[go: up one dir, main page]

CN114388813B - Collector - Google Patents

Collector Download PDF

Info

Publication number
CN114388813B
CN114388813B CN202210046426.5A CN202210046426A CN114388813B CN 114388813 B CN114388813 B CN 114388813B CN 202210046426 A CN202210046426 A CN 202210046426A CN 114388813 B CN114388813 B CN 114388813B
Authority
CN
China
Prior art keywords
diffusion layer
equal
groups
current collector
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210046426.5A
Other languages
Chinese (zh)
Other versions
CN114388813A (en
Inventor
占忠亮
仝永成
陈初升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Stack Technology Hefei Co ltd
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202210046426.5A priority Critical patent/CN114388813B/en
Publication of CN114388813A publication Critical patent/CN114388813A/en
Application granted granted Critical
Publication of CN114388813B publication Critical patent/CN114388813B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

The invention discloses a current collector, which relates to the technical field of electrochemical devices, and comprises a first diffusion layer, a second diffusion layer, a third diffusion layer and a surface protection layer which are sequentially stacked from bottom to top, wherein the first diffusion layer and the third diffusion layer are made of porous materials, and the second diffusion layer comprises a plurality of conductive strips which are arranged at intervals so as to form a gas channel between the conductive strips. The current collector is provided with an open gas diffusion channel, which is beneficial to increasing the gas diffusion flux, reducing the diffusion resistance of the gas such as fuel or air in the electric pile and improving the uniformity of the distribution of the gas such as fuel or air on the surface of the electrode. The current collector provided by the invention forms an open gas diffusion channel through the first diffusion layer, the second diffusion layer and the third diffusion layer, and has high gas diffusion flux.

Description

集流体Collector

技术领域technical field

本发明涉及电化学器件技术领域,特别涉及一种集流体材料。The invention relates to the technical field of electrochemical devices, in particular to a collector material.

背景技术Background technique

固体氧化物电池(SOC)是以氧离子或质子导电氧化物为电解质隔膜的电化学器件,既可以在燃料电池模式下运行,将氢气、合成气等燃料高效、清洁的转化为电能和热能,又可以在电解模式下运行,将水/二氧化碳转化为氢气/一氧化碳,从而将富余电力转化为化学能。SOC单体电池由致密电解质和位于其两侧的多孔空气极(或称为正极)和多孔燃料极(或称为负极)构成,为了满足实际应用中的高功率要求,需要将单体电池、燃料极集流体、空气极集流体、连接体等通过燃料极密封件及空气极密封件串接、封装成为电堆。A solid oxide cell (SOC) is an electrochemical device with an oxygen ion or proton conductive oxide as the electrolyte membrane. It can operate in fuel cell mode and convert fuels such as hydrogen and syngas into electricity and heat efficiently and cleanly. It can also operate in electrolysis mode, converting water/carbon dioxide into hydrogen/carbon monoxide, thereby converting excess electricity into chemical energy. The SOC single cell is composed of a dense electrolyte and a porous air electrode (or positive electrode) and a porous fuel electrode (or negative electrode) on both sides. In order to meet the high power requirements in practical applications, it is necessary to combine the single The fuel electrode collector, the air electrode collector, and the connecting body are connected in series through the fuel electrode seal and the air electrode seal, and packaged to form a stack.

为了增强燃料、空气等气体在电极表面分配的均匀性,设置集流体,需要采用机械加工或者刻蚀工艺等,在连接体两侧分别制造燃料气体和空气的扩散通道。为了增强电堆性能的稳定性,还需要在连接体表面覆盖防护导电涂层,比如,在连接体燃料侧表面覆盖金属镍涂层,在连接体空气侧表面覆盖(La,Sr)MnO3或者MnCo2O4等导电氧化物涂层。然而,集流体的气体扩散通量较低。In order to enhance the uniformity of the distribution of fuel, air and other gases on the surface of the electrode, the current collector needs to be machined or etched to create diffusion channels for fuel gas and air on both sides of the connector. In order to enhance the stability of the stack performance, it is also necessary to cover the surface of the connecting body with a protective conductive coating, for example, covering the fuel side of the connecting body with a metal nickel coating, and covering the air side of the connecting body with (La, Sr) MnO 3 or Conductive oxide coatings such as MnCo 2 O 4 . However, the gas diffusion flux of the current collector is low.

发明内容Contents of the invention

本发明的主要目的是提出一种集流体,旨在提供一种高气体扩散通量的集流体。The main purpose of the present invention is to propose a current collector, aiming at providing a current collector with high gas diffusion flux.

为实现上述目的,本发明提出一种集流体,包括自下向上依次层叠设置的第一扩散层、第二扩散层、第三扩散层和表面保护层,其中,所述第一扩散层和所述第三扩散层的材质为多孔材质,所述第二扩散层包括多个间隔设置的导电荆条,以在所述导电荆条之间形成气体通道。In order to achieve the above object, the present invention proposes a current collector, comprising a first diffusion layer, a second diffusion layer, a third diffusion layer and a surface protection layer stacked sequentially from bottom to top, wherein the first diffusion layer and the The third diffusion layer is made of porous material, and the second diffusion layer includes a plurality of conductive wattles arranged at intervals to form gas channels between the conductive wattles.

可选地,所述第一扩散层的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1;和/或,Optionally, the material of the first diffusion layer includes Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , at least one of LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1; and/or,

所述导电荆条的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1;和/或,The materials of the conductive vitex include Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M 0.5 O At least one of 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1; and/or,

所述第三扩散层的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1;和/或,The material of the third diffusion layer includes Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M At least one of 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1; and/or,

所述表面保护层的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1。The material of the surface protection layer includes Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M 0.5 At least one of O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1.

可选地,所述第一扩散层的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1;和/或,Optionally, the material of the first diffusion layer includes (La 1-x Sr x )MnO 3-δ , (La 1-x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6 -δ , at least one of LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1, 0≤x≤1; and/or,

所述导电荆条的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1;和/或,The materials of the conductive vitex include (La 1-x Sr x )MnO 3-δ , (La 1-x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M At least one of 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1, 0≤x≤1; and/or,

所述第三扩散层的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1;和/或,The material of the third diffusion layer includes (La 1-x Sr x )MnO 3-δ , (La 1-x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe At least one of 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1, 0≤x≤1; and/or,

所述表面保护层的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1。The material of the surface protection layer includes (La 1-x Sr x )MnO 3-δ , (La 1-x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 At least one of M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1, 0≤x≤1.

可选地,所述第一扩散层的孔隙率为30%~98%;和/或,Optionally, the porosity of the first diffusion layer is 30%-98%; and/or,

所述第三扩散层的孔隙率为30%~98%;和/或,The porosity of the third diffusion layer is 30%-98%; and/or,

所述第一扩散层的厚度为0.05~1mm;和/或,The thickness of the first diffusion layer is 0.05-1 mm; and/or,

所述第三扩散层的厚度为0.05~1mm;和/或,The thickness of the third diffusion layer is 0.05-1 mm; and/or,

所述第二扩散层的厚度为0.05~1mm。The thickness of the second diffusion layer is 0.05-1 mm.

可选地,所述导电荆条为圆柱体,所述圆柱体的直径为0.5~10mm。Optionally, the conductive vitex is a cylinder, and the diameter of the cylinder is 0.5-10 mm.

可选地,所述导电荆条的材质为多孔材质,多孔材质的孔隙率为0%~90%。Optionally, the material of the conductive vitex is porous, and the porosity of the porous material is 0%-90%.

可选地,所述表面保护层的厚度为1~1000μm;和/或,Optionally, the thickness of the surface protection layer is 1-1000 μm; and/or,

所述表面保护层的材质为多孔材质,多孔材质的孔隙率为0%~40%。The material of the surface protection layer is a porous material, and the porosity of the porous material is 0%-40%.

可选地,所述第二扩散层和所述第三扩散层均设置有多个,且所述第二扩散层和所述第三扩散层的数量相等设置。Optionally, there are multiple second diffusion layers and third diffusion layers, and the numbers of the second diffusion layers and the third diffusion layers are equal.

可选地,所述集流体的厚度为0.1~5mm;和/或,Optionally, the thickness of the current collector is 0.1-5 mm; and/or,

所述第一扩散层、所述导电荆条和所述第三扩散层上均贯设有沿上下向延伸的直孔,所述直孔的孔径为5~200μm。The first diffusion layer, the conductive wattle and the third diffusion layer are all provided with straight holes extending vertically, and the diameter of the straight holes is 5-200 μm.

本发明提供的技术方案中,提出一种集流体,包括自下向上依次层叠设置的第一扩散层、第二扩散层、第三扩散层和表面保护层,其中,所述第一扩散层和所述第三扩散层为多孔材质,所述第二扩散层包括多个间隔设置的导电荆条,以在所述导电荆条之间形成气体通道,使得该集流体具有开放式的气体扩散通道,有助于增大气体扩散通量,降低燃料或空气等气体在电堆内的扩散阻力,提升燃料或空气等气体在电极表面分布的均匀性。本发明提出的集流体,通过第一扩散层、第二扩散层、第三扩散层,形成开放式气体扩散通道,具有高的气体扩散通量。In the technical solution provided by the present invention, a current collector is proposed, including a first diffusion layer, a second diffusion layer, a third diffusion layer and a surface protection layer stacked sequentially from bottom to top, wherein the first diffusion layer and The third diffusion layer is made of a porous material, and the second diffusion layer includes a plurality of conductive wattles arranged at intervals to form gas channels between the conductive wattles, so that the current collector has an open gas diffusion channel. It helps to increase the gas diffusion flux, reduce the diffusion resistance of fuel or air and other gases in the stack, and improve the uniformity of fuel or air and other gases on the electrode surface. The current collector proposed by the present invention forms an open gas diffusion channel through the first diffusion layer, the second diffusion layer and the third diffusion layer, and has high gas diffusion flux.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅为本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only For some embodiments of the present invention, those skilled in the art can also obtain other related drawings according to these drawings without any creative effort.

图1为本发明提供的集流体的一实施例的分解示意图;Fig. 1 is an exploded schematic diagram of an embodiment of a current collector provided by the present invention;

图2为本发明提出的集流体的一实施例的结构示意图。FIG. 2 is a schematic structural view of an embodiment of a current collector proposed by the present invention.

附图标号说明:Explanation of reference numbers:

标号label 名称name 标号label 名称name 100100 集流体Collector 33 第三扩散层third diffusion layer 200200 重复单元repeat unit 44 表面保护层surface protection layer 11 第一扩散层first diffusion layer 55 导电荆条Conductive Vitex 22 第二扩散层second diffusion layer

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described in conjunction with the embodiments and with reference to the accompanying drawings.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below. Those who do not indicate the specific conditions in the examples are carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used were not indicated by the manufacturer, and they were all conventional products that could be purchased from the market.

另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。此外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In addition, the meaning of "and/or" appearing in the whole text includes three parallel schemes, taking "A and/or B" as an example, including scheme A, scheme B, or schemes that both A and B satisfy. In addition, the technical solutions of various embodiments can be combined with each other, but it must be based on the realization of those skilled in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of technical solutions does not exist , nor within the scope of protection required by the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

为了增强燃料、空气等气体在电极表面分配的均匀性,设置集流体,需要采用机械加工或者刻蚀工艺等,在连接体两侧分别制造燃料气体和空气的扩散通道。为了增强电堆性能的稳定性,还需要在连接体表面覆盖防护导电涂层,比如,在连接体燃料侧表面覆盖金属镍涂层,在连接体空气侧表面覆盖(La,Sr)MnO3或者MnCo2O4等导电氧化物涂层。然而,集流体的气体扩散通量较低。In order to enhance the uniformity of the distribution of fuel, air and other gases on the surface of the electrode, the current collector needs to be machined or etched to create diffusion channels for fuel gas and air on both sides of the connector. In order to enhance the stability of the stack performance, it is also necessary to cover the surface of the connecting body with a protective conductive coating, for example, covering the fuel side of the connecting body with a metal nickel coating, and covering the air side of the connecting body with (La, Sr) MnO 3 or Conductive oxide coatings such as MnCo 2 O 4 . However, the gas diffusion flux of the current collector is low.

鉴于此,本发明提出一种集流体,旨在提供一种高气体扩散通量的集流体。本法明附图中,图1为本发明提供的集流体的一实施例的分解示意图;图2为本发明提出的集流体的一实施例的结构示意图。In view of this, the present invention proposes a current collector, aiming to provide a current collector with high gas diffusion flux. In the accompanying drawings of this invention, FIG. 1 is an exploded schematic diagram of an embodiment of a current collector provided by the present invention; FIG. 2 is a schematic structural diagram of an embodiment of a current collector proposed by the present invention.

请参阅图1和图2,本发明提出一种集流体100,包括自下向上依次层叠设置的第一扩散层1、第二扩散层2、第三扩散层3和表面保护层4,其中,所述第一扩散层1和所述第三扩散层3的材质为多孔材质,所述第二扩散层2包括多个间隔设置的导电荆条5,以在所述导电荆条5之间形成气体通道。Referring to Fig. 1 and Fig. 2, the present invention proposes a current collector 100, which includes a first diffusion layer 1, a second diffusion layer 2, a third diffusion layer 3 and a surface protection layer 4 stacked in sequence from bottom to top, wherein, The material of the first diffusion layer 1 and the third diffusion layer 3 is a porous material, and the second diffusion layer 2 includes a plurality of conductive wattles 5 arranged at intervals to form gas passages between the conductive wattles 5 .

本发明提供的技术方案中,提出一种集流体100,包括自下向上依次层叠设置的第一扩散层1、第二扩散层2、第三扩散层3和表面保护层4,其中,所述第一扩散层1和所述第三扩散层3为多孔材质,所述第二扩散层2包括多个间隔设置的导电荆条5,以在所述导电荆条5之间形成气体通道。该集流体100具有开放式的气体扩散通道,有助于增大气体扩散通量,降低燃料或空气等气体在电堆内的扩散阻力,提升燃料或空气等气体在电极表面分布的均匀性。本发明提出的集流体100,通过第一扩散层1、第二扩散层2、第三扩散层3,形成开放式气体扩散通道,具有高的气体扩散通量。In the technical solution provided by the present invention, a current collector 100 is proposed, including a first diffusion layer 1, a second diffusion layer 2, a third diffusion layer 3 and a surface protection layer 4 that are sequentially stacked from bottom to top, wherein the The first diffusion layer 1 and the third diffusion layer 3 are porous materials, and the second diffusion layer 2 includes a plurality of conductive wattles 5 arranged at intervals to form gas channels between the conductive wattles 5 . The current collector 100 has an open gas diffusion channel, which helps to increase the gas diffusion flux, reduce the diffusion resistance of fuel or air and other gases in the stack, and improve the uniformity of the distribution of fuel or air and other gases on the electrode surface. The current collector 100 proposed by the present invention forms an open gas diffusion channel through the first diffusion layer 1 , the second diffusion layer 2 and the third diffusion layer 3 , and has a high gas diffusion flux.

可以理解,本发明对于第一扩散层1、第二扩散层2、第三扩散层3和表面保护层4,各层之间的连接方式不做限制,优选地,采用相互烧结而成。It can be understood that the present invention does not limit the connection method between the first diffusion layer 1 , the second diffusion layer 2 , the third diffusion layer 3 and the surface protection layer 4 , preferably, they are formed by mutual sintering.

在本发明的一个实施例中,优选地,所述第一扩散层1、所述导电荆条5、所述第三扩散层3和所述表面保护层4是在还原性气氛下具有高电子电导率(>1S/cm)的金属、合金、氧化物、碳化物以及它们的复合物,具体地,所述第一扩散层1的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1;所述导电荆条5的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1;所述第三扩散层3的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1;所述表面保护层4的材质包括Ni、Fe、Co、Cu、FeNi3、430不锈钢、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1。如此,使得该集流体100具有高的电子电导率,减小多孔电极(燃料极或空气极)与连接体之间的电子传导电阻。In one embodiment of the present invention, preferably, the first diffusion layer 1, the conductive wattle 5, the third diffusion layer 3 and the surface protection layer 4 have high electronic conductivity in a reducing atmosphere rate (>1S/cm) of metals, alloys, oxides, carbides and their composites, specifically, the material of the first diffusion layer 1 includes Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, At least one of Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ One, 0≤δ≤1; the material of the conductive Vitex 5 includes Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 At least one of O 6-δ , LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1; the material of the third diffusion layer 3 includes Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr At least one of 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1; the material of the surface protection layer 4 includes Ni, Fe, Co, Cu, FeNi 3 , 430 stainless steel, Sr 2 Fe 1.5 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ≤δ≤1. In this way, the current collector 100 has high electronic conductivity, reducing the electron conduction resistance between the porous electrode (fuel electrode or air electrode) and the connecting body.

可以理解,上述第一扩散层1、导电荆条5、第三扩散层3和表面保护层4的材质的选择,可以同时满足,也可以只满足其中一个,而作为本发明的优选实施例,上述同时满足,使得集流体100的电导率更高。It can be understood that the selection of the materials of the above-mentioned first diffusion layer 1, conductive wattle 5, third diffusion layer 3 and surface protection layer 4 can be satisfied at the same time, or only one of them can be satisfied, and as a preferred embodiment of the present invention, the above-mentioned At the same time, the electrical conductivity of the current collector 100 is higher.

在本发明的另一个实施例中,优选地,所述第一扩散层1、所述导电荆条5、所述第三扩散层3和所述表面保护层4是在氧化性气氛下具有高电子电导率(>1S/cm)的氧化物、碳化物以及它们的复合物,具体地,所述第一扩散层1的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1;所述导电荆条5的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1;所述第三扩散层3的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1;所述表面保护层4的材质包括(La1-xSrx)MnO3-δ、(La1-xSrx)CoO3-δ、LaBa0.5Sr0.5Co2O5+δ、SmBa0.5Sr0.5Co2O5+δ、SmBaCo2O5+δ、BaGd0.8La0.2Co2O6-δ、Sr2Fe1.5Mo0.5O6-δ、La0.5Sr1.5Fe1.5M0.5O6-δ、LaSrFe1.5M0.5O6-δ和La0.4Sr1.6Fe1.5Ni0.1M0.4O6-δ中的至少一种,0≤δ≤1,0≤x≤1。如此,使得该集流体100具有高的电子电导率,减小多孔电极(燃料极或空气极)与连接体之间的电子传导电阻。In another embodiment of the present invention, preferably, the first diffusion layer 1, the conductive wattle 5, the third diffusion layer 3 and the surface protection layer 4 have high electron density in an oxidizing atmosphere. Conductivity (>1S/cm) oxides, carbides and their composites, specifically, the material of the first diffusion layer 1 includes (La 1-x Sr x )MnO 3-δ , (La 1- x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr At least one of 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ 0≤δ≤1, 0≤x≤1; the material of the conductive Vitex 5 includes (La 1-x Sr x )MnO 3-δ , (La 1-x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La At least one of 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ , LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1, 0≤x ≤1; the material of the third diffusion layer 3 includes (La 1-x Sr x )MnO 3-δ , (La 1-x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6 -δ , at least one of LaSrFe 1.5 M 0.5 O 6-δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1, 0≤x≤1; the surface protection layer 4 The materials include (La 1-x Sr x )MnO 3-δ , (La 1-x Sr x )CoO 3-δ , LaBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBa 0.5 Sr 0.5 Co 2 O 5+δ , SmBaCo 2 O 5+δ , BaGd 0.8 La 0.2 Co 2 O 6-δ , Sr 2 Fe 1.5 Mo 0.5 O 6-δ , La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6 , LaSrFe 1.5 M 0.5 O 6 -δ At least one of δ and La 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ , 0≤δ≤1, 0≤x≤1. In this way, the current collector 100 has high electronic conductivity, reducing the electron conduction resistance between the porous electrode (fuel electrode or air electrode) and the connecting body.

同理,上述第一扩散层1、导电荆条5、第三扩散层3和表面保护层4的材质的选择,可以同时满足,也可以只满足其中一个,而作为本发明的优选实施例,上述同时满足,使得集流体100的电导率更高。In the same way, the selection of the materials of the first diffusion layer 1, the conductive wattle 5, the third diffusion layer 3 and the surface protection layer 4 can be satisfied at the same time, or only one of them can be satisfied, and as a preferred embodiment of the present invention, the above-mentioned At the same time, the electrical conductivity of the current collector 100 is higher.

在固体氧化物电池堆中,所述表面保护层4与气密性的连接体紧密接触,连接体中的原子向多孔电极内部的挥发与沉积以抑制由此而造成的电极钝化及电堆性能衰减,因此,所述表面保护层4优选为多孔材质,具有0~40%(优选范围0~10%)的低孔隙率,甚至是完全致密的。In the solid oxide battery stack, the surface protection layer 4 is in close contact with the airtight connecting body, and the atoms in the connecting body volatilize and deposit inside the porous electrode to inhibit the resulting electrode passivation and stacking. Performance decay, therefore, the surface protection layer 4 is preferably a porous material with a low porosity of 0-40% (preferably in the range of 0-10%), or even completely dense.

为了促进燃料或者空气等气体在所述集流体100内的快速扩散以增强气体在多孔电极表面分配的均匀性,所述第一扩散层1、所述第三扩散层3具有30%~98%(优选范围50%~70%)的孔隙率。所述第二扩散层2中除导电荆条5外的区域构成相互连通的开放式通道,气体可以在所述开放式通道内快速传输,此外,所述导电荆条5可以是致密的,当然也可以是多孔材质,具有0~90%(优选范围30%~60%)的孔隙率,第一扩散层1与单体电池的多孔电极(燃料极或空气极)紧密接触,如此,气体也可以通过导电荆条5的孔扩散,快速传输。In order to promote the rapid diffusion of gas such as fuel or air in the current collector 100 to enhance the uniformity of gas distribution on the surface of the porous electrode, the first diffusion layer 1 and the third diffusion layer 3 have 30% to 98% (preferably in the range of 50% to 70%) porosity. The area of the second diffusion layer 2 except the conductive vitex 5 constitutes an open channel connected to each other, and the gas can be quickly transported in the open channel. In addition, the conductive vitex 5 can be dense, and of course it can be It is a porous material with a porosity of 0-90% (preferred range 30%-60%). The first diffusion layer 1 is in close contact with the porous electrode (fuel electrode or air electrode) of the single cell, so that gas can also pass through The pores of the conductive Vitex 5 are diffused for fast transmission.

进一步地,所述导电荆条5为圆柱体,所述圆柱体的直径为0.5~10mm,更优选为1~2mm,在本发明实施例中,请参阅图1和图2,圆柱体沿上下方向延伸,两个底面上下分布,如此,气体在开放式通道内快速传输。Further, the conductive vitex 5 is a cylinder, and the diameter of the cylinder is 0.5-10 mm, more preferably 1-2 mm. In the embodiment of the present invention, please refer to Fig. 1 and Fig. 2 , the cylinder is along the vertical direction Extended, the two bottom surfaces are distributed up and down, so that the gas is quickly transported in the open channel.

更进一步地,所述第一扩散层1、所述导电荆条5和所述第三扩散层3上均贯设有沿上下向延伸的直孔,所述直孔的孔径为5~200μm(优选范围50~150μm)。此外,优选地,第一扩散层1、所述导电荆条5和所述第三扩散层3的直孔相互对应,以形成气流通道,如此,该集流体100具有较低孔隙率甚至致密的防护导电涂层,阻止连接体中原子向多孔电极内部的挥发与沉积,从而避免由此造成的电极钝化和电堆性能衰减。Furthermore, the first diffusion layer 1, the conductive wattle 5 and the third diffusion layer 3 are all provided with straight holes extending vertically, and the diameter of the straight holes is 5-200 μm (preferably Range 50 ~ 150μm). In addition, preferably, the straight holes of the first diffusion layer 1, the conductive wattles 5, and the third diffusion layer 3 correspond to each other to form airflow channels, so that the current collector 100 has a lower porosity and even a dense protective The conductive coating prevents the volatilization and deposition of atoms in the connector to the interior of the porous electrode, thereby avoiding the resulting electrode passivation and stack performance degradation.

本发明对于各层的厚度不做限制,优选地,所述第一扩散层1的厚度为0.05~1mm(更优选为0.2~0.5mm);所述第二扩散层2的厚度为0.05~1mm(更优选为0.2~0.5mm);所述第三扩散层3的厚度为0.05~1mm(更优选为0.2~0.5mm);所述表面保护层4的厚度为1~1000μm(更优选为10~100μm);上述厚度下,集流体100的气体扩散通量高。The present invention does not limit the thickness of each layer. Preferably, the thickness of the first diffusion layer 1 is 0.05-1 mm (more preferably 0.2-0.5 mm); the thickness of the second diffusion layer 2 is 0.05-1 mm. (more preferably 0.2-0.5 mm); the thickness of the third diffusion layer 3 is 0.05-1 mm (more preferably 0.2-0.5 mm); the thickness of the surface protection layer 4 is 1-1000 μm (more preferably 10 ~100 μm); under the above thickness, the gas diffusion flux of the current collector 100 is high.

可以理解,上述第一扩散层1、第二扩散层2、第三扩散层3和表面保护层4的厚度,是指各层在上下向的尺寸,上述四个厚度范围可以同时满足,也可以只满足其中一个,而作为本发明的优选实施例,上述四个厚度范围同时满足,如此,集流体100的气体扩散通量更高。It can be understood that the thicknesses of the first diffusion layer 1, the second diffusion layer 2, the third diffusion layer 3 and the surface protection layer 4 refer to the dimensions of each layer in the upper and lower directions, and the above four thickness ranges can be satisfied at the same time, or can be Only one of them is satisfied, and as a preferred embodiment of the present invention, the above four thickness ranges are satisfied at the same time, so that the gas diffusion flux of the current collector 100 is higher.

进一步地,在本发明实施例中,所述集流体100的厚度为0.1~5mm,上述厚度下,集流体100的气体扩散通量高。Further, in the embodiment of the present invention, the thickness of the current collector 100 is 0.1-5 mm, under the above thickness, the gas diffusion flux of the current collector 100 is high.

优选地,所述第二扩散层2和所述第三扩散层3均设置有多个,且所述第二扩散层2和所述第三扩散层3的数量相等设置,如此,一个第二扩散层2和一个第三扩散层3构成一个重复单元200,集流体100在第一扩散层1和表面保护层4之间设置一个或多个重复单元200,使得集流体100的气体扩散通量高。Preferably, a plurality of the second diffusion layer 2 and the third diffusion layer 3 are provided, and the number of the second diffusion layer 2 and the third diffusion layer 3 are equal, so that one second The diffusion layer 2 and a third diffusion layer 3 constitute a repeating unit 200, and the current collector 100 is provided with one or more repeating units 200 between the first diffusion layer 1 and the surface protection layer 4, so that the gas diffusion flux of the current collector 100 high.

综上,本发明实施例提出的集流体100,首先,该集流体100具有高的电子电导率,减小多孔电极(燃料极或空气极)与连接体之间的电子传导电阻;其次,该集流体100具有开放式的气体扩散通道,有助于增大气体扩散通量,降低燃料或空气等气体在电堆内的扩散阻力,提升燃料或空气等气体在电极表面分布的均匀性;最后,该集流体100还具有较低孔隙率甚至致密的防护导电涂层,阻止连接体中原子向多孔电极内部的挥发与沉积,从而避免由此造成的电极钝化和电堆性能衰减。In summary, the current collector 100 proposed in the embodiment of the present invention, firstly, the current collector 100 has high electronic conductivity, which reduces the electronic conduction resistance between the porous electrode (fuel electrode or air electrode) and the connecting body; secondly, the The current collector 100 has an open gas diffusion channel, which helps to increase the gas diffusion flux, reduce the diffusion resistance of fuel or air and other gases in the stack, and improve the uniformity of fuel or air and other gases on the electrode surface; finally The current collector 100 also has a relatively low porosity or even a dense protective conductive coating, which prevents the volatilization and deposition of atoms in the connector to the interior of the porous electrode, thereby avoiding the resulting electrode passivation and stack performance degradation.

以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the patent protection scope of the present invention.

Claims (9)

1. The utility model provides a current collector, its characterized in that includes from down upwards stacks first diffusion layer, second diffusion layer, third diffusion layer and the surface protection layer that sets up in proper order, wherein, first diffusion layer with the material of third diffusion layer is porous material, the second diffusion layer includes a plurality of conductive wattle that the interval set up, in order to form the gas channel between the conductive wattle.
2. The current collector of claim 1, wherein the material of the first diffusion layer comprises Ni, fe, co, cu, feNi 3 Stainless steel, sr 430 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of which delta is more than or equal to 0 and less than or equal to 1; and/or the number of the groups of groups,
the conductive strips comprise Ni, fe, co, cu, feNi 3 Stainless steel, sr 430 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of which delta is more than or equal to 0 and less than or equal to 1; and/or the number of the groups of groups,
the material of the third diffusion layer comprises Ni, fe, co, cu, feNi 3 Stainless steel, sr 430 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of which is more than or equal to 0 and less than or equal to delta1, a step of; and/or the number of the groups of groups,
the material of the surface protection layer comprises Ni, fe, co, cu, feNi 3 Stainless steel, sr 430 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of which is more than or equal to 0 and less than or equal to 1.
3. The current collector according to claim 1, wherein the material of the first diffusion layer comprises (La 1-x Sr x )MnO 3-δ 、(La 1-x Sr x )CoO 3-δ 、LaBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBaCo 2 O 5+δ 、BaGd 0.8 La 0.2 Co 2 O 6-δ 、Sr 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of the components is more than or equal to 0 and less than or equal to 1, and more than or equal to 0 and less than or equal to 1; and/or the number of the groups of groups,
the conductive thorn comprises (La) 1-x Sr x )MnO 3-δ 、(La 1-x Sr x )CoO 3-δ 、LaBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBaCo 2 O 5+δ 、BaGd 0.8 La 0.2 Co 2 O 6-δ 、Sr 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of the components is more than or equal to 0 and less than or equal to 1, and more than or equal to 0 and less than or equal to 1; and/or the number of the groups of groups,
the material of the third diffusion layer comprises (La 1-x Sr x )MnO 3-δ 、(La 1-x Sr x )CoO 3-δ 、LaBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBaCo 2 O 5+δ 、BaGd 0.8 La 0.2 Co 2 O 6-δ 、Sr 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of the components is more than or equal to 0 and less than or equal to 1, and more than or equal to 0 and less than or equal to 1; and/or the number of the groups of groups,
the material of the surface protection layer comprises (La 1-x Sr x )MnO 3-δ 、(La 1-x Sr x )CoO 3-δ 、LaBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBa 0.5 Sr 0.5 Co 2 O 5+δ 、SmBaCo 2 O 5+δ 、BaGd 0.8 La 0.2 Co 2 O 6-δ 、Sr 2 Fe 1.5 Mo 0.5 O 6-δ 、La 0.5 Sr 1.5 Fe 1.5 M 0.5 O 6-δ 、LaSrFe 1.5 M 0.5 O 6-δ And La (La) 0.4 Sr 1.6 Fe 1.5 Ni 0.1 M 0.4 O 6-δ At least one of the components is more than or equal to 0 and less than or equal to 1, and more than or equal to 0 and less than or equal to 1.
4. The current collector of claim 1, wherein the first diffusion layer has a porosity of 30% to 98%; and/or the number of the groups of groups,
the porosity of the third diffusion layer is 30% -98%; and/or the number of the groups of groups,
the thickness of the first diffusion layer is 0.05-1 mm; and/or the number of the groups of groups,
the thickness of the third diffusion layer is 0.05-1 mm; and/or the number of the groups of groups,
the thickness of the second diffusion layer is 0.05-1 mm.
5. The current collector of claim 1, wherein the conductive ribs are cylinders having a diameter of 0.5 to 10mm.
6. The current collector of claim 1, wherein the conductive strips are porous and have a porosity of 0% to 90%.
7. The current collector of claim 1, wherein the surface protective layer has a thickness of 1 to 1000 μm; and/or the number of the groups of groups,
the surface protection layer is made of porous materials, and the porosity of the porous materials is 0% -40%.
8. The current collector of claim 1, wherein the second diffusion layer and the third diffusion layer are each provided in plurality, and the second diffusion layer and the third diffusion layer are provided in equal numbers.
9. A current collector according to claim 1, wherein the thickness of the current collector is 0.1 to 5mm; and/or the number of the groups of groups,
straight holes extending vertically are formed in the first diffusion layer, the conductive strips and the third diffusion layer in a penetrating mode, and the aperture of each straight hole is 5-200 microns.
CN202210046426.5A 2022-01-14 2022-01-14 Collector Active CN114388813B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210046426.5A CN114388813B (en) 2022-01-14 2022-01-14 Collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210046426.5A CN114388813B (en) 2022-01-14 2022-01-14 Collector

Publications (2)

Publication Number Publication Date
CN114388813A CN114388813A (en) 2022-04-22
CN114388813B true CN114388813B (en) 2023-07-04

Family

ID=81201189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210046426.5A Active CN114388813B (en) 2022-01-14 2022-01-14 Collector

Country Status (1)

Country Link
CN (1) CN114388813B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824302B (en) * 2022-04-26 2024-07-05 电堆科技(合肥)有限公司 Current collector and preparation method thereof
CN115133060A (en) * 2022-08-01 2022-09-30 中国科学技术大学先进技术研究院 Current collector and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022634A (en) * 1996-06-26 2000-02-08 De Nora S.P.A. Membrane electrochemical cell provided with gas diffusion electrodes in contact with porour, flat, metal current conductors having highly distributed contact area
JP2006253035A (en) * 2005-03-11 2006-09-21 Equos Research Co Ltd Fuel cell stack and fuel cell system
JP2008176941A (en) * 2007-01-16 2008-07-31 Kurimoto Ltd Solid polymer fuel cell
CN101385171A (en) * 2005-08-31 2009-03-11 丰田自动车株式会社 Method for manufacturing tubular fuel cell
JP2010129299A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Fuel cell separator, and manufacturing method thereof
JP2012094427A (en) * 2010-10-28 2012-05-17 Kyocera Corp Solid oxide fuel cell and fuel cell module
JP2013045570A (en) * 2011-08-23 2013-03-04 Nippon Soken Inc Fuel cell
JP2013143325A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Fuel cell, and separator for fuel cell
CN105098199A (en) * 2015-06-12 2015-11-25 中国科学院宁波材料技术与工程研究所 Gas diffusion layer, preparation method and metal-air battery
JP2016024996A (en) * 2014-07-22 2016-02-08 株式会社デンソー Solid oxide fuel battery cell
CN105336963A (en) * 2015-11-13 2016-02-17 中国科学院上海硅酸盐研究所 Semi-flexible composite bipolar plate for flat plate type solid oxide fuel cell and preparing method of semi-flexible composite bipolar plate
CN110098416A (en) * 2018-01-31 2019-08-06 丰田自动车株式会社 Separator for fuel battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022634A (en) * 1996-06-26 2000-02-08 De Nora S.P.A. Membrane electrochemical cell provided with gas diffusion electrodes in contact with porour, flat, metal current conductors having highly distributed contact area
JP2006253035A (en) * 2005-03-11 2006-09-21 Equos Research Co Ltd Fuel cell stack and fuel cell system
CN101385171A (en) * 2005-08-31 2009-03-11 丰田自动车株式会社 Method for manufacturing tubular fuel cell
JP2008176941A (en) * 2007-01-16 2008-07-31 Kurimoto Ltd Solid polymer fuel cell
JP2010129299A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Fuel cell separator, and manufacturing method thereof
JP2012094427A (en) * 2010-10-28 2012-05-17 Kyocera Corp Solid oxide fuel cell and fuel cell module
JP2013045570A (en) * 2011-08-23 2013-03-04 Nippon Soken Inc Fuel cell
JP2013143325A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Fuel cell, and separator for fuel cell
JP2016024996A (en) * 2014-07-22 2016-02-08 株式会社デンソー Solid oxide fuel battery cell
CN105098199A (en) * 2015-06-12 2015-11-25 中国科学院宁波材料技术与工程研究所 Gas diffusion layer, preparation method and metal-air battery
CN105336963A (en) * 2015-11-13 2016-02-17 中国科学院上海硅酸盐研究所 Semi-flexible composite bipolar plate for flat plate type solid oxide fuel cell and preparing method of semi-flexible composite bipolar plate
CN110098416A (en) * 2018-01-31 2019-08-06 丰田自动车株式会社 Separator for fuel battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
外加磁场环境下圆柱型PEM燃料电池的工作性能研究;吴懋亮等;可再生能源;34(06);916-920 *

Also Published As

Publication number Publication date
CN114388813A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
CN114388813B (en) Collector
CN106575776A (en) Flow fields for use with an electrochemical cell
KR20040038786A (en) Fuel cell with embedded current collector
CN100495793C (en) Micro solid oxide fuel cells connected in series with flat plates on solid porous supports
JP2008047545A (en) Solid oxide fuel cell having gas channel
CN101355177B (en) A double-layer connector planar solid oxide fuel cell stack
JP2002343376A (en) Stacked structure of flat solid oxide fuel cell
KR101595225B1 (en) Solid oxide fuel cell having decreased contact resistance between metallic bipolar plate and cathod current collector
CN111244520B (en) Fuel cell stack and method for manufacturing the same
CN203871424U (en) Solid oxide fuel battery pack based on monolithic electrolyte
JP2013077543A (en) Solid oxide fuel cell
JP2013069666A (en) Solid oxide type fuel cell
JP2012138338A (en) Fuel battery cell
CN114824302B (en) Current collector and preparation method thereof
CN102157746B (en) Jet air supply type single-chamber solid oxide fuel cell stack
TWM579825U (en) Electrode separator structure and fuel cell applied with the same
CN115051010A (en) Solid oxide cell oxygen electrode contact and cell stack
JP4925574B2 (en) Fuel cell and fuel cell
JPH02168568A (en) Solid electrolyte fuel cell
JP5439740B2 (en) Fuel cell and fuel cell stack
JPH0479163A (en) Solid electrolyte type fuel cell
CN111244498A (en) Fuel cell and fuel cell stack
JP2016085921A (en) Cell support and solid oxide fuel cell
US11784325B2 (en) Frameless fuel cell stack having hollow fasteners
CN104969397A (en) Stack structure for fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231123

Address after: Room 713, 7th Floor, Zhiyuan Building, No. 5089 Wangjiang West Road, High tech Zone, Hefei City, Anhui Province, 230000

Patentee after: Hefei Hecheng Technology Co.,Ltd.

Address before: 230000 no.5089 Wangjiang West Road, hi tech Zone, Hefei City, Anhui Province

Patentee before: INSTITUTE OF ADVANCED TECHNOLOGY University OF SCIENCE AND TECHNOLOGY OF CHINA

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room 713, 7th Floor, Zhiyuan Building, No. 5089 Wangjiang West Road, High tech Zone, Hefei City, Anhui Province, 230000

Patentee after: Electric Stack Technology (Hefei) Co.,Ltd.

Country or region after: China

Address before: Room 713, 7th Floor, Zhiyuan Building, No. 5089 Wangjiang West Road, High tech Zone, Hefei City, Anhui Province, 230000

Patentee before: Hefei Hecheng Technology Co.,Ltd.

Country or region before: China