CN114392964B - Insulator rinse-system that dirty degree of intellectuality was judged - Google Patents
Insulator rinse-system that dirty degree of intellectuality was judged Download PDFInfo
- Publication number
- CN114392964B CN114392964B CN202111598553.8A CN202111598553A CN114392964B CN 114392964 B CN114392964 B CN 114392964B CN 202111598553 A CN202111598553 A CN 202111598553A CN 114392964 B CN114392964 B CN 114392964B
- Authority
- CN
- China
- Prior art keywords
- insulator
- degree
- target
- camera
- definition camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 127
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000011109 contamination Methods 0.000 claims abstract description 16
- 238000005406 washing Methods 0.000 claims abstract 8
- 239000011159 matrix material Substances 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 14
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- 238000010586 diagram Methods 0.000 claims description 7
- 238000013135 deep learning Methods 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 238000012549 training Methods 0.000 claims description 2
- 238000011010 flushing procedure Methods 0.000 abstract description 18
- 238000000034 method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
Landscapes
- Insulators (AREA)
Abstract
Description
技术领域technical field
本发明属于轨道交通中绝缘子清洗领域,尤其涉及一种智能化脏污程度判断的绝缘子冲洗系统。The invention belongs to the field of cleaning insulators in rail transit, and in particular relates to an insulator cleaning system for intelligently judging the degree of dirt.
背景技术Background technique
随着我国轨道交通事业的高速发展,国内的电气化铁路逐步增多,在国民经济与人民生活质量等方面有着至关重要的作用。电气化铁路的接触网系统主要用于为电力机车供电,由牵引变电站转化后,输送到输电线路中,电力机车由弓网系统从接触网中获取电力,是列车运行的动力来源,也是电气化铁路的重要组成部分。With the rapid development of my country's rail transit industry, domestic electrified railways are gradually increasing, which play a vital role in the national economy and people's quality of life. The catenary system of the electrified railway is mainly used to supply power to the electric locomotive, which is transformed by the traction substation and then sent to the transmission line. An important part of.
在轨道交通接触网中,绝缘子作为隔绝载流导体与地面,保证铁路系统用电安全的重要部件,由于环境的影响,绝缘子表面时常会附着上污渍,污渍因地域环境不同,组成成分也各不相同,通常以大量的灰尘、矿洞内的煤渣、金属盐微粒等为主,当污渍积累过于严重时,由于绝缘子两端存在的电势差,易造成爬电现象,严重时更会形成污闪事故,这已成为电气化铁路中的危害之一。为了避免污闪事故的发生,需要定时的对它进行清洗工作,但国内外仍以手动控制冲洗为主,而国内还存在使用人工擦拭绝缘子的情况,这不仅降低了清洗维护效率,还存在许多重大安全隐患。In the rail transit catenary, the insulator is an important part to isolate the current-carrying conductor from the ground and ensure the safety of the railway system. Due to the influence of the environment, the surface of the insulator often has stains attached to it. The composition of the stains varies depending on the geographical environment. Similarly, it is usually dominated by a large amount of dust, coal slag in the mine, metal salt particles, etc. When the accumulation of stains is too serious, due to the potential difference between the two ends of the insulator, it is easy to cause creepage phenomenon, and in severe cases, pollution flashover accidents will occur , which has become one of the hazards in electrified railways. In order to avoid the occurrence of pollution flashover accidents, it needs to be cleaned regularly, but at home and abroad, manual control of flushing is still the main method, and there are still situations in China where manual wiping of insulators is used, which not only reduces cleaning and maintenance efficiency, but also has many problems. major safety hazard.
随着现代科学技术的发展,双目视觉作为机器视觉中的一个重要分支,经过近几十年的发展,已经在航空测绘、军事应用、医学成像以及工业检测中得到了广泛应用。双目立体视觉基于视差原理并利用成像设备从不同位置获取被测物体的左右两幅图像,再根据三角测量原理计算空间点的二维图像位置偏差,从而利用位置偏差进行三维重建来获取被测物体的三维几何信息。深度学习神经网络则可以通过训练某种物体的外形、纹理、颜色等特征参数,完成对特定物体的识别,将其与双目视觉相结合,则可在实时图像中找出目标绝缘子,从而完成智能识别与定位的目的。With the development of modern science and technology, binocular vision, as an important branch of machine vision, has been widely used in aerial surveying and mapping, military applications, medical imaging and industrial inspection after decades of development. Binocular stereo vision is based on the principle of parallax and uses imaging equipment to obtain the left and right images of the measured object from different positions, and then calculates the position deviation of the two-dimensional image of the space point according to the principle of triangulation, so as to use the position deviation to perform three-dimensional reconstruction to obtain the measured object The three-dimensional geometric information of the object. The deep learning neural network can complete the recognition of a specific object by training the characteristic parameters such as the shape, texture, and color of an object. Combining it with binocular vision, the target insulator can be found in the real-time image, thereby completing The purpose of intelligent identification and positioning.
在以往的发明设计中,均是通过计算机储存的原始数据库来识别具体环境下的绝缘子,但对于背景、环境、光照均不同的绝缘子,其成色、反光程度、拍摄角度均会影响图像的特征参数,虽然可以根据外形轮廓找到其空间位置,却不能准确地根据颜色特征来判断绝缘子表面的脏污程度。In previous inventions and designs, the original database stored by the computer was used to identify insulators in specific environments. However, for insulators with different backgrounds, environments, and lighting, the color, degree of reflection, and shooting angle will all affect the characteristic parameters of the image. , although the spatial position can be found according to the outline, but the degree of dirt on the surface of the insulator cannot be accurately judged according to the color characteristics.
发明内容Contents of the invention
为了提高绝缘子水冲洗的效率与精度,避免污闪事故的发生,本发明提供一种智能化脏污程度判断的绝缘子冲洗系统。In order to improve the efficiency and precision of water flushing of insulators and avoid pollution flashover accidents, the present invention provides an insulator flushing system with intelligent judgment of pollution degree.
本发明的一种智能化脏污程度判断的绝缘子冲洗系统,具体为:车架上从前往后依次安装基准绝缘子、高清摄像头组、探照灯、双自由度水炮装置、离心泵、控制箱和水箱。An intelligent insulator flushing system for judging the degree of dirt of the present invention is specifically: a reference insulator, a high-definition camera group, a searchlight, a two-degree-of-freedom water cannon device, a centrifugal pump, a control box, and a water tank are sequentially installed on the vehicle frame from front to back .
双自由度水炮装置包括由回转电机、回转减速器以及回转支承所构成的回转传动模组,由俯仰电机、俯仰减速器以及炮杆所构成的俯仰传动模组,由炮体以及底座所构成的防护结构,以及安装在炮杆上的双目定位摄像头。回转支承和炮杆上设置有限位传感器。The two-degree-of-freedom water cannon device includes a rotary transmission module composed of a rotary motor, a rotary reducer and a slewing support, a pitch transmission module composed of a pitching motor, a pitching reducer and a gun rod, and a gun body and a base. The protective structure and the binocular positioning camera installed on the gun barrel. Limit sensors are arranged on the slewing bearing and gun rod.
高清摄像头组的摄像头底座通过支架安装在车架上。支架上设置高度调节马达,高度调节马达通过齿形带传动来调节单目高清摄像头的高度;摄像头底座上设置水平调节马达,水平调节马达通过齿形带传动来调节单目高清摄像头的水平转动;单目高清摄像头的顶部设置防水挡板。The camera base of the high-definition camera group is installed on the vehicle frame through a bracket. A height adjustment motor is set on the bracket, and the height adjustment motor adjusts the height of the monocular high-definition camera through toothed belt transmission; a level adjustment motor is set on the camera base, and the level adjustment motor adjusts the horizontal rotation of the monocular high-definition camera through toothed belt transmission; A waterproof baffle is set on the top of the monocular high-definition camera.
控制箱内设置PLC控制器、计算机、驱动控制器和电磁阀。计算机连接双目定位摄像头和单目高清摄像头;PLC控制器连接回转电机与俯仰电机、水平调节马达与高度调节马达;A PLC controller, a computer, a drive controller and a solenoid valve are arranged in the control box. The computer is connected to the binocular positioning camera and the monocular high-definition camera; the PLC controller is connected to the slewing motor and pitch motor, horizontal adjustment motor and height adjustment motor;
双自由度水炮装置通过水管连接离心泵,再通过水管连接到水箱来吸水。The two-degree-of-freedom water cannon device is connected to the centrifugal pump through the water pipe, and then connected to the water tank through the water pipe to absorb water.
计算机中设置绝缘子定位和脏污程度识别程序、绝缘子冲洗控制程序。The insulator positioning and dirt degree recognition program and the insulator flushing control program are set in the computer.
进一步的,绝缘子定位和脏污程度识别程序具体为:Further, the insulator positioning and contamination degree identification procedures are as follows:
步骤1:首先将双目定位摄像头采集的图像进行灰度化处理,每个像素点取灰度值,并标记绝缘子内部灰度平均值,根据采集的绝缘子图片的形状特征与纹理特征,对不同背景环境下的特征值进行区分,通过深度学习算法,训练对绝缘子的识别。Step 1: First, grayscale the image collected by the binocular positioning camera, take the grayscale value of each pixel, and mark the average grayscale value inside the insulator. According to the shape and texture characteristics of the collected insulator pictures, different The eigenvalues in the background environment are distinguished, and the recognition of insulators is trained through deep learning algorithms.
步骤2:由于同一物体在外界环境相同的条件下,在左右两摄像头中的成像像素点一一对应的关系,根据变换矩阵及两摄像头的空间位置差,还原绝缘子中心特征点的空间坐标,PLC控制器根据三维坐标调节炮杆对准目标绝缘子。Step 2: Due to the one-to-one correspondence relationship between the imaging pixels of the same object in the left and right cameras under the same external environment, according to the transformation matrix and the spatial position difference of the two cameras, restore the spatial coordinates of the central feature point of the insulator, PLC The controller adjusts the gun rod to aim at the target insulator according to the three-dimensional coordinates.
步骤3:根据双目定位摄像头与单目高清摄像头的空间坐标差,以及炮杆现有旋转角,运用空间旋转矩阵将目标绝缘子坐标转化到以单目高清摄像头为原点的坐标系内,PLC控制器根据转换后的坐标,调节单目高清摄像头转角,使之对准目标绝缘子拍摄高清图片。Step 3: According to the spatial coordinate difference between the binocular positioning camera and the monocular high-definition camera, and the existing rotation angle of the gun barrel, use the space rotation matrix to convert the coordinates of the target insulator into the coordinate system with the monocular high-definition camera as the origin, and PLC control According to the converted coordinates, the controller adjusts the corner of the monocular high-definition camera to aim at the target insulator to take high-definition pictures.
步骤4:根据颜色空间理论,计算单目高清摄像头所拍摄的高清图像中目标绝缘子的颜色均值X1、中值X2、方差X3、极差X4、偏度值X5、峰度值X6、能量值X7以及熵值X8,计算目标绝缘子总颜色特征函数P1=f(X1,X2,X3,X4,X5,X6,X7,X8)。Step 4: According to the color space theory, calculate the color mean X 1 , median X 2 , variance X 3 , range X 4 , skewness X 5 , and kurtosis of the target insulator in the high-definition image captured by the monocular high-definition camera X 6 , energy value X 7 and entropy value X 8 , calculate the target insulator total color feature function P 1 =f(X 1 , X 2 ,
步骤5:根据灰度共生矩阵GLCM,计算不同灰度值i的层状分布图,生成目标绝缘子边缘纹理图像特征函数P2=f(i1,i2,i3,i4,i5,i6)。Step 5: According to the gray-scale co-occurrence matrix GLCM, calculate the layered distribution map of different gray-scale values i, and generate the target insulator edge texture image feature function P 2 =f(i 1 ,i 2 ,i 3 ,i 4 ,i 5 , i6 ).
步骤6:将目标绝缘子与基准绝缘子的两特征函数进行对比,计算偏离值,根据偏离值对目标绝缘子的脏污程度进行评估。Step 6: Comparing the two characteristic functions of the target insulator and the reference insulator, calculating the deviation value, and evaluating the degree of contamination of the target insulator according to the deviation value.
进一步的,脏污程度分为五类:A:很轻、B:轻、C:中等、D:重、E:很重。Further, the degree of dirt is divided into five categories: A: very light, B: light, C: medium, D: heavy, E: very heavy.
进一步的,步骤3中空间坐标的转换具体为:Further, the conversion of space coordinates in
计算目标绝缘子位于双目定位摄像头的坐标系1中的三维坐标(x1,y1,z1),并计算炮杆当前转角θ;由于单目高清摄像头坐标原点O2在坐标系1中的坐标为固定值,且符合空间旋转矩阵E的矢量计算,于是通过空间旋转位移矩阵方程E,得到目标绝缘子位于坐标系2下的三维坐标(x2,y2,z2)。Calculate the three-dimensional coordinates (x 1 , y 1 , z 1 ) of the target insulator in the coordinate system 1 of the binocular positioning camera, and calculate the current rotation angle θ of the gun shaft; since the coordinate origin O 2 of the monocular high-definition camera is in the coordinate system 1 The coordinates are fixed values and conform to the vector calculation of the space rotation matrix E, so through the space rotation displacement matrix equation E, the three-dimensional coordinates (x 2 , y 2 , z 2 ) of the target insulator under the
进一步的,绝缘子冲洗控制程序具体为:Further, the insulator flushing control program is specifically:
在炮杆瞄准目标绝缘子后,将目标绝缘子与干净的基准绝缘子的两特征函数进行对比,计算偏离值,根据偏离值对目标绝缘子的脏污程度进行评估,若脏污程度低于设定安全值,则跳过该绝缘子,识别下一个目标;若脏污程度高于设定安全值,则计算机发送信号,驱动控制器打开电磁阀,对目标绝缘子进行冲洗。After the gun barrel is aimed at the target insulator, compare the two characteristic functions of the target insulator with the clean reference insulator, calculate the deviation value, and evaluate the degree of dirtiness of the target insulator according to the deviation value, if the degree of dirtiness is lower than the set safety value , then skip the insulator and identify the next target; if the degree of dirt is higher than the set safety value, the computer sends a signal to drive the controller to open the solenoid valve to flush the target insulator.
进一步的,目标绝缘子与干净的基准绝缘子对比时,通过探照灯提供辅助光源,保证目标绝缘子与干净的基准绝缘子拥有同一光照条件且方向相同。Further, when the target insulator is compared with the clean reference insulator, an auxiliary light source is provided through a searchlight to ensure that the target insulator and the clean reference insulator have the same lighting conditions and the same direction.
本发明的有益技术效果为:The beneficial technical effect of the present invention is:
本发明在现有深度学习与智能识别技术的支持下,考虑到外界环境与光照等的影响,将干净的基准绝缘子在同一时间、同一外界条件以及同一拍摄角度的图像信息与待冲洗的绝缘子进行对比,运用高清图像中颜色特征函数与纹理特征函数的处理技术,完成绝缘子表面脏污程度的判定,从而达到了识别污渍与选择性冲洗的目的,提高了绝缘子水冲洗的工作精度与效率。With the support of the existing deep learning and intelligent recognition technology, the present invention takes the image information of the clean reference insulator at the same time, the same external conditions and the same shooting angle into consideration with the insulator to be washed in consideration of the influence of the external environment and illumination. In contrast, the processing technology of color feature function and texture feature function in high-definition images is used to complete the judgment of the degree of dirt on the surface of the insulator, thereby achieving the purpose of identifying stains and selective flushing, and improving the accuracy and efficiency of insulator water flushing.
附图说明Description of drawings
图1为本发明智能化脏污程度判断的绝缘子冲洗系统的整体结构图。Fig. 1 is an overall structural diagram of an insulator flushing system for intelligently judging the degree of dirt of the present invention.
图2为本发明智能化脏污程度判断的绝缘子冲洗系统的双自由度水炮装置结构示意图。Fig. 2 is a schematic structural diagram of the dual-degree-of-freedom water cannon device of the insulator flushing system for intelligently judging the degree of dirt of the present invention.
图3为本发明智能化脏污程度判断的绝缘子冲洗系统的高清摄像头组结构示意图。Fig. 3 is a schematic structural diagram of a high-definition camera group of an insulator flushing system for intelligently judging the degree of dirt of the present invention.
图4为本发明绝缘子定位和脏污程度识别原理图。Fig. 4 is a schematic diagram of the positioning of the insulator and the identification of the degree of dirt in the present invention.
图5为本发明坐标转换示意图。Fig. 5 is a schematic diagram of coordinate transformation in the present invention.
图6为本发明绝缘子冲洗控制原理图。Fig. 6 is a principle diagram of insulator flushing control in the present invention.
图1-3中标号释义:1-车架;2-水箱;3-控制箱;4-离心泵;5-双自由度水炮装置;51-回转电机;52-回转减速器;53-俯仰电机;54-俯仰减速器;55-炮杆;56-炮体;57-限位传感器;58-回转支承;59-底座;6-高清摄像头组;61-高度调节马达;62-摄像头底座;63-单目高清摄像头;64-防水挡板;65-齿形带;66-水平调节马达;67-支架;7-双目定位摄像头;8-探照灯;9-基准绝缘子。Explanation of symbols in Figure 1-3: 1-frame; 2-water tank; 3-control box; 4-centrifugal pump; 5-double degree of freedom water cannon device; 51-rotary motor; 52-rotary reducer; Motor; 54-pitch reducer; 55-gun rod; 56-gun body; 57-limit sensor; 58-slewing bearing; 59-base; 6-HD camera group; 61-height adjustment motor; 62-camera base; 63-monocular high-definition camera; 64-waterproof baffle; 65-toothed belt; 66-level adjustment motor; 67-bracket; 7-binocular positioning camera; 8-searchlight; 9-reference insulator.
具体实施方式Detailed ways
下面结合附图和具体实施方法对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific implementation methods.
本发明的一种智能化脏污程度判断的绝缘子冲洗系统如图1所示,具体为:车架1上从前往后依次安装基准绝缘子9、高清摄像头组6、探照灯8、双自由度水炮装置5、离心泵4、控制箱3和水箱2。An intelligent insulator flushing system for judging the degree of dirt of the present invention is shown in Figure 1, specifically: a reference insulator 9, a high-
双自由度水炮装置5如图2所示,具体包括由回转电机51、回转减速器52以及回转支承58所构成的回转传动模组,由俯仰电机53、俯仰减速器54以及炮杆55所构成的俯仰传动模组,由炮体56以及底座59所构成的防护结构,以及安装在炮杆55上的双目定位摄像头7。回转支承58和炮杆55上设置有限位传感器57,保证炮杆55的正常复位以及防止由于转动角度过大而引起的内部线路破环。炮管内部运用高压射流技术,对高压水流进行处理,使之能够完成带电水冲洗工作。The two-degree-of-freedom
如图3所示,高清摄像头组6的摄像头底座62通过支架67安装在车架1上。支架67上设置高度调节马达61,高度调节马达61通过齿形带65传动来调节单目高清摄像头63的高度;摄像头底座62上设置水平调节马达66,水平调节马达66通过齿形带65传动来调节单目高清摄像头63的水平转动。单目高清摄像头63的顶部设置防水挡板64。As shown in FIG. 3 , the
控制箱3内设置PLC控制器、计算机、驱动控制器和电磁阀。计算机连接双目定位摄像头7和单目高清摄像头63;PLC控制器连接回转电机51与俯仰电机53、水平调节马达66与高度调节马达61;A PLC controller, a computer, a drive controller and a solenoid valve are arranged in the
双自由度水炮装置5通过水管连接离心泵4,再通过水管连接到水箱2来吸水。The two-degree-of-freedom
计算机中设置绝缘子定位和脏污程度识别程序、绝缘子冲洗控制程序。The insulator positioning and dirt degree recognition program and the insulator flushing control program are set in the computer.
进一步的,绝缘子定位和脏污程度识别原理如图4所示,具体为:Further, the principle of insulator positioning and dirt degree identification is shown in Figure 4, specifically:
步骤1:首先将双目定位摄像头7采集的图像进行灰度化处理,每个像素点取灰度值,并标记绝缘子内部灰度平均值,根据采集的绝缘子图片的形状特征与纹理特征,对不同背景环境下的特征值进行区分,通过深度学习算法,训练对绝缘子的识别。Step 1: First, grayscale the image collected by the
步骤2:由于同一物体在外界环境相同的条件下,在左右两摄像头中的成像像素点一一对应的关系,根据变换矩阵及两摄像头的空间位置差,还原绝缘子中心特征点的空间坐标,PLC控制器根据三维坐标调节炮杆55对准目标绝缘子。Step 2: Due to the one-to-one correspondence relationship between the imaging pixels of the same object in the left and right cameras under the same external environment, according to the transformation matrix and the spatial position difference of the two cameras, restore the spatial coordinates of the central feature point of the insulator, PLC The controller adjusts the
步骤3:根据双目定位摄像头7与单目高清摄像头63的空间坐标差,以及炮杆55现有旋转角,运用空间旋转矩阵将目标绝缘子坐标转化到以单目高清摄像头63为原点的坐标系内,PLC控制器根据转换后的坐标,调节单目高清摄像头63转角,使之对准目标绝缘子拍摄高清图片。Step 3: According to the spatial coordinate difference between the
步骤4:根据颜色空间理论,计算单目高清摄像头63所拍摄的高清图像中目标绝缘子的颜色均值X1、中值X2、方差X3、极差X4、偏度值X5、峰度值X6、能量值X7以及熵值X8,计算目标绝缘子总颜色特征函数P1=f(X1,X2,X3,X4,X5,X6,X7,X8)。Step 4: According to the color space theory, calculate the color mean value X 1 , median value X 2 , variance X 3 , range X 4 , skewness value X 5 , and kurtosis of the target insulator in the high-definition image captured by the monocular high-
步骤5:根据灰度共生矩阵GLCM,计算不同灰度值i的层状分布图(此处设定为6层),生成目标绝缘子边缘纹理图像特征函数P2=f(i1,i2,i3,i4,i5,i6)。Step 5: According to the gray level co-occurrence matrix GLCM, calculate the layered distribution map of different gray values i (here set as 6 layers), and generate the target insulator edge texture image feature function P 2 =f(i 1 ,i 2 , i 3 , i 4 , i 5 , i 6 ).
步骤6:将目标绝缘子与基准绝缘子9的两特征函数进行对比,计算偏离值,根据偏离值对目标绝缘子的脏污程度进行评估。Step 6: Comparing the two characteristic functions of the target insulator and the reference insulator 9, calculating the deviation value, and evaluating the degree of contamination of the target insulator according to the deviation value.
进一步的,脏污程度分为五类:A:很轻、B:轻、C:中等、D:重、E:很重。Further, the degree of dirt is divided into five categories: A: very light, B: light, C: medium, D: heavy, E: very heavy.
进一步的,如图5所示,步骤3中空间坐标的转换具体为:Further, as shown in Figure 5, the conversion of the spatial coordinates in
计算目标绝缘子位于双目定位摄像头7的坐标系1中的三维坐标(x1,y1,z1),并计算炮杆55当前转角θ;由于单目高清摄像头63坐标原点O2在坐标系1中的坐标为固定值,且符合空间旋转矩阵E的矢量计算,于是通过空间旋转位移矩阵方程E,得到目标绝缘子位于坐标系2下的三维坐标(x2,y2,z2)。Calculate the three-dimensional coordinates (x 1 , y 1 , z 1 ) of the target insulator located in the coordinate system 1 of the
进一步的,如图6所示,绝缘子冲洗控制程序具体为:Further, as shown in Figure 6, the insulator flushing control program is specifically:
在炮杆55瞄准目标绝缘子后,将目标绝缘子与干净的基准绝缘子9的两特征函数进行对比,计算偏离值,根据偏离值对目标绝缘子的脏污程度进行评估,若脏污程度低于设定安全值,则跳过该绝缘子,识别下一个目标;若脏污程度高于设定安全值,则计算机发送信号,驱动控制器打开电磁阀,对目标绝缘子进行冲洗。After the
进一步的,目标绝缘子与干净的基准绝缘子9对比时,通过探照灯8提供辅助光源,保证目标绝缘子与干净的基准绝缘子9拥有同一光照条件且方向相同,如此可实现精准识污,冲洗效果更佳。Further, when the target insulator is compared with the clean reference insulator 9, the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111598553.8A CN114392964B (en) | 2021-12-24 | 2021-12-24 | Insulator rinse-system that dirty degree of intellectuality was judged |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111598553.8A CN114392964B (en) | 2021-12-24 | 2021-12-24 | Insulator rinse-system that dirty degree of intellectuality was judged |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114392964A CN114392964A (en) | 2022-04-26 |
CN114392964B true CN114392964B (en) | 2023-03-14 |
Family
ID=81226252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111598553.8A Expired - Fee Related CN114392964B (en) | 2021-12-24 | 2021-12-24 | Insulator rinse-system that dirty degree of intellectuality was judged |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114392964B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115365196A (en) * | 2022-08-19 | 2022-11-22 | 国网福建省电力有限公司福州供电公司 | Dirty cleaning equipment of net distribution overhead line insulated terminal |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100691616B1 (en) * | 2006-04-25 | 2007-03-12 | 한국전력공사 | Robot for cleaning and checking live insulators |
CN106583294A (en) * | 2016-12-09 | 2017-04-26 | 南京理工大学 | Method for sweeping tension insulator by live working robot |
CN106980816B (en) * | 2017-02-22 | 2020-08-25 | 贵州电网有限责任公司凯里供电局 | Automatic insulator string identification method based on optical image |
CN208449981U (en) * | 2017-09-15 | 2019-02-01 | 北京新联铁集团股份有限公司 | Insulator arrangement cleaning device and locomotive/Vehicle preparation equipment with it |
CN109325403B (en) * | 2018-08-07 | 2020-12-11 | 广州粤建三和软件股份有限公司 | Water area pollution identification treatment method and system based on image identification |
CN109801284A (en) * | 2019-01-25 | 2019-05-24 | 华中科技大学 | A kind of high iron catenary insulator breakdown detection method based on deep learning |
CN112950484B (en) * | 2019-12-11 | 2023-06-16 | 鸣医(上海)生物科技有限公司 | Method for removing color pollution of photographic image |
CN111530847B (en) * | 2020-04-01 | 2021-08-03 | 厦门理工学院 | A solid-state CO2 cleaning system |
CN112562304B (en) * | 2020-11-26 | 2022-02-18 | 英博超算(南京)科技有限公司 | Interactive system of application layer and sensor data |
CN112404008A (en) * | 2020-11-26 | 2021-02-26 | 宝鸡中车时代工程机械有限公司 | A high-altitude water flushing system for electrified railway catenary insulators |
CN112354946B (en) * | 2020-11-30 | 2022-05-06 | 长沙理工大学 | A dry ice cleaning control method of a substation pillar insulator dry ice cleaning robot |
CN112511095B (en) * | 2020-12-15 | 2025-05-06 | 华能宁夏能源有限公司新能源分公司 | Intelligent photovoltaic cleaning nozzle and working method thereof |
CN112677934A (en) * | 2020-12-22 | 2021-04-20 | 柏美迪康环境科技(上海)股份有限公司 | Medium-high pressure intelligent freight vehicle sludge flushing system and method |
CN112871880B (en) * | 2020-12-23 | 2022-03-04 | 浙江雷拉激光科技有限公司 | Automatic cleaning method for ray tube |
CN112966576B (en) * | 2021-02-24 | 2022-09-16 | 西南交通大学 | System and method for aiming insulator water washing robot based on multi-light source image |
-
2021
- 2021-12-24 CN CN202111598553.8A patent/CN114392964B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN114392964A (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103217111B (en) | A kind of non-contact contact line geometric parameter detection method | |
CN110517315B (en) | Image type railway roadbed surface settlement high-precision online monitoring system and method | |
CN210573937U (en) | Online three-dimensional imaging device of roll surface of roll squeezer | |
CN114212452B (en) | Coal flow detection method and energy-saving control system based on laser assistance and image processing | |
CN108759670B (en) | Contact line abrasion dynamic detection device based on non-contact detection technology | |
CN107685748B (en) | Train wheel dimension parameter online detection method based on laser displacement sensor | |
CN108269281B (en) | Obstacle avoidance technical method based on binocular vision | |
CN108986082A (en) | A kind of profile of steel rail detection method and system based on EPNP | |
CN110097591B (en) | Pantograph-catenary detection method | |
CN111091076B (en) | Measurement method of tunnel boundary data based on stereo vision | |
CN113763562B (en) | Facade Feature Detection and Facade Feature Processing Method Based on Binocular Vision | |
CN106970581B (en) | A kind of train pantograph real-time intelligent monitoring method and system based on the three-dimensional full visual angle of unmanned aerial vehicle group | |
CN114392964B (en) | Insulator rinse-system that dirty degree of intellectuality was judged | |
CN106296651B (en) | Sag Image Recognition Method Based on Line Segment Fitting Method under Parallel Viewpoint | |
CN105571508A (en) | Deformation detecting method and deformation detecting system for pantograph of overhead contact system | |
CN112966576B (en) | System and method for aiming insulator water washing robot based on multi-light source image | |
CN114898061B (en) | A fast reconstruction method for power transmission corridor based on fly-away dual-mode visual information | |
CN108801134A (en) | A kind of abrasion of pantograph pan monitoring device and method based on sub-pixel edge detection | |
CN116388669A (en) | A Swin Transformer-based Foreign Matter Detection and Cleaning Method for Photovoltaic Panels | |
CN111640148A (en) | Online three-dimensional imaging method for roll surface of roll squeezer | |
CN116342693A (en) | A rapid location method for surface damage of bridge cables based on point cloud and convolutional neural network | |
CN114913131B (en) | A method for detecting absolute and relative vertical deformation of ballastless track structure | |
CN104786227A (en) | Drop type switch replacing control system and method based on high-voltage live working robot | |
CN115077423A (en) | Portable high-speed turnout detection trolley and method based on line laser technology | |
CN114910010B (en) | A device for detecting absolute and relative vertical deformation of ballastless track structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230314 |
|
CF01 | Termination of patent right due to non-payment of annual fee |