CN114400500B - Laser external modulation transverse mode generating device - Google Patents
Laser external modulation transverse mode generating device Download PDFInfo
- Publication number
- CN114400500B CN114400500B CN202111622487.3A CN202111622487A CN114400500B CN 114400500 B CN114400500 B CN 114400500B CN 202111622487 A CN202111622487 A CN 202111622487A CN 114400500 B CN114400500 B CN 114400500B
- Authority
- CN
- China
- Prior art keywords
- laser
- cavity
- cavity mirror
- plano
- tilt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004075 alteration Effects 0.000 claims abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000009759 San-Chi Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000000180 cavity ring-down spectroscopy Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000001307 laser spectroscopy Methods 0.000 description 1
- 238000010905 molecular spectroscopy Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/065—Mode locking; Mode suppression; Mode selection ; Self pulsating
- H01S5/0651—Mode control
- H01S5/0653—Mode suppression, e.g. specific multimode
- H01S5/0655—Single transverse or lateral mode emission
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Studio Devices (AREA)
Abstract
Description
技术领域Technical field
本发明涉及光腔衰荡技术领域,具体涉及一种激光外调制横模发生装置。The invention relates to the technical field of optical cavity ringdown, and in particular to a laser external modulation transverse mode generating device.
背景技术Background technique
光腔衰荡技术是一种基于高精度被动谐振腔的光学探测技术,目前已广泛应用于吸收光谱测量、高反射率测量及光纤传感等领域。(Abhijit Maity,Sanchi Maithani,Manik Pradhan,“Cavity ring-down spectroscopy:recent technological advancesand applications”,Molecular and Laser Spectroscopy,2020,83-120;李斌成,龚元;光腔衰荡高反射率测量技术综述,《激光与光电子学进展》,2010,47:021203)。腔内电磁场在垂直于其传播方向z的横向x-y面内存在的稳定场分布,称为横模。不同的横模对应于不同横向稳定的光场分布和频率。由模式耦合理论可知,一定条件下,当激光光束注入被动谐振腔时会激发被动谐振腔的本征横模。被动腔无失调时,入射激光束一般会在腔内激发出基横模。被动腔存在腔镜倾斜、腔轴偏移等腔参数失调时,会在腔内激发高阶横模甚至多横模。传统方法只能通过倾斜谐振腔腔镜来产生腔外高阶横模,可调元件较少,调整范围受限,获得的高阶模式阶数较小,产生复杂的高阶模式种类有限。本发明在基于前期实验观测及理论研究的基础上,提供一种激光外调制横模发生装置。该发明装置的原理为:被动腔透射光斑分布模式是入射激光模式和被动腔本征模式匹配耦合的结果,因此通过影响入射激光模式或者调整被动腔本征模式均可改变最终激发的被动腔透射光斑分布模式。通过在被动腔外引入倾斜控制系统和被动腔内调制腔镜倾斜与旋转角度的方式,可灵活调整入射激光模式和被动腔本征模式,进而可生成不同阶数模式的激光横模甚至多横模。Optical cavity ring-down technology is an optical detection technology based on high-precision passive resonant cavity. It has been widely used in absorption spectrum measurement, high reflectivity measurement and optical fiber sensing. (Abhijit Maity, Sanchi Maithani, Manik Pradhan, "Cavity ring-down spectroscopy: recent technological advances and applications", Molecular and Laser Spectroscopy, 2020, 83-120; Li Bincheng, Gong Yuan; Review of cavity ring-down high reflectivity measurement technology , "Progress in Lasers and Optoelectronics", 2010, 47: 021203). The stable field distribution of the electromagnetic field in the cavity in the transverse x-y plane perpendicular to its propagation direction z is called a transverse mode. Different transverse modes correspond to different transversely stable light field distributions and frequencies. It can be known from the mode coupling theory that under certain conditions, when the laser beam is injected into the passive resonant cavity, the intrinsic transverse mode of the passive resonant cavity will be excited. When there is no misalignment in the passive cavity, the incident laser beam will generally excite the fundamental transverse mode in the cavity. When the passive cavity has cavity parameter imbalance such as cavity mirror tilt and cavity axis offset, high-order transverse modes or even multiple transverse modes will be excited in the cavity. The traditional method can only generate high-order transverse modes outside the cavity by tilting the resonator mirror. There are fewer adjustable components, the adjustment range is limited, the order of the high-order modes obtained is small, and the types of complex high-order modes generated are limited. The present invention provides a laser externally modulated transverse mode generating device based on preliminary experimental observations and theoretical research. The principle of the inventive device is: the passive cavity transmission spot distribution pattern is the result of the matching coupling between the incident laser mode and the passive cavity eigenmode. Therefore, the final excited passive cavity transmission can be changed by affecting the incident laser mode or adjusting the passive cavity eigenmode. Spot distribution pattern. By introducing a tilt control system outside the passive cavity and modulating the tilt and rotation angle of the cavity mirror inside the passive cavity, the incident laser mode and the passive cavity intrinsic mode can be flexibly adjusted, thereby generating laser transverse modes of different order modes or even multiple transverse modes. mold.
因此,本发明装置通过激光外部调制腔系统内外的倾斜联合调控以及旋转平面腔镜的方式,利用光电探测器和CCD相机分别监测被动腔透射出的光腔输出信号和光斑分布模式,可实现激光外调制的不同阶数模式和不同节线展开方向的横模灵活生成。相比传统方法具有不改变激光源,调整范围较宽,横模模式阶数较多,高阶模式种类多样,操作简单方便等优点。Therefore, the device of the present invention can realize the laser by jointly controlling the tilt inside and outside the laser external modulation cavity system and rotating the plane cavity mirror, and uses the photodetector and the CCD camera to respectively monitor the optical cavity output signal and spot distribution pattern transmitted by the passive cavity. Different order modes of external modulation and transverse modes with different nodal line expansion directions are flexibly generated. Compared with the traditional method, it has the advantages of not changing the laser source, wider adjustment range, more transverse mode modes, various high-order modes, and simple and convenient operation.
发明内容Contents of the invention
本发明要解决的技术问题是:传统方法只能通过倾斜谐振腔腔镜来产生腔外高阶横模,可调元件较少,调整范围受限,获得的高阶模式阶数较小,产生复杂的高阶模式种类有限。针对这一问题,本发明提供一种以被动腔内外倾斜联合调控及旋转平面腔镜方式进行的激光外调制横模发生装置,可有效拓宽调整范围,获得横模模式阶数较多,高阶模式种类多样。The technical problem to be solved by this invention is that the traditional method can only generate extracavity high-order transverse modes by tilting the resonator mirror. There are fewer adjustable components and the adjustment range is limited. The order of the obtained high-order modes is small, resulting in There is a limited variety of complex higher-order patterns. In response to this problem, the present invention provides a laser externally modulated transverse mode generation device that uses passive joint control of internal and external tilt of the cavity and rotating plane cavity mirrors, which can effectively broaden the adjustment range and obtain more transverse mode modes with higher orders. There are many types of modes.
本发明要解决其技术问题所采用的技术方案是:一种激光外调制横模发生装置,包括:激光光源、指示光源、分光反射镜、平面反射镜、倾斜控制系统、平面腔镜、第一平凹高反腔镜、第二平凹高反腔镜、第一聚焦透镜、第二聚焦透镜、光电探测器、CCD相机和计算机;激光光源输出的不可见光经分光反射镜后与平面反射镜反射的可见指示光源同轴输出,输出光束经过倾斜控制系统引入的倾斜像差调制后,注入由平面腔镜和第一平凹高反腔镜、第二平凹高反腔镜组成的折叠式被动腔内,被动腔透射出的光腔输出信号经第一聚焦透镜聚焦后被光电探测器采集,被动腔透射出的光斑分布模式经第二聚焦透镜聚焦被CCD相机监测后在计算机显示器上进行激光横模模式展示。The technical solution adopted by the present invention to solve the technical problem is: a laser externally modulated transverse mode generating device, including: laser light source, indicator light source, spectroscopic reflector, plane reflector, tilt control system, plane cavity mirror, first Plano-concave high-reflection cavity mirror, second plano-concave high-reflection cavity mirror, first focusing lens, second focusing lens, photodetector, CCD camera and computer; the invisible light output by the laser light source passes through the dichroic reflector and is combined with the plane reflector The reflected visible indication light source is coaxially output. After the output beam is modulated by the tilt aberration introduced by the tilt control system, it is injected into a foldable cavity mirror composed of a planar cavity mirror, a first plano-concave high-reflection cavity mirror, and a second plano-concave high-reflection cavity mirror. In the passive cavity, the optical cavity output signal transmitted by the passive cavity is focused by the first focusing lens and then collected by the photodetector. The light spot distribution pattern transmitted by the passive cavity is focused by the second focusing lens and monitored by the CCD camera and then displayed on the computer monitor. Laser transverse mode display.
所述的激光光源为窄线宽的连续波半导体激光器。The laser light source is a narrow linewidth continuous wave semiconductor laser.
所述的倾斜控制系统可以是倾斜变形镜、或是透射式液晶空间光调制器,或是带多片倾斜像差片的滤光片轮。The tilt control system may be a tilt deformation mirror, a transmissive liquid crystal spatial light modulator, or a filter wheel with multiple tilt aberration films.
所述的第一平凹高反腔镜、第二平凹高反腔镜安装在四维可调倾斜镜架上,保证第一平凹高反腔镜、第二平凹高反腔镜既可以进行水平和竖直方向的倾斜调整以产生腔镜倾斜失调量,又可以进行上下和左右方向的平移调整以产生腔轴偏移失调量。The first plano-concave high reflection cavity mirror and the second plano-concave high reflection cavity mirror are installed on a four-dimensional adjustable tilting frame, ensuring that the first plano-concave high reflection cavity mirror and the second plano-concave high reflection cavity mirror can be used The tilt adjustment in the horizontal and vertical directions is performed to produce the tilt misalignment of the cavity mirror, and the translation adjustment in the up and down and left and right directions is performed to produce the cavity axis offset misalignment.
所述的倾斜控制系统和第一平凹高反腔镜、第二平凹高反腔镜可相互配合调整,形成被动腔内外的倾斜联合调控,实现不同阶数模式的激光横模灵活生成。The tilt control system, the first plano-concave high-reflection cavity mirror, and the second plano-concave high-reflection cavity mirror can be adjusted with each other to form a joint control of tilt inside and outside the passive cavity, and realize the flexible generation of laser transverse modes of different order modes.
所述的平面腔镜安装在嵌入式旋转安装座内,可在与光传播方向垂直的横截面内调整旋转角度,形成对激光高阶横模节线展开方向角度的调控,实现不同节线展开方向的激光高阶横模灵活生成。The plane cavity mirror is installed in an embedded rotating mounting base, and the rotation angle can be adjusted in a cross section perpendicular to the direction of light propagation, thereby regulating the angle of the node line expansion of the laser's high-order transverse mode, and realizing different node line expansions. Flexible generation of laser high-order transverse modes in different directions.
本发明的原理是:本发明从激光模式耦合理论出发,在激光光源外搭建一个调制腔与激光器本身的谐振腔构成一个“复合腔”,同时引入倾斜控制系统以影响入射激光模式,调整安装在四维可调镜架上的被动腔内腔镜以改变被动腔本征模式,通过被动腔内外的倾斜联合调控以及旋转平面腔镜的方式,可改变入射激光模式和被动腔本征模式匹配耦合的结果,进而在腔内激发不同阶数和不同节线展开方向的激光横模模式,然后利用光电探测器和CCD相机分别监测被动腔透射出的光腔输出信号和光斑分布模式,实现不同阶数和不同节线展开方向的激光横模模式灵活生成。The principle of the invention is: the invention starts from the laser mode coupling theory, builds a modulation cavity outside the laser light source and the resonant cavity of the laser itself to form a "composite cavity", and introduces a tilt control system to affect the incident laser mode, and adjusts and installs it on The passive intracavity mirror on the four-dimensional adjustable frame can change the passive cavity eigenmode. Through the joint regulation of tilt inside and outside the passive cavity and the rotation of the plane cavity mirror, the matching coupling between the incident laser mode and the passive cavity eigenmode can be changed. As a result, laser transverse mode modes of different orders and different node line expansion directions are then excited in the cavity, and then the photodetector and CCD camera are used to respectively monitor the optical cavity output signal and spot distribution pattern transmitted by the passive cavity to achieve different orders. Flexible generation of laser transverse mode patterns with different nodal line expansion directions.
本发明与现有技术相比具有如下优点:本发明通过激光外调制腔内外的倾斜相互配合调整以及旋转平面腔镜的方式,克服传统产生高阶横模方法中仅能通过倾斜腔镜调整范围受限的缺点,具有不改变激光源,调整范围较宽,横模模式阶数较多,高阶模式种类多样,横模节线展开方向灵活可控,结构简单,操作方便等优点。Compared with the existing technology, the present invention has the following advantages: the present invention overcomes the traditional method of generating high-order transverse modes by adjusting the tilt of the inside and outside of the laser external modulation cavity and rotating the plane cavity mirror, which can only adjust the range by tilting the cavity mirror. The disadvantages of the limitation are that the laser source is not changed, the adjustment range is wide, the transverse mode mode orders are many, the high-order modes are diverse, the direction of the transverse mode node line expansion is flexible and controllable, the structure is simple, and the operation is convenient.
附图说明Description of the drawings
图1为本发明一种激光外调制横模发生装置的结构示意图,其中,1为激光光源,2为指示光源,3为分光反射镜,4为平面反射镜,5为倾斜控制系统,6为平面腔镜,7为第一平凹高反腔镜,8为第一聚焦透镜,9为光电探测器,10为第二平凹高反腔镜,11为第二聚焦透镜,12为CCD相机,13为计算机;Figure 1 is a schematic structural diagram of a laser externally modulated transverse mode generating device of the present invention, where 1 is a laser light source, 2 is an indicator light source, 3 is a spectroscopic reflector, 4 is a plane reflector, 5 is a tilt control system, and 6 is Plane cavity mirror, 7 is the first plano-concave high reflection cavity mirror, 8 is the first focusing lens, 9 is the photodetector, 10 is the second plano-concave high reflection cavity mirror, 11 is the second focusing lens, and 12 is the CCD camera , 13 is the computer;
图2为本发明一种激光外调制横模发生装置理论涉及的部分激光横模仿真图像;Figure 2 is a partial laser transverse simulation image involved in the theory of a laser externally modulated transverse mode generating device of the present invention;
图3为本发明一种激光外调制横模发生装置实验得到的部分激光横模演示图像;Figure 3 is a partial laser transverse mode demonstration image experimentally obtained by a laser externally modulated transverse mode generating device according to the present invention;
图4为本发明一种激光外调制横模发生装置实验得到的不同节线展开方向的一阶横模演示图像。Figure 4 is a first-order transverse mode demonstration image of different nodal line expansion directions experimentally obtained by a laser externally modulated transverse mode generating device of the present invention.
具体实施方式Detailed ways
下面结合附图以及具体实施方式进一步说明本发明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,一种激光外调制横模发生装置,包括:激光光源1、指示光源2、分光反射镜3、平面反射镜4、倾斜控制系统5、平面腔镜6、第一平凹高反腔镜7、第二平凹高反腔镜10、第一聚焦透镜8、第二聚焦透镜11、光电探测器9、CCD相机12和计算机13;激光光源1输出的不可见光经分光反射镜3后与平面反射镜4反射的可见指示光源2同轴输出,输出光束经过倾斜控制系统5引入的倾斜像差调制后,注入由平面腔镜6和第一平凹高反腔镜7、第二平凹高反腔镜10组成的折叠式被动腔内,被动腔透射出的光腔输出信号经第一聚焦透镜8聚焦后被光电探测器9采集,被动腔透射出的光斑分布模式经第二聚焦透镜11聚焦被CCD相机12监测后在计算机13显示器上进行激光横模模式展示。所述的激光光源1为窄线宽的连续波半导体激光器。所述的倾斜控制系统5可以是倾斜变形镜、或是透射式液晶空间光调制器,或是带多片倾斜像差片的滤光片轮。所述的第一平凹高反腔镜7、第二平凹高反腔镜10安装在四维可调倾斜镜架上,保证第一平凹高反腔镜7、第二平凹高反腔镜10既可以进行水平和竖直方向的倾斜调整以产生腔镜倾斜失调量,又可以进行上下和左右方向的平移调整以产生腔轴偏移失调量。所述的倾斜控制系统5和第一平凹高反腔镜7、第二平凹高反腔镜10可相互配合调整,形成被动腔内外的倾斜联合调控,实现不同阶数模式的激光外调制横模灵活生成。所述的平面腔镜6安装在嵌入式旋转安装座内,可在与光传播方向垂直的横截面内调整旋转角度,形成对激光高阶横模节线展开方向角度的调控,实现不同节线展开方向的激光外调制高阶横模灵活生成。As shown in Figure 1, a laser externally modulated transverse mode generating device includes: laser light source 1, indicator light source 2, spectroscopic mirror 3, plane mirror 4, tilt control system 5, plane cavity mirror 6, first plano-concave High reflection cavity mirror 7, second plano-concave high reflection cavity mirror 10, first focusing lens 8, second focusing lens 11, photodetector 9, CCD camera 12 and computer 13; the invisible light output by the laser light source 1 is spectroscopically reflected The visible indicator light source 2 reflected by the mirror 3 and the plane mirror 4 is coaxially output. After the output beam is modulated by the tilt aberration introduced by the tilt control system 5, it is injected into the plane cavity mirror 6 and the first plano-concave high reflection cavity mirror 7, In the foldable passive cavity composed of the second plano-concave high-reflection cavity mirror 10, the optical cavity output signal transmitted by the passive cavity is focused by the first focusing lens 8 and then collected by the photodetector 9. The light spot distribution pattern transmitted by the passive cavity is After the focus of the second focusing lens 11 is monitored by the CCD camera 12, the laser transverse mode mode is displayed on the display of the computer 13. The laser light source 1 is a narrow linewidth continuous wave semiconductor laser. The tilt control system 5 may be a tilt deformation mirror, a transmissive liquid crystal spatial light modulator, or a filter wheel with multiple tilt aberration films. The first plano-concave high reflection cavity mirror 7 and the second plano-concave high reflection cavity mirror 10 are installed on a four-dimensional adjustable tilting frame to ensure that the first plano-concave high reflection cavity mirror 7 and the second plano-concave high reflection cavity mirror The mirror 10 can be tilted in the horizontal and vertical directions to generate the cavity mirror tilt misalignment, and can be translated in the up and down and left and right directions to generate the cavity axis offset misalignment. The tilt control system 5, the first plano-concave high-reflection cavity mirror 7, and the second plano-concave high-reflection cavity mirror 10 can be adjusted with each other to form a joint control of the tilt inside and outside the passive cavity, and realize external laser modulation of different order modes. Flexible generation of transverse molds. The plane cavity mirror 6 is installed in an embedded rotating mounting base, and can adjust the rotation angle in a cross section perpendicular to the direction of light propagation, thereby regulating the angle of expansion of the node line of the laser's high-order transverse mode, and realizing different node lines. Flexible generation of high-order transverse modes of laser external modulation in the unfolding direction.
本发明实施例的激光外调制横模发生装置由激光光源1输出的不可见光经分光反射镜3后与平面反射镜4反射的指示光源2同轴输出,输出光束经过倾斜控制系统5引入的倾斜像差调制后,注入由平面腔镜6和平凹高反腔镜7、10组成的折叠式被动腔内,被动腔透射出的光腔输出信号经聚焦透镜8聚焦后被光电探测器9采集,被动腔透射出的光斑分布模式经第二聚焦透镜11聚焦被CCD相机12监测后在计算机13显示器上进行激光横模模式展示。In the laser externally modulated transverse mode generating device according to the embodiment of the present invention, the invisible light output by the laser light source 1 passes through the dichroic mirror 3 and is coaxially output with the indicating light source 2 reflected by the plane mirror 4. The output beam passes through the tilt introduced by the tilt control system 5. After the aberration is modulated, it is injected into a foldable passive cavity composed of a planar cavity mirror 6 and a planar concave high-reflection cavity mirror 7 and 10. The optical cavity output signal transmitted from the passive cavity is collected by the photodetector 9 after being focused by the focusing lens 8. The light spot distribution pattern transmitted by the passive cavity is focused by the second focusing lens 11 and monitored by the CCD camera 12, and then the laser transverse mode pattern is displayed on the computer 13 display.
图1中的激光光源1为窄线宽的连续波半导体激光器,本实施例中采用中心波长为1064nm的连续半导体激光器(RGB Photonics)。The laser light source 1 in Figure 1 is a narrow linewidth continuous wave semiconductor laser. In this embodiment, a continuous wave semiconductor laser (RGB Photonics) with a central wavelength of 1064 nm is used.
图1中的倾斜控制系统5在本实施例中为带多片倾斜像差片的滤光片轮。The tilt control system 5 in Figure 1 is a filter wheel with multiple tilt aberration films in this embodiment.
图1中的平面腔镜6安装在嵌入式旋转安装座中,可实现在与光传播方向垂直的横截面内调整旋转角度。本实施例中采用Thorlabs生产的旋转精度为2°的嵌入式旋转安装座(LM1-A)。The plane cavity mirror 6 in Figure 1 is installed in an embedded rotating mount, which can adjust the rotation angle in a cross section perpendicular to the direction of light propagation. In this embodiment, an embedded rotation mount (LM1-A) produced by Thorlabs with a rotation accuracy of 2° is used.
图1中的第一平凹高反腔镜7和第二平凹高反腔镜10安装在四维可调倾斜镜架上,本实施例中的四维可调镜架可进行水平竖直方向的倾斜调整和上下左右方向的平移调整。The first plano-concave high-reflection cavity mirror 7 and the second plano-concave high-reflection cavity mirror 10 in Figure 1 are installed on a four-dimensional adjustable tilt frame. The four-dimensional adjustable frame in this embodiment can be tilted horizontally and vertically. Tilt adjustment and pan adjustment in up, down, left and right directions.
图2为本发明一种激光外调制横模发生装置理论涉及的部分激光横模仿真图像。在本实施例中,使用Matlab计算仿真出了从TEM00到TEM33不同阶次的“厄米特-高斯”横模光斑模式。Figure 2 is a partial laser transverse simulation image involved in the theory of a laser externally modulated transverse mode generating device of the present invention. In this embodiment, Matlab is used to calculate and simulate "Hermitian-Gaussian" transverse mode spot patterns of different orders from TEM 00 to TEM 33 .
图3为本发明一种激光外调制横模发生装置实验得到的部分激光横模演示图像。在本实施例中,通过调整倾斜控制系统5中的带多片倾斜像差片的滤光片轮和安装在四维可调倾斜镜架上的第一平凹高反腔镜7、第二平凹高反腔镜10,生成从TEM00到TEM33不同阶次的“厄米特-高斯”横模光斑模式,并分别采集记录。其中使用水平方向的倾斜调整可在水平方向激发高阶横模,使用竖直方向的倾斜调整可在竖直方向激发高阶横模。Figure 3 is a partial laser transverse mode demonstration image experimentally obtained by a laser externally modulated transverse mode generating device of the present invention. In this embodiment, by adjusting the filter wheel with multiple tilted aberration films in the tilt control system 5 and the first plano-concave high-reflection cavity mirror 7 and the second plano-concave high-reflection cavity mirror 7 installed on the four-dimensional adjustable tilting frame. The concave high reflection cavity mirror 10 generates "Hermitian-Gaussian" transverse mode spot patterns of different orders from TEM 00 to TEM 33 , and collects and records them respectively. The tilt adjustment in the horizontal direction can excite high-order transverse modes in the horizontal direction, and the tilt adjustment in the vertical direction can excite high-order transverse modes in the vertical direction.
图4为本发明一种激光外调制横模发生装置实验得到的不同节线展开方向的一阶横模演示图像。在本实施例中,首先采用图3中所述方法得到一阶横模光斑,然后以2°的固定步长旋转调整平面腔镜6,即可得到不同节线展开方向的一阶横模演示图像,分别采集记录,图4为选取的其中节线展开方向区别较明显的六幅图像,以作说明。Figure 4 is a first-order transverse mode demonstration image of different nodal line expansion directions experimentally obtained by a laser externally modulated transverse mode generating device of the present invention. In this embodiment, the first-order transverse mode spot is first obtained by using the method described in Figure 3, and then the plane cavity mirror 6 is rotated and adjusted in a fixed step of 2° to obtain the first-order transverse mode demonstration in different nodal line expansion directions. The images were collected and recorded separately. Figure 4 shows six selected images with obvious differences in the expansion directions of the node lines for illustration.
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。Contents not described in detail in the specification of the present invention belong to the prior art known to those skilled in the art.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111622487.3A CN114400500B (en) | 2021-12-28 | 2021-12-28 | Laser external modulation transverse mode generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111622487.3A CN114400500B (en) | 2021-12-28 | 2021-12-28 | Laser external modulation transverse mode generating device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114400500A CN114400500A (en) | 2022-04-26 |
CN114400500B true CN114400500B (en) | 2023-12-22 |
Family
ID=81228501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111622487.3A Active CN114400500B (en) | 2021-12-28 | 2021-12-28 | Laser external modulation transverse mode generating device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114400500B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114739643A (en) * | 2022-05-09 | 2022-07-12 | 中国科学院光电技术研究所 | A coupled optical cavity ring-down high reflectivity measuring device |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1367575A2 (en) * | 2002-05-28 | 2003-12-03 | Mitsubishi Denki Kabushiki Kaisha | Multi-beam semiconductor laser unit and optical head device |
JP2005167008A (en) * | 2003-12-03 | 2005-06-23 | Sony Corp | External resonator-type semiconductor laser |
JP2007232834A (en) * | 2006-02-28 | 2007-09-13 | Pentax Corp | Optical communication module |
CN102128715A (en) * | 2010-12-08 | 2011-07-20 | 中国科学院光电技术研究所 | Method for measuring the reflectivity of a dual-wavelength high-reflector |
CN102722023A (en) * | 2012-05-29 | 2012-10-10 | 中国科学院光电技术研究所 | Multi-deformable mirror control method based on separation mode control and optimization algorithm |
CN103311790A (en) * | 2013-05-03 | 2013-09-18 | 中国科学院光电技术研究所 | Self-adaptive optical fiber coupling or collimator control system for bidirectional receiving and transmitting of laser beam |
CN103454074A (en) * | 2013-09-05 | 2013-12-18 | 中国科学院光电技术研究所 | Method for measuring reflectivity of small-aperture high-reflectivity mirror |
CN103869632A (en) * | 2014-04-02 | 2014-06-18 | 中国科学院光电技术研究所 | Illumination mode generation device for high numerical aperture projection lithography system |
CN105651703A (en) * | 2016-04-19 | 2016-06-08 | 电子科技大学 | Method for measuring extinction coefficient of ring-down gas of optical cavity based on change of cavity length |
CN106707669A (en) * | 2016-12-23 | 2017-05-24 | 海信集团有限公司 | Fluorescence excitation device, projection light source and projection equipment |
CN112260050A (en) * | 2020-10-28 | 2021-01-22 | 江苏科技大学 | High-order transverse mode green light solid laser |
CN113310902A (en) * | 2021-05-26 | 2021-08-27 | 中国科学院光电技术研究所 | Optical cavity ring-down adaptive optical active transverse mode matching method |
-
2021
- 2021-12-28 CN CN202111622487.3A patent/CN114400500B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1367575A2 (en) * | 2002-05-28 | 2003-12-03 | Mitsubishi Denki Kabushiki Kaisha | Multi-beam semiconductor laser unit and optical head device |
JP2005167008A (en) * | 2003-12-03 | 2005-06-23 | Sony Corp | External resonator-type semiconductor laser |
JP2007232834A (en) * | 2006-02-28 | 2007-09-13 | Pentax Corp | Optical communication module |
CN102128715A (en) * | 2010-12-08 | 2011-07-20 | 中国科学院光电技术研究所 | Method for measuring the reflectivity of a dual-wavelength high-reflector |
CN102722023A (en) * | 2012-05-29 | 2012-10-10 | 中国科学院光电技术研究所 | Multi-deformable mirror control method based on separation mode control and optimization algorithm |
CN103311790A (en) * | 2013-05-03 | 2013-09-18 | 中国科学院光电技术研究所 | Self-adaptive optical fiber coupling or collimator control system for bidirectional receiving and transmitting of laser beam |
CN103454074A (en) * | 2013-09-05 | 2013-12-18 | 中国科学院光电技术研究所 | Method for measuring reflectivity of small-aperture high-reflectivity mirror |
CN103869632A (en) * | 2014-04-02 | 2014-06-18 | 中国科学院光电技术研究所 | Illumination mode generation device for high numerical aperture projection lithography system |
CN105651703A (en) * | 2016-04-19 | 2016-06-08 | 电子科技大学 | Method for measuring extinction coefficient of ring-down gas of optical cavity based on change of cavity length |
CN106707669A (en) * | 2016-12-23 | 2017-05-24 | 海信集团有限公司 | Fluorescence excitation device, projection light source and projection equipment |
CN112260050A (en) * | 2020-10-28 | 2021-01-22 | 江苏科技大学 | High-order transverse mode green light solid laser |
CN113310902A (en) * | 2021-05-26 | 2021-08-27 | 中国科学院光电技术研究所 | Optical cavity ring-down adaptive optical active transverse mode matching method |
Non-Patent Citations (2)
Title |
---|
Adaptive correction of vortex laser beam in a closed-loop system with phase only liquid crystal spatial light modulator;Haotong Ma et al.;《Optics Communications》;第285卷(第6期);859-863 * |
何星.《中国博士学位论文全文数据库 信息科技辑》.2016,I140-89. * |
Also Published As
Publication number | Publication date |
---|---|
CN114400500A (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113310902B (en) | An optical cavity ring-down adaptive optical active transverse mode matching method | |
US6088379A (en) | Ultraviolet laser apparatus and semiconductor exposure apparatus | |
US6018413A (en) | Light source unit, optical measurement apparatus and exposure apparatus using the same unit | |
Rohrbach et al. | 3D-printed THz wave-and phaseplates | |
CN114400500B (en) | Laser external modulation transverse mode generating device | |
CN106441817A (en) | A comprehensive measurement device for reflectance/transmittance measurement of optical components | |
JPH01286477A (en) | Annular resonant type laser device | |
CN114300918B (en) | Ultra-stable narrow linewidth laser system and coupling adjustment method | |
CN105375250A (en) | Method and device for generation of higher-order transverse modes on the basis of atom-cavity coupling | |
US5552926A (en) | Device and method for wavelength conversion and BBO crystal for wavelength conversion | |
CN109632128B (en) | A device and method for measuring temperature conditions of double resonance of optical cavity | |
JP2012194555A (en) | Grating based optical parametric oscillator for generating desired optical signals and method of dynamically tuning the oscillator | |
JP2016218373A (en) | Multiwavelength oscillation type optical parametric oscillation device and multiwavelength oscillation type optical parametric oscillation method | |
CN209418978U (en) | High-efficiency mid-infrared continuous tunable optical parametric oscillator laser | |
CN114739643A (en) | A coupled optical cavity ring-down high reflectivity measuring device | |
CN108507616B (en) | Device and method for rapid measurement of zero expansion temperature point and fineness of Fabry-Perot cavity | |
CN113381280B (en) | A device and method for directly generating mid-infrared ultrafast vortex laser | |
CN114665369A (en) | Single-frequency narrow-linewidth medium-wave infrared atomic gas chamber laser and laser interferometer | |
CN1161865C (en) | Laser with resonance cavity including circular cone prism being top in shape | |
Meng et al. | An active method for coupling laser with a high-finesse fabry–pérot cavity in ultra-stable lasers | |
CN113904208A (en) | High-purity Laguerre Gaussian beam generation system and generation method thereof | |
CN108321669A (en) | A kind of frequency multiplication light path module and the double-frequency laser system including the module | |
CN115656042B (en) | Large-rotation-angle tuning medium-and-long-wave infrared coherent light source device with stable light beam direction | |
CN113358222A (en) | High-precision locking ring-down device and measuring method | |
CN111262129B (en) | A 452nm Frequency Multiplication System with Adjustable Power and Detectable Deviation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |