;As a preferred solution, the photoelectric catalytic reaction system includes a fourth gas flow switching device, and the fourth gas flow switching device is provided with the thirteenth port, the fourteenth port, the fifteenth port and the sixteenth port that can switch the communication state , the thirteenth port communicates with the inlet end of the second back pressure valve, and the fourteenth port communicates with the gas outlet of the anode reactor;
所述取样装置还设有可切换连通状态的第七接口、第八接口、第九接口和第十接口,所述第七接口连接有第二定量环,所述第二定量环的另一端连接所述第十接口,所述第八接口与所述第十六端口连通,所述第九接口与所述第十五端口连通;The sampling device is also provided with the seventh interface, the eighth interface, the ninth interface and the tenth interface which can switch the connection state, the seventh interface is connected with the second quantitative loop, and the other end of the second quantitative loop is connected The tenth interface, the eighth interface communicates with the sixteenth port, and the ninth interface communicates with the fifteenth port;
切换所述取样装置的连通状态,可使所述第九接口、所述第十接口、所述第二定量环、所述第七接口和所述第八接口依次连通;或者所述第一接口、所述第十接口、所述第二定量环、所述第七接口和所述第六接口依次连通;Switching the connection state of the sampling device can make the ninth interface, the tenth interface, the second quantitative loop, the seventh interface and the eighth interface communicate in sequence; or the first interface , the tenth interface, the second quantitative loop, the seventh interface and the sixth interface are sequentially connected;
切换所述第四气流切换装置的连通状态,可使所述第十三端口与所述第十六端口连通且所述第十五端口与所述第十四端口连通,或者所述第十三端口与所述第十四端口连通且所述第十五端口与所述第十六端口连通。Switching the communication state of the fourth airflow switching device can make the thirteenth port communicate with the sixteenth port and the fifteenth port communicate with the fourteenth port, or the thirteenth port port communicates with the fourteenth port and the fifteenth port communicates with the sixteenth port.
作为优选方案,所述阴极反应器与所述阳极反应器之间插设有用于阻止所述阴极反应器内的生成气体进入所述阳极反应器的粒子交换膜。As a preferred solution, a particle exchange membrane for preventing gas generated in the cathode reactor from entering the anode reactor is interposed between the cathode reactor and the anode reactor.
与现有技术相比,本发明的有益效果在于:本发明的光电催化反应系统在阴极反应器的出气口连接有第一背压阀,在阳极反应器的出气口设有第二背压阀,第一背压阀和第二背压阀的设置能够使得阴极反应器和阳极反应器内部的压力均匀一致,从而使得阴极反应器内反应气体的溶解度保持稳定状态,进而保证了光电催化效率的稳定受控,满足了对光电催化反应效率的精确评估要求。Compared with the prior art, the beneficial effect of the present invention is that: the photoelectric catalytic reaction system of the present invention is connected with a first back pressure valve at the gas outlet of the cathode reactor, and is provided with a second back pressure valve at the gas outlet of the anode reactor , the setting of the first back pressure valve and the second back pressure valve can make the pressure inside the cathode reactor and the anode reactor uniform, so that the solubility of the reaction gas in the cathode reactor remains stable, thereby ensuring the photocatalytic efficiency. Stable and controlled, it meets the requirements for precise evaluation of photocatalytic reaction efficiency.
附图说明Description of drawings
图1为本发明光电催化反应系统的结构示意图;Fig. 1 is the structural representation of photoelectrocatalytic reaction system of the present invention;
图2为第一气流切换装置的局部放大示意图;Fig. 2 is a partially enlarged schematic diagram of the first airflow switching device;
图3为第二气流切换装置的局部放大示意图;3 is a partial enlarged schematic diagram of a second airflow switching device;
图4为第三气流切换装置的局部放大示意图;4 is a partially enlarged schematic diagram of a third airflow switching device;
图5为第四气流切换装置的局部放大示意图;5 is a partially enlarged schematic diagram of a fourth airflow switching device;
图6为取样装置处于第一状态时的示意图;Fig. 6 is a schematic diagram when the sampling device is in a first state;
图7为取样装置处于第二状态时的局部放大示意图;Fig. 7 is a partially enlarged schematic diagram when the sampling device is in a second state;
图中,1、阴极反应器;2、阳极反应器;3、第一气泵;4、第一储气装置;5、第一背压阀;6、第二气泵;7、第二储气装置;8、第二背压阀;9、第一洗气稳压装置;10、第二洗气稳压装置;11、第一流量控制器;12、第二流量控制器;13、第一气流切换装置;131、第一端口;132、第二端口;133、第三端口;134、第四端口;14、第二气流切换装置;141、第五端口;142、第六端口;143、第七端口;144、第八端口;15、第一单向阀;16、第二单向阀;17、第三气流切换装置;171、第九端口;172、第十端口;173、第十一端口;174、第十二端口;18、第一进气管;19、第一出气管;20、气相色谱仪;21、取样装置;21-1、第一接口;21-2、第二接口;21-3、第三接口;21-4、第四接口;21-5、第五接口;21-6、第六接口;21-7、第七接口;21-8、第八接口;21-9、第九接口;21-10、第十接口;21-11、第一定量环;21-12、第二定量环;22、第三储气装置;23、第四气流切换装置;231、第十三端口;232、第十四端口;233、第十五端口;234、第十六端口;24、第二进气管;25、第二出气管;26、第五气流切换装置;27、第一减压阀;28、第一流量计;29、第二减压阀;30、第二流量计;31、洗气瓶;32、第一冷凝管;33、第二冷凝管;34、第三减压阀;35、电化学工作站。In the figure, 1. Cathode reactor; 2. Anode reactor; 3. The first gas pump; 4. The first gas storage device; 5. The first back pressure valve; 6. The second gas pump; 7. The second gas storage device ; 8, the second back pressure valve; 9, the first gas washing and stabilizing device; 10, the second scrubbing and stabilizing device; 11, the first flow controller; 12, the second flow controller; 13, the first air flow Switching device; 131, first port; 132, second port; 133, third port; 134, fourth port; 14, second airflow switching device; 141, fifth port; 142, sixth port; 143, the first Seven ports; 144, the eighth port; 15, the first one-way valve; 16, the second one-way valve; 17, the third airflow switching device; 171, the ninth port; 172, the tenth port; 173, the eleventh Port; 174, the twelfth port; 18, the first air inlet pipe; 19, the first air outlet pipe; 20, the gas chromatograph; 21, the sampling device; 21-1, the first interface; 21-2, the second interface; 21-3, the third interface; 21-4, the fourth interface; 21-5, the fifth interface; 21-6, the sixth interface; 21-7, the seventh interface; 21-8, the eighth interface; 21- 9. The ninth interface; 21-10, the tenth interface; 21-11, the first quantitative loop; 21-12, the second quantitative loop; 22, the third gas storage device; 23, the fourth airflow switching device; 231 , the thirteenth port; 232, the fourteenth port; 233, the fifteenth port; 234, the sixteenth port; 24, the second air intake pipe; 25, the second air outlet pipe; 26, the fifth air flow switching device; 27 , the first pressure reducing valve; 28, the first flow meter; 29, the second pressure reducing valve; 30, the second flow meter; 31, the gas washing bottle; 32, the first condensation pipe; 33, the second condensation pipe; 34 , the third decompression valve; 35, the electrochemical workstation.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。应当理解的是,本发明中采用术语“第一”、“第二”等来描述各种信息,但这些信息不应限于这些术语,这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,“第一”信息也可以被称为“第二”信息,类似的,“第二”信息也可以被称为“第一”信息。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "left", "right", "top", "bottom" etc. Orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as a limitation of the present invention. It should be understood that the terms "first", "second", etc. are used in the present invention to describe various information, but these information should not be limited to these terms, and these terms are only used to distinguish information of the same type from each other. For example, "first" information may also be referred to as "second" information without departing from the scope of the present invention, and similarly, "second" information may also be referred to as "first" information.
如图1至图7所示,本发明的光电催化反应系统的优选实施例,包括阴极反应器1和阳极反应器2,所述阴极反应器1的进气口依次连接有第一气泵3和用于向第一气泵3提供反应气体的第一储气装置4,所述阴极反应器1的出气口连接有第一背压阀5;所述阳极反应器2的进气口依次连接有第二气泵6和用于向第二气泵6提供惰性气体的第二储气装置7,所述阳极反应器2的出气口连接有第二背压阀8。第一背压阀5和第二背压阀8的设置能够使得阴极反应器1和阳极反应器2内部的压力均匀一致,从而使得阴极反应器1内反应气体的溶解度保持稳定状态,进而保证了光电催化效率的稳定受控;另一方面,当在光电催化反应系统设置气相色谱仪时,反应器内稳定的压力能够保证进入定量环的待测气体体积和压力保持稳定,从而保证进入气相色谱的样品物质的量稳定,上述两个方面共同帮助系统实现对光电催化反应效率的精确评估要求。As shown in Fig. 1 to Fig. 7, the preferred embodiment of the photoelectric catalytic reaction system of the present invention, comprises
其中,所述第一气泵3与所述阴极反应器1之间连接有第一洗气稳压装置9,所述第二气泵6与所述阳极反应器2之间连接有第二洗气稳压装置10,具体的,本实施例中第一洗气稳压装置和第二洗气稳压装置为稳压瓶,稳压瓶的进气口设置在瓶体内腔的底部,稳压瓶的出气口设置在瓶体内腔的顶部,从而实现对进入稳压瓶内的气流的缓存,降低从第一气泵3或第二气泵6所流出气体的脉动,保证通入阴极反应器1和阳极反应器2内的气体的压力稳定。优选的,本实施例中的稳压瓶内盛有酸性液体,稳压瓶的瓶口密封插设有进气管和出气管,进气管位于稳压瓶外的一端与第一气泵3的出气口连通,进气管位于稳压瓶内的一端插设在酸性液体中;出气管位于稳压瓶内的一端设置在酸性液体的液面上方,出气管位于稳压瓶外的一端与阴极反应器的进气口连通;酸性液体的设置不仅能够使得稳压瓶的稳压功能更好,而且能够吸收通入阴极反应器内的气体中所含有的可溶性气体,避免可溶性气体污染阴极反应器中的电解液;本发明的其他实施例中,如果反应气氛中不含可溶性气体污染物,第一洗气稳压装置9和第二洗气稳压装置10可以为稳压罐或稳压气球。Wherein, a first gas washing and stabilizing device 9 is connected between the first gas pump 3 and the
本实施例中,所述第一洗气稳压装置9与所述阴极反应器1之间连接有第一流量控制器11,所述第二洗气稳压装置10与所述阳极反应器2之间连接有第二流量控制器12。第一流量控制器11和第二流量控制器12的设置能够分别控制通入阴极反应器1和阳极反应器2内的气流流量,提高对光电催化反应系统的光电催化反应参数调控的要求。In this embodiment, a
需要说明的是,光电催化反应的反应速度较慢,在向阴极反应器内通入反应气体后,大部分反应气体无法溶解在阴极反应器的电解液中,未溶入电解液的反应气体,会从阴极反应器的出气口处排出。It should be noted that the reaction rate of the photoelectric catalytic reaction is relatively slow. After the reaction gas is introduced into the cathode reactor, most of the reaction gas cannot be dissolved in the electrolyte of the cathode reactor, and the reaction gas that is not dissolved in the electrolyte, It will be discharged from the gas outlet of the cathode reactor.
为提高反应气体的利用效率,本实施例中,所述光电催化反应系统包括第一气流切换装置13,所述第一气流切换装置13设有可切换连通状态的第一端口131、第二端口132和第三端口133和第四端口134;所述第一端口131与所述第一背压阀5的出气端连通,所述第二端口132与所述第一气泵3的进气端连通,所述第一储气装置4的出气口和所述第二储气装置7的出气口均所述第三端口133与连通,所述第四端口连接有用于排气的第一单向阀(15);第一气泵3、第一洗气稳压装置9、第一流量控制器11、阴极反应器1、第一背压阀5和第一气流切换装置之间通过管道依次连通形成阴极气体循环管路,反应开始前打开第二储气装置,切换所述第一气流切换装置13的连通状态使得所述第一端口131与所述第四端口134连通,且所述第二端口132与所述第三端口133连通,第二储气装置内的惰性气体通入阴极循环管路并且从第四端口134排出,从而将阴极循环管路内的空气从第一单向阀15排出,第一单向阀15能够避免外界空气进入阴极循环管路;实现对阴极循环管路的洗气;洗气完毕后,关闭第二储气装置,打开第一储气装置4,反应气体从第一储气装置4流入阴极气体循环管路中,使得阴极气体循环管路内得反应气体浓度上升,保证光电催化反应进行过程中阴极反应器1对反应气体的需求量;此后,切换第一气流切换装置13的连通状态,使得所述第一端口131与所述第二端口132连通,且使得第三端口133与第四端口144连通,此时阴极气体管路形成封闭管路,在第一气泵3的驱动下,阴极气体循环管路内的气体反复通入阴极反应器1,然后从阴极反应器1中流出,随着光电催化反应的进行,阴极气体循环管路中的反应气体含量会降低,此时再次切换第一气流切换装置13的连通状态,向阴极气体循环管路内通入反应气体,从而保证反应气体的有效利用率。In order to improve the utilization efficiency of the reaction gas, in this embodiment, the photoelectric catalytic reaction system includes a first gas
本实施例中,所述光电催化反应系统还包括第二气流切换装置14,所述第二气流切换装置14设有可切换连通状态的第五端口141、第六端口142和第七端口143和第八端口144,所述第二储气装置7的出气口与所述第五端口141连通;所述第六端口142与所述第二气泵6的进气端连通,所述第七端口143与所述第二背压阀8的出气端连通;具体的,第二气泵6、第二洗气稳压装置10、第二流量控制器12、阳极反应器2、第二背压阀8和第二气流切换装置14之间通过管道依次连通形成阳极气体循环管路,在光电催化反应开始前,切换所述第二气流切换装置14的连通状态,使得所述第五端口141与所述第六端口142连通且所述第七端口143与所述第八端口144连通,将第二储气装置7内的惰性气体通入阳极气体循环管路,从而将阳极气体循环管路内的空气排尽,所述第八端口144连接有用于排气的第二单向阀16,第二单向阀16能够避免空气进入阳极气体循环管路;此后再次切换所述第二气流切换装置14的连通状态,使得所述第六端口142与所述第七端口143连通且所述第五端口141与所述第八端口144连通从而使得阳极气体循环管路处于封闭循环状态,避免惰性气体流入空气导致的惰性气体浪费。In this embodiment, the photoelectric catalytic reaction system further includes a second gas
进一步的,如图1所示,所述光电催化反应系统还包括第五气流切换装置26,第五气流切换装置26设有可切换连通状态的第十七端口、第十八端口和第十九端口,第一储气装置4和第二储气装置7均与第十七端口连通,第十八端口与第三端口133连通,第十九端口与第五端口141连通;切换第五气流切换装置26的连通状态,能够使得第十七端口与第十八端口连通,或者使得第十七端口与第十八端口和第十九端口均连通;在光电催化反应开始前,使得第十七端口与第十八端口和第十九端口均连通,通过第二储气装置7向阴极气体循环管路和阳极气体循环管路中同时通入惰性气体,对阴极气体循环管路和阳极气体循环管路进行排气,排气完毕后,切换第五气流切换装置26的来连通状态,使得第十七端口与第十八端口连通向阴极气体选好管路中通入反应气体;第五气流切换装置26的设置使得光电催化反应系统的整体结构更加紧凑。Further, as shown in FIG. 1, the photoelectric catalytic reaction system also includes a fifth gas
本实施例中,为便于检测阴极气体循环管路中的反应气体含量,所述光电催化反应系统还包括用于检测生成气体含量的气体检测系统和第三气流切换装置17,所述气体检测系统设有第一进气管18和第一出气管19,所述第三气流切换装置17设有可切换连通状态的第九端口171、第十端口172、第十一端口173和第十二端口174,所述第九端口171与所述阴极反应器1的出气口连通,所述第十端口172与所述第一进气管18连通,所述第十一端口173与所述第一出气管19连通,所述第十二端口174与所述第一背压阀5的进气端连通;检测阴极气体循环管路的反应气体含量时,切换所述第三气流切换装置17的连通状态,使得所述第九端口171与所述第十端口172连通且所述第十一端口173与所述第十二端口174连通,使得阴极气体循环管路中的气体通过第一进气管18流入气体检测系统,之后通过第一出气管19从气体检测系统流出,从而实现对阴极气体循环管路中的反应气体含量的检测,此后再次切换第三气流切换装置17的连通状态,使得所述第九端口171与所述第十二端口174连通且所述第十端口172与所述第十一端口173连通,从而保证阴极气体循环管路处于封闭循环状态。需要说明的是,第三气流切换装置17的设置使得对阴极气体循环管路在非检测状态下始终沿第一气泵3、第一洗气稳压装置9、第一流量控制器11、阴极反应器1、第三气流切换装置17、第一背压阀5和第一气流切换装置的路径流动,消除了气体检测系统在取样过程中因阴极反应器内的气压变化所产生的影响;本申请的其他实施例中,第三气流切换装置17设置在第一背压阀5的出气端和第一气泵3的进气端之间,从而进一步避免第三气流切换装置17的切换过程对阴极反应器1内气压的波动影响。In this embodiment, in order to facilitate the detection of the reaction gas content in the cathode gas circulation pipeline, the photoelectric catalytic reaction system also includes a gas detection system and a third gas flow switching device 17 for detecting the generated gas content, the gas detection system A first air inlet pipe 18 and a first air outlet pipe 19 are provided, and the third air flow switching device 17 is provided with a ninth port 171, a tenth port 172, an eleventh port 173 and a twelfth port 174 which can switch the communication state , the ninth port 171 communicates with the gas outlet of the cathode reactor 1, the tenth port 172 communicates with the first gas inlet pipe 18, and the eleventh port 173 communicates with the first gas outlet pipe 19 connected, the twelfth port 174 communicates with the intake end of the first back pressure valve 5; when detecting the reaction gas content of the cathode gas circulation pipeline, switch the communication state of the third gas flow switching device 17, so that The ninth port 171 communicates with the tenth port 172 and the eleventh port 173 communicates with the twelfth port 174, so that the gas in the cathode gas circulation line flows into the gas detection through the first gas inlet pipe 18 System, then flows out from the gas detection system through the first gas outlet pipe 19, so as to realize the detection of the reaction gas content in the cathode gas circulation pipeline, and then switch the connection state of the third gas flow switching device 17 again, so that the ninth port 171 communicates with the twelfth port 174 and the tenth port 172 communicates with the eleventh port 173 , thereby ensuring that the cathode gas circulation pipeline is in a closed cycle state. It should be noted that the setting of the third gas
具体的,如图1、图6、图7所示,所述气体检测系统包括气相色谱仪20、取样装置21和用于向取样装置21中通入惰性气体的第三储气装置22;所述取样装置21设有可切换连通状态的第一接口21-1、第二接口21-2、第三接口21-3、第四接口21-4、第五接口21-5和第六接口21-6,所述第一接口21-1与所述第三储气装置22的出气口连通,所述第二接口21-2连接有第一定量环21-11,所述第一定量环21-11的另一端连接所述第五接口21-5,所述第三接口21-3与所述第一进气管18连通,所述第四接口21-4与所述第一出气管19连通,所述第六接口21-6与所述气相色谱仪20的进气口连通;Specifically, as shown in Fig. 1, Fig. 6 and Fig. 7, the gas detection system includes a
取样时,首先切换第三气流切换装置17的连通状态,使得阴极气体循环管路中的气体流入第一进气管18,然后切换所述取样装置21的连通状态,使得取样装置21处于如图6所示的第一状态,此时所述第三接口21-3、所述第二接口21-2、所述第一定量环21-11、所述第五接口21-5和所述第四接口21-4依次连通,流入进气管18内的反应气体通过所述第三接口21-3、所述第二接口21-2流入所述第一定量环21-11,通过所述第五接口21-5和所述第四接口21-4流至第一出气管19;取样完毕后,切换第三气流切换装置17的连通状态,停止向第一进气管18中通入阴极反应气体,并且切换所述取样装置21的连通状态,使得取样装置21处于如图7所示的第二状态,此时所述第一接口21-1、所述第二接口21-2、所述第一定量环21-11、所述第五接口21-5和所述第六接口21-6依次连通,使得第三储气装置22内的惰性气体通入第一定量环21-11中,从而将第一定量环21-11内存留的阴极反应气体排至气相色谱仪20。When sampling, first switch the connection state of the third gas
进一步的,为对阳极气体循环管路中的反应气体进行检测,本实施例中,所述光电催化反应系统包括第四气流切换装置23,所述第四气流切换装置23设有可切换连通状态的第十三端口231、第十四端口232、第十五端口233和第十六端口234,所述第十三端口231与所述第二背压阀8的进气端连通,所述第十四端口232与所述阳极反应器2的出气口连通;所述取样装置21还设有可切换连通状态的第七接口21-7、第八接口21-8、第九接口21-9和第十接口21-10,所述第七接口21-7连接有第二定量环21-12,所述第二定量环21-12的另一端连接所述第十接口21-10,所述第八接口21-8与所述第十六端口234连通,所述第九接口21-9与所述第十五端口233连通;具体的,如图1、图5所示,气体检测系统设有第二进气管24和第二出气管25,第二进气管24的一端连接第九接口21-9,第二进气管24的另一端连接第十五端口233,第二出气管25的一端连接第八接口21-8,第二出气管25的另一端连接第十六端口234;需要对阳极气体循环管路内的反应气体含量进行检测时,首先切换所述第四气流切换装置23的连通状态,使得所述第十三端口231与所述第十六端口234连通且所述第十五端口233与所述第十四端口232连通,从而使得阳极气体循环管路内的气体流入第二进气管24中,然后切换所述取样装置21的连通状态,使得所述取样装置21处于如图7所示的第二状态,此时所述第九接口21-9、所述第十接口21-10、所述第二定量环21-12、所述第七接口21-7和所述第八接口21-8依次连通,将第二进气管24中的阳极反应气体通入第二定量环21-12中;之后再次切换所述取样装置21的连通状态,使得所述取样装置21处于如图6所示的第一状态,此时所述第一接口21-1、所述第十接口21-10、所述第二定量环21-12、所述第七接口21-7和所述第六接口21-6依次连通,使得第三储气装置22内的惰性气体通入第二定量环21-12中,从而将第二定量环21-12内存留的阳极反应气体排至气相色谱仪20。取样装置21的设置使得仅用一台气相色谱仪即可满足对阴极气体产物和阳极气体产物的检测,极大地降低了光电催化反应系统的设备成本,且使得光电催化反应系统的整体布置更加紧凑。需要说明的是,阴极反应器内的压力波动会导致第一定量环内的压力变化,阳极反应器内的压力波动会导致第二定量环内的压力变化,第一定量环和第二定量环内的压力变化会造成每次进入气相色谱的样品量波动,进而导致对光电催化反应效率的评估重现性差,本申请中通过第一背压阀和第二背压阀的设置能够使得阴极反应器和阳极反应器内部的压力均匀,从而实现了对光电催化反应效率的精确评估要求。Further, in order to detect the reaction gas in the anode gas circulation pipeline, in this embodiment, the photoelectric catalytic reaction system includes a fourth gas
本实施例中,如图1所示,第一储气装置4的出气口依次连接有第一减压阀27和第一流量计28,从而对第一储气装置4所流出气体的压力和流量进行监控和调节,提高本实施例的光电催化系统对光电催化反应效率的评估精度;第五气流切换装置26与第一气流切换装置13之间设有洗气瓶31,洗气瓶31中设有用于吸收与阴极产物相同的气体或其他可溶性气体杂质的溶液,从而去除从第一储气装置4或第二储气装置7进入阴极气体循环管路内中的气体中所混有的由外界带来的非阴极反应器内生成的同类产物,进一步提高本实施例的光电催化系统对光电催化反应效率的评估精度;具体的,本实施例中,第一储气装置4所储存的气体为氮气,氮气通入阴极反应器1之后所生成的气体为氨气,第一洗气瓶中的溶液为酸性溶液,从而去除通入阴极气体循环管路内中的气体中混有的氨气。第二储气装置7的出气口依次连接有第二减压阀29和第二流量计30,第三储气装置22的出气口连接有第三减压阀34,阴极反应器1的出气口通过第一气管连接至第三气流切换装置,第一气管外侧包裹有第一冷凝管32,阳极反应器2的出气口通过第二气管连接至第四气流切换装置,第二气管的外侧包裹有第二冷凝管33。In this embodiment, as shown in FIG. 1 , the gas outlet of the first
本实施例中,所述阴极反应器1与所述阳极反应器2之间插设有用于阻止所述阴极反应器1内的生成气体进入所述阳极反应器2的粒子交换膜。具体的,阴极反应器1和阳极反应器2之间形成H型结构,粒子交换膜设置在H型结构的中部,粒子交换膜避免了阳极反应器内生成的氨气与阴极反应器内生成的氧气同时混合于相同的液相及气相中,所导致的阴极还原的产物在阳极重新被氧化的情况,这对于保证光电催化反应效率的评估精度是至关重要的。In this embodiment, a particle exchange membrane is inserted between the
本实施例中,为进一步提高对光电催化反应效率的评估精度,第一储气装置4中的气体为氮十五同位素气体,从而避免空气中所存在的氮十四对光电催化反应系统的光电催化反应效率的评估精度的影响。In this embodiment, in order to further improve the evaluation accuracy of the photoelectric catalytic reaction efficiency, the gas in the first
以下以光电催化反应制氨为例对本发明的光电催化反应系统的工作过程进行说明:The working process of the photocatalytic reaction system of the present invention is described below by taking photoelectric catalytic reaction ammonia as an example:
第一步,洗气;具体的,拧开第二储气装置7,通过第二减压阀29将从第二储气装置7中流出的氩气压力调节至0.3MPa,氩气经第五气流切换装置26后分为两路,第一路流入洗气瓶31,进而流至第一气流切换装置13,通过第一气流切换装置13流入阴极气体循环管路,将阴极气体循环管路中的空气排尽,避免阴极气体循环管路中的空气对光电催化反应效率的影响;第二路流至第二气流切换装置14,通过第二气流切换装置流入阳极气体循环管路,将阳极气体循环管路中的空气排尽,避免阳极气体循环管路中的空气对光电催化反应效率的影响。The first step is gas washing; specifically, unscrew the second
第二步,向阴极气体循环管路通入氮气;具体的,关闭第二储气装置7,打开第一储气装置4,第一储气装置4中的氮气依次经第一减压阀27、第一流量计28、第五气流切换装置26、洗气瓶31、第一气流切换装置13流入阴极气体循环管路,氮气将阴极气体循环管路中的氩气排尽,在排除阴极气体循环管路中的氩气的过程中,通过切换切第三气流切换装置17的连通状态和取样装置21的连通状态,对阴极气体循环管路中的氮气含量进行检测,当阴极气体循环管路中的氮气含量高于90%即可视为充满,之后切换第一气流切换装置13的连通状态,使得阴极气体循环管路进处于封闭循环状态。The second step is to feed nitrogen into the cathode gas circulation pipeline; specifically, close the second
第三步,光电催化反应;具体的,对阴极反应器1施加光照,并打开电化学工作站35,开始进行光电催化产氨,在光电催化反应过程中,第一流量控制器11和第二流量控制器12的组合可实现对反应气体流速的稳定控制;第一背压阀5和第二背压阀8的组合可实现对阴极反应器和阳极反应器的压力的稳定控制,阴极气体循环管路内的气体产物和阳极气体循环管路内的气体产物可通过取样装置21实现在线取样,并通过气相色谱仪20进行实时检测。其中气相色谱仪同一时间只能检测一个气路的气体组成,如需要更检测阴极气体管路中的气体含量时,需要使第二进气管24处于非进气状态。The third step is the photoelectrocatalytic reaction; specifically, light is applied to the
第四步,补充氮气;具体的,当阴极气体循环管路中的氮气含量下降到50%时,需要向阴极气体循环管路补充氮气。此时,打开第一减压阀27,令氮气经第一流量计28、第五气流切换装置、洗气瓶31流至第一气流切换装置,切换第一气流切换装置的连通状态,使得第一端口131、所述第二端口132和所述第三端口133均连通,氮气流入阴极气体循环管路中,使得阴极气体循环管路内得反应气体浓度上升,保证光电催化反应进行过程中阴极反应器1对反应气体的需求量。The fourth step is to supplement nitrogen; specifically, when the nitrogen content in the cathode gas circulation pipeline drops to 50%, it is necessary to supplement nitrogen to the cathode gas circulation pipeline. Now, open the
综上,本发明提供了一种光电催化反应系统,其第一背压阀5和第二背压阀8的设置能够使得阴极反应器1和阳极反应器2内部的压力均匀一致,从而使得阴极反应器1内反应气体的溶解度保持稳定状态,进而保证了光电催化效率的稳定受控;另一方面,反应器内稳定的压力能够保证进入定量环的待测气体体积和压力保持稳定,从而保证进入气相色谱的样品物质的量稳定,上述两个方面共同帮助系统实现对光电催化反应效率的精确评估要求;通过第一洗气稳压装置和第二洗气稳压装置,保证了通入阴极反应器1和阳极反应器2内的气体的压力稳定;通过第一流量控制器11和第二流量控制器12的设置能够分别控制通入阴极反应器1和阳极反应器2内的气流流量,提高了对光电催化反应系统的光电催化效率的监控精度要求;通过第一气流切换装置13的设置使得阴极气路循环管路能够保持封闭循环,且能够及时向阴极气路循环系统中通入反应气体;通过第二气流切换装置14的设置,实现了阳极气体循环管路能够保持封闭循环,避免了外界空气对光电催化效率评估精度的影响;通过取样装置21、第三气流切换装置17和第四气流切换装置的配合,使得阴极气体循环管路内的气体产物和阳极气体循环管路内的气体产物均可通过取样装置21实现在线取样,并通过气相色谱仪20进行实时检测;通过粒子交换膜的设置,避免了阳极反应器内生成的氨气与阴极反应器内生成的氧气同时混合于相同的液相及气相中,所导致的阴极还原的产物在阳极重新被氧化的情况;通过将氮气设为同位素气体,避免了外界气体对光电催化反应效率进行评估的影响;上述各个特征相互配合所形成的光电催化系统,不仅提高了氮气的有效利用率,而且保证了对光电催化反应效率的精确评估要求。To sum up, the present invention provides a kind of photoelectric catalytic reaction system, the setting of its first back pressure valve 5 and the second back pressure valve 8 can make the pressure inside the cathode reactor 1 and the anode reactor 2 uniform, so that the cathode The solubility of the reaction gas in the reactor 1 is kept in a stable state, thereby ensuring the stability and control of the photoelectric catalytic efficiency; The amount of sample substance entering the gas chromatograph is stable, and the above two aspects together help the system to realize the precise evaluation requirements of the photoelectric catalytic reaction efficiency; through the first gas scrubbing and pressure stabilizing device and the second gas scrubbing and voltage stabilizing device, it is ensured that the gas flowing into the cathode The pressure of the gas in the reactor 1 and the anode reactor 2 is stable; the setting of the first flow controller 11 and the second flow controller 12 can control the flow of gas flowing into the cathode reactor 1 and the anode reactor 2 respectively, The monitoring precision requirements for the photoelectric catalytic efficiency of the photoelectric catalytic reaction system are improved; through the setting of the first gas flow switching device 13, the cathode gas circulation pipeline can maintain a closed cycle, and the reaction can be introduced into the cathode gas circulation system in time Gas; through the setting of the second gas flow switching device 14, the anode gas circulation pipeline can be kept in a closed cycle, avoiding the influence of the outside air on the evaluation accuracy of the photoelectric catalytic efficiency; through the sampling device 21, the third gas flow switching device 17 and the first With the cooperation of the four gas flow switching devices, the gas products in the cathode gas circulation pipeline and the gas products in the anode gas circulation pipeline can be sampled online through the sampling device 21, and real-time detection is carried out by the gas chromatograph 20; The setting of the membrane avoids the situation that the ammonia gas generated in the anode reactor and the oxygen generated in the cathode reactor are mixed in the same liquid phase and gas phase at the same time, and the resulting cathode reduction product is re-oxidized at the anode; by Nitrogen is set as an isotopic gas, which avoids the influence of external gases on the evaluation of photocatalytic reaction efficiency; the photocatalytic system formed by the cooperation of the above-mentioned characteristics not only improves the effective utilization rate of nitrogen, but also ensures the efficiency of photocatalytic reaction. Accurate assessment requirements.
上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and replacements can also be made, these improvements and replacements It should also be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210200437.4A CN114405438B (en) | 2022-03-01 | 2022-03-01 | Photoelectrocatalysis reaction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210200437.4A CN114405438B (en) | 2022-03-01 | 2022-03-01 | Photoelectrocatalysis reaction system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114405438A CN114405438A (en) | 2022-04-29 |
CN114405438B true CN114405438B (en) | 2022-11-11 |
Family
ID=81262645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210200437.4A Active CN114405438B (en) | 2022-03-01 | 2022-03-01 | Photoelectrocatalysis reaction system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114405438B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05311476A (en) * | 1992-05-13 | 1993-11-22 | Hitachi Ltd | Electrode for electrochemical reduction and device for utilizing the same |
JP2010242125A (en) * | 2009-04-01 | 2010-10-28 | Central Glass Co Ltd | Fluorine gas generation device |
CN208800097U (en) * | 2018-06-25 | 2019-04-30 | 新奥科技发展有限公司 | Photo electrocatalysis reactor, photoelectrocatalysis reaction unit and photoelectrocatalysis reaction system |
CN111394740A (en) * | 2020-03-11 | 2020-07-10 | 南京航空航天大学 | A method for improving the reaction efficiency of electrocatalytic nitrogen reduction to synthesize ammonia |
CN112609204A (en) * | 2020-12-15 | 2021-04-06 | 南京理工大学 | High-voltage photoelectrocatalysis reduction carbon dioxide experimental device |
CN112725823A (en) * | 2020-12-07 | 2021-04-30 | 大连理工大学 | Coupling process for efficiently utilizing electric energy to perform coal oxidation and carbon dioxide reduction |
CN112941545A (en) * | 2021-03-09 | 2021-06-11 | 北京市公用工程设计监理有限公司 | Control method for hydrogen production by double closed-loop electrolysis method |
CN113398860A (en) * | 2021-06-30 | 2021-09-17 | 浙江工业大学 | Photocatalysis reduction carbon dioxide experimental apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015212503A1 (en) * | 2015-07-03 | 2017-01-05 | Siemens Aktiengesellschaft | Reduction process and electrolysis system for electrochemical carbon dioxide recovery |
JP7204620B2 (en) * | 2019-09-17 | 2023-01-16 | 株式会社東芝 | electrochemical reactor |
AU2020388656A1 (en) * | 2019-11-21 | 2022-06-23 | Ohmium International, Inc. | Systems and methods of ammonia synthesis |
-
2022
- 2022-03-01 CN CN202210200437.4A patent/CN114405438B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05311476A (en) * | 1992-05-13 | 1993-11-22 | Hitachi Ltd | Electrode for electrochemical reduction and device for utilizing the same |
JP2010242125A (en) * | 2009-04-01 | 2010-10-28 | Central Glass Co Ltd | Fluorine gas generation device |
CN208800097U (en) * | 2018-06-25 | 2019-04-30 | 新奥科技发展有限公司 | Photo electrocatalysis reactor, photoelectrocatalysis reaction unit and photoelectrocatalysis reaction system |
CN111394740A (en) * | 2020-03-11 | 2020-07-10 | 南京航空航天大学 | A method for improving the reaction efficiency of electrocatalytic nitrogen reduction to synthesize ammonia |
CN112725823A (en) * | 2020-12-07 | 2021-04-30 | 大连理工大学 | Coupling process for efficiently utilizing electric energy to perform coal oxidation and carbon dioxide reduction |
CN112609204A (en) * | 2020-12-15 | 2021-04-06 | 南京理工大学 | High-voltage photoelectrocatalysis reduction carbon dioxide experimental device |
CN112941545A (en) * | 2021-03-09 | 2021-06-11 | 北京市公用工程设计监理有限公司 | Control method for hydrogen production by double closed-loop electrolysis method |
CN113398860A (en) * | 2021-06-30 | 2021-09-17 | 浙江工业大学 | Photocatalysis reduction carbon dioxide experimental apparatus |
Non-Patent Citations (1)
Title |
---|
新型双槽光电化学反应器对活性艳红的降解研究;李明玉等;《生态环境学报》;20101018;第19卷(第10期);第2474-2478页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114405438A (en) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110983356B (en) | A low-temperature jet plasma coupled single-atom catalytic nitrogen fixation device and method | |
CN101586245B (en) | Hydrogen production reactor and system and gas collection method, photohydrogen energy conversion efficiency measurement system and photohydrogen energy/photoelectric conversion efficiency measurement method | |
CN111321422B (en) | A production system and production method for electrochemical hydrogen production | |
CN204330411U (en) | A kind of all-vanadium redox flow battery electrolyte sampling analysis device | |
CN104483443A (en) | Photoelectrocatalysis carbon dioxide reduction reaction analysis and detection system and use method thereof | |
CN114405438B (en) | Photoelectrocatalysis reaction system | |
WO2023178913A1 (en) | Hydrogen impurity purification apparatus used for fuel cell | |
CN102201588A (en) | Device and method for treating tail gas of fuel cell | |
CN111058051A (en) | A normal temperature and normal pressure electrochemical nitrogen fertilizer production system | |
CN117771903A (en) | Plasma-electrocatalytic series grading system and application | |
CN216698450U (en) | Impurity purification device of hydrogen for fuel cell | |
CN211603064U (en) | Gas chromatography hydrogen permeation testing device | |
CN205484185U (en) | Three electrode reactor | |
WO2024087572A1 (en) | Mercury measurement device and method | |
CN212595570U (en) | Hydride generating device | |
CN115558946A (en) | Method for synthesizing urea by plasma coupling electrochemical catalytic system | |
CN115636391A (en) | Hydrogen production equipment by ammonia decomposition under catalysis of plasma and metal oxide and experimental method | |
CN203732436U (en) | Electrochemical catalytic oxidation-based total organic carbon analyzer | |
CN117654239A (en) | Electrochemical mediated amine regenerated carbon trapping system | |
CN116791119A (en) | Device and method for synthesizing ammonia through electrochemical nitrogen reduction mediated by active metal lithium | |
CN218810373U (en) | Ammonia synthesis system | |
CN206300959U (en) | A kind of metering device of hydride generator | |
CN213600626U (en) | As content detector | |
CN218674400U (en) | Hydrogen chloride gas sampling and analyzing device | |
Wang | Performance of new liquid redox desulfurization system of heteropoly compound in comparison with that of iron chelate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |