CN114397422A - Calculation method of element mobility during the formation of clay minerals in sandstone-type uranium deposits - Google Patents
Calculation method of element mobility during the formation of clay minerals in sandstone-type uranium deposits Download PDFInfo
- Publication number
- CN114397422A CN114397422A CN202111526735.4A CN202111526735A CN114397422A CN 114397422 A CN114397422 A CN 114397422A CN 202111526735 A CN202111526735 A CN 202111526735A CN 114397422 A CN114397422 A CN 114397422A
- Authority
- CN
- China
- Prior art keywords
- sandstone
- mobility
- grant
- primary
- uranium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052770 Uranium Inorganic materials 0.000 title claims abstract description 59
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000002734 clay mineral Substances 0.000 title claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 title claims description 28
- 238000004364 calculation method Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims abstract description 27
- 230000004075 alteration Effects 0.000 claims abstract description 24
- 239000011435 rock Substances 0.000 claims description 29
- 238000010586 diagram Methods 0.000 claims description 27
- 238000004458 analytical method Methods 0.000 claims description 12
- IYLGZMTXKJYONK-ACLXAEORSA-N (12s,15r)-15-hydroxy-11,16-dioxo-15,20-dihydrosenecionan-12-yl acetate Chemical compound O1C(=O)[C@](CC)(O)C[C@@H](C)[C@](C)(OC(C)=O)C(=O)OCC2=CCN3[C@H]2[C@H]1CC3 IYLGZMTXKJYONK-ACLXAEORSA-N 0.000 claims description 9
- IYLGZMTXKJYONK-UHFFFAOYSA-N ruwenine Natural products O1C(=O)C(CC)(O)CC(C)C(C)(OC(C)=O)C(=O)OCC2=CCN3C2C1CC3 IYLGZMTXKJYONK-UHFFFAOYSA-N 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000013316 zoning Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 3
- 238000013508 migration Methods 0.000 abstract description 10
- 230000005012 migration Effects 0.000 abstract description 3
- 230000008859 change Effects 0.000 description 8
- 230000033558 biomineral tissue development Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 3
- 229910052683 pyrite Inorganic materials 0.000 description 3
- 239000011028 pyrite Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 208000035126 Facies Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
技术领域technical field
本发明属于地质勘查领域,具体涉及一种砂岩型铀矿床黏土矿物形成 过程中元素迁移率的计算方法。The invention belongs to the field of geological exploration, and in particular relates to a method for calculating element mobility during the formation of clay minerals in sandstone-type uranium deposits.
背景技术Background technique
黏土矿物在各地球化学分带之间表现出的成分、含量的变化,实质是 元素的含量变化,微观上表现为元素的迁入、迁出。在研究时发现有两种 方式可以导致元素含量发生变化,第一种是元素自身含量的变化,第二种 是由于其他元素含量发生变化而导致的该元素含量发生变化。另外,在研 究时认为自然界中的地质过程绝大多数是在相对开放的体系中发生的,当 开放体系有显著的质量和体积变化时,就不能通过直接比较地质作用发生前后岩石的元素含量来认识其化学组成的变化。The changes in composition and content of clay minerals between different geochemical zones are essentially the changes in the content of elements, and microscopically manifest as in- and out-migration of elements. During the research, it was found that there are two ways to change the element content, the first is the change of the element's own content, and the second is the change of the element content due to the change of the content of other elements. In addition, it is believed that most of the geological processes in nature occur in a relatively open system. When the open system has significant changes in mass and volume, it is impossible to directly compare the element content of the rock before and after the occurrence of geological action. Recognize changes in its chemical composition.
砂岩型铀矿床的研究亦是如此,前人对层间氧化带的元素地球化学的 研究主要集中在对不同地球化学分带元素含量进行分析对比,而少有学者 考虑到含矿目的层质量体积的变化对元素含量的影响。The same is true for the study of sandstone-type uranium deposits. The previous studies on the element geochemistry of the interlayer oxidation zone mainly focused on the analysis and comparison of the element content of different geochemical zones, while few scholars considered the mass and volume of the ore-bearing target layer. The effect of changes on the element content.
砂岩型铀矿属于浅成-低温热液矿床,符合质量平衡理论应用要求,故 本次引入质量平衡理论,用此方法来定量探讨黏土矿物在各地球化学分带 中演化的元素变化规律。Sandstone-type uranium deposits belong to epigenetic-low temperature hydrothermal deposits, which meet the application requirements of mass balance theory. Therefore, mass balance theory is introduced this time, and this method is used to quantitatively explore the change law of elements in the evolution of clay minerals in various geochemical zones.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种砂岩型铀矿床黏土矿物形成过程中元素迁 移率的计算方法,能够定量计算黏土矿物形成过程中各元素的迁入迁出程 度。The purpose of the present invention is to provide a kind of calculation method of element mobility in the clay mineral formation process of sandstone type uranium deposit, which can quantitatively calculate the in-migration and migration degree of each element in the clay mineral formation process.
实现本发明目的的技术方案:The technical scheme that realizes the object of the present invention:
一种砂岩型铀矿床黏土矿物形成过程中元素迁移率的计算方法,所述 方法具体包括以下步骤:A method for calculating element mobility in the formation process of clay minerals of sandstone-type uranium deposits, the method specifically comprises the following steps:
步骤1、砂岩地球化学分带划分;
步骤2、样品采集;Step 2, sample collection;
步骤3、主量元素测定;Step 3. Determination of major elements;
步骤4、惰性元素选取;Step 4. Inert element selection;
步骤5,迁移率计算。Step 5, mobility calculation.
所述步骤1具体为:按照岩石颜色、还原介质含量、铀元素分析将砂 岩划分为古氧化砂岩、铀矿化砂岩和原生砂岩;通过岩石颜色划分古氧化 砂岩和原生砂岩;通过还原介质含量及铀元素分析识别铀矿化砂岩。The
所述步骤2具体为:选取可覆盖整个矿床的典型钻孔,在每个钻孔的 直罗组下段岩心中,分别选取古氧化砂岩、铀矿化砂岩及原生砂岩的样品, 样品岩性为块状粗砂岩。The step 2 is specifically: selecting a typical borehole that can cover the entire deposit, and selecting samples of paleo-oxidized sandstone, uranium mineralized sandstone, and primary sandstone in the core of the lower Zhiluo Formation of each borehole, and the sample lithology is: Massive coarse sandstone.
所述步骤3具体为:清洁样品表面,将样品碎成粉末,利用X射线荧 光光谱仪进行主量元素分析。The step 3 is specifically as follows: cleaning the surface of the sample, breaking the sample into powder, and performing major element analysis by using an X-ray fluorescence spectrometer.
所述步骤3中主量元素包括SiO2、Al2O3、CaO、FeO、Fe2O3、MgO、 Na2O、K2O、MnO、TiO2、P2O5。In the step 3, the main elements include SiO 2 , Al 2 O 3 , CaO, FeO, Fe 2 O 3 , MgO, Na 2 O, K 2 O, MnO, TiO 2 , and P 2 O 5 .
所述步骤4包括:The step 4 includes:
步骤4.1、制作Grant图解;Step 4.1, make Grant diagram;
步骤4.2、勾画Grant等位线;Step 4.2, draw Grant isolines;
步骤4.3、选取惰性元素。Step 4.3, select the inert element.
所述步骤4.1具体为:利用原生砂岩及古氧化砂岩、矿化砂岩的各种主 量元素组分蚀变前浓度Ci O、蚀变后浓度Ci A分别做为X和Y坐标投点,分 别制作古氧化砂岩-原生砂岩和铀矿化砂岩-原生砂岩Grant图解。The step 4.1 is specifically as follows: the pre-alteration concentration C i O and the post-alteration concentration C i A of various major element components of primary sandstone, paleo-oxidized sandstone, and mineralized sandstone are used as the X and Y coordinate projection points, respectively. , to make Grant diagrams of paleo-oxidized sandstone-primary sandstone and uranium-mineralized sandstone-primary sandstone, respectively.
所述步骤4.2具体为:利用公式K=MO/MA计算Grant等位线斜率K, 以计算获得的K为斜率,勾画一条通过原点(0,0)的直线,此直线即为 Grant等位线。The step 4.2 is specifically: using the formula K=MO / MA to calculate the slope K of the Grant isopotential line, and taking the calculated K as the slope, draw a straight line passing through the origin (0, 0), and this straight line is Grant etc. bit line.
所述步骤4.2中计算Grant等位线斜率K包括:In the step 4.2, calculating the slope K of the Grant isoline includes:
一种主量元素情况:A major element case:
K1=MO/MA=CO/CA,K 1 =MO / MA = CO / CA ,
其中,K1为一种主量元素的斜率;MO、MA分别为蚀变前后的岩石质 量;CO、CA分别为岩石中一种主量元素蚀变前后的浓度;Among them, K 1 is the slope of a major element; MO and MA are the rock mass before and after alteration, respectively; CO and CA are the concentration of a major element in the rock before and after alteration, respectively;
两种或两种以上主量元素情况:Two or more major elements:
K2=MO/MA=∑Ci O×Ci A/∑(Ci A)2 K 2 =MO /MA =∑C i O ×C i A / ∑ ( C i A ) 2
其中,K2为两种或两种以上主量元素的斜率;MO、MA分别为蚀变前 后的岩石质量;Ci O、Ci A为岩石中元素i在蚀变前和蚀变后的浓度。Among them, K 2 is the slope of two or more major elements; MO and M A are the rock mass before and after alteration, respectively; C i O and C i A are the element i in the rock before and after alteration. after the concentration.
所述步骤4.3具体为:分析古氧化砂岩-原生砂岩和铀矿化砂岩-原生砂 岩Grant图解,挑选同时位于原生砂岩-古氧化砂岩和原生砂岩-矿化砂岩 Grant图解的Grant等位线上的元素,即为惰性元素。The step 4.3 is specifically: analyzing the Grant diagrams of ancient oxidized sandstone-primary sandstone and uranium mineralized sandstone-primary sandstone, and selecting the Grant diagrams simultaneously located on the Grant diagrams of primary sandstone-paleo-oxidized sandstone and primary sandstone-mineralized sandstone Grant diagrams. element, which is an inert element.
所述步骤5中迁移率的计算公式为:The calculation formula of the mobility in the step 5 is:
△Ci=Ci A/K-Ci O △C i =C i A /KC i O
其中,△Ci为迁移率;where ΔC i is the mobility;
K为Grant等位线斜率;K is the slope of the Grant isoline;
Ci O、Ci A为岩石中元素i在蚀变前和蚀变后的浓度。C i O and C i A are the concentrations of element i in the rock before and after alteration.
本发明的有益技术效果在于:The beneficial technical effect of the present invention is:
1、本发明提供的一种砂岩型铀矿床黏土矿物形成过程中元素迁移率的 计算方法能够直接判断砂岩型铀矿床蚀变过程中的活动元素与不活动元 素,且能定量计算各活动元素相对于原生砂岩的迁入迁出率。1. The method for calculating element mobility in the formation process of clay minerals in sandstone-type uranium deposits provided by the present invention can directly judge the active elements and inactive elements in the alteration process of sandstone-type uranium deposits, and can quantitatively calculate the relative relative value of each active element. The in-migration rate of primary sandstone.
2、通过本发明提供的一种砂岩型铀矿床黏土矿物形成过程中元素迁移 率的计算方法获得的元素迁入迁出率可以科学合理的解释蚀变过程中矿物 成分及含量变化的最本质原因,矿物都是由元素组成的,在砂岩型铀矿中, Fe元素的迁入迁出可以理解为黄铁矿、绿泥石等矿物含量的增多或减少, Ca元素的迁入迁出可以理解方解石含量的增多或减少,进而更准确的解释 铀矿床成因机制,进而预测远景区,指明找矿方向。2. The element in and out rate obtained by the method for calculating element mobility in the formation process of clay minerals in a sandstone-type uranium deposit provided by the present invention can scientifically and reasonably explain the most essential reasons for the change of mineral composition and content in the alteration process , minerals are all composed of elements. In sandstone-type uranium ore, the in and out of Fe element can be understood as the increase or decrease in the content of pyrite, chlorite and other minerals, and the in and out of Ca element can be understood The increase or decrease of calcite content can more accurately explain the genetic mechanism of uranium deposits, and then predict the prospect and indicate the prospecting direction.
3、本发明提供的一种砂岩型铀矿床黏土矿物形成过程中元素迁移率的 计算方法涵盖从野外地质观察采样到室内实验与数据分析过程,设计方法 切入点准确,抓住本质问题,采集样品对象、分析测试要求及目的明确, 公式计算步骤清晰合理,可操作性强。3. The calculation method of element mobility in the formation process of clay minerals in a sandstone-type uranium deposit provided by the present invention covers the process from field geological observation and sampling to indoor experiments and data analysis. The design method has an accurate entry point, grasps the essential problem, and collects samples The object, analysis and test requirements and purposes are clear, the formula calculation steps are clear and reasonable, and the operability is strong.
附图说明Description of drawings
图1为本发明所提供的一种砂岩型铀矿床黏土矿物形成过程中元素迁 移率的计算方法流程图;Fig. 1 is the calculation method flow chart of element mobility in a kind of sandstone type uranium deposit clay mineral formation process provided by the present invention;
图2为本发明所提供的纳岭沟铀矿床应用Grant方程及Grant等位线斜 率得出的直罗组各地球化学分带惰性元素判别图;其中,图2A为古氧化带 惰性元素判别图;图2B为铀矿化带惰性元素判别图;Fig. 2 is the inert element discrimination diagram of each geochemical zone of the Zhiluo Formation obtained by applying Grant equation and Grant isotline slope to the Nalinggou uranium deposit provided by the present invention; wherein, Fig. 2A is the inert element discrimination diagram of the paleo-oxidative zone ; Fig. 2B is a discriminant diagram of inert elements in the uranium mineralization zone;
图3为本发明所提供的纳岭沟铀矿床直罗组各地球化学分带元素迁入- 迁出图;其中,图3A为SiO2、Al2O3、FeO、Fe2O3迁入-迁出图;图3B为 CaO、Na2O、K2O迁入-迁出图;图3C为MgO、MnO、P2O5迁入-迁出图。Fig. 3 is an in-migration diagram of elements from each geochemical zone of Zhiluo Formation of Nalinggou uranium deposit provided by the present invention; wherein, Fig. 3A shows the in-migration of SiO 2 , Al 2 O 3 , FeO and Fe 2 O 3 -Emigration diagram; Fig. 3B is an in-migration-immigration diagram of CaO, Na 2 O, K 2 O; Fig. 3C is an in-migration-out diagram of MgO, MnO, P 2 O 5 .
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步详细说明。The present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
如图1所示,本实施例以鄂尔多斯盆地东北部纳岭沟铀矿床为例,提 供一种砂岩型铀矿床黏土矿物形成过程中元素迁移率的计算方法,该方法 具体包括以下步骤:As shown in Figure 1, the present embodiment takes the Nalinggou uranium deposit in the northeastern part of the Ordos Basin as an example to provide a method for calculating element mobility during the formation of clay minerals in a sandstone-type uranium deposit. The method specifically includes the following steps:
步骤1、砂岩地球化学分带划分
按照岩石颜色、还原介质含量(手标本观测砂岩中碳屑(有机质)的 含量)、铀元素分析将砂岩划分为古氧化砂岩、铀矿化砂岩和原生砂岩。通 过岩石颜色划分古氧化砂岩和原生砂岩;通过还原介质含量及铀元素分析 识别铀矿化砂岩。According to rock color, reducing medium content (the content of carbon (organic matter) in sandstone observed by hand specimen), and uranium element analysis, the sandstone is divided into paleo-oxidized sandstone, uranium mineralized sandstone and primary sandstone. Paleo-oxidized sandstone and primary sandstone are divided by rock color; uranium mineralized sandstone is identified by reducing medium content and uranium element analysis.
通过对钻孔岩心的观察,确定了纳岭沟铀矿床古氧化砂岩及原生砂岩 的划分标准:氧化残留砂岩颜色为紫红色、砖红色,粒度一般为细-粉砂岩, 胶结程度较高,基本未见有炭屑、黄铁矿等还原物质;目的层经历过后期 的油气二次还原的砂岩颜色表现为绿色、灰绿色,基本不含硫化物或有机 质等还原性物质,粒度一般为细-粗砂岩,胶结程度较弱,砂质疏松,极少 见到炭屑、黄铁矿等还原性物质。本区施工单位只保留二次还原砂岩,因此只取二次还原砂岩作为古氧化砂岩。原生砂岩颜色表现为灰色,硫化物 或有机质等还原性物质含量较高,粒度分布范围广,砂质疏松,胶结程度 差,含有较多的炭屑及黄铁矿等还原性物质。铀矿化砂岩通过核工业北京 地质研究院制作的HD2000伽马辐射仪测量数值来初步识别,一般情况野 外测量岩心在5nc/kg.h以上即认为含矿;取样后分析测试U含量进一步确 定,一般U>100×10μg/g即认定为铀矿化砂岩。Through the observation of borehole cores, the classification standard of paleo-oxidized sandstone and primary sandstone of Nalinggou uranium deposit is determined: the color of the oxidized residual sandstone is purplish red and brick red, the grain size is generally fine-siltstone, the degree of cementation is high, and the basic No reducing substances such as charcoal and pyrite are found; the color of the sandstone that has undergone the secondary reduction of oil and gas in the later stage of the target layer is green and gray-green, and basically does not contain reducing substances such as sulfide or organic matter, and the particle size is generally fine- Coarse sandstone, with weak cementation and loose sand, rarely see carbon, pyrite and other reducing substances. The construction unit in this area only retains the secondary reduction sandstone, so only the secondary reduction sandstone is used as the ancient oxidized sandstone. The primary sandstone is gray in color, with high content of reducing substances such as sulfide or organic matter, with a wide range of particle size distribution, loose sand, and poor cementation. The uranium mineralized sandstone is preliminarily identified by the HD2000 gamma radiation meter measured by the Beijing Institute of Geology of the Nuclear Industry. Generally, the core measured in the field is considered to contain ore above 5nc/kg.h; after sampling, the U content is further determined by analyzing and testing. Generally, U>100×10μg/g is considered as uranium mineralized sandstone.
步骤2、样品采集Step 2. Sample collection
在完成砂岩地球化学分带划分后,以矿床为单位采取样品,选取可覆 盖整个矿床的典型钻孔,即铀矿孔,在每个钻孔的直罗组下段岩心中,分 别选取具有代表性的二次还原砂岩、铀矿化砂岩及原生砂岩的样品。样品 岩性为块状粗砂岩,尺寸为3cm×6cm×9cm。对采集的样品进行编号:ES1、 ES2、ES3、ES4,…,ESn。After completing the division of sandstone geochemical zoning, samples were taken in units of ore deposits, and typical boreholes that could cover the entire ore deposit, namely uranium ore holes, were selected from the cores of the lower Zhiluo Formation in each borehole. samples of secondary reduced sandstone, uranium mineralized sandstone and primary sandstone. The lithology of the sample is massive coarse sandstone with a size of 3cm×6cm×9cm. The collected samples were numbered: ES 1 , ES 2 , ES 3 , ES 4 , . . . , ES n .
步骤3、主量元素测定Step 3. Determination of major elements
取样后,将取得的样品去除样品表面不洁物及风化表皮后,碎成200 目粉未,取50g样品送往分析测试单位,利用AB104L,Axios-mAX波长色 散X射线荧光光谱仪进行主量元素SiO2、Al2O3、CaO、FeO、Fe2O3、MgO、 Na2O、K2O、MnO、TiO2、P2O5等的分析,分析结果如表1所示。After sampling, the obtained samples were removed from the surface impurities and weathered epidermis, and then crushed into 200-mesh powder. 50g of samples were taken and sent to the analysis and testing unit. Table 1 shows the analysis results of SiO 2 , Al 2 O 3 , CaO, FeO, Fe 2 O 3 , MgO, Na 2 O, K 2 O, MnO, TiO 2 , P 2 O 5 and the like.
表1主量元素含量测定分析结果Table 1 Determination and analysis results of major elements
步骤4、惰性元素选取Step 4. Inert element selection
将层间氧化砂岩分为古氧化砂岩、铀矿化砂岩和原生砂岩,下面将计 算各地球化学分带元素相对于原生砂岩元素的迁移量,从而阐述黏土矿物 演化过程中不同分带元素的定量迁移。The interlayer oxidized sandstone is divided into paleo-oxidized sandstone, uranium mineralized sandstone and primary sandstone. The following will calculate the migration of elements in each geochemical zone relative to the primary sandstone elements, so as to illustrate the quantification of different zone elements in the evolution of clay minerals. migrate.
步骤4.1、制作Grant图解Step 4.1, make Grant diagram
利用原生砂岩及古氧化砂岩、矿化砂岩的各种主量元素组分蚀变前浓 度Ci O、蚀变后浓度Ci A分别做为X和Y坐标投点,即,对于古氧化带惰性, 以原生带各元素含量的对数值为X轴,古氧化带各元素含量的对数值为Y 轴,制作Grant图解,Grant图解如图2A所示;对于铀矿化带,以原生带 各元素含量的对数值为X轴,铀矿化带各元素含量的对数值为Y轴,制作 Grant图解,Grant图解如图2B所示。The pre-alteration concentration C i O and the post-alteration concentration C i A of the primary sandstone, paleo-oxidized sandstone, and mineralized sandstone are used as the X and Y coordinate projection points, that is, for the paleo-oxidized zone Inertness, take the log value of each element content in the primary zone as the X-axis, and the log value of each element content in the paleo-oxidation zone as the Y-axis, make a Grant diagram, as shown in Figure 2A; The logarithmic value of element content is on the X axis, and the logarithmic value of each element content in the uranium mineralization zone is on the Y axis. The Grant diagram is made, and the Grant diagram is shown in Figure 2B.
步骤4.2、勾画Grant等位线Step 4.2, draw Grant isolines
计算Grant等位线斜率,Grant等位线斜率公式如下:Calculate the slope of the Grant isoline. The formula for the slope of the Grant isoline is as follows:
一种主量元素情况:A major element case:
K1=MO/MA=CO/CA,K 1 =MO / MA = CO / CA ,
其中,K1为一种主量元素的斜率;MO、MA分别为蚀变前后的岩石质 量;CO、CA分别为岩石中一种主量元素蚀变前后的浓度;Among them, K 1 is the slope of a major element; MO and MA are the rock mass before and after alteration, respectively; CO and CA are the concentration of a major element in the rock before and after alteration, respectively;
两种或两种以上主量元素情况:Two or more major elements:
K2=MO/MA=∑Ci O×Ci A/∑(Ci A)2 K 2 =MO /MA =∑C i O ×C i A / ∑ ( C i A ) 2
其中,K2为两种或两种以上主量元素的斜率;MO、MA分别为蚀变前 后的岩石质量;Ci O、Ci A为岩石中元素i在蚀变前和蚀变后的浓度。Among them, K 2 is the slope of two or more major elements; MO and M A are the rock mass before and after alteration, respectively; C i O and C i A are the element i in the rock before and after alteration. after the concentration.
本实施例中包括两种以上主量元素,因此图2的Grant图解的Grant等 位线斜率K2分别为:对于古氧化带-原生带岩石(图2A),K2计算结果为 0.9889;对于铀矿化带-原生带岩石(图2B),K2计算结果为0.9905。In this example, more than two major elements are included, so the slopes K 2 of the Grant isolines of the Grant diagram in Fig. 2 are respectively: for the paleo-oxidative zone-primary zone rocks (Fig. 2A), the calculated result of K 2 is 0.9889; for Uranium mineralized zone - primary zone rocks (Fig. 2B), K2 calculated to be 0.9905.
以计算获得的K1或K2为斜率,勾画一条通过原点(0,0)的直线, 此直线即为Grant等位线,Grant等位线如图2所示。Taking the calculated K 1 or K 2 as the slope, draw a straight line passing through the origin (0, 0).
步骤4.3、选取惰性元素Step 4.3, select inert elements
Grant等位线是连接浓度变化比值相同的元素从原岩演变轨迹的点,非 活动性元素常常位于一条浓度等位线上。综合对古氧化砂岩、矿化砂岩相 对原生砂岩的不活动元素(惰性元素)进行分析。如图2所示,分析古氧 化砂岩-原生砂岩和铀矿化砂岩-原生砂岩Grant图解(图2A为古氧化砂岩- 原生砂岩Grant图解,图2B为铀矿化砂岩-原生砂岩Grant图解),挑选同 时位于原生砂岩-古氧化砂岩和原生砂岩-矿化砂岩Grant图解的Grant等位线上的元素,即为合适的惰性元素(不活动元素)。Grant contours are points that connect the evolution trajectories of elements with the same concentration change ratio from the original rock, and inactive elements are often located on a concentration contour. Comprehensively analyze the inactive elements (inert elements) of ancient oxidized sandstone and mineralized sandstone facies to primary sandstone. As shown in Figure 2, the paleo-oxidized sandstone-primary sandstone and uranium mineralized sandstone-primary sandstone Grant diagrams were analyzed (Figure 2A is the paleo-oxidized sandstone-primary sandstone Grant diagram, and Figure 2B is the uranium mineralized sandstone-primary sandstone Grant diagram), Elements located on the Grant isolines of the Grant diagram of primary sandstone-paleo-oxidized sandstone and primary sandstone-mineralized sandstone at the same time are selected as suitable inert elements (inactive elements).
如图2所示,可用作惰性元素的有TiO2、SiO2、Al2O3、K2O、Na2O, 但是考虑到含矿目的层在埋藏过程及层间氧化过程可能或遭受酸性或碱性 流体的改造,易造成SiO2、Al2O3、K2O、Na2O的迁入与迁出,故最终选取 TiO2为惰性元素。As shown in Figure 2, TiO 2 , SiO 2 , Al 2 O 3 , K 2 O, Na 2 O can be used as inert elements, but considering that the ore-bearing target layer may or may suffer from the burial process and the interlayer oxidation process The transformation of acidic or alkaline fluids can easily cause the in and out of SiO 2 , Al 2 O 3 , K 2 O and Na 2 O, so TiO 2 is finally selected as an inert element.
步骤5,迁移率计算Step 5, Mobility Calculation
依据步骤4得出的惰性元素TiO2,计算各地球化学分带相对于原生带 的元素获得或丢失的增量△C,并做直罗组各地球化学分带元素迁入-迁出 图。According to the inert element TiO 2 obtained in step 4, calculate the incremental ΔC of each geochemical zone relative to the element gain or loss in the primary zone, and make the element in-migration map of each geochemical zone in the Zhiluo Formation.
根据Gresers公式计算各地球化学分带相对于原生带的元素获得或丢失 的增量△Ci,Gresers公式如下:According to the Gresers formula, the increment △C i of the element gain or loss of each geochemical zone relative to the primary zone is calculated. The Gresers formula is as follows:
Ci A=MO/MA(Ci O+△Ci)C i A = MO /MA (C i O + ΔC i )
其中,in,
Ci O、Ci A为岩石中元素i在蚀变前和蚀变后的浓度;C i O , C i A are the concentrations of element i in the rock before and after alteration;
△Ci为岩石中各地球化学分带相对于原生带的元素i的获得或丢失的增 量,即元素i的迁移率;△C i is the gain or loss of element i in each geochemical zone in the rock relative to the original zone, that is, the mobility of element i;
MO、MA分别为蚀变前后的岩石质量。 MO and MA are rock masses before and after alteration, respectively.
岩石中元素i的获得或丢失的增量△Ci的计算公式为:The calculation formula of the gain or loss increment ΔC i of element i in the rock is:
△Ci=Ci A/(MO/MA)-Ci O=Ci A/K-Ci O ΔC i =C i A /( MO / MA )-C i O =C i A /KC i O
其中,in,
K为Grant等位线斜率;K is the slope of the Grant isoline;
Ci O、Ci A为岩石中元素i在蚀变前和蚀变后的浓度。C i O and C i A are the concentrations of element i in the rock before and after alteration.
各地球化学分带相对于原生带的元素获得或丢失的增量△C的计算结 果,如表2所示。Table 2 shows the calculation results of the incremental ΔC of each geochemical zone relative to the element gain or loss of the primary zone.
表2各地球化学分带相对于原生带的元素获得或丢失的增量△C的计算结果Table 2 The calculation results of the incremental ΔC of each geochemical zone relative to the element gain or loss of the primary zone
在Grant图解中元素的投影点在Grant等位线上方的点代表该元素在蚀 变或成矿作用过程中获得,而投影点位于Grant等位线下方,则代表该元素 发生了丢失。In the Grant diagram, the projected point of the element above the Grant isoline means that the element was acquired during alteration or mineralization, while the projected point below the Grant isoline means that the element has been lost.
如图3所示,可以非常直观的看出元素在铀成矿过程中的迁入-迁出特 征。其中,古氧化带砂岩相对于未遭受氧化改造的原生带砂岩迁入的元素 有Fe2O3、FeO、MgO、MnO,而迁出的元素有SiO2、Al2O3、CaO、Na2O、 K2O、P2O5,说明古氧化带砂岩在遭受早期强烈的酸性氧化流体的改造之后, 也遭受后期碱性富Fe、Mg流体的改造;铀矿化带砂岩相对于原生带砂岩迁 入的元素有Fe2O3、FeO、CaO、Na2O、MnO,而迁出的元素有SiO2、Al2O3、 K2O、MgO,说明铀成矿过程中与碳酸盐的形成有密切关系。As shown in Fig. 3, the in-migration characteristics of elements during uranium mineralization can be clearly seen. Among them, compared with the original sandstone in the original zone that has not been oxidized and reformed, the in-migrated elements of the sandstone in the ancient oxidation zone are Fe 2 O 3 , FeO, MgO and MnO, while the out-migrated elements are SiO 2 , Al 2 O 3 , CaO, Na 2 O, K 2 O and P 2 O 5 , indicating that the sandstone of the paleo-oxidative zone was reformed by the strong acidic oxidizing fluid in the early stage, and also suffered the reformation of the alkaline Fe and Mg-rich fluid in the later stage; The in-migrated elements of sandstone are Fe 2 O 3 , FeO, CaO, Na 2 O and MnO, while the out-migrated elements are SiO 2 , Al 2 O 3 , K 2 O and MgO, indicating that in the process of uranium mineralization, carbonic acid is closely related to each other. The formation of salt is closely related.
上面结合附图和实施例对本发明作了详细说明,但是本发明并不限于 上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱 离本发明宗旨的前提下作出各种变化。本发明中未作详细描述的内容均可 以采用现有技术。The present invention has been described in detail above in conjunction with the accompanying drawings and embodiments, but the present invention is not limited to the above-mentioned embodiments, and within the scope of knowledge possessed by those of ordinary skill in the art, various kind of change. The content that is not described in detail in the present invention can all adopt the prior art.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111526735.4A CN114397422B (en) | 2021-12-14 | 2021-12-14 | Method for calculating element mobility in sandstone type uranium deposit clay mineral formation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111526735.4A CN114397422B (en) | 2021-12-14 | 2021-12-14 | Method for calculating element mobility in sandstone type uranium deposit clay mineral formation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114397422A true CN114397422A (en) | 2022-04-26 |
CN114397422B CN114397422B (en) | 2024-02-09 |
Family
ID=81226723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111526735.4A Active CN114397422B (en) | 2021-12-14 | 2021-12-14 | Method for calculating element mobility in sandstone type uranium deposit clay mineral formation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114397422B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115236172A (en) * | 2022-07-06 | 2022-10-25 | 核工业二0八大队 | A method for determining element migration in different alteration stages of sandstone-type uranium deposits |
CN117572522A (en) * | 2023-11-16 | 2024-02-20 | 中国科学院广州地球化学研究所 | Method for exploring side or deep part of hydrothermal deposit |
WO2024083132A1 (en) * | 2022-10-19 | 2024-04-25 | 核工业北京地质研究院 | Method for determining metallogenic mechanism of hydrothermal uranium ore |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4438077A (en) * | 1982-04-27 | 1984-03-20 | Mobil Oil Corporation | Two stage selective oxidative leach method to separately recover uranium and refractory uranium-mineral complexes |
US7294271B1 (en) * | 2005-06-20 | 2007-11-13 | Power Resources, Inc. | Process for restoration of ground water used in in-situ uranium mining |
US8708422B1 (en) * | 2010-04-26 | 2014-04-29 | Sandia Corporation | Inherently safe in situ uranium recovery |
CN105510989A (en) * | 2014-10-20 | 2016-04-20 | 核工业北京地质研究院 | Research method suitable for characteristics of interlayer oxidation zone of sandstone-type uranium deposit |
CN107678071A (en) * | 2016-08-02 | 2018-02-09 | 核工业二〇八大队 | A kind of ancient interlayer oxidized zone recognition methods of sandstone-type uranium mineralization with respect |
CN107991331A (en) * | 2016-10-26 | 2018-05-04 | 核工业北京地质研究院 | Organic matter and the research method of uranium mobilization relation in a kind of sandstone-type uranium mineralization with respect |
CN109580498A (en) * | 2018-12-24 | 2019-04-05 | 核工业北京地质研究院 | Oxidized zone geology recognition methods between a kind of sandstone-type uranium mineralization with respect ledge |
CN109932365A (en) * | 2017-12-18 | 2019-06-25 | 核工业北京地质研究院 | A method for determining the origin of bleaching alteration zones in sandstone-type uranium deposits and the relationship between uranium mineralization |
CN110019620A (en) * | 2017-12-07 | 2019-07-16 | 核工业北京地质研究院 | A kind of method of discrimination suitable for sandstone-type uranium mineralization with respect interlevel oxidation direction |
CN110715925A (en) * | 2019-09-29 | 2020-01-21 | 核工业北京地质研究院 | A method for tracing the thermal fluid activity of sandstone-type uranium deposits in the basin |
CN110988101A (en) * | 2019-12-11 | 2020-04-10 | 核工业北京地质研究院 | A method for identifying indicator elements in volcanic uranium deposits |
CN111089873A (en) * | 2019-12-20 | 2020-05-01 | 核工业北京地质研究院 | Element mobility calculation method in hydrothermal uranium ore surrounding rock alteration process |
CN112799149A (en) * | 2020-12-30 | 2021-05-14 | 核工业北京地质研究院 | A method for identifying hydrothermal uranium metallogenic centers |
CN113109889A (en) * | 2021-04-25 | 2021-07-13 | 东华理工大学 | Sandstone-type uranium ore prospecting method based on 'two-stage and two-mode' mineralization model |
CN113534286A (en) * | 2021-06-24 | 2021-10-22 | 核工业北京地质研究院 | A method for assessing favorable sections for uranium metallization in geochemical exploration of sandstone-type uranium deposits |
-
2021
- 2021-12-14 CN CN202111526735.4A patent/CN114397422B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4438077A (en) * | 1982-04-27 | 1984-03-20 | Mobil Oil Corporation | Two stage selective oxidative leach method to separately recover uranium and refractory uranium-mineral complexes |
US7294271B1 (en) * | 2005-06-20 | 2007-11-13 | Power Resources, Inc. | Process for restoration of ground water used in in-situ uranium mining |
US8708422B1 (en) * | 2010-04-26 | 2014-04-29 | Sandia Corporation | Inherently safe in situ uranium recovery |
CN105510989A (en) * | 2014-10-20 | 2016-04-20 | 核工业北京地质研究院 | Research method suitable for characteristics of interlayer oxidation zone of sandstone-type uranium deposit |
CN107678071A (en) * | 2016-08-02 | 2018-02-09 | 核工业二〇八大队 | A kind of ancient interlayer oxidized zone recognition methods of sandstone-type uranium mineralization with respect |
CN107991331A (en) * | 2016-10-26 | 2018-05-04 | 核工业北京地质研究院 | Organic matter and the research method of uranium mobilization relation in a kind of sandstone-type uranium mineralization with respect |
CN110019620A (en) * | 2017-12-07 | 2019-07-16 | 核工业北京地质研究院 | A kind of method of discrimination suitable for sandstone-type uranium mineralization with respect interlevel oxidation direction |
CN109932365A (en) * | 2017-12-18 | 2019-06-25 | 核工业北京地质研究院 | A method for determining the origin of bleaching alteration zones in sandstone-type uranium deposits and the relationship between uranium mineralization |
CN109580498A (en) * | 2018-12-24 | 2019-04-05 | 核工业北京地质研究院 | Oxidized zone geology recognition methods between a kind of sandstone-type uranium mineralization with respect ledge |
CN110715925A (en) * | 2019-09-29 | 2020-01-21 | 核工业北京地质研究院 | A method for tracing the thermal fluid activity of sandstone-type uranium deposits in the basin |
CN110988101A (en) * | 2019-12-11 | 2020-04-10 | 核工业北京地质研究院 | A method for identifying indicator elements in volcanic uranium deposits |
CN111089873A (en) * | 2019-12-20 | 2020-05-01 | 核工业北京地质研究院 | Element mobility calculation method in hydrothermal uranium ore surrounding rock alteration process |
CN112799149A (en) * | 2020-12-30 | 2021-05-14 | 核工业北京地质研究院 | A method for identifying hydrothermal uranium metallogenic centers |
CN113109889A (en) * | 2021-04-25 | 2021-07-13 | 东华理工大学 | Sandstone-type uranium ore prospecting method based on 'two-stage and two-mode' mineralization model |
CN113534286A (en) * | 2021-06-24 | 2021-10-22 | 核工业北京地质研究院 | A method for assessing favorable sections for uranium metallization in geochemical exploration of sandstone-type uranium deposits |
Non-Patent Citations (8)
Title |
---|
GRANT, J. A: "Isocon analysis: A brief review of the method and applications", 《PHYSICS AND CHEMISTRY OF THE EARTH, PARTS A/B/C》, vol. 30, no. 17, pages 997 - 1004, XP005159501, DOI: 10.1016/j.pce.2004.11.003 * |
GRANT, J. A: "The isocon diagram; a simple solution to Gresens\' equation for metasomatic alteration", 《ECONOMIC GEOLOGY》, vol. 81, no. 8, pages 1976 - 1982 * |
GRESENS, R. L: "Composition-volume relationships of metasomatism", 《CHEMICAL GEOLOGY》, pages 47 - 65 * |
LUO, X., LI, Z., CAI, Y., YI, C., ZHANG, Z., ZHANG, Y., & ZHANG, Y.: "Provenance and Tectonic Setting of Lower Cretaceous Huanhe Formation Sandstones", 《NORTHWEST ORDOS BASIN, NORTH-CENTRAL CHINA. MINERALS》, vol. 11, no. 12, pages 1 - 4 * |
N.P.LAVEROV;I.V.CHERNYSHEV;V.N.GOLUBEV;刘小宇;: "关于火山岩带中热液铀矿床形成时代和成因的同位素控制因素", 世界核地质科学, no. 02, pages 14 - 21 * |
刘军港等: "江西相山CUSD3钻孔铀矿化蚀变带元素活动性探讨", 《地质学报》, vol. 91, no. 4, pages 896 * |
王果, 华仁民, 秦立峰: "中、新生代陆相沉积盆地砂岩型铀矿床流体作用研究", 《高校地质学报》, no. 03, pages 70 - 79 * |
王正庆;范洪海;陈东欢;郑可志;罗桥花;刘军港;王凤岗;王勇剑;: "沙子江铀矿外围地化特征、元素迁移及铀成矿机理", 《高校地质学报》, no. 02, pages 41 - 55 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115236172A (en) * | 2022-07-06 | 2022-10-25 | 核工业二0八大队 | A method for determining element migration in different alteration stages of sandstone-type uranium deposits |
WO2024083132A1 (en) * | 2022-10-19 | 2024-04-25 | 核工业北京地质研究院 | Method for determining metallogenic mechanism of hydrothermal uranium ore |
CN117572522A (en) * | 2023-11-16 | 2024-02-20 | 中国科学院广州地球化学研究所 | Method for exploring side or deep part of hydrothermal deposit |
Also Published As
Publication number | Publication date |
---|---|
CN114397422B (en) | 2024-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114397422A (en) | Calculation method of element mobility during the formation of clay minerals in sandstone-type uranium deposits | |
CN106324700B (en) | Metallogenic Model of Sandstone-type Uranium Deposits construction method in sedimentary basin red beds | |
CN115078520B (en) | Mineral geochemistry-based method for evaluating mineral content of porphyry system | |
Moyo et al. | Blombos cave: Middle stone age ochre differentiation through ftir, icp oes, ed xrf and xrd | |
CN105510989B (en) | A kind of research method suitable for sandstone-type uranium mineralization with respect interlayer oxidized zone feature | |
CN110596783A (en) | A method for counting the large-scale oil and gas charging time of sandstone-type uranium ore-bearing layers | |
Dai et al. | Inorganic geochemistry of coal | |
CN106257310A (en) | Sedimentary basin oil gas strong reducing action district Prospecting Sandstone-type Uranium Deposits method for establishing model | |
CN105590012A (en) | An evaluation method suitable for favorable sand bodies of sandstone-type uranium deposits in interlayer oxidation zones | |
CN111089873A (en) | Element mobility calculation method in hydrothermal uranium ore surrounding rock alteration process | |
CN112379076A (en) | Comprehensive determination method for multi-element fluid related to uranium mineralization in sandstone-type uranium ore | |
CN112485239A (en) | Ancient fluid comprehensive analysis method related to oil and gas reservoir | |
Han et al. | Multi-scale exploration of giant Qulong porphyry deposit in a collisional setting | |
CN116297798B (en) | A method for efficiently judging the mineralization prospects of ore-bearing porphyry using the accessory mineral tourmaline | |
Zhou et al. | SHRIMP zircon age for a K-bentonite in the top of the Laobao Formation at the Pingyin section, Guizhou, South China | |
Liu et al. | Chemical weathering indices and how they relate to the mechanical parameters of granite regolith from southern China | |
CN114355475A (en) | Method for judging source of ore-forming substances of sandstone-type uranium ores in red layer of sedimentary basin | |
Qiu et al. | Identifying the principal factors controlling uranium enrichment: Semi-quantitative mineralogy and geochemistry of the sandstone-type Qianjiadian uranium deposit, northeast China | |
CN113534285B (en) | Method for constructing ore-forming mode of hydrothermal thorium ore deposit | |
CN111044548A (en) | Method for judging uranium content of granite by using content of major elements | |
Tong et al. | The Early Cretaceous hydrothermal sedimentation and its influence on sandstone-type uranium mineralization in the Xinniwusu Sag, Bayingobi Basin, NW China | |
CN115236172A (en) | A method for determining element migration in different alteration stages of sandstone-type uranium deposits | |
CN107132100A (en) | Method for separating rubble bodies in shale for testing total organic carbon content | |
Senesi et al. | Application of LIBS to Terrestrial Geological Research | |
Rowe et al. | Inorganic geochemical characteristics of lithofacies and their linkages to the mechanical stratigraphy of uppermost wolfcamp and lower Bone Spring formations, Delaware Basin, Texas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |