[go: up one dir, main page]

CN114389574A - Frequency response masking filter system and method of generation - Google Patents

Frequency response masking filter system and method of generation Download PDF

Info

Publication number
CN114389574A
CN114389574A CN202011109562.1A CN202011109562A CN114389574A CN 114389574 A CN114389574 A CN 114389574A CN 202011109562 A CN202011109562 A CN 202011109562A CN 114389574 A CN114389574 A CN 114389574A
Authority
CN
China
Prior art keywords
frm
array
dsp
filter
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011109562.1A
Other languages
Chinese (zh)
Other versions
CN114389574B (en
Inventor
郭振健
常静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datang Mobile Communications Equipment Co Ltd
Original Assignee
Datang Mobile Communications Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co Ltd filed Critical Datang Mobile Communications Equipment Co Ltd
Priority to CN202011109562.1A priority Critical patent/CN114389574B/en
Publication of CN114389574A publication Critical patent/CN114389574A/en
Application granted granted Critical
Publication of CN114389574B publication Critical patent/CN114389574B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H2017/0298DSP implementation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Complex Calculations (AREA)

Abstract

本申请提出一种频率响应屏蔽FRM滤波器系统及生成方法,该系统包括:控制器、存储阵列及FRM滤波器组件;其中,控制器的一端与信号输入端连接、另一端与存储阵列的控制端连接;FRM滤波器组件的配置端与存储阵列的输出端连接,FRM滤波器组件的输入端与信号输入端连接,FRM滤波器组件的输出端用于输出经过FRM处理后的信号;控制器,被配置为从存储阵列内调取与当前的工作带宽对应的目标参数,并发送给FRM滤波器组件,以根据目标参数生成与当前的工作带宽匹配的FRM滤波器。由此,通过这种FRM滤波器系统,实现了多带宽小区的FRM滤波器链路复用,降低了资源占用量。

Figure 202011109562

The present application provides a frequency response shielded FRM filter system and a generation method, the system includes: a controller, a storage array and an FRM filter assembly; wherein one end of the controller is connected to the signal input end, and the other end is connected to the control of the storage array The configuration end of the FRM filter assembly is connected to the output end of the storage array, the input end of the FRM filter assembly is connected to the signal input end, and the output end of the FRM filter assembly is used to output the signal processed by the FRM; the controller , which is configured to retrieve target parameters corresponding to the current working bandwidth from the storage array, and send them to the FRM filter component, so as to generate an FRM filter matching the current working bandwidth according to the target parameters. Therefore, through this FRM filter system, FRM filter chain multiplexing of multi-bandwidth cells is realized, and resource occupation is reduced.

Figure 202011109562

Description

频率响应屏蔽滤波器系统及生成方法Frequency response shielding filter system and generating method

技术领域technical field

本申请涉及移动通信技术领域,尤其涉及一种频率响应屏蔽(Frequency-Response-Masking,简称FRM)滤波器系统及生成方法。The present application relates to the field of mobile communication technologies, and in particular, to a frequency-response-masking (Frequency-Response-Masking, FRM for short) filter system and a generation method.

背景技术Background technique

有源天线处理单元(Active Antenna Unit,简称AAU),与4G时代RRU与天线分离方案不同,AAU将天线与RRU融合,是5G的关键设备。The Active Antenna Unit (AAU) is different from the RRU and antenna separation scheme in the 4G era. AAU integrates the antenna with the RRU and is a key device for 5G.

相关技术中,在一个小区需要多种带宽配置的条件下,AAU产品需支持载波在不同带宽配置下的工作模式,但是,载波在不同带宽配置下需要切换不同系数的FRM滤波器,资源占用高。In the related art, under the condition that a cell needs multiple bandwidth configurations, AAU products need to support the working modes of the carrier under different bandwidth configurations. However, under different bandwidth configurations, the carrier needs to switch FRM filters with different coefficients, and the resource occupation is high. .

发明内容SUMMARY OF THE INVENTION

本申请提出的FRM滤波器系统及生成方法,用于解决相关技术中,在一个小区需要多种带宽配置的条件下,AAU在载波在不同带宽配置下需要切换不同系数的FRM滤波器,资源占用高的问题。The FRM filter system and generation method proposed in the present application are used to solve the problem in the related art that under the condition that a cell requires multiple bandwidth configurations, the AAU needs to switch FRM filters with different coefficients under different bandwidth configurations of the carrier, and the resource occupation high question.

本申请一方面实施例提出的FRM滤波器系统,包括:控制器、存储阵列及频率响应屏蔽FRM滤波器组件;其中,所述控制器的一端与信号输入端连接、另一端与所述存储阵列的控制端连接;所述FRM滤波器组件的配置端与所述存储阵列的输出端连接,所述FRM滤波器组件的输入端与所述信号输入端连接,所述FRM滤波器组件的输出端用于输出经过FRM处理后的信号;所述控制器,被配置为从所述存储阵列内调取与当前的工作带宽对应的目标参数,以使所述存储阵列将所述目标参数发送给所述FRM滤波器组件;所述FRM滤波器组件,被配置为根据所述目标参数生成与所述当前的工作带宽匹配的FRM滤波器。An FRM filter system proposed by an embodiment of the present application includes: a controller, a storage array, and a frequency response shielding FRM filter assembly; wherein one end of the controller is connected to a signal input end, and the other end is connected to the storage array The control end is connected; the configuration end of the FRM filter assembly is connected with the output end of the storage array, the input end of the FRM filter assembly is connected with the signal input end, the output end of the FRM filter assembly for outputting the signal processed by the FRM; the controller is configured to retrieve target parameters corresponding to the current working bandwidth from the storage array, so that the storage array sends the target parameters to the The FRM filter component; the FRM filter component is configured to generate an FRM filter matching the current operating bandwidth according to the target parameter.

可选地,在本申请第一方面实施例一种可能的实现方式中,所述FRM滤波器组件中包括:第一移位寄存器、第一数字信号处理器DSP阵列、第二DSP阵列、第三DSP阵列、加法器及减法器;Optionally, in a possible implementation manner of the embodiment of the first aspect of the present application, the FRM filter component includes: a first shift register, a first digital signal processor DSP array, a second DSP array, a first shift register Three DSP arrays, adders and subtractors;

所述第一移位寄存器的配置端、第一DSP阵列的配置端、第二DSP阵列的配置端及第三DSP阵列的配置端,分别与所述存储阵列的各个输出端连接;The configuration end of the first shift register, the configuration end of the first DSP array, the configuration end of the second DSP array, and the configuration end of the third DSP array are respectively connected with each output end of the storage array;

所述第一DSP阵列的输入端及所述第一移位寄存器的输入端与所述信号输入端连接,所述第一DSP阵列的输出端分别与所述第二DSP阵列的输入端、及所述减法器的第一输入端连接;The input end of the first DSP array and the input end of the first shift register are connected to the signal input end, and the output end of the first DSP array is respectively connected to the input end of the second DSP array, and the first input of the subtractor is connected;

所述第二DSP阵列的输出端与所述加法器的第一输入端连接;The output end of the second DSP array is connected with the first input end of the adder;

所述第一移位寄存器的输出端与所述减法器的第二输入端连接;The output end of the first shift register is connected to the second input end of the subtractor;

所述减法器的输出端与所述第三DSP阵列的输入端连接;The output end of the subtractor is connected with the input end of the third DSP array;

所述第三DSP阵列的输出端与所述加法器的第二输入端连接;The output end of the third DSP array is connected with the second input end of the adder;

所述加法器,被配置为输出处理后的信号。The adder is configured to output the processed signal.

可选地,在本申请第一方面实施例另一种可能的实现方式中,所述第一DSP阵列中包括M1个依次连接、且首尾相连的第一DSP,其中,M1为N1/2向上取整得到的值;Optionally, in another possible implementation manner of the embodiment of the first aspect of the present application, the first DSP array includes M1 first DSPs connected in sequence and connected end to end, where M1 is N1/2 upward the value obtained by rounding;

所述第二DSP阵列中包括M2个依次连接、且首尾相连的第二DSP,其中,M2为N2/2向上取整得到的值;The second DSP array includes M2 second DSPs connected in sequence and connected end to end, wherein M2 is a value obtained by rounding up N2/2;

所述第三DSP阵列中包括M3个依次连接、且首尾相连的第三DSP,其中,M3为N3/2向上取整得到的值;The third DSP array includes M3 third DSPs connected in sequence and connected end to end, wherein M3 is a value obtained by rounding up N3/2;

其中,N1为所述系统对应的各个FRM滤波器中内插原型滤波器的最高阶数,N2为所述系统对应的各个FRM滤波器中第一屏蔽滤波器的最高阶数,N3为所述系统对应的各个FRM滤波器中第二屏蔽滤波器的最高阶数。Wherein, N1 is the highest order of the interpolation prototype filter in each FRM filter corresponding to the system, N2 is the highest order of the first mask filter in each FRM filter corresponding to the system, and N3 is the The highest order of the second mask filter in each FRM filter corresponding to the system.

可选地,在本申请第一方面实施例再一种可能的实现方式中,所述系统,还包括:依次连接的2(M1-1)个第二移位寄存器;Optionally, in another possible implementation manner of the embodiment of the first aspect of the present application, the system further includes: 2 (M1-1) second shift registers connected in sequence;

其中,首个第二移位寄存器的输入端与所述信号输入端连接;Wherein, the input end of the first second shift register is connected with the signal input end;

每个所述第二移位寄存器的配置端均与所述存储阵列中用于存储第一延时参数的存储器的输出端连接,且第i个所述第二移位寄存器的输出端、第2(M1-1)-(i-1)个所述第二移位寄存器的输出端分别与第i+1个第一DSP的一个输入端连接,其中i为大于0、且小于或等于M1-1的正整数。The configuration terminal of each of the second shift registers is connected to the output terminal of the memory used for storing the first delay parameter in the storage array, and the output terminal of the i-th second shift register, the The output terminals of the 2(M1-1)-(i-1) second shift registers are respectively connected to an input terminal of the i+1th first DSP, where i is greater than 0 and less than or equal to M1 A positive integer of -1.

可选地,在本申请第一方面实施例又一种可能的实现方式中,所述存储阵列中包括K个存储器,其中,K=M1+M2+M3+2,其中,M1个存储器,分别被配置为存储M1个第一DSP对应的参数;M2个存储器,分别被配置为存储M2个第二DSP对应的参数;M3个存储器,分别被配置为存储M3个第三DSP对应的参数,一个存储器被配置为存储所述第一移位寄存器对应的第二延时参数,另一个存储器被配置为存储所述M1-1个第二位移寄存器对应的第一延时参数。Optionally, in another possible implementation manner of the embodiment of the first aspect of the present application, the storage array includes K memories, where K=M1+M2+M3+2, wherein M1 memories, respectively is configured to store parameters corresponding to M1 first DSPs; M2 memories are respectively configured to store parameters corresponding to M2 second DSPs; M3 memories are respectively configured to store parameters corresponding to M3 third DSPs, one The memory is configured to store the second delay parameter corresponding to the first shift register, and the other memory is configured to store the first delay parameter corresponding to the M1-1 second shift registers.

可选地,在本申请第一方面实施例又一种可能的实现方式中,所述系统对应L种工作带宽,每个所述存储器内存储有与所述L种工作带宽分别对应的L种参数。Optionally, in another possible implementation manner of the embodiment of the first aspect of the present application, the system corresponds to L types of working bandwidths, and each of the memories stores L types of working bandwidths corresponding to the L types of working bandwidths respectively. parameter.

本申请另一方面实施例提出的FRM滤波器生成方法,包括:获取系统当前的工作带宽;从存储阵列内读取与所述当前的工作带宽对应的目标参数;将所述目标参数发送给FRM滤波器组件,以生成与所述当前的工作带宽匹配的FRM滤波器。The method for generating an FRM filter proposed by another embodiment of the present application includes: acquiring the current working bandwidth of the system; reading target parameters corresponding to the current working bandwidth from a storage array; sending the target parameters to the FRM A filter component to generate an FRM filter that matches the current operating bandwidth.

可选地,在本申请第二方面实施例一种可能的实现方式中,所述从存储阵列内读取与所述当前的工作带宽对应的目标参数,包括:Optionally, in a possible implementation manner of the embodiment of the second aspect of the present application, the reading the target parameter corresponding to the current working bandwidth from the storage array includes:

获取所述存储阵列的每个存储器中各参数与带宽的对应关系;Obtain the corresponding relationship between each parameter and bandwidth in each memory of the storage array;

根据所述各参数与带宽的对应关系及各个参数在存储器内的位置,确定与所述当前的工作带宽对应的目标地址;Determine the target address corresponding to the current working bandwidth according to the corresponding relationship between the parameters and the bandwidth and the positions of the parameters in the memory;

从存储阵列内读取与所述目标地址对应的目标参数。The target parameter corresponding to the target address is read from the storage array.

可选地,在本申请第二方面实施例另一种可能的实现方式中,与所述当前的工作带宽对应的FRM滤波器中的内插原型滤波器的阶数为N1,所述根据所述各参数与带宽的对应关系及各个参数在存储器内的位置,确定与所述当前的工作带宽对应的目标地址,包括:Optionally, in another possible implementation manner of the embodiment of the second aspect of the present application, the order of the interpolation prototype filter in the FRM filter corresponding to the current working bandwidth is N1, and the The corresponding relationship between the parameters and the bandwidth and the position of each parameter in the memory, determine the target address corresponding to the current working bandwidth, including:

确定所述N1阶内插原型滤波器分别对应的M1个存储器,其中,M1为N1/2向上取整得到的值;Determine the M1 memories corresponding to the N1-order interpolation prototype filters, wherein M1 is a value obtained by rounding up N1/2;

根据每个所述存储器内各参数与带宽的对应关系及各个参数在存储器内的位置,确定与所述当前的工作带宽对应的M1个目标地址。M1 target addresses corresponding to the current working bandwidth are determined according to the corresponding relationship between each parameter and the bandwidth in each of the memories and the position of each parameter in the memory.

可选地,在本申请第二方面实施例再一种可能的实现方式中,所述FRM滤波器组件中包括第一DSP阵列、第一移位寄存器、第二DSP阵列及第三DSP阵列,所述目标参数中包括滤波参数、第二延时参数、第一屏蔽参数及第二屏蔽参数,所述将所述目标参数发送给FRM滤波器组件,包括:Optionally, in another possible implementation manner of the embodiment of the second aspect of the present application, the FRM filter component includes a first DSP array, a first shift register, a second DSP array, and a third DSP array, The target parameters include filter parameters, second delay parameters, first mask parameters and second mask parameters, and the sending of the target parameters to the FRM filter component includes:

将所述滤波参数发送给第一DSP阵列;sending the filtering parameters to the first DSP array;

将所述第二延时参数发送给所述第一移位寄存器;sending the second delay parameter to the first shift register;

将所述第一屏蔽参数发送给所述第二DSP阵列;sending the first mask parameter to the second DSP array;

将所述第二屏蔽参数发送给所述第三DSP阵列。The second mask parameter is sent to the third DSP array.

可选地,在本申请第二方面实施例又一种可能的实现方式中,所述FRM滤波器组件中还包括依次连接的2(M1-1)个第二移位寄存器,所述目标参数中还包括第一延时参数,所述将所述目标参数发送给FRM滤波器组件,包括:Optionally, in another possible implementation manner of the embodiment of the second aspect of the present application, the FRM filter component further includes 2 (M1-1) second shift registers connected in sequence, and the target parameter Also includes a first delay parameter, and the described target parameter is sent to the FRM filter component, including:

将所述第一延时参数,分别发送给所述2(M1-1)个第二移位寄存器,其中,M1为N1/2向上取整得到的值,N1为所述FRM滤波器组件对应的各个FRM滤波器中内插原型滤波器的最高阶数。Send the first delay parameter to the 2 (M1-1) second shift registers respectively, where M1 is the value obtained by rounding up N1/2, and N1 is the corresponding value of the FRM filter component The highest order of the interpolated prototype filter in each FRM filter of .

本申请实施例提供的FRM滤波器系统及生成方法,通过存储阵列存储各工作带宽对应的目标参数,并且通过控制器从存储阵列中调取与当前的工作带宽对应的目标参数,并发送给FRM滤波器组件,以使FRM滤波器组件根据目标参数生成与当前的工作带宽匹配的FRM滤波器。由此,通过预先在存储阵列中存储各工作带宽对应的目标参数,以根据实际的工作带宽从存储组件中调取目标参数对FRM滤波器组件进行调整,从而在工作带宽改变时无需在不同的滤波器模块之间切换,仅通过一个FRM滤波器模块即可支持多种工作带宽对应的工作模式,实现了多带宽小区的FRM滤波器链路复用,降低了资源占用量。In the FRM filter system and generation method provided by the embodiments of the present application, target parameters corresponding to each working bandwidth are stored in a storage array, and target parameters corresponding to the current working bandwidth are retrieved from the storage array through a controller, and sent to the FRM A filter component, so that the FRM filter component generates an FRM filter matching the current operating bandwidth according to the target parameter. Therefore, by storing the target parameters corresponding to each working bandwidth in the storage array in advance, the FRM filter assembly can be adjusted by retrieving the target parameters from the storage assembly according to the actual working bandwidth. By switching between filter modules, only one FRM filter module can support working modes corresponding to multiple working bandwidths, which realizes FRM filter chain multiplexing in multi-bandwidth cells and reduces resource occupancy.

本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the present application will be set forth, in part, in the following description, and in part will be apparent from the following description, or learned by practice of the present application.

附图说明Description of drawings

本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:

图1为本申请实施例所提供的一种FRM滤波器系统的结构示意图;1 is a schematic structural diagram of a FRM filter system provided by an embodiment of the application;

图2为本申请实施例所提供的另一种FRM滤波器系统的结构示意图;2 is a schematic structural diagram of another FRM filter system provided by an embodiment of the application;

图3为本申请实施例所提供的再一种FRM滤波器系统的结构示意图;3 is a schematic structural diagram of yet another FRM filter system provided by an embodiment of the application;

图4为本申请实施例所提供的又一种FRM滤波器系统的结构示意图;4 is a schematic structural diagram of another FRM filter system provided by an embodiment of the application;

图5为本申请实施例所提供的一种FRM滤波器生成方法的流程示意图;5 is a schematic flowchart of a method for generating an FRM filter provided by an embodiment of the present application;

图6为本申请实施例所提供的另一种FRM滤波器生成方法的流程示意图。FIG. 6 is a schematic flowchart of another method for generating an FRM filter provided by an embodiment of the present application.

具体实施方式Detailed ways

本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。The term "and/or" in the embodiments of the present application describes the association relationship between associated objects, indicating that three relationships can exist. For example, A and/or B can indicate that A exists alone, A and B exist simultaneously, and B exists alone these three situations. The character "/" generally indicates that the associated objects are an "or" relationship.

本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。In the embodiments of the present application, the term "plurality" refers to two or more than two, and other quantifiers are similar.

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.

本申请实施例提供了FRM滤波器系统及生成方法,用以针对相关技术中,在一个小区需要多种带宽配置的条件下,AAU在载波在不同带宽配置下需要切换不同系数的FRM滤波器,资源占用高的问题。The embodiments of the present application provide an FRM filter system and a generation method, which are used in the related art, under the condition that a cell needs multiple bandwidth configurations, the AAU needs to switch FRM filters with different coefficients under different bandwidth configurations of the carrier, The problem of high resource usage.

其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。The method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.

本申请实施例提供的FRM滤波器系统,通过存储阵列存储各工作带宽对应的目标参数,并且通过控制器从存储阵列中调取与当前的工作带宽对应的目标参数,并发送给FRM滤波器组件,以使FRM滤波器组件根据目标参数生成与当前的工作带宽匹配的FRM滤波器。由此,通过预先在存储阵列中存储各工作带宽对应的目标参数,以根据实际的工作带宽从存储组件中调取目标参数对FRM滤波器组件进行调整,从而在工作带宽改变时无需在不同的滤波器模块之间切换,仅通过一个FRM滤波器模块即可支持多种工作带宽对应的工作模式,实现了多带宽小区的FRM滤波器链路复用,降低了资源占用量。In the FRM filter system provided by the embodiments of the present application, the target parameters corresponding to each working bandwidth are stored in the storage array, and the target parameters corresponding to the current working bandwidth are retrieved from the storage array through the controller, and sent to the FRM filter component , so that the FRM filter component generates an FRM filter that matches the current operating bandwidth according to the target parameters. Therefore, by storing the target parameters corresponding to each working bandwidth in the storage array in advance, the FRM filter assembly can be adjusted by retrieving the target parameters from the storage assembly according to the actual working bandwidth. By switching between filter modules, only one FRM filter module can support working modes corresponding to multiple working bandwidths, which realizes FRM filter chain multiplexing in multi-bandwidth cells and reduces resource occupancy.

下面参考附图对本申请提供的FRM滤波器系统及生成方法进行详细描述。The FRM filter system and generation method provided by the present application will be described in detail below with reference to the accompanying drawings.

图1为本申请实施例所提供的一种FRM滤波器系统的结构示意图。FIG. 1 is a schematic structural diagram of an FRM filter system provided by an embodiment of the present application.

如图1所示,该FRM滤波器系统100,包括:控制器110、存储阵列120及FRM滤波器组件130。As shown in FIG. 1 , the FRM filter system 100 includes: a controller 110 , a storage array 120 and an FRM filter component 130 .

其中,控制器110的一端与信号输入端连接、另一端与存储阵列120的控制端连接;One end of the controller 110 is connected to the signal input end, and the other end is connected to the control end of the storage array 120;

FRM滤波器组件130的配置端与存储阵列120的输出端连接,FRM滤波器组件130的输入端与信号输入端连接,FRM滤波器组件130的输出端用于输出经过FRM处理后的信号;The configuration end of the FRM filter assembly 130 is connected with the output end of the storage array 120, the input end of the FRM filter assembly 130 is connected with the signal input end, and the output end of the FRM filter assembly 130 is used to output the signal processed by the FRM;

控制器110,被配置为从存储阵列120内调取与当前的工作带宽对应的目标参数,以使存储阵列120将目标参数发送给FRM滤波器组件130;The controller 110 is configured to retrieve the target parameter corresponding to the current working bandwidth from the storage array 120, so that the storage array 120 sends the target parameter to the FRM filter component 130;

FRM滤波器组件130,被配置为根据目标参数生成与当前的工作带宽匹配的FRM滤波器。The FRM filter component 130 is configured to generate an FRM filter matching the current operating bandwidth according to the target parameter.

其中,控制器110,是指可以指挥系统中的各个部件按照指令的功能要求协调工作的部件。比如,控制器110可以是CPU、GPU等结构较复杂、运算能力强的处理器,也可以是结构较简单、运算能力较低的MCU,等等,本申请实施例对此不做限定。The controller 110 refers to a component that can instruct each component in the system to work in coordination according to the functional requirements of the instruction. For example, the controller 110 may be a CPU, GPU, or other processor with a relatively complex structure and strong computing capability, or may be an MCU with a relatively simple structure and a lower computing capability, etc., which is not limited in this embodiment of the present application.

其中,存储阵列120,可以是任意由大量存储单元组成、且具有写入和读出功能的存储介质。比如,存储阵列120可以是ROM。The storage array 120 may be any storage medium composed of a large number of storage units and having functions of writing and reading. For example, memory array 120 may be a ROM.

其中,FRM滤波器组件130,是指具有FRM滤波功能的滤波器模块,可以由多个滤波器构成。实际使用时,可以根据实际需要设计合适的FRM滤波器组件130,本申请实施例对此不做限定。The FRM filter component 130 refers to a filter module with FRM filtering function, and may be composed of multiple filters. In actual use, an appropriate FRM filter assembly 130 may be designed according to actual needs, which is not limited in this embodiment of the present application.

在本申请实施例中,本申请实施例的FRM滤波器系统100可以对输入信号进行滤波处理,以生成滤波后的信号。但是,由于不同带宽的输入信号所需要的滤波器的性能和参数不同,从而可以根据实际应用场景中所有可能的工作带宽,确定各工作带宽对应的滤波器参数,并分别存储在存储阵列120中。In the embodiment of the present application, the FRM filter system 100 in the embodiment of the present application may perform filtering processing on the input signal to generate a filtered signal. However, since the performance and parameters of the filters required by input signals of different bandwidths are different, the filter parameters corresponding to each working bandwidth can be determined according to all possible working bandwidths in the actual application scenario, and stored in the storage array 120 respectively. .

在本申请实施例中,控制器110的一端与信号输入端连接,从而控制器110在获取到信号输入端输入的信号时,可以根据获取到的信号,确定当前的工作带宽;之后,控制器110可以根据工作带宽与滤波器参数的对应关系,从存储阵列120中调取与当前的工作带宽对应的目标参数。在确定出目标参数之后,可以通过存储阵列120将目标参数发送至FRM滤波器组件130,以使FRM滤波器组件130可以将内部参数切换为目标参数,以生成与当前的工作带宽匹配的FRM滤波器;并利用生成的与当前的工作带宽匹配的FRM滤波器对输入FRM滤波器组件130的信号进行滤波处理,以输出经过FRM处理后的信号。In this embodiment of the present application, one end of the controller 110 is connected to the signal input end, so that when the controller 110 obtains the signal input from the signal input end, it can determine the current working bandwidth according to the obtained signal; after that, the controller 110 may retrieve the target parameter corresponding to the current working bandwidth from the storage array 120 according to the corresponding relationship between the working bandwidth and the filter parameter. After the target parameters are determined, the target parameters can be sent to the FRM filter component 130 through the storage array 120, so that the FRM filter component 130 can switch the internal parameters to the target parameters to generate an FRM filter matching the current operating bandwidth and use the generated FRM filter that matches the current working bandwidth to filter the signal input to the FRM filter component 130 to output the FRM-processed signal.

作为一种可能的实现方式,可以首先根据各工作带宽的具体特点,确定各工作带宽对应的滤波器参数,并将带宽与滤波器参数的对应关系存储在存储阵列120中。从而,控制器110在确定出当前的工作带宽之后,可以从存储阵列120中获取存储阵列120的每个存储器中各参数与带宽的对应关系,之后可以根据各参数与带宽的对应关系确定当前的工作带宽对应的目标参数,进而根据各个参数在存储器内的位置,确定目标参数在存储器内的位置,并将目标参数在存储器内的位置确定为当前的工作带宽对应的目标地址,从存储阵列120内读取与目标地址对应的目标参数。As a possible implementation manner, the filter parameters corresponding to the respective working bandwidths may be determined first according to the specific characteristics of the respective working bandwidths, and the corresponding relationship between the bandwidths and the filter parameters may be stored in the storage array 120 . Therefore, after determining the current working bandwidth, the controller 110 can obtain the corresponding relationship between the parameters and the bandwidth in each memory of the storage array 120 from the storage array 120, and then can determine the current working bandwidth according to the corresponding relationship between the parameters and the bandwidth. The target parameter corresponding to the working bandwidth, and then determine the position of the target parameter in the memory according to the position of each parameter in the memory, and determine the position of the target parameter in the memory as the target address corresponding to the current working bandwidth, from the storage array 120 Read the target parameter corresponding to the target address.

本申请实施例提供的FRM滤波器系统,通过存储阵列存储各工作带宽对应的目标参数,并且通过控制器从存储阵列中调取与当前的工作带宽对应的目标参数,并发送给FRM滤波器组件,以使FRM滤波器组件根据目标参数生成与当前的工作带宽匹配的FRM滤波器。由此,通过预先在存储阵列中存储各工作带宽对应的目标参数,以根据实际的工作带宽从存储组件中调取目标参数对FRM滤波器组件进行调整,从而在工作带宽改变时无需在不同的滤波器模块之间切换,仅通过一个FRM滤波器模块即可支持多种工作带宽对应的工作模式,实现了多带宽小区的FRM滤波器链路复用,降低了资源占用量。In the FRM filter system provided by the embodiments of the present application, the target parameters corresponding to each working bandwidth are stored in the storage array, and the target parameters corresponding to the current working bandwidth are retrieved from the storage array through the controller, and sent to the FRM filter component , so that the FRM filter component generates an FRM filter that matches the current operating bandwidth according to the target parameters. Therefore, by storing the target parameters corresponding to each working bandwidth in the storage array in advance, the FRM filter assembly can be adjusted by retrieving the target parameters from the storage assembly according to the actual working bandwidth. By switching between filter modules, only one FRM filter module can support working modes corresponding to multiple working bandwidths, which realizes FRM filter chain multiplexing in multi-bandwidth cells and reduces resource occupancy.

在本申请一种可能的实现形式中,可以通过互补滤波器和屏蔽滤波器设计FRM滤波器组件,以进一步降低FRM滤波器组件设计的计算复杂度。In a possible implementation form of the present application, the FRM filter assembly may be designed by complementary filters and shielding filters, so as to further reduce the computational complexity of the design of the FRM filter assembly.

下面结合图2,对本申请实施例提供的FRM滤波器系统进行进一步说明。The FRM filter system provided by the embodiment of the present application will be further described below with reference to FIG. 2 .

图2为本申请实施例所提供的另一种FRM滤波器系统的结构示意图。FIG. 2 is a schematic structural diagram of another FRM filter system provided by an embodiment of the present application.

如图2所示,在图1所示实施例的基础上,FRM滤波器组件130中可以包括:第一移位寄存器131、第一数字信号处理器(Digital Signal Processor,简称DSP)阵列132、第二DSP阵列133、第三DSP阵列134、加法器135及减法器136;As shown in FIG. 2, based on the embodiment shown in FIG. 1, the FRM filter component 130 may include: a first shift register 131, a first digital signal processor (Digital Signal Processor, DSP for short) array 132, The second DSP array 133, the third DSP array 134, the adder 135 and the subtractor 136;

其中,第一移位寄存器131的配置端、第一DSP阵列132的配置端、第二DSP阵列133的配置端及第三DSP阵列134的配置端,分别与存储阵列120的各个输出端连接;Wherein, the configuration end of the first shift register 131, the configuration end of the first DSP array 132, the configuration end of the second DSP array 133 and the configuration end of the third DSP array 134 are respectively connected to the respective output ends of the storage array 120;

第一DSP阵列132的输入端及第一移位寄存器131的输入端与信号输入端连接,第一DSP阵列132的输出端分别与第二DSP阵列133的输入端、及减法器136的第一输入端连接;The input end of the first DSP array 132 and the input end of the first shift register 131 are connected to the signal input end, the output end of the first DSP array 132 is respectively connected to the input end of the second DSP array 133 and the first end of the subtractor 136 input connection;

第二DSP阵列133的输出端与加法器135的第一输入端连接;The output end of the second DSP array 133 is connected to the first input end of the adder 135;

第一移位寄存器131的输出端与减法器136的第二输入端连接;The output end of the first shift register 131 is connected to the second input end of the subtractor 136;

减法器136的输出端与第三DSP阵列134的输入端连接;The output end of the subtractor 136 is connected with the input end of the third DSP array 134;

第三DSP阵列134的输出端与加法器135的第二输入端连接;The output end of the third DSP array 134 is connected to the second input end of the adder 135;

加法器135,被配置为输出处理后的信号。The adder 135 is configured to output the processed signal.

在本申请实施例中,第一DSP阵列132可以是内插原型滤波器,第二DSP阵列133与第三DSP阵列134可以是屏蔽滤波器。第一移位寄存器131与减法器136可以用于根据信号输入端输入的信号与第一DSP阵列132(即内插原型滤波器)的输出,确定内插原型滤波器对应的内插互补原型滤波器的输出。In this embodiment of the present application, the first DSP array 132 may be an interpolation prototype filter, and the second DSP array 133 and the third DSP array 134 may be masking filters. The first shift register 131 and the subtractor 136 can be used to determine the interpolation complementary prototype filter corresponding to the interpolation prototype filter according to the signal input at the signal input terminal and the output of the first DSP array 132 (ie, the interpolation prototype filter). output of the device.

需要说明的是,FRM滤波器组件130可以通过一对互补滤波器实现,以减少FRM滤波器组件130中的DSP数量,降低FRM滤波器组件130的硬件复杂度。其中,如果两个线性相位滤波器Ha与Hc的频率响应满足|Ha(ejw)+Hc(ejw)|=1,则称它们为互补滤波器,其中,Ha(ejw)为线性相位滤波器Ha的频率响应,Hc(ejw)为线性相位滤波器Hc的频率响应。频率响应传递到Z域,|Ha(z)+Hc(z)|=z-(N-1)*M/2,其中,N为线性相位滤波器的长度,M为插值因子。可见,对于一对互补滤波器,线性相位滤波器Hc的输出可以由输入信号的延时形式减去线性相位滤波器Ha的输出得到。It should be noted that the FRM filter assembly 130 may be implemented by a pair of complementary filters, so as to reduce the number of DSPs in the FRM filter assembly 130 and reduce the hardware complexity of the FRM filter assembly 130 . Among them, if the frequency responses of the two linear phase filters Ha and H c satisfy |H a (e jw )+H c (e jw )|=1, they are called complementary filters, where H a (e jw ) is the frequency response of the linear phase filter Ha, and H c (e jw ) is the frequency response of the linear phase filter H c . The frequency response is transferred to the Z domain, |H a (z)+H c (z)|=z -(N-1)*M/2 , where N is the length of the linear phase filter and M is the interpolation factor. It can be seen that, for a pair of complementary filters, the output of the linear phase filter H c can be obtained by subtracting the output of the linear phase filter H a from the delayed form of the input signal.

因此,在本申请实施例中,可以在FRM滤波器组件130中引入第一移位寄存器131与减法器136,并将第一移位寄存器131的输入端与信号输入端连接,以及将第一移位寄存器131的输出端与减法器136的第二输入端连接,以通过第一移位寄存器131对输入信号进行延时处理,生成输入信号的延时形式并输入减法器136;并将第一DSP阵列132的输出端与减法器136的第一输入端连接,以通过减法器136对第一DSP阵列132的输出与输入信号的延时形式进行相减操作,以生成第一DSP阵列132对应的内插互补原型滤波器的输出。Therefore, in this embodiment of the present application, the first shift register 131 and the subtractor 136 may be introduced into the FRM filter assembly 130, the input end of the first shift register 131 is connected to the signal input end, and the first shift register 131 is connected to the signal input end. The output end of the shift register 131 is connected to the second input end of the subtractor 136, so that the input signal can be delayed by the first shift register 131 to generate a delayed form of the input signal and input to the subtractor 136; The output end of a DSP array 132 is connected to the first input end of the subtractor 136 , and the subtractor 136 performs a subtraction operation on the delayed form of the output of the first DSP array 132 and the input signal to generate the first DSP array 132 The output of the corresponding interpolated complementary prototype filter.

在本申请实施例中,如图2所示,FRM滤波器组件130包含两条支路,上支路由第一DSP阵列132(即内插原型滤波器)和第二DSP阵列133(即第一屏蔽滤波器)组成,下支路由第一移位寄存器131与减法器(即内插互补原型滤波器)和第三DSP阵列134(第二屏蔽滤波器)组成。其中,第二DSP阵列133的作用是从第一DSP阵列132的输出(即内插原型滤波器)中选择所需要的频率成分;第三DSP阵列134的作用是从减法器136的输出(即内插互补原型滤波器)中选择所需要的频率成分。之后,通过加法器135对第二DSP阵列133的输出与第三DSP阵列134的输出进行相加处理,以生成输出处理后的信号。In the embodiment of the present application, as shown in FIG. 2 , the FRM filter assembly 130 includes two branches, and the upper branch consists of a first DSP array 132 (ie, the interpolation prototype filter) and a second DSP array 133 (ie, the first DSP array 133 ). The lower branch is composed of the first shift register 131 and the subtractor (ie, the interpolation complementary prototype filter) and the third DSP array 134 (the second mask filter). The function of the second DSP array 133 is to select the required frequency components from the output of the first DSP array 132 (ie, the interpolation prototype filter); the function of the third DSP array 134 is to select the required frequency components from the output of the subtractor 136 (ie Interpolate the complementary prototype filter) to select the desired frequency components. Then, the output of the second DSP array 133 and the output of the third DSP array 134 are added by the adder 135 to generate an output-processed signal.

需要说明的是,第二DSP阵列133与第三DSP阵列134需要有相同的群延迟,这样当通过加法器135对两者的输出进行相加时,两者能在通带内适当补充。当二DSP阵列133与第三DSP阵列134的参数不一致时,需要前后增加少许延迟,用来均衡它们的群延迟特性。It should be noted that the second DSP array 133 and the third DSP array 134 need to have the same group delay, so that when the outputs of the two are added by the adder 135, the two can be properly supplemented within the passband. When the parameters of the second DSP array 133 and the third DSP array 134 are inconsistent, a little delay needs to be added before and after to equalize their group delay characteristics.

在本申请实施例中,由于第一移位寄存器131、第一DSP阵列132、第二DSP阵列133与第三DSP阵列134都具有各自的参数,因此可以将第一移位寄存器131、第一DSP阵列132、第二DSP阵列133及第三DSP阵列134的配置端均与存储阵列120的输出端连接,以使存储阵列120将目标参数中包括的第一移位寄存器131、第一DSP阵列132、第二DSP阵列133与第三DSP阵列134对应的参数,分别传递给第一移位寄存器131、第一DSP阵列132、第二DSP阵列133与第三DSP阵列134,以使第一移位寄存器131、第一DSP阵列132、第二DSP阵列133与第三DSP阵列134分别根据各自的参数调整内部参数,以生成与当前的工作带宽匹配的FRM滤波器,进而通过生成的FRM滤波器对信号输入端输入系统的信号进行处理,以生成处理后的信号。In this embodiment of the present application, since the first shift register 131 , the first DSP array 132 , the second DSP array 133 and the third DSP array 134 all have their own parameters, the first shift register 131 , the first The configuration terminals of the DSP array 132 , the second DSP array 133 and the third DSP array 134 are all connected to the output terminal of the storage array 120 , so that the storage array 120 converts the first shift register 131 and the first DSP array included in the target parameter 132. The parameters corresponding to the second DSP array 133 and the third DSP array 134 are respectively passed to the first shift register 131, the first DSP array 132, the second DSP array 133 and the third DSP array 134, so that the first shift The bit register 131, the first DSP array 132, the second DSP array 133 and the third DSP array 134 adjust the internal parameters according to their respective parameters to generate an FRM filter matching the current working bandwidth, and then pass the generated FRM filter. The signal input to the system at the signal input terminal is processed to generate a processed signal.

进一步的,由于内插原型滤波器与屏蔽滤波器都可以由多个DSP组成,且对称位置的DSP可以复用,以减少DSP的数量,进一步降低FRM滤波器组件的硬件复杂度。即在本申请实施例一种可能的实现形式中,如图3所示,在图2所示实施例的基础上,上述第一DSP阵列132中可以包括M1个依次连接、且首尾相连的第一DSP(1321),其中,M1为N1/2向上取整得到的值;第二DSP阵列133中包括M2个依次连接、且首尾相连的第二DSP(图中未示出),其中,M2为N2/2向上取整得到的值;第三DSP阵列134中包括M3个依次连接、且首尾相连的第三DSP(图中未示出),其中,M3为N3/2向上取整得到的值;其中,N1为系统对应的各个FRM滤波器中内插原型滤波器的最高阶数,N2为系统对应的各个FRM滤波器中第一屏蔽滤波器的最高阶数,N3为系统对应的各个FRM滤波器中第二屏蔽滤波器的最高阶数。Further, since both the interpolation prototype filter and the mask filter can be composed of multiple DSPs, and the DSPs in symmetrical positions can be reused, the number of DSPs can be reduced, and the hardware complexity of the FRM filter component can be further reduced. That is, in a possible implementation form of the embodiment of the present application, as shown in FIG. 3 , on the basis of the embodiment shown in FIG. 2 , the above-mentioned first DSP array 132 may include M1 sequentially connected and end-to-end connected A DSP (1321), wherein M1 is a value obtained by rounding up N1/2; the second DSP array 133 includes M2 second DSPs (not shown in the figure) that are connected in sequence and end-to-end, wherein M2 is the value obtained by rounding up N2/2; the third DSP array 134 includes M3 third DSPs (not shown in the figure) that are sequentially connected and connected end to end, wherein M3 is obtained by rounding up N3/2 value; wherein, N1 is the highest order of the interpolation prototype filter in each FRM filter corresponding to the system, N2 is the highest order of the first mask filter in each FRM filter corresponding to the system, and N3 is each corresponding to the system. The highest order of the second mask filter in the FRM filter.

需要说明的是,由于小区工作在不同带宽时,系统中各个FRM滤波器的阶数可能是不同的,从而可以将FRM滤波器在不同带宽下的阶数最大值,确定为FRM滤波器的最高阶数。比如,对于可以工作在60M、80M与100M三种带宽的小区,小区工作分别在60M、80M与100M三种带宽时,内插原型滤波器对应的阶数分别为29、39、39,从而可以确定内插原型滤波器的最高阶数N1=39。It should be noted that when the cells work in different bandwidths, the order of each FRM filter in the system may be different, so the maximum order of the FRM filter under different bandwidths can be determined as the highest value of the FRM filter. Order. For example, for a cell that can work in three bandwidths of 60M, 80M and 100M, when the cell operates in three bandwidths of 60M, 80M and 100M, the corresponding orders of the interpolation prototype filter are 29, 39, and 39 respectively, so that the Determine the highest order N1=39 of the interpolation prototype filter.

在本申请实施例中,由于第一DSP阵列132中的各第一DSP(1321)参数是对称设置的,而对称参数可以复用同一个DSP,从而可以根据内插原型滤波器的最高阶数的二分之一,确定第一DSP阵列132中包括的第一DSP(1321)的数量。比如,内插原型滤波器的最高阶数N1=39,则M1=19,即第一DSP阵列132中包括19个依次连接且首尾相连的第一DSP(1321)。相应的,M2和M3的取值也可以按照与上述相同的方式进行确定,此处不再赘述;并且,第二DSP阵列133中的第二DSP的连接方式,以及第三DSP阵列134中第三DSP的连接方式,与第一DSP阵列132中的第一DSP(1321)的连接方式相同,因此未在图3中示出。In the embodiment of the present application, since the parameters of each first DSP (1321) in the first DSP array 132 are set symmetrically, and the symmetrical parameters can be multiplexed with the same DSP, the highest order of the filter prototype can be interpolated according to the highest order. 1/2 to determine the number of first DSPs ( 1321 ) included in the first DSP array 132 . For example, if the highest order of the interpolation prototype filter is N1=39, then M1=19, that is, the first DSP array 132 includes 19 first DSPs (1321) connected in sequence and end-to-end. Correspondingly, the values of M2 and M3 can also be determined in the same manner as described above, which will not be repeated here; The connection mode of the three DSPs is the same as the connection mode of the first DSP ( 1321 ) in the first DSP array 132 , so it is not shown in FIG. 3 .

进一步的,由于内插因子M不同也会导致内插原型滤波器中各DSP之间的延迟也不同,从而可以通过不同的延时寄存器分别向各第一DSP传递延时参数,以对第一DSP阵列132进行群延迟处理。即在本申请实施例一种可能的实现形式中,如图4所示,在图3所示实施例的基础上,上述FRM滤波器系统100,还可以包括:依次连接的2(M1-1)个第二移位寄存器140;Further, because the interpolation factor M is different, the delays between the DSPs in the interpolation prototype filter are also different, so the delay parameters can be transferred to the first DSPs through different delay registers, so as to adjust the first DSP. DSP array 132 performs group delay processing. That is, in a possible implementation form of the embodiment of the present application, as shown in FIG. 4 , on the basis of the embodiment shown in FIG. 3 , the above-mentioned FRM filter system 100 may further include: 2 (M1-1 ) a second shift register 140;

其中,首个第二移位寄存器的输入端与信号输入端连接;Wherein, the input end of the first second shift register is connected with the signal input end;

每个第二移位寄存器140的配置端均与存储阵列120中用于存储第一延时参数的存储器的输出端连接,且第i个第二移位寄存器140的输出端、第2(M1-1)-(i-1)个第二移位寄存器140的输出端分别与第i+1个第一DSP(1321)的一个输入端连接,其中i为大于0、且小于或等于M1-1的正整数。The configuration end of each second shift register 140 is connected to the output end of the memory for storing the first delay parameter in the storage array 120, and the output end of the i-th second shift register 140, the second (M1) The outputs of the -1)-(i-1) second shift registers 140 are respectively connected to one input of the i+1-th first DSP (1321), where i is greater than 0 and less than or equal to M1- A positive integer of 1.

作为一种可能的实现方式,由于对称的延时参数可以复用同一个DSP,以减少DSP的数量,因此可以将延时参数对称的两个第二移位寄存器140的输出端与同一个第一DSP(1321)的输入端连接,以实现DSP的复用。As a possible implementation manner, since symmetrical delay parameters can reuse the same DSP to reduce the number of DSPs, the outputs of the two second shift registers 140 with symmetrical delay parameters can be combined with the same first The input end of a DSP (1321) is connected to realize the multiplexing of the DSP.

举例来说,若N1=39,则M1=19,,第二移位寄存器140的数量为36,由于第1个第一DSP(1321)不需要进行延时,因此可以将第1个与第36个第二移位寄存器140的输出端与第2个第一DSP(1321)的一个输入端连接;将第2个与第35个第二移位寄存器140的输出端与第3个第一DSP(1321)的一个输入端连接;将第3个与第34个第二移位寄存器140的输出端与第4个第一DSP(1321)的一个输入端连接,依此类推。For example, if N1=39, then M1=19, and the number of the second shift registers 140 is 36. Since the first first DSP (1321) does not need to perform delay, the first and second shift registers can be The output terminals of the 36 second shift registers 140 are connected to an input terminal of the second first DSP (1321); the output terminals of the second and 35th second shift registers 140 are connected to the third first One input of the DSP (1321) is connected; the outputs of the 3rd and 34th second shift registers 140 are connected to one input of the 4th first DSP (1321), and so on.

在本申请实施例中,可以根据内插原型滤波器的内插因子确定出第一DSP阵列132中各第一DSP(1321)之间的延时参数,并存储在存储阵列120的存储器中,从而控制器110可以在获取到信号输入端输入的信号时,从存储延时参数的存储器中调取延时参数,并通过存储阵列120分别发送给各第二移位寄存器140,进而通过各第二移位寄存器140对信号输入端输入的信号进行延时处理,之后各第二移位寄存器140将延时处理后的信号发送给与其连接的第一DSP(1321)。In this embodiment of the present application, the delay parameters between the first DSPs (1321) in the first DSP array 132 can be determined according to the interpolation factor of the interpolation prototype filter, and stored in the memory of the storage array 120, Therefore, when the controller 110 obtains the signal input from the signal input terminal, it can retrieve the delay parameters from the memory storing the delay parameters, and send them to the second shift registers 140 through the storage array 120 respectively, and then pass the delay parameters to the second shift registers 140 respectively. The second shift register 140 performs delay processing on the signal input from the signal input terminal, and then each second shift register 140 sends the delayed processed signal to the first DSP (1321) connected to it.

需要说明的是,从存储阵列120中调取延时参数的方式与从存储阵列120中调取目标参数的方式相同,具体的实现过程及原理可以参照上述实施例的详细描述,此处不再赘述。It should be noted that the method of retrieving the delay parameter from the storage array 120 is the same as the method of retrieving the target parameter from the storage array 120 . The specific implementation process and principle can refer to the detailed description of the above embodiment, which is not repeated here. Repeat.

进一步的,可以利用存储阵列120中的不同存储器存储不同DSP的参数,以提升数据的读取速度。即在本申请实施例一种可能的实现方式中,存储阵列120中可以包括K个存储器,其中,K=M1+M2+M3+2,其中,M1个存储器,分别被配置为存储M1个第一DSP对应的参数;M2个存储器,分别被配置为存储M2个第二DSP对应的参数;M3个存储器,分别被配置为存储M3个第三DSP对应的参数,一个存储器被配置为存储第一移位寄存器对应的第二延时参数,另一个存储器被配置为存储M1-1个第二位移寄存器对应的第一延时参数。Further, different memories in the storage array 120 can be used to store parameters of different DSPs, so as to improve the reading speed of data. That is, in a possible implementation manner of the embodiment of the present application, the storage array 120 may include K memories, where K=M1+M2+M3+2, wherein the M1 memories are respectively configured to store M1 th memories Parameters corresponding to one DSP; M2 memories, respectively configured to store parameters corresponding to M2 second DSPs; M3 memories, respectively configured to store parameters corresponding to M3 third DSPs, and one memory configured to store the first The second delay parameter corresponding to the shift register, and the other memory is configured to store the first delay parameter corresponding to the M1-1 second shift registers.

在本申请实施例中,存储阵列120中的一个存储器可以存储一个DSP对应的参数,以根据存储器的位置或地址信息直接从存储器中读取各DSP对应的参数,提升了数据读取速度。因此,假设第一DSP(1321)、第二DSP与第三DSP均为19个,即M1=M2=M3=19,从而可以确定存储阵列120中可以包含59个存储器。其中,19个存储器分别用于存储19个第一DSP(1321)对应的参数,19个存储器分别用于存储19个第二DSP对应的参数,19个存储器分别用于存储19个第三DSP对应的参数;另外,剩下的两个存储器,一个存储器用于存储第一移位寄存器131对应的第二延时参数,另一个存储器用于存储各第二移位寄存器140对应的第一延时参数。In this embodiment of the present application, a memory in the storage array 120 can store parameters corresponding to one DSP, so that the parameters corresponding to each DSP can be directly read from the memory according to the location or address information of the memory, thereby improving the data reading speed. Therefore, assuming that the first DSP ( 1321 ), the second DSP and the third DSP are all 19, that is, M1=M2=M3=19, it can be determined that the memory array 120 can contain 59 memories. Among them, 19 memories are used to store the parameters corresponding to the 19 first DSPs (1321) respectively, 19 memories are used to store the parameters corresponding to the 19 second DSPs respectively, and 19 memories are used to store the corresponding parameters of the 19 third DSPs respectively. In addition, for the remaining two memories, one memory is used to store the second delay parameter corresponding to the first shift register 131, and the other memory is used to store the first delay corresponding to each second shift register 140. parameter.

进一步的,由于在小区的工作带宽有多种时,各DSP对应的参数可以是不同的,因此对于一个存储器可以存储一个DSP对应的多个参数。即在本申请实施例一种可能的实现形式中,上述FRM滤波器系统100对应L种工作带宽,每个存储器内存储有与L种工作带宽分别对应的L种参数。Further, since the parameters corresponding to each DSP may be different when there are multiple working bandwidths of a cell, multiple parameters corresponding to one DSP can be stored in one memory. That is, in a possible implementation form of the embodiment of the present application, the above-mentioned FRM filter system 100 corresponds to L kinds of working bandwidths, and each memory stores L kinds of parameters corresponding to the L kinds of working bandwidths respectively.

举例来说,若FRM滤波器系统100应用在可以工作在60M、80M与100M三种带宽的小区,则FRM滤波器系统100对应3种工作带宽,从而可以预先计算出在3种工作带宽下,FRM滤波器组件130中各DSP对应的3种参数,进而将一个DSP对应的3种参数存储在同一个存储器中。For example, if the FRM filter system 100 is applied in a cell that can operate in three bandwidths of 60M, 80M and 100M, the FRM filter system 100 corresponds to three operating bandwidths, so it can be pre-calculated that under the three operating bandwidths, The three parameters corresponding to each DSP in the FRM filter component 130 are further stored in the same memory.

本申请实施例提供的FRM滤波器系统,通过存储阵列存储各工作带宽对应的目标参数,并且通过控制器从存储阵列中调取与当前的工作带宽对应的目标参数,并发送给FRM滤波器组件,以使FRM滤波器组件根据目标参数生成与当前的工作带宽匹配的FRM滤波器;并且,通过互补滤波器和屏蔽滤波器设计FRM滤波器组件,并通过对称参数复用DSP,进而利用存储阵列中的一个存储器存储一个DSP对应的参数,从而不仅实现了多带宽小区的FRM滤波器链路复用,降低了资源占用量,而且进一步减少了DSP的数量,降低了FRM滤波器的硬件复杂度,提升了数据读取速度。In the FRM filter system provided by the embodiments of the present application, the target parameters corresponding to each working bandwidth are stored in the storage array, and the target parameters corresponding to the current working bandwidth are retrieved from the storage array through the controller, and sent to the FRM filter component , so that the FRM filter assembly generates an FRM filter matching the current working bandwidth according to the target parameters; and, design the FRM filter assembly through complementary filters and shielding filters, and multiplex DSP through symmetrical parameters, and then utilize the storage array. One memory in the DSP stores the parameters corresponding to a DSP, which not only realizes the multiplexing of FRM filter links in multi-bandwidth cells, reduces the resource occupation, but also further reduces the number of DSPs and reduces the hardware complexity of the FRM filter. , which improves the data reading speed.

为了实现上述实施例,本申请还提出一种FRM滤波器生成方法。In order to realize the above embodiments, the present application also proposes a method for generating an FRM filter.

图5为本申请实施例所提供的一种FRM滤波器生成方法的流程示意图。FIG. 5 is a schematic flowchart of a method for generating an FRM filter provided by an embodiment of the present application.

如图5所示,该FRM滤波器生成方法,包括以下步骤:As shown in Figure 5, the FRM filter generation method includes the following steps:

步骤101,获取系统当前的工作带宽。Step 101: Obtain the current working bandwidth of the system.

需要说明的是,所述系统可以是上述实施例中的FRM滤波器系统,本申请实施例的FRM滤波器系统可以对输入信号进行滤波处理,以生成滤波后的信号。但是,由于不同带宽的输入信号所需要的滤波器的性能和参数不同,从而可以根据实际应用场景中所有可能的工作带宽,确定各工作带宽对应的滤波器参数,并分别存储在FRM滤波器系统的存储阵列中。It should be noted that the system may be the FRM filter system in the above embodiment, and the FRM filter system in the embodiment of the present application may perform filtering processing on an input signal to generate a filtered signal. However, due to the different performances and parameters of the filters required by input signals of different bandwidths, the filter parameters corresponding to each operating bandwidth can be determined according to all possible operating bandwidths in the actual application scenario, and stored in the FRM filter system respectively. in the storage array.

在本申请实施例中,FRM滤波器系统的控制器的一端可以与信号输入端连接,从而可以在控制器获取到信号输入端输入的信号时,根据获取到的信号,确定当前的工作带宽。In the embodiment of the present application, one end of the controller of the FRM filter system may be connected to the signal input end, so that when the controller obtains the signal input from the signal input end, the current operating bandwidth can be determined according to the obtained signal.

步骤102,从存储阵列内读取与当前的工作带宽对应的目标参数。Step 102: Read target parameters corresponding to the current working bandwidth from the storage array.

在本申请实施例中,通过控制器确定当前的工作带宽之后,可以根据工作带宽与滤波器参数的对应关系,从存储阵列中调取与当前的工作带宽对应的目标参数。In the embodiment of the present application, after the current working bandwidth is determined by the controller, the target parameters corresponding to the current working bandwidth can be retrieved from the storage array according to the corresponding relationship between the working bandwidth and the filter parameters.

作为一种可能的实现方式,上述步骤102,可以包括:As a possible implementation manner, the above step 102 may include:

获取存储阵列的每个存储器中各参数与带宽的对应关系;Obtain the corresponding relationship between each parameter and bandwidth in each memory of the storage array;

根据各参数与带宽的对应关系及各个参数在存储器内的位置,确定与当前的工作带宽对应的目标地址;Determine the target address corresponding to the current working bandwidth according to the corresponding relationship between each parameter and the bandwidth and the position of each parameter in the memory;

从存储阵列内读取与目标地址对应的目标参数。Read the target parameter corresponding to the target address from the storage array.

作为一种可能的实现方式,可以首先根据各工作带宽的具体特点,确定各工作带宽对应的滤波器参数,并将带宽与滤波器参数的对应关系存储在存储阵列中。从而,在确定出当前的工作带宽之后,可以从存储阵列中获取存储阵列的每个存储器中各参数与带宽的对应关系,之后可以根据各参数与带宽的对应关系确定当前的工作带宽对应的目标参数,进而根据各个参数在存储器内的位置,确定目标参数在存储器内的位置,并将目标参数在存储器内的位置确定为当前的工作带宽对应的目标地址,以从存储阵列内读取与目标地址对应的目标参数。As a possible implementation manner, the filter parameters corresponding to the respective working bandwidths may be determined first according to the specific characteristics of the respective working bandwidths, and the corresponding relationship between the bandwidths and the filter parameters may be stored in the storage array. Therefore, after the current working bandwidth is determined, the corresponding relationship between the parameters and the bandwidth in each memory of the storage array can be obtained from the storage array, and then the target corresponding to the current working bandwidth can be determined according to the corresponding relationship between the parameters and the bandwidth. parameters, and then determine the position of the target parameter in the memory according to the position of each parameter in the memory, and determine the position of the target parameter in the memory as the target address corresponding to the current working bandwidth, so as to read the target address from the storage array. The target parameter corresponding to the address.

进一步的,由于FRM滤波器系统中的每个FRM滤波器中可以包括多个DSP,而每个DSP对应的参数可以存储在一个存储器中,因此可以首先确定每个FRM滤波器对应的各存储器,再进一步确定该FRM滤波器对应的各参数的具体地址。即在本申请实施例一种可能的实现形式中,与上述当前的工作带宽对应的FRM滤波器中的内插原型滤波器的阶数为N1,则上述根据各参数与带宽的对应关系及各个参数在存储器内的位置,确定与当前的工作带宽对应的目标地址,可以包括:Further, since each FRM filter in the FRM filter system can include multiple DSPs, and the parameters corresponding to each DSP can be stored in a memory, the memory corresponding to each FRM filter can be determined first, The specific address of each parameter corresponding to the FRM filter is further determined. That is, in a possible implementation form of the embodiment of the present application, the order of the interpolation prototype filter in the FRM filter corresponding to the above-mentioned current working bandwidth is N1. The location of the parameter in the memory determines the target address corresponding to the current working bandwidth, which can include:

确定N1阶内插原型滤波器分别对应的M1个存储器,其中,M1为N1/2向上取整得到的值;Determine the M1 memories corresponding to the N1-order interpolation prototype filters, where M1 is the value obtained by rounding up N1/2;

根据每个存储器内各参数与带宽的对应关系及各个参数在存储器内的位置,确定与当前的工作带宽对应的M个目标地址。M target addresses corresponding to the current working bandwidth are determined according to the corresponding relationship between each parameter and the bandwidth in each memory and the position of each parameter in the memory.

在本申请实施例中,由于FRM滤波器系统中可以包括内插原型滤波器与两个屏蔽滤波器,并且内插原型滤波器与两个屏蔽滤波器中都可以包括多个DSP,而存储阵列中的一个存储器可以用于存储一个DSP对应的参数,以提升数据读取速度。因此,可以依次确定出每个滤波器对应的各存储器,再从每个滤波器各自对应的存储器在存储阵列中的位置,确定米格滤波器对应的各地址。以下以内插原型滤波器进行具体说明。In this embodiment of the present application, since the FRM filter system may include an interpolation prototype filter and two masking filters, and both the interpolation prototype filter and the two masking filters may include multiple DSPs, the storage array A memory can be used to store the parameters corresponding to a DSP to improve the data reading speed. Therefore, each memory corresponding to each filter can be sequentially determined, and then each address corresponding to the MiG filter can be determined from the position of the memory corresponding to each filter in the storage array. The interpolation prototype filter will be described in detail below.

在本申请实施例中,内插原型滤波器的阶数,可以决定内插原型滤波器对应的参数数量和DSP数量。比如,N阶内插原型滤波器对应的DSP的数量可以为M1个,相应的,参数数量也为M1个,因此,可以首先确定出N阶内插原型滤波器对应的M1个存储器在存储阵列中的位置,之后根据参数与工作带宽的对应关系,确定与当前的工作带宽对应的M1个目标参数;进而根据M1个存储器中的各参数在存储器中的位置,确定M1个目标参数分别在M1个存储器中的位置,即当前的工作带宽对应的M1个目标地址。In this embodiment of the present application, the order of the interpolation prototype filter may determine the number of parameters and the number of DSPs corresponding to the interpolation prototype filter. For example, the number of DSPs corresponding to the N-order interpolation prototype filter can be M1, and correspondingly, the number of parameters is also M1. Therefore, it can be first determined that the M1 memories corresponding to the N-order interpolation prototype filter are stored in the storage array. Then, according to the corresponding relationship between the parameters and the working bandwidth, determine the M1 target parameters corresponding to the current working bandwidth; and then according to the position of each parameter in the M1 memory in the memory, determine the M1 target parameters are respectively in M1 locations in the memory, that is, M1 target addresses corresponding to the current working bandwidth.

需要说明的是,确定系统中其他滤波器对应的参数的目标地址方式,与上述方式相同,此处不再赘述。It should be noted that the method of determining the target address of the parameters corresponding to other filters in the system is the same as the above method, and will not be repeated here.

步骤103,将目标参数发送给FRM滤波器组件,以生成与当前的工作带宽匹配的FRM滤波器。Step 103: Send the target parameters to the FRM filter component to generate an FRM filter matching the current working bandwidth.

在本申请实施例中,通过控制器确定出目标参数之后,可以通过存储阵列将目标参数发送至系统中的FRM滤波器组件,以使FRM滤波器组件可以将内部参数切换为目标参数,以生成与当前的工作带宽匹配的FRM滤波器;并利用生成的与当前的工作带宽匹配的FRM滤波器对输入FRM滤波器组件的信号进行滤波处理,以输出经过FRM处理后的信号。In this embodiment of the present application, after the target parameter is determined by the controller, the target parameter can be sent to the FRM filter component in the system through the storage array, so that the FRM filter component can switch the internal parameter to the target parameter to generate an FRM filter matching the current working bandwidth; and using the generated FRM filter matching the current working bandwidth to filter the signal input to the FRM filter component to output the FRM-processed signal.

本申请实施例提供的FRM滤波器生成方法,通过存储阵列存储各工作带宽对应的目标参数,并且通过控制器从存储阵列中调取与当前的工作带宽对应的目标参数,并发送给FRM滤波器组件,以使FRM滤波器组件根据目标参数生成与当前的工作带宽匹配的FRM滤波器。由此,通过预先在存储阵列中存储各工作带宽对应的目标参数,以根据实际的工作带宽从存储组件中调取目标参数对FRM滤波器组件进行调整,从而在工作带宽改变时无需在不同的滤波器模块之间切换,仅通过一个FRM滤波器模块即可支持多种工作带宽对应的工作模式,实现了多带宽小区的FRM滤波器链路复用,降低了资源占用量。In the method for generating an FRM filter provided by the embodiment of the present application, target parameters corresponding to each working bandwidth are stored in a storage array, and target parameters corresponding to the current working bandwidth are retrieved from the storage array through a controller, and sent to the FRM filter component, so that the FRM filter component generates an FRM filter that matches the current operating bandwidth according to the target parameters. Therefore, by storing the target parameters corresponding to each working bandwidth in the storage array in advance, the FRM filter assembly can be adjusted by retrieving the target parameters from the storage assembly according to the actual working bandwidth. By switching between filter modules, only one FRM filter module can support working modes corresponding to multiple working bandwidths, which realizes FRM filter chain multiplexing in multi-bandwidth cells and reduces resource occupancy.

在本申请一种可能的实现形式中,由于FRM滤波器组件中可以包括多个滤波器,从而可以将各滤波器对应的参数分别发送至各滤波器,以提升参数传递的效率和准确性。In a possible implementation form of the present application, since the FRM filter component may include multiple filters, parameters corresponding to each filter may be sent to each filter respectively, so as to improve the efficiency and accuracy of parameter transfer.

下面结合图6,对本申请实施例提供的FRM滤波器生成方法进行进一步说明。The method for generating the FRM filter provided by the embodiment of the present application will be further described below with reference to FIG. 6 .

图6为本申请实施例所提供的另一种FRM滤波器生成方法的流程示意图。FIG. 6 is a schematic flowchart of another method for generating an FRM filter provided by an embodiment of the present application.

如图6所示,该FRM滤波器生成方法,包括以下步骤:As shown in Figure 6, the FRM filter generation method includes the following steps:

步骤201,获取系统当前的工作带宽。Step 201: Obtain the current working bandwidth of the system.

上述步骤201的具体实现过程及原理,可以参照上述实施例的详细描述,此处不再赘述。For the specific implementation process and principle of the foregoing step 201, reference may be made to the detailed description of the foregoing embodiment, and details are not described herein again.

步骤202,从存储阵列内读取与当前的工作带宽对应的目标参数,其中,目标参数中包括滤波参数、第二延时参数、第一屏蔽参数及第二屏蔽参数。Step 202: Read target parameters corresponding to the current working bandwidth from the storage array, wherein the target parameters include filter parameters, second delay parameters, first mask parameters and second mask parameters.

在本申请实施例中,FRM滤波器组件中可以包括第一DSP阵列、第一移位寄存器、第二DSP阵列及第三DSP阵列,因此目标参数中可以包括第一DSP阵列对应的滤波参数、第一移位寄存器对应的第二延时参数、第二DSP阵列对应的第一屏蔽参数,以及第三DSP阵列对应的第二屏蔽参数。In this embodiment of the present application, the FRM filter component may include a first DSP array, a first shift register, a second DSP array, and a third DSP array, so the target parameters may include filter parameters corresponding to the first DSP array, The second delay parameter corresponding to the first shift register, the first mask parameter corresponding to the second DSP array, and the second mask parameter corresponding to the third DSP array.

上述步骤202其他的具体实现过程及原理,可以参照上述实施例的详细描述,此处不再赘述。For other specific implementation processes and principles of the foregoing step 202, reference may be made to the detailed descriptions of the foregoing embodiments, and details are not described herein again.

步骤203,将滤波参数发送给第一DSP阵列。Step 203: Send the filtering parameters to the first DSP array.

在本申请实施例中,由于第一移位寄存器、第一DSP阵列、第二DSP阵列与第三DSP阵列都具有各自的参数,因此可以将第一移位寄存器、第一DSP阵列、第二DSP阵列及第三DSP阵列的配置端均与存储阵列的输出端连接,以使存储阵列将目标参数中包括的滤波参数、第二延时参数、第一屏蔽参数及第二屏蔽参数,分别传递给第一DSP阵列、第一移位寄存器、第二DSP阵列与第三DSP阵列,以使第一DSP阵列、第一移位寄存器、第二DSP阵列与第三DSP阵列分别根据各自的参数调整内部参数,以生成与当前的工作带宽匹配的FRM滤波器,进而通过生成的FRM滤波器对信号输入端输入系统的信号进行处理,以生成处理后的信号。In this embodiment of the present application, since the first shift register, the first DSP array, the second DSP array and the third DSP array all have their own parameters, the first shift register, the first DSP array, the second DSP array and the second The configuration terminals of the DSP array and the third DSP array are both connected to the output terminal of the storage array, so that the storage array transmits the filtering parameters, the second delay parameters, the first masking parameters and the second masking parameters included in the target parameters, respectively. for the first DSP array, the first shift register, the second DSP array and the third DSP array, so that the first DSP array, the first shift register, the second DSP array and the third DSP array are adjusted according to their respective parameters Internal parameters are used to generate an FRM filter that matches the current working bandwidth, and then the generated FRM filter is used to process the signal input to the system at the signal input end to generate a processed signal.

进一步的,由于内插原型滤波器与屏蔽滤波器都可以由多个DSP组成,且对称位置的DSP可以复用,以减少DSP的数量,进一步降低FRM滤波器组件的硬件复杂度。即在本申请实施例一种可能的实现形式中,上述FRM滤波器组件中还可以包括依次连接的2(M1-1)个第二移位寄存器,目标参数中还可以包括第一延时参数;相应的,上述步骤203,可以包括:Further, since both the interpolation prototype filter and the mask filter can be composed of multiple DSPs, and the DSPs in symmetrical positions can be reused, the number of DSPs can be reduced, and the hardware complexity of the FRM filter component can be further reduced. That is, in a possible implementation form of the embodiment of the present application, the above-mentioned FRM filter assembly may further include 2 (M1-1) second shift registers connected in sequence, and the target parameter may further include a first delay parameter ; Correspondingly, the above step 203 may include:

将第一延时参数,分别发送给2(M1-1)个第二移位寄存器,其中,M1为N1/2向上取整得到的值,N1为FRM滤波器组件对应的各个FRM滤波器中内插原型滤波器的最高阶数。Send the first delay parameter to 2 (M1-1) second shift registers respectively, where M1 is the value obtained by rounding up N1/2, and N1 is the value of each FRM filter corresponding to the FRM filter component. The highest order of the interpolation prototype filter.

在本申请实施例中,由于内插因子M不同也会导致内插原型滤波器中各DSP之间的延迟也不同,从而可以通过不同的延时寄存器分别向各第一DSP传递延时参数,以对第一DSP阵列132进行群延迟处理。In the embodiment of the present application, because the interpolation factor M is different, the delays between the DSPs in the interpolation prototype filter are also different, so that the delay parameters can be transferred to the first DSPs through different delay registers, respectively. To perform group delay processing on the first DSP array 132 .

作为一种可能的实现方式,由于对称的延时参数可以复用同一个DSP,以减少DSP的数量,因此可以将延时参数对称的两个第二移位寄存器的输出端与第一DSP阵列中的同一个第一DSP的输入端连接,以实现DSP的复用。As a possible implementation, since the symmetrical delay parameters can reuse the same DSP to reduce the number of DSPs, the outputs of the two second shift registers with symmetrical delay parameters can be combined with the first DSP array. The input end of the same first DSP is connected to realize the multiplexing of the DSP.

举例来说,若N1=39,则M1=19,第二移位寄存器的数量为36,由于第1个第一DSP不需要进行延时,因此可以将第1个与第36个第二移位寄存器的输出端与第2个第一DSP的一个输入端连接;将第2个与第35个第二移位寄存器的输出端与第3个第一DSP的一个输入端连接;将第3个与第34个第二移位寄存器的输出端与第4个第一DSP的一个输入端连接,依此类推。For example, if N1=39, then M1=19, and the number of second shift registers is 36. Since the first first DSP does not need to delay, the first and 36th second shift registers can be shifted The output end of the bit register is connected to an input end of the second first DSP; the output end of the second and 35th second shift registers is connected to an input end of the third first DSP; the third The output of the 34th second shift register is connected to one input of the 4th first DSP, and so on.

在本申请实施例中,可以根据内插原型滤波器的内插因子确定出第一DSP阵列中各第一DSP之间的延时参数,并存储在存储阵列的存储器中,从而可以在控制器获取到信号输入端输入的信号时,从存储延时参数的存储器中调取延时参数,并通过存储阵列分别发送给各第二移位寄存器,进而通过各第二移位寄存器对信号输入端输入的信号进行延时处理,之后各第二移位寄存器将延时处理后的信号发送给与其连接的第一DSP。In this embodiment of the present application, the delay parameters between the first DSPs in the first DSP array may be determined according to the interpolation factor of the interpolation prototype filter, and stored in the memory of the storage array, so that the When the signal input from the signal input terminal is obtained, the delay parameter is retrieved from the memory storing the delay parameter, and sent to each second shift register through the storage array, and then the signal input terminal is connected to the signal input terminal through each second shift register. The input signal is subjected to delay processing, and then each second shift register sends the delayed processed signal to the first DSP connected to it.

需要说明的是,从存储阵列中调取延时参数的方式与从存储阵列中调取目标参数的方式相同,具体的实现过程及原理可以参照上述实施例的详细描述,此处不再赘述。It should be noted that the method of retrieving the delay parameter from the storage array is the same as the method of retrieving the target parameter from the storage array. The specific implementation process and principle can refer to the detailed description of the above embodiment, which will not be repeated here.

步骤204,将第二延时参数发送给第一移位寄存器。Step 204, sending the second delay parameter to the first shift register.

步骤205,将第一屏蔽参数发送给第二DSP阵列。Step 205: Send the first mask parameter to the second DSP array.

步骤206,将第二屏蔽参数发送给第三DSP阵列,以生成与当前的工作带宽匹配的FRM滤波器。Step 206, sending the second mask parameter to the third DSP array to generate an FRM filter matching the current working bandwidth.

在本申请实施例中,由于第一移位寄存器、第一DSP阵列、第二DSP阵列及第三DSP阵列的配置端均与存储阵列的输出端连接,从而可以在获取到目标参数之后,通过第一移位寄存器、第二DSP阵列及第三DSP阵列的配置端将目标参数中包括的第二延时参数、第一屏蔽参数及第二屏蔽参数,分别传递给第一移位寄存器、第二DSP阵列与第三DSP阵列,以使第一移位寄存器、第二DSP阵列与第三DSP阵列分别根据各自的参数调整内部参数,以生成与当前的工作带宽匹配的FRM滤波器,进而通过生成的FRM滤波器对信号输入端输入系统的信号进行处理,以生成处理后的信号。In the embodiment of the present application, since the configuration terminals of the first shift register, the first DSP array, the second DSP array and the third DSP array are all connected to the output terminal of the storage array, after the target parameters are acquired, the The configuration terminals of the first shift register, the second DSP array and the third DSP array respectively transmit the second delay parameter, the first mask parameter and the second mask parameter included in the target parameter to the first shift register, the first Two DSP arrays and a third DSP array, so that the first shift register, the second DSP array and the third DSP array adjust their internal parameters according to their respective parameters, so as to generate an FRM filter matching the current working bandwidth, and then pass The resulting FRM filter processes the signal input to the system at the signal input to generate a processed signal.

本申请实施例提供的FRM滤波器生成方法,通过存储阵列存储各工作带宽对应的目标参数,并且通过控制器从存储阵列中调取与当前的工作带宽对应的目标参数,并发送给FRM滤波器组件,以使FRM滤波器组件根据目标参数生成与当前的工作带宽匹配的FRM滤波器;并且,通过互补滤波器和屏蔽滤波器设计FRM滤波器组件,并通过对称参数复用DSP,进而利用存储阵列中的一个存储器存储一个DSP对应的参数,从而不仅实现了多带宽小区的FRM滤波器链路复用,降低了资源占用量,而且进一步减少了DSP的数量,降低了FRM滤波器的硬件复杂度,提升了数据读取速度。In the method for generating an FRM filter provided by the embodiment of the present application, target parameters corresponding to each working bandwidth are stored in a storage array, and target parameters corresponding to the current working bandwidth are retrieved from the storage array through a controller, and sent to the FRM filter components, so that the FRM filter component generates an FRM filter matching the current working bandwidth according to the target parameters; and, the FRM filter component is designed through complementary filters and shielding filters, and the DSP is multiplexed by symmetric parameters, and then the memory is used. One memory in the array stores the parameters corresponding to one DSP, which not only realizes the multiplexing of FRM filter chains in multi-bandwidth cells, reduces the resource occupancy, but also further reduces the number of DSPs and reduces the hardware complexity of the FRM filter. to improve the data reading speed.

在此需要说明的是,本申请实施例提供的上述方法,能够实现上述系统实施例所实现的所有功能,且能够达到相同的技术效果,在此不再对本实施例中与系统实施例相同的部分及有益效果进行具体赘述。It should be noted here that the above-mentioned methods provided in the embodiments of the present application can realize all the functions realized by the above-mentioned system embodiments, and can achieve the same technical effects, and the same technical effects as those of the system embodiments in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowcharts and/or block diagrams, and combinations of flows and/or blocks in the flowcharts and/or block diagrams, can be implemented by computer-executable instructions. These computer-executable instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.

这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that The executed instructions provide steps for implementing the functions specified in the flow diagram flow or flow diagrams and/or the block diagram block or blocks.

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.

Claims (11)

1.一种频率响应屏蔽滤波器系统,其特征在于,包括:控制器、存储阵列及频率响应屏蔽FRM滤波器组件;1. a frequency response shielding filter system, is characterized in that, comprises: controller, storage array and frequency response shielding FRM filter assembly; 其中,所述控制器的一端与信号输入端连接、另一端与所述存储阵列的控制端连接;Wherein, one end of the controller is connected to the signal input end, and the other end is connected to the control end of the storage array; 所述FRM滤波器组件的配置端与所述存储阵列的输出端连接,所述FRM滤波器组件的输入端与所述信号输入端连接,所述FRM滤波器组件的输出端用于输出经过FRM处理后的信号;The configuration end of the FRM filter assembly is connected to the output end of the storage array, the input end of the FRM filter assembly is connected to the signal input end, and the output end of the FRM filter assembly is used for outputting through the FRM the processed signal; 所述控制器,被配置为从所述存储阵列内调取与当前的工作带宽对应的目标参数,以使所述存储阵列将所述目标参数发送给所述FRM滤波器组件;The controller is configured to retrieve target parameters corresponding to the current working bandwidth from the storage array, so that the storage array sends the target parameters to the FRM filter component; 所述FRM滤波器组件,被配置为根据所述目标参数生成与所述当前的工作带宽匹配的FRM滤波器。The FRM filter component is configured to generate an FRM filter matching the current operating bandwidth according to the target parameter. 2.如权利要求1所述的系统,其特征在于,所述FRM滤波器组件中包括:第一移位寄存器、第一数字信号处理器DSP阵列、第二DSP阵列、第三DSP阵列、加法器及减法器;2. The system of claim 1, wherein the FRM filter assembly comprises: a first shift register, a first digital signal processor DSP array, a second DSP array, a third DSP array, an addition and subtractor; 所述第一移位寄存器的配置端、第一DSP阵列的配置端、第二DSP阵列的配置端及第三DSP阵列的配置端,分别与所述存储阵列的各个输出端连接;The configuration end of the first shift register, the configuration end of the first DSP array, the configuration end of the second DSP array, and the configuration end of the third DSP array are respectively connected with each output end of the storage array; 所述第一DSP阵列的输入端及所述第一移位寄存器的输入端与所述信号输入端连接,所述第一DSP阵列的输出端分别与所述第二DSP阵列的输入端、及所述减法器的第一输入端连接;The input end of the first DSP array and the input end of the first shift register are connected to the signal input end, and the output end of the first DSP array is respectively connected to the input end of the second DSP array, and the first input of the subtractor is connected; 所述第二DSP阵列的输出端与所述加法器的第一输入端连接;The output end of the second DSP array is connected with the first input end of the adder; 所述第一移位寄存器的输出端与所述减法器的第二输入端连接;The output end of the first shift register is connected to the second input end of the subtractor; 所述减法器的输出端与所述第三DSP阵列的输入端连接;The output end of the subtractor is connected with the input end of the third DSP array; 所述第三DSP阵列的输出端与所述加法器的第二输入端连接;The output end of the third DSP array is connected with the second input end of the adder; 所述加法器,被配置为输出处理后的信号。The adder is configured to output the processed signal. 3.如权利要求2所述的系统,其特征在于,3. The system of claim 2, wherein 所述第一DSP阵列中包括M1个依次连接、且首尾相连的第一DSP,其中,M1为N1/2向上取整得到的值;The first DSP array includes M1 first DSPs connected in sequence and connected end to end, wherein M1 is a value obtained by rounding up N1/2; 所述第二DSP阵列中包括M2个依次连接、且首尾相连的第二DSP,其中,M2为N2/2向上取整得到的值;The second DSP array includes M2 second DSPs connected in sequence and connected end to end, wherein M2 is a value obtained by rounding up N2/2; 所述第三DSP阵列中包括M3个依次连接、且首尾相连的第三DSP,其中,M3为N3/2向上取整得到的值;The third DSP array includes M3 third DSPs connected in sequence and connected end to end, wherein M3 is a value obtained by rounding up N3/2; 其中,N1为所述系统对应的各个FRM滤波器中内插原型滤波器的最高阶数,N2为所述系统对应的各个FRM滤波器中第一屏蔽滤波器的最高阶数,N3为所述系统对应的各个FRM滤波器中第二屏蔽滤波器的最高阶数。Wherein, N1 is the highest order of the interpolation prototype filter in each FRM filter corresponding to the system, N2 is the highest order of the first mask filter in each FRM filter corresponding to the system, and N3 is the The highest order of the second mask filter in each FRM filter corresponding to the system. 4.如权利要求3所述的系统,其特征在于,还包括:依次连接的2(M1-1)个第二移位寄存器;4. The system of claim 3, further comprising: 2 (M1-1) second shift registers connected in sequence; 其中,首个第二移位寄存器的输入端与所述信号输入端连接;Wherein, the input end of the first second shift register is connected with the signal input end; 每个所述第二移位寄存器的配置端均与所述存储阵列中用于存储第一延时参数的存储器的输出端连接,且第i个所述第二移位寄存器的输出端、第2(M1-1)-(i-1)个所述第二移位寄存器的输出端分别与第i+1个第一DSP的一个输入端连接,其中i为大于0、且小于或等于M1-1的正整数。The configuration terminal of each of the second shift registers is connected to the output terminal of the memory used for storing the first delay parameter in the storage array, and the output terminal of the i-th second shift register, the The output terminals of the 2(M1-1)-(i-1) second shift registers are respectively connected to an input terminal of the i+1th first DSP, where i is greater than 0 and less than or equal to M1 A positive integer of -1. 5.如权利要求4所述的系统,其特征在于,所述存储阵列中包括K个存储器,其中,K=M1+M2+M3+2,其中,M1个存储器,分别被配置为存储M1个第一DSP对应的参数;M2个存储器,分别被配置为存储M2个第二DSP对应的参数;M3个存储器,分别被配置为存储M3个第三DSP对应的参数,一个存储器被配置为存储所述第一移位寄存器对应的第二延时参数,另一个存储器被配置为存储所述M1-1个第二位移寄存器对应的第一延时参数。5. The system of claim 4, wherein the storage array comprises K memories, wherein K=M1+M2+M3+2, wherein the M1 memories are respectively configured to store M1 memories Parameters corresponding to the first DSP; M2 memories, which are respectively configured to store parameters corresponding to M2 second DSPs; M3 memories, which are respectively configured to store parameters corresponding to M3 third DSPs, and one memory is configured to store all the parameters. The second delay parameter corresponding to the first shift register, and another memory is configured to store the first delay parameter corresponding to the M1-1 second shift registers. 6.如权利要求5所述的系统,其特征在于,所述系统对应L种工作带宽,每个所述存储器内存储有与所述L种工作带宽分别对应的L种参数。6 . The system according to claim 5 , wherein the system corresponds to L kinds of working bandwidths, and each of the memories stores L kinds of parameters corresponding to the L kinds of working bandwidths respectively. 7 . 7.一种频率响应屏蔽滤波器生成方法,其特征在于,包括:7. A method for generating a frequency response shielding filter, comprising: 获取系统当前的工作带宽;Get the current working bandwidth of the system; 从存储阵列内读取与所述当前的工作带宽对应的目标参数;Read target parameters corresponding to the current working bandwidth from the storage array; 将所述目标参数发送给FRM滤波器组件,以生成与所述当前的工作带宽匹配的FRM滤波器。The target parameters are sent to an FRM filter component to generate an FRM filter that matches the current operating bandwidth. 8.如权利要求7所述的方法,其特征在于,所述从存储阵列内读取与所述当前的工作带宽对应的目标参数,包括:8. The method according to claim 7, wherein the reading the target parameter corresponding to the current working bandwidth from the storage array comprises: 获取所述存储阵列的每个存储器中各参数与带宽的对应关系;Obtain the corresponding relationship between each parameter and bandwidth in each memory of the storage array; 根据所述各参数与带宽的对应关系及各个参数在存储器内的位置,确定与所述当前的工作带宽对应的目标地址;Determine the target address corresponding to the current working bandwidth according to the corresponding relationship between the parameters and the bandwidth and the positions of the parameters in the memory; 从存储阵列内读取与所述目标地址对应的目标参数。The target parameter corresponding to the target address is read from the storage array. 9.如权利要求8所述的方法,其特征在于,与所述当前的工作带宽对应的FRM滤波器中的内插原型滤波器的阶数为N1,所述根据所述各参数与带宽的对应关系及各个参数在存储器内的位置,确定与所述当前的工作带宽对应的目标地址,包括:9. The method according to claim 8, wherein the order of the interpolation prototype filter in the FRM filter corresponding to the current working bandwidth is N1, and the order of the interpolation prototype filter according to the parameters and the bandwidth is N1. The corresponding relationship and the position of each parameter in the memory determine the target address corresponding to the current working bandwidth, including: 确定所述N1阶内插原型滤波器分别对应的M1个存储器,其中,M1为N1/2向上取整得到的值;Determine the M1 memories corresponding to the N1-order interpolation prototype filters, wherein M1 is a value obtained by rounding up N1/2; 根据每个所述存储器内各参数与带宽的对应关系及各个参数在存储器内的位置,确定与所述当前的工作带宽对应的M1个目标地址。M1 target addresses corresponding to the current working bandwidth are determined according to the corresponding relationship between each parameter and the bandwidth in each of the memories and the position of each parameter in the memory. 10.如权利要求7所述的方法,其特征在于,所述FRM滤波器组件中包括第一DSP阵列、第一移位寄存器、第二DSP阵列及第三DSP阵列,所述目标参数中包括滤波参数、第二延时参数、第一屏蔽参数及第二屏蔽参数,所述将所述目标参数发送给FRM滤波器组件,包括:10. The method of claim 7, wherein the FRM filter component comprises a first DSP array, a first shift register, a second DSP array and a third DSP array, and the target parameters include Filtering parameters, second delay parameters, first masking parameters, and second masking parameters, and the sending of the target parameters to the FRM filter component includes: 将所述滤波参数发送给第一DSP阵列;sending the filtering parameters to the first DSP array; 将所述第二延时参数发送给所述第一移位寄存器;sending the second delay parameter to the first shift register; 将所述第一屏蔽参数发送给所述第二DSP阵列;sending the first mask parameter to the second DSP array; 将所述第二屏蔽参数发送给所述第三DSP阵列。The second mask parameter is sent to the third DSP array. 11.如权利要求10所述的方法,其特征在于,所述FRM滤波器组件中还包括依次连接的2(M1-1)个第二移位寄存器,所述目标参数中还包括第一延时参数,所述将所述目标参数发送给FRM滤波器组件,包括:11. The method of claim 10, wherein the FRM filter assembly further comprises 2 (M1-1) second shift registers connected in sequence, and the target parameter further comprises a first delay register. time parameters, and the sending of the target parameters to the FRM filter component includes: 将所述第一延时参数,分别发送给所述2(M1-1)个第二移位寄存器,其中,M1为N1/2向上取整得到的值,N1为所述FRM滤波器组件对应的各个FRM滤波器中内插原型滤波器的最高阶数。Send the first delay parameter to the 2 (M1-1) second shift registers respectively, where M1 is the value obtained by rounding up N1/2, and N1 is the corresponding value of the FRM filter component The highest order of the interpolated prototype filter in each FRM filter of .
CN202011109562.1A 2020-10-16 2020-10-16 Frequency response mask filter system and method of generation Active CN114389574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011109562.1A CN114389574B (en) 2020-10-16 2020-10-16 Frequency response mask filter system and method of generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011109562.1A CN114389574B (en) 2020-10-16 2020-10-16 Frequency response mask filter system and method of generation

Publications (2)

Publication Number Publication Date
CN114389574A true CN114389574A (en) 2022-04-22
CN114389574B CN114389574B (en) 2025-07-25

Family

ID=81192996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011109562.1A Active CN114389574B (en) 2020-10-16 2020-10-16 Frequency response mask filter system and method of generation

Country Status (1)

Country Link
CN (1) CN114389574B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783977A (en) * 1996-02-07 1998-07-21 Loral Aerospace Corporation Tunable and bandwidth programmable multi-element filter system
US6657964B1 (en) * 1998-05-26 2003-12-02 Hitachi, Ltd. Terminal with bandwidth control function
CN101072019A (en) * 2007-04-19 2007-11-14 华为技术有限公司 Wave filter and its filtering method
CN101662450A (en) * 2009-09-17 2010-03-03 京信通信系统(中国)有限公司 Table-lookup self-adapting peak-clipping method
CN103580693A (en) * 2012-07-23 2014-02-12 特克特朗尼克公司 Time interleaved analog to digital converter mismatch correction
CN105162434A (en) * 2015-09-22 2015-12-16 哈尔滨工业大学 Time-variant filtering parameter generating and realizing system and method based on time frequency analysis
CN106549650A (en) * 2016-12-07 2017-03-29 西安电子科技大学 A kind of implementation method of the high order FIR filter based on FPGA

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783977A (en) * 1996-02-07 1998-07-21 Loral Aerospace Corporation Tunable and bandwidth programmable multi-element filter system
US6657964B1 (en) * 1998-05-26 2003-12-02 Hitachi, Ltd. Terminal with bandwidth control function
CN101072019A (en) * 2007-04-19 2007-11-14 华为技术有限公司 Wave filter and its filtering method
CN101662450A (en) * 2009-09-17 2010-03-03 京信通信系统(中国)有限公司 Table-lookup self-adapting peak-clipping method
CN103580693A (en) * 2012-07-23 2014-02-12 特克特朗尼克公司 Time interleaved analog to digital converter mismatch correction
CN105162434A (en) * 2015-09-22 2015-12-16 哈尔滨工业大学 Time-variant filtering parameter generating and realizing system and method based on time frequency analysis
CN106549650A (en) * 2016-12-07 2017-03-29 西安电子科技大学 A kind of implementation method of the high order FIR filter based on FPGA

Also Published As

Publication number Publication date
CN114389574B (en) 2025-07-25

Similar Documents

Publication Publication Date Title
US10367477B2 (en) Sparse cascaded-integrator-comb filters
US6308191B1 (en) Programmable processor circuit with a reconfigurable memory for realizing a digital filter
CN103218348B (en) Fast Fourier Transform (FFT) disposal route and system
US12001381B2 (en) Reconfigurable processor and reconfigurable processor system
KR19990063536A (en) A programmable circuit for realizing a digital filter
CN102025377B (en) Improved cascaded integral comb interpolation filter
US20080071846A1 (en) Processor Architecture for Programmable Digital Filters in a Multi-Standard Integrated Circuit
KR102729410B1 (en) Data processing device, method, base station and storage medium
CN111079934B (en) Number Theoretical Transformation Unit and Method Applied to Error Learning Encryption Algorithm in Ring Domain
CN113556101B (en) IIR filter and data processing method thereof
CN114389574A (en) Frequency response masking filter system and method of generation
US6735167B1 (en) Orthogonal transform processor
US6304133B1 (en) Moving average filter
CN114168106A (en) Data processing method, device and equipment based on convolutional neural network
CN102457251B (en) Method and device for realizing universal digital filter
CN118590034A (en) Glitch-free delay chain switching circuit and switching method
CN115765975B (en) Low-power implementation method, chip, server and storage medium of SHA-256 algorithm
CN107786475B (en) Blind equalization error calculation method and device
CN114614795A (en) A high-order polyphase digital filtering sampling method and system
CN100563223C (en) A method and device for eliminating DC component of digital filter output
CN115270057A (en) Multi-mode FFT implementation device and method
CN115242220A (en) Order Dynamically Reconfigurable Folding Circuit Structure Digital Shaping Filter and Design Method
CN111814680A (en) A control method of multi-channel AXI bus based on FPGA
CN110738017A (en) Distributed integrated circuit simulation method and device, computing equipment and storage medium
CN113626082A (en) Data processing method and device and related product

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant