CN114383998A - Pipeline corrosion monitoring method and system and electronic equipment - Google Patents
Pipeline corrosion monitoring method and system and electronic equipment Download PDFInfo
- Publication number
- CN114383998A CN114383998A CN202111626034.8A CN202111626034A CN114383998A CN 114383998 A CN114383998 A CN 114383998A CN 202111626034 A CN202111626034 A CN 202111626034A CN 114383998 A CN114383998 A CN 114383998A
- Authority
- CN
- China
- Prior art keywords
- pipeline
- magnetic field
- field gradient
- preset position
- preset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 55
- 230000007797 corrosion Effects 0.000 title claims abstract description 54
- 238000012544 monitoring process Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000007547 defect Effects 0.000 claims abstract description 62
- 239000000463 material Substances 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 abstract description 13
- 230000008859 change Effects 0.000 description 17
- 238000001514 detection method Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 230000005399 magnetomechanical effect Effects 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
本发明涉及管道监测技术领域,尤其涉及一种管道腐蚀的监测方法、系统和电子设备,所述方法包括获取第一磁场梯度模量和第二磁场梯度模量,并根据第一磁场梯度模量和第二磁场梯度模量,确定第二预设位置的损伤等级指标,然后根据损伤等级指标确定所述第二预设位置的当前缺陷应力值与待监测管道的材质所对应的屈服强度之间的当前比值,根据当前比值与预设预警策略进行预警,能够有效评估待监测管道的第二预设位置的应力安全状态,测试结果的准确性高。
The invention relates to the technical field of pipeline monitoring, and in particular to a method, system and electronic device for monitoring pipeline corrosion. The method includes acquiring a first magnetic field gradient modulus and a second magnetic field gradient modulus, and determining and the second magnetic field gradient modulus to determine the damage level index of the second preset position, and then determine the difference between the current defect stress value of the second preset position and the yield strength corresponding to the material of the pipeline to be monitored according to the damage level index The current ratio of , and the pre-warning based on the current ratio and the preset pre-warning strategy can effectively evaluate the stress safety state of the second preset position of the pipeline to be monitored, and the accuracy of the test results is high.
Description
技术领域technical field
本发明涉及管道监测技术领域,尤其涉及一种管道腐蚀的监测方法、系 统和电子设备。The invention relates to the technical field of pipeline monitoring, and in particular, to a method, system and electronic equipment for monitoring pipeline corrosion.
背景技术Background technique
油田站场地面油气管道主要以内腐蚀为主,主要形成原因是输送介质腐 蚀性导致的电化学腐蚀。原油管道内腐蚀的主要腐蚀性成分是水和各种化学 助剂。长输管道中的净化原油经过脱水处理,腐蚀性成分含量一般很微小,内 腐蚀非常轻微。但油田集输管道由于输送没有处理的含水、杂质、药剂的原 油,内腐蚀比较严重。天然气管道的内腐蚀也较为严重,油田生产的伴生气、 气井气中含有水、硫化氢、二氧化碳等腐蚀性成分,在输气过程中易发生电 化学腐蚀引起管道内壁严重腐蚀甚至穿孔泄漏,造成重大安全事故。The surface oil and gas pipelines in oilfield stations mainly suffer from internal corrosion, which is mainly caused by electrochemical corrosion caused by the corrosiveness of the transport medium. The main corrosive components in the corrosion of crude oil pipelines are water and various chemical additives. The purified crude oil in the long-distance pipeline is dehydrated, and the content of corrosive components is generally very small, and the internal corrosion is very slight. However, due to the untreated crude oil containing water, impurities and chemicals, the oilfield gathering and transportation pipelines have serious internal corrosion. The internal corrosion of natural gas pipelines is also relatively serious. Associated gas produced in oilfields and gas wells contain corrosive components such as water, hydrogen sulfide, and carbon dioxide. Electrochemical corrosion is prone to occur during the gas transmission process, causing serious corrosion of the inner wall of the pipeline or even perforation and leakage, resulting in Major safety incident.
管道腐蚀超声导波检测是重要的管道检测技术,超声导波具有远传(在 油田明管上传播距离可达160m)、采集数据速度快等优点,在智能检测器无 法检测的管段,如站场和穿跨越腐蚀等位置具有良好的应用前景。目前,导 波的一些机理和特性仍然在探索中,但是检测结果具有真实性和可靠性,已开 始应用于国内油田管道、城市埋地燃气管道的腐蚀检测。The ultrasonic guided wave detection of pipeline corrosion is an important pipeline detection technology. The ultrasonic guided wave has the advantages of long-distance transmission (the propagation distance can reach 160m on the open pipe in the oil field), and the speed of data collection is fast. Locations such as field and penetration corrosion have good application prospects. At present, some mechanisms and characteristics of guided waves are still being explored, but the detection results are authentic and reliable, and they have been applied to corrosion detection of domestic oilfield pipelines and urban buried gas pipelines.
目前,采用超声导波技术进行缺陷监测,其主要步骤是:At present, the ultrasonic guided wave technology is used for defect monitoring, and the main steps are:
首先,开挖需要监测的腐蚀管段,剥离防腐层和油漆层,安装传感器。First, excavate the corroded pipe section to be monitored, peel off the anti-corrosion layer and paint layer, and install the sensor.
然后,传感器发出一束超声脉冲波,此脉冲波充斥着管壁厚度,沿着管 道轴向远处传播,导波传输过程中遇到缺陷时,由于缺陷在径向截面上有一 定的反射面积,产生一个缺陷回波,当缺陷回波被探头接收时,就可确定缺陷 位置。Then, the sensor sends out a beam of ultrasonic pulse wave, which fills the thickness of the pipe wall and propagates far along the axis of the pipe. When a defect is encountered during the transmission of the guided wave, the defect has a certain reflection area on the radial section due to the defect. , a defect echo is generated. When the defect echo is received by the probe, the defect position can be determined.
最后,超声导波检测到的回波信号是脉冲回波信号,检测时以法兰或管 道端面回波作为基准波,在初始脉冲与基准波之间出现的回波信号就是缺陷 回波信号,根据回波的幅度和距离基准波的长度来确定缺陷的位置和大小。Finally, the echo signal detected by the ultrasonic guided wave is the pulse echo signal. During the detection, the flange or pipe end face echo is used as the reference wave. The echo signal that appears between the initial pulse and the reference wave is the defect echo signal. Determine the location and size of the defect according to the amplitude of the echo and the length from the reference wave.
但上述现有技术有如下缺陷:But the above-mentioned prior art has the following defects:
1)导致管道完整性出现问题的根本原因是管壁缺陷的局部应力超过了 管道材料的承载能力,造成管道泄漏穿孔。因此,完整性决策主要考虑的是 管壁缺陷的局部应力数值。现有的超声导波监测技术通过测试管道缺陷的几 何尺寸,然后根据ASME B31G等相关标准计算缺陷处的局部应力值,但是, 根据缺陷几何尺寸计算的应力值往往与真实数值偏差较大,因此,无法有效 评估腐蚀管段的安全状态;1) The root cause of the pipeline integrity problem is that the local stress of the pipeline wall defect exceeds the bearing capacity of the pipeline material, resulting in leakage and perforation of the pipeline. Therefore, the integrity decision mainly considers the local stress value of the pipe wall defect. The existing ultrasonic guided wave monitoring technology measures the geometric size of the pipeline defect, and then calculates the local stress value at the defect according to relevant standards such as ASME B31G. However, the stress value calculated according to the geometric size of the defect often has a large deviation from the real value. , it is impossible to effectively evaluate the safety status of the corroded pipe section;
2)利用超声导波监测技术进行站场管道内腐蚀缺陷监测时,管内壁缺 陷位置积累的固体杂质会对超声导波信号产生干扰,使得测试结果与实际情 况存在偏差,随着内壁杂质的不断累积,测试结果的准确性随之降低。2) When the ultrasonic guided wave monitoring technology is used to monitor the corrosion defects in the pipeline of the station, the solid impurities accumulated at the defect positions on the inner wall of the pipe will interfere with the ultrasonic guided wave signal, causing the test results to deviate from the actual situation. Cumulatively, the accuracy of the test results decreases.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是针对现有技术的不足,提供了一种管道腐 蚀的监测方法和系统。The technical problem to be solved by the present invention is to provide a method and system for monitoring pipeline corrosion in view of the deficiencies of the prior art.
本发明的一种管道腐蚀的监测方法的技术方案如下:The technical scheme of a pipeline corrosion monitoring method of the present invention is as follows:
获取参照管道的轴心线上的第一预设位置,在预设单位测量高度时的第 一磁场梯度模量;Obtain the first preset position on the axis line of the reference pipeline, and the first magnetic field gradient modulus when measuring the height in the preset unit;
获取待监测管道的轴心线上的第二预设位置,在预设测量高度时的第二 磁场梯度模量,并根据所述第一磁场梯度模量和所述第二磁场梯度模量,确 定所述第二预设位置的损伤等级指标,其中,所述参照管道与所述待监测管 道的规格相同;Obtain a second preset position on the axis line of the pipeline to be monitored, the second magnetic field gradient modulus at the preset measurement height, and according to the first magnetic field gradient modulus and the second magnetic field gradient modulus, determining the damage level index of the second preset position, wherein the reference pipeline has the same specifications as the pipeline to be monitored;
根据所述损伤等级指标确定所述第二预设位置的当前缺陷应力值与所 述待监测管道的材质所对应的屈服强度之间的当前比值;Determine the current ratio between the current defect stress value of the second preset position and the yield strength corresponding to the material of the pipeline to be monitored according to the damage level index;
根据所述当前比值与预设预警策略进行预警。Early warning is performed according to the current ratio and a preset early warning strategy.
本发明的一种管道腐蚀的监测方法的有益效果如下:The beneficial effects of the method for monitoring pipeline corrosion of the present invention are as follows:
获取并根据参照管道对应的第一磁场梯度模量,可以实时将第二磁场梯 度模量自动转化为待监测管道的第二预设位置的当前缺陷应力值与待监测 管道的材质所对应的屈服强度之间的比值,能够有效评估待监测管道的第二 预设位置的应力安全状态。而且,是由于待监测管道的管壁缺陷引起的局部 应力变化而造成的腐蚀管段磁信号变化情况,因此,待监测管道的内壁杂质 不会引起缺陷处局部应力变化,所以不会对测试精度产生影响,极大提高测 试结果的准确性和可靠性。Obtaining and according to the first magnetic field gradient modulus corresponding to the reference pipeline, the second magnetic field gradient modulus can be automatically converted into the current defect stress value of the second preset position of the pipeline to be monitored and the yield corresponding to the material of the pipeline to be monitored in real time. The ratio between the strengths can effectively evaluate the stress safety state of the second preset position of the pipeline to be monitored. Moreover, it is the change of the magnetic signal of the corroded pipe section caused by the local stress change caused by the pipe wall defect of the pipeline to be monitored. Therefore, the impurities on the inner wall of the pipeline to be monitored will not cause the local stress change at the defect, so it will not affect the test accuracy. It greatly improves the accuracy and reliability of the test results.
在上述方案的基础上,本发明的一种管道腐蚀的监测方法还可以做如下 改进。On the basis of the above scheme, the method for monitoring pipeline corrosion of the present invention can also be improved as follows.
进一步,获取所述第一磁场梯度模量的过程,包括:Further, the process of obtaining the first magnetic field gradient modulus includes:
通过磁力传感器采集所述参照管道的轴心线上的第一预设位置,在预设 单位测量高度时的初始磁场数据;The first preset position on the axis line of the reference pipeline is collected by the magnetic sensor, and the initial magnetic field data when the height is measured in a preset unit;
根据所述初始磁场数据获取:垂直于所述参照管道的轴心线的磁场梯度 的x分量y分量和z分量 Obtained from the initial magnetic field data: the x component of the magnetic field gradient perpendicular to the axis of the reference pipe y-component and the z component
根据第一公式,计算所述第一磁场梯度模量G′, According to the first formula, the first magnetic field gradient modulus G' is calculated,
进一步,确定所述第二预设位置的损伤等级指标的过程,包括:Further, the process of determining the damage level index of the second preset position includes:
利用第二公式计算所述第二预设位置的损伤等级指标F,所述第二公式 为:其中,GM=Gf(h),A表示修正系数,G 表示所述第二磁场梯度模量,h表示所述预设测量高度。The damage level index F of the second preset position is calculated by using the second formula, and the second formula is: where G M =Gf(h), A represents a correction coefficient, G represents the gradient modulus of the second magnetic field, and h represents the preset measurement height.
进一步,所确定所述当前比值的过程,包括:Further, the process of determining the current ratio includes:
利用第三公式确定计算所述当前比值,所述第三公式为 σd/σs=(-283.1F1.08+383.3),其中,σd表示所述第二预设位置的当前缺陷应力 值,σs表示所述待监测管道的材质所对应的屈服强度。The third formula is used to determine and calculate the current ratio, and the third formula is σ d /σ s =(-283.1F 1.08 +383.3), where σ d represents the current defect stress value at the second preset position, σ s represents the yield strength corresponding to the material of the pipeline to be monitored.
进一步,还包括:Further, it also includes:
获取并根据参照管道的轴心线上的第三预设位置在不同测量高度时的 第三磁场梯度模量,拟合传播因子与测量高度之间的函数关系。Obtain and fit the functional relationship between the propagation factor and the measurement height according to the third magnetic field gradient moduli at different measurement heights at the third preset position on the axis of the reference pipeline.
进一步,所述拟合传播因子与测量高度之间的函数关系,包括:Further, the functional relationship between the fitting propagation factor and the measured height includes:
根据第四公式计算任一第三磁场梯度模量对应的传播因子f,直至得到 每个第三磁场梯度模量对应的传播因子,所述第四公式为G″表示任 一第三磁场梯度模量;Calculate the propagation factor f corresponding to any third magnetic field gradient modulus according to the fourth formula until the propagation factor corresponding to each third magnetic field gradient modulus is obtained, and the fourth formula is: G" represents any third magnetic field gradient modulus;
根据第五公式确定:A1=a1、A2=a2、B1=b1、B2=b2,得到传播因子与测量 高度之间的函数关系为:H表示测量高度,所述第 五公式为其中,A1、A2、B1和B2均为系数。Determined according to the fifth formula: A 1 =a 1 , A 2 =a 2 , B 1 =b 1 , B 2 =b 2 , the functional relationship between the propagation factor and the measurement height is obtained as: H represents the measurement height, and the fifth formula is Among them, A 1 , A 2 , B 1 and B 2 are all coefficients.
本发明的一种管道腐蚀的监测系统的技术方案如下:The technical scheme of a pipeline corrosion monitoring system of the present invention is as follows:
包括第一获取模块、第二获取模块、计算模块和预警模块;including a first acquisition module, a second acquisition module, a calculation module and an early warning module;
所述第一获取模块用于:获取参照管道的轴心线上的第一预设位置,在 预设单位测量高度时的第一磁场梯度模量;The first acquisition module is used for: acquiring the first preset position on the axis of the reference pipeline, the first magnetic field gradient modulus when measuring the height in preset units;
所述第二获取模块用于:获取待监测管道的轴心线上的第二预设位置, 在预设测量高度时的第二磁场梯度模量,并根据所述第一磁场梯度模量和所 述第二磁场梯度模量,确定所述第二预设位置的损伤等级指标,其中,所述 参照管道与所述待监测管道的规格相同;The second acquisition module is used for: acquiring the second preset position on the axis of the pipeline to be monitored, the second magnetic field gradient modulus at the preset measurement height, and obtaining the second magnetic field gradient modulus according to the first magnetic field gradient modulus and the The second magnetic field gradient modulus determines the damage level index of the second preset position, wherein the reference pipeline has the same specifications as the pipeline to be monitored;
所述计算模块用于:根据所述损伤等级指标确定所述第二预设位置的当 前缺陷应力值与所述待监测管道的材质所对应的屈服强度之间的当前比值;The calculation module is used to: determine the current ratio between the current defect stress value of the second preset position and the yield strength corresponding to the material of the pipeline to be monitored according to the damage level index;
所述预警模块用于:根据所述当前比值与预设预警策略进行预警。The early-warning module is used for: performing early-warning according to the current ratio and a preset early-warning strategy.
本发明的一种管道腐蚀的监测系统的有益效果如下:The beneficial effects of a pipeline corrosion monitoring system of the present invention are as follows:
获取并根据参照管道对应的第一磁场梯度模量,可以实时将第二磁场梯 度模量自动转化为待监测管道的第二预设位置的当前缺陷应力值与待监测 管道的材质所对应的屈服强度之间的比值,能够有效评估待监测管道的第二 预设位置的应力安全状态。而且,是由于待监测管道的管壁缺陷引起的局部 应力变化而造成的腐蚀管段磁信号变化情况,因此,待监测管道的内壁杂质 不会引起缺陷处局部应力变化,所以不会对测试精度产生影响,极大提高测 试结果的准确性和可靠性。Obtaining and according to the first magnetic field gradient modulus corresponding to the reference pipeline, the second magnetic field gradient modulus can be automatically converted into the current defect stress value of the second preset position of the pipeline to be monitored and the yield corresponding to the material of the pipeline to be monitored in real time. The ratio between the strengths can effectively evaluate the stress safety state of the second preset position of the pipeline to be monitored. Moreover, it is the change of the magnetic signal of the corroded pipe section caused by the local stress change caused by the pipe wall defect of the pipeline to be monitored. Therefore, the impurities on the inner wall of the pipeline to be monitored will not cause the local stress change at the defect, so it will not affect the test accuracy. It greatly improves the accuracy and reliability of the test results.
在上述方案的基础上,本发明的一种管道腐蚀的监测系统还可以做如下 改进。On the basis of the above scheme, the monitoring system for pipeline corrosion of the present invention can also be improved as follows.
进一步,所述第一获取模块具体用于:Further, the first acquisition module is specifically used for:
通过磁力传感器采集所述参照管道的轴心线上的第一预设位置,在预设 单位测量高度时的初始磁场数据;The first preset position on the axis line of the reference pipeline is collected by the magnetic sensor, and the initial magnetic field data when the height is measured in a preset unit;
根据所述初始磁场数据获取:垂直于所述参照管道的轴心线的磁场梯度 的x分量y分量和z分量 Obtained from the initial magnetic field data: the x component of the magnetic field gradient perpendicular to the axis of the reference pipe y-component and the z component
根据第一公式,计算所述第一磁场梯度模量G′, According to the first formula, the first magnetic field gradient modulus G' is calculated,
进一步,所述第二获取模块具体用于:Further, the second acquisition module is specifically used for:
利用第二公式计算所述第二预设位置的损伤等级指标F,所述第二公式 为:其中,GM=Gf(h),A表示修正系数,G 表示所述第二磁场梯度模量,h表示所述预设测量高度。The damage level index F of the second preset position is calculated by using the second formula, and the second formula is: where G M =Gf(h), A represents a correction coefficient, G represents the gradient modulus of the second magnetic field, and h represents the preset measurement height.
进一步,所述计算模块具体用于:Further, the computing module is specifically used for:
利用第三公式确定计算所述当前比值,所述第三公式为 σd/σs=(-283.1F1.08+383.3),其中,σd表示所述第二预设位置的当前缺陷应力 值,σs表示所述待监测管道的材质所对应的屈服强度。The third formula is used to determine and calculate the current ratio, and the third formula is σ d /σ s =(-283.1F 1.08 +383.3), where σ d represents the current defect stress value at the second preset position, σ s represents the yield strength corresponding to the material of the pipeline to be monitored.
进一步,还包括第三获取模块;Further, it also includes a third acquisition module;
所述第三获取模块用于:获取并根据参照管道的轴心线上的第三预设位 置在不同测量高度时的第三磁场梯度模量,拟合传播因子与测量高度之间的 函数关系。The third acquisition module is used for: acquiring and fitting the functional relationship between the propagation factor and the measurement height according to the third magnetic field gradient moduli at different measurement heights at the third preset position on the axis of the reference pipeline .
进一步,所述第三获取模块具体用于:Further, the third acquisition module is specifically used for:
根据第四公式计算任一第三磁场梯度模量对应的传播因子f,直至得到 每个第三磁场梯度模量对应的传播因子,所述第四公式为G″表示任 一第三磁场梯度模量;Calculate the propagation factor f corresponding to any third magnetic field gradient modulus according to the fourth formula until the propagation factor corresponding to each third magnetic field gradient modulus is obtained, and the fourth formula is: G" represents any third magnetic field gradient modulus;
根据第五公式确定:A1=a1、A2=a2、B1=b1、B2=b2,得到传播因子与测量 高度之间的函数关系为:H表示测量高度,所述第 五公式为其中,A1、A2、B1和B2均为系数。Determined according to the fifth formula: A 1 =a 1 , A 2 =a 2 , B 1 =b 1 , B 2 =b 2 , the functional relationship between the propagation factor and the measurement height is obtained as: H represents the measurement height, and the fifth formula is Among them, A 1 , A 2 , B 1 and B 2 are all coefficients.
本发明的一种电子设备的技术方案如下:The technical scheme of a kind of electronic equipment of the present invention is as follows:
包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的程 序,所述处理器执行所述程序时实现如上述任一项所述的一种管道腐蚀的监 测方法的步骤。It includes a memory, a processor and a program stored on the memory and running on the processor, and when the processor executes the program, the steps of the method for monitoring pipeline corrosion as described in any of the above are implemented .
附图说明Description of drawings
图1为本发明实施例的一种管道腐蚀的监测方法的流程示意图;1 is a schematic flowchart of a method for monitoring pipeline corrosion according to an embodiment of the present invention;
图2为获取第一磁场梯度模量的测量示意图;Fig. 2 is the measurement schematic diagram that obtains the first magnetic field gradient modulus;
图3为缺陷处局部应力模拟计算结果的示意图;Figure 3 is a schematic diagram of the simulation calculation results of local stress at the defect;
图4为本发明实施例的一种管道腐蚀的监测系统的结构示意图。FIG. 4 is a schematic structural diagram of a pipeline corrosion monitoring system according to an embodiment of the present invention.
具体实施方式Detailed ways
如图1所示,本发明实施例的一种管道腐蚀的监测方法,包括如下步骤:As shown in FIG. 1 , a method for monitoring pipeline corrosion according to an embodiment of the present invention includes the following steps:
S1、获取参照管道的轴心线上的第一预设位置,在预设单位测量高度时 的第一磁场梯度模量;S1, obtain the first preset position on the axis line of the reference pipeline, the first magnetic field gradient modulus when measuring the height in the preset unit;
其中,参照管道可理解为符合工业应用标准的标准管道,未受到任何腐 蚀以及其它损坏和缺陷;Among them, the reference pipeline can be understood as a standard pipeline that meets the standards of industrial application and is free from any corrosion and other damages and defects;
第一预设位置可为人为选定的位置,或者,参照管道的轴心线上的任一 位置,由于参照管道未受到任何腐蚀以及其它损坏和缺陷,因此,当第一预 设位置为参照管道的轴心线上的不同位置时,所得到的预设单位测量高度时 的第一磁场梯度模量之间的偏差很小,可认为是相等的。The first preset position may be an artificially selected position, or, any position on the axis of the reference pipeline, since the reference pipeline has not been subjected to any corrosion and other damages and defects, therefore, when the first preset position is the reference At different positions on the axis line of the pipeline, the deviation between the obtained first magnetic field gradient moduli in the preset unit measurement height is very small and can be considered to be equal.
其中,预设单位测量高度可为1米或1分米等,也可根据实际情况确认, 预设单位测量高度指与距离参照管道的轴心线之间的垂直距离。如图2所示, 参照管道的长度可根据实际情况设置,如1米或2米等。Wherein, the preset unit measurement height may be 1 meter or 1 decimeter, etc., which can also be confirmed according to the actual situation, and the preset unit measurement height refers to the vertical distance from the axis line of the reference pipe. As shown in Figure 2, the length of the reference pipeline can be set according to the actual situation, such as 1 meter or 2 meters.
S2、获取待监测管道的轴心线上的第二预设位置,在预设测量高度时的 第二磁场梯度模量,并根据第一磁场梯度模量和第二磁场梯度模量,确定第 二预设位置的损伤等级指标,其中,参照管道与待监测管道的规格相同;S2. Obtain the second preset position on the axis of the pipeline to be monitored, the second magnetic field gradient modulus at the preset measurement height, and determine the first magnetic field gradient modulus and the second magnetic field gradient modulus according to the first magnetic field gradient modulus and the second magnetic field gradient modulus. 2. The damage level index of the preset position, wherein the reference pipeline has the same specifications as the pipeline to be monitored;
其中,第二预设位置可理解为:待监测管道的轴心线上的任一位置,也 可根据待监测管道的历史数据确定出多个容易腐蚀的位置,将任一个容易腐 蚀的位置作为第二预设位置。Wherein, the second preset position can be understood as: any position on the axis of the pipeline to be monitored, or a plurality of easily corroded positions can be determined according to the historical data of the pipeline to be monitored, and any easily corroded position can be used as The second preset position.
其中,参照管道与待监测管道的规格相同具体指:参照管道与待监测管 道的材质、管径和壁厚均相同。The specification of the reference pipeline and the pipeline to be monitored is the same specifically refers to: the reference pipeline and the pipeline to be monitored are of the same material, diameter and wall thickness.
其中,预设测量高度为已知量,根据第一磁场梯度模量和第二磁场梯度 模量,就能够确定待监测管道的损伤等级指标,而且,预设测量高度指与距 离待监测管道的轴心线之间的垂直距离。The preset measurement height is a known quantity, and the damage level index of the pipeline to be monitored can be determined according to the first magnetic field gradient modulus and the second magnetic field gradient modulus, and the preset measurement height refers to the distance from the pipeline to be monitored. The vertical distance between the axis lines.
S3、根据损伤等级指标确定第二预设位置的当前缺陷应力值与待监测管 道的材质所对应的屈服强度之间的当前比值;S3, determine the current ratio between the current defect stress value of the second preset position and the yield strength corresponding to the material of the pipeline to be monitored according to the damage level index;
例如,待监测管道的材质为45号钢,则选用45号钢对应的屈服强度。For example, if the material of the pipeline to be monitored is No. 45 steel, the yield strength corresponding to No. 45 steel is selected.
S4、根据当前比值与预设预警策略进行预警。其中,预设预警策略为:S4. Perform an early warning according to the current ratio and a preset early warning strategy. Among them, the preset early warning strategy is:
1)比值为40%时,为一级响应预警值,当待监测管道的当前缺陷应力 值与待监测管道的材质所对应的屈服强度之间的当前比值超出一级响应预 警值时,表示需要对待监测管道的第二预设位置进行重点监控,并相应发出 声光预警或以其它形式向维护人员发出提醒;1) When the ratio is 40%, it is the first-level response warning value. When the current ratio between the current defect stress value of the pipeline to be monitored and the yield strength corresponding to the material of the pipeline to be monitored exceeds the first-level response warning value, it means that the Focus on monitoring the second preset position of the pipeline to be monitored, and issue sound and light warnings or remind maintenance personnel in other forms;
2)比值为60%时,为二级响应预警值,当待监测管道的当前缺陷应力 值与待监测管道的材质所对应的屈服强度之间的当前比值超出二级响应预 警值时,表示在一定条件下,可以对待监测管道的第二预设位置进行修复处 理,并相应发出声光预警或以其它形式向维护人员发出提醒;2) When the ratio is 60%, it is the second-level response warning value. When the current ratio between the current defect stress value of the pipeline to be monitored and the yield strength corresponding to the material of the pipeline to be monitored exceeds the second-level response warning value, it means that Under certain conditions, the second preset position of the pipeline to be monitored can be repaired, and sound and light warnings can be issued accordingly or reminders to maintenance personnel in other forms;
3)比值为80%时,为三级响应预警值,当待监测管道的当前缺陷应力 值与待监测管道的材质所对应的屈服强度之间的当前比值超出三级响应预 警值时,表示需要立即对待监测管道进行停输处理,以对第二预设位置进行 替换或维护,并相应发出声光预警或以其它形式向维护人员发出提醒。3) When the ratio is 80%, it is the third-level response warning value. When the current ratio between the current defect stress value of the pipeline to be monitored and the yield strength corresponding to the material of the pipeline to be monitored exceeds the third-level response warning value, it indicates that the Immediately stop the pipeline to be monitored to replace or maintain the second preset position, and send out sound and light warnings or remind maintenance personnel in other forms.
获取并根据参照管道对应的第一磁场梯度模量,可以实时将第二磁场梯 度模量自动转化为待监测管道的第二预设位置的当前缺陷应力值与待监测 管道的材质所对应的屈服强度之间的比值,能够有效评估待监测管道的第二 预设位置的应力安全状态。而且,是由于待监测管道的管壁缺陷引起的局部 应力变化而造成的腐蚀管段磁信号变化情况,因此,待监测管道的内壁杂质 不会引起缺陷处局部应力变化,所以不会对测试精度产生影响,极大提高测 试结果的准确性和可靠性。Obtaining and according to the first magnetic field gradient modulus corresponding to the reference pipeline, the second magnetic field gradient modulus can be automatically converted into the current defect stress value of the second preset position of the pipeline to be monitored and the yield corresponding to the material of the pipeline to be monitored in real time. The ratio between the strengths can effectively evaluate the stress safety state of the second preset position of the pipeline to be monitored. Moreover, it is the change of the magnetic signal of the corroded pipe section caused by the local stress change caused by the pipe wall defect of the pipeline to be monitored. Therefore, the impurities on the inner wall of the pipeline to be monitored will not cause the local stress change at the defect, so it will not affect the test accuracy. It greatly improves the accuracy and reliability of the test results.
可选地,在上述技术方案中,获取第一磁场梯度模量的过程,包括:Optionally, in the above technical solution, the process of obtaining the first magnetic field gradient modulus includes:
S10、通过磁力传感器采集参照管道的轴心线上的第一预设位置,在预 设单位测量高度时的初始磁场数据;S10, collect the first preset position on the axis line of the reference pipeline through the magnetic sensor, and measure the initial magnetic field data at the preset unit height;
S11、根据初始磁场数据获取:垂直于参照管道的轴心线的磁场梯度的x 分量y分量和z分量 S11. Acquire according to the initial magnetic field data: the x component of the magnetic field gradient perpendicular to the axis of the reference pipeline y-component and the z component
S12、根据第一公式,计算第一磁场梯度模量G′, S12, according to the first formula, calculate the first magnetic field gradient modulus G',
具体可通过如下方式实现:Specifically, it can be achieved in the following ways:
1)只使用一个磁力传感器如霍尔传感器或者磁通门磁强计等,采集参 照管道的轴心线上的第一预设位置,在预设单位测量高度时的初始磁场数据, 然后执行S11和S12,计算得到第一磁场梯度模量G′;1) Using only one magnetic sensor such as a Hall sensor or a fluxgate magnetometer, collect the first preset position on the axis of the reference pipe, and measure the initial magnetic field data in the preset unit of height, and then execute S11 and S12, the first magnetic field gradient modulus G' is obtained by calculation;
2)使用至少两个磁力传感器分别采集多个磁场数据,即此时初始磁场 数据中包括多个磁场数据,根据每个磁场数据,计算每个磁力传感器对应磁 场梯度的x分量、y分量和z分量,并取平均值,得到上述的和 2) Use at least two magnetic sensors to collect multiple magnetic field data respectively, that is, at this time, the initial magnetic field data includes multiple magnetic field data, and according to each magnetic field data, calculate the x component, y component and z component of the magnetic field gradient corresponding to each magnetic sensor components, and take the average to get the above and
在另外一个实施例中,其中,i表示磁感应强度的x、y、 z方向,Bi1表示第一个磁力传感器在i方向的磁感应强度,Bi2表示第二个传 感器在i方向的磁感应强度,单位均可为nT或mT等,l表示磁力传感器的 长度,单位为m。In another embodiment, Among them, i represents the x, y, and z directions of the magnetic induction intensity, B i1 represents the magnetic induction intensity of the first magnetic sensor in the i direction, B i2 represents the magnetic induction intensity of the second sensor in the i direction, and the unit can be nT or mT etc., l represents the length of the magnetic sensor in m.
其中,磁力传感器即磁力传感器的安装方式如下:Among them, the magnetic sensor, that is, the magnetic sensor, is installed as follows:
在拟监测埋地腐蚀管段即待监测管道的正上方地面浇筑混凝土底座,底 座上固定安装密封碳纤维防护箱,将磁力传感器即即磁力传感器放置在防护 箱内,并通过底部专门设置的螺孔锚固传感器,防止外力破坏。基于磁机械 效应,磁力传感器即磁力传感器可在地面采集到埋地管道的弱磁场信号,从 而分析腐蚀管段的应力安全状态。A concrete base is poured on the ground just above the buried corrosion pipe section to be monitored, that is, the pipeline to be monitored. A sealed carbon fiber protective box is fixed on the base, and the magnetic sensor, that is, the magnetic sensor, is placed in the protective box and anchored through the specially set screw holes at the bottom. Sensor to prevent external damage. Based on the magneto-mechanical effect, the magnetic sensor, that is, the magnetic sensor, can collect the weak magnetic field signal of the buried pipeline on the ground, so as to analyze the stress safety state of the corroded pipe section.
在距离监测管段轴向3m处按照上述方法安装的第二个磁力传感器即补 偿磁力传感器,用于监控温度、湿度等外界因素引起的传感器测试值变化情 况。从而消除外界环境条件改变对管道缺陷应力状态识别造成的影响。The second magnetic sensor installed in the axial direction 3m from the monitoring pipe section according to the above method is the compensation magnetic sensor, which is used to monitor the change of the sensor test value caused by external factors such as temperature and humidity. Therefore, the influence of the change of external environmental conditions on the identification of the stress state of pipeline defects is eliminated.
监控数据传输的过程如下:The process of monitoring data transfer is as follows:
通过通讯数据线将上述两个磁力传感器连接至数据采集系统,连接数据 线后,采用密封胶密封防护壳,防水防潮,延长传感器使用寿命。数据采集 系统的无线传输模块将监控数据传输至云平台,用户登录监控软件访问云平 台,实时查看监控数据。监控系统由站场内供电设备提供电源。The above two magnetic sensors are connected to the data acquisition system through the communication data line. After connecting the data line, the protective shell is sealed with sealant, which is waterproof and moisture-proof and prolongs the service life of the sensor. The wireless transmission module of the data acquisition system transmits the monitoring data to the cloud platform, and the user logs in the monitoring software to access the cloud platform to view the monitoring data in real time. The monitoring system is powered by the power supply equipment in the station yard.
其中,获取待监测管道的轴心线上的第二预设位置,在预设测量高度时 的第二磁场梯度模量的具体过程参考上述S10至S12,在此不做赘述。Wherein, the specific process of obtaining the second preset position on the axis line of the pipeline to be monitored, and the second magnetic field gradient modulus at the preset measurement height, refer to the above-mentioned S10 to S12, and will not be repeated here.
在另外一个实施例中,当预设单位测量高度为1米时,此时计算出的G′ 可记作G1,也就是说,G1表示:参照管道的轴心线上的第一预设位置,在预 设单位测量高度时的第一磁场梯度模量,可参与后续计算。In another embodiment, when the preset unit measurement height is 1 meter, the G' calculated at this time can be denoted as G 1 , that is, G 1 represents: referring to the first preset on the axis of the pipeline Set the position and measure the first magnetic field gradient modulus in the preset unit, which can be used in subsequent calculations.
目前超声导波技术进行腐蚀监测还有如下问题:At present, the corrosion monitoring of ultrasonic guided wave technology still has the following problems:
利用超声导波技术进行站场埋地管道的内腐蚀缺陷监测时,前端传感器 埋设于地下,且缺乏有效的保护措施,在土壤环境中易发生侵蚀,使其服役 寿命减少。同时,埋设于地下的传感器,难以进行检查维护,无法实时掌握 传感器的完整性情况。When the ultrasonic guided wave technology is used to monitor the internal corrosion defects of the buried pipeline in the station, the front-end sensor is buried in the ground and lacks effective protection measures, which is prone to erosion in the soil environment and shortens its service life. At the same time, the sensors buried in the ground are difficult to be inspected and maintained, and it is impossible to grasp the integrity of the sensors in real time.
而本申请中,监测传感器即磁力传感器安装于地面,便于检查与维护; 并且可在磁力传感器上设置有密封碳纤维外壳,防水防潮以及防外力破坏, 延长使用寿命。In the present application, the monitoring sensor, ie, the magnetic sensor, is installed on the ground, which is convenient for inspection and maintenance; and a sealed carbon fiber casing can be provided on the magnetic sensor, which is waterproof, moisture-proof, and damage-proof by external force, so as to prolong the service life.
可选地,在上述技术方案中,S2中,确定第二预设位置的损伤等级指 标的过程,包括:Optionally, in the above technical solution, in S2, the process of determining the damage level index of the second preset position includes:
S20、利用第二公式计算第二预设位置的损伤等级指标F,第二公式为: 其中,GM=Gf(h),A表示修正系数,G表示 第二磁场梯度模量,h表示预设测量高度。S20, using the second formula to calculate the damage level index F of the second preset position, and the second formula is: where G M =Gf(h), A represents the correction coefficient, G represents the second magnetic field gradient modulus, and h represents the preset measurement height.
其中,可根据经验确定A的值,即修正系数可为经验值,也可根据如下 方式计算A的值,具体地:Wherein, the value of A can be determined according to experience, that is, the correction coefficient can be an empirical value, and the value of A can also be calculated according to the following methods, specifically:
根据天然气站场埋地管道的内腐蚀缺陷检测历史数据,即根据待监测管 道的内腐蚀缺陷检测历史数据,选择腐蚀相对严重段(腐蚀深度>20%T,T 为管道壁厚)进行动态实时监测。According to the historical data of internal corrosion defect detection of buried pipelines in natural gas stations, that is, according to the historical data of internal corrosion defect detection of pipelines to be monitored, select relatively severe corrosion sections (corrosion depth>20%T, T is the wall thickness of the pipeline) for dynamic real-time detection monitor.
采集待监测管道的基础资料,主要包括待监测管道的材质、管道规格、 运行工况,以及待监测管道的管段长度和埋深等。结合待监测管道的内腐蚀 缺陷检测历史数据,利用有限元分析软件ANSYS模拟计算运行工况下监测 管段腐蚀缺陷处的局部应力值,如图3所示,然后根据第三公式得到相应的 管道损伤等级指标,根据将该管道损伤等级指标替换中的F,由于根 据待监测管道的内腐蚀缺陷检测历史数据能够计算出当前的管道损伤程度 的度量值,带入中,能够计算出A的值。Collect the basic data of the pipeline to be monitored, mainly including the material of the pipeline to be monitored, pipeline specifications, operating conditions, as well as the length and buried depth of the pipeline to be monitored. Combined with the historical data of the internal corrosion defect detection of the pipeline to be monitored, the finite element analysis software ANSYS is used to simulate and calculate the local stress value at the corrosion defect of the monitored pipe section under operating conditions, as shown in Figure 3, and then the corresponding pipeline damage is obtained according to the third formula. Grade index, replace it according to the damage grade index of the pipeline In F, because the measurement value of the current pipeline damage degree can be calculated according to the historical data of the internal corrosion defect detection of the pipeline to be monitored, it is brought into , the value of A can be calculated.
其中,GM表示待监测管道的损伤程度的度量值。Among them, G M represents a measure of the damage degree of the pipeline to be monitored.
可选地,在上述技术方案中,S3中,所确定当前比值的过程,包括:Optionally, in the above technical solution, in S3, the process of determining the current ratio includes:
S30、利用第三公式确定计算当前比值,第三公式为 σd/σs=(-283.1F1.08+383.3),其中,σd表示第二预设位置的当前缺陷应力值,σs表示待监测管道的材质所对应的屈服强度。S30. Use the third formula to determine and calculate the current ratio. The third formula is σ d /σ s =(-283.1F 1.08 +383.3), where σ d represents the current defect stress value at the second preset position, and σ s represents the to-be-to-be-defect stress value. Monitor the yield strength of the pipe material.
可选地,在上述技术方案中,还包括:Optionally, in the above technical solution, it also includes:
S5、获取并根据参照管道的轴心线上的第三预设位置在不同测量高度时 的第三磁场梯度模量,拟合传播因子与测量高度之间的函数关系;S5, obtain and refer to the third magnetic field gradient modulus of the third preset position on the axis line of the reference pipeline at different measurement heights, and fit the functional relationship between the propagation factor and the measurement height;
第三预设位置可为人为选定的位置,或者,参照管道的轴心线上的任一 位置,由于参照管道未受到任何腐蚀以及其它损坏和缺陷,因此,当第三预 设位置为参照管道的轴心线上的不同位置时,所得到的第三磁场梯度模量的 磁场梯度模量之间的偏差很小,可认为是相等的。The third preset position may be an artificially selected position, or any position on the axis of the reference pipeline. Since the reference pipeline has not suffered any corrosion and other damages and defects, when the third preset position is the reference When there are different positions on the axis line of the pipeline, the deviation between the obtained third magnetic field gradient modulus and the magnetic field gradient moduli is small and can be considered to be equal.
可选地,在上述技术方案中,S5中,拟合传播因子与测量高度之间的 函数关系,包括:Optionally, in the above-mentioned technical scheme, in S5, the functional relationship between the fitting propagation factor and the measurement height, including:
S50、根据第四公式计算任一第三磁场梯度模量对应的传播因子f,直 至得到每个第三磁场梯度模量对应的传播因子,第四公式为G″表示 任一第三磁场梯度模量;S50. Calculate the propagation factor f corresponding to any third magnetic field gradient modulus according to the fourth formula until the propagation factor corresponding to each third magnetic field gradient modulus is obtained. The fourth formula is: G" represents any third magnetic field gradient modulus;
S51、根据第五公式确定:A1=a1、A2=a2、B1=b1、B2=b2,得到传播因子与 测量高度之间的函数关系为:H表示测量高度,第 五公式为其中,A1、A2、B1和B2均为系数。S51. Determine according to the fifth formula: A 1 =a 1 , A 2 =a 2 , B 1 =b 1 , B 2 =b 2 , and the functional relationship between the propagation factor and the measurement height is obtained as: H represents the measurement height, and the fifth formula is Among them, A 1 , A 2 , B 1 and B 2 are all coefficients.
根据参照管道的轴心线上的第三预设位置在不同测量高度时的第三磁 场梯度模量,并根据第四公式为任一第三磁场梯度模量对应的传播 因子f,直至得到每个第三磁场梯度模量对应的传播因子,从而拟合f-H的 关系曲线,得到传播因子f与测试高度Hh的定量关系式即第五公式中的A1、 A2、B1和B2的具体值,由此得到A1的具体值为a1,A2的具体值为a2,B1的 具体值为b1,B2的具体为b2,即A1=a1、A2=a2、B1=b1、B2=b2,此时得到传播因子与测量高度之间的函数关系为:在S20中,将h 带入函数关系,得到 According to the third magnetic field gradient modulus at different measurement heights at the third preset position on the axis line of the reference pipe, and according to the fourth formula: The propagation factor f corresponding to any third magnetic field gradient modulus, until the propagation factor corresponding to each third magnetic field gradient modulus is obtained, so as to fit the relationship curve of fH, and obtain the quantitative relationship between the propagation factor f and the test height Hh, namely From the specific values of A 1 , A 2 , B 1 and B 2 in the fifth formula, the specific value of A 1 is obtained as a 1 , the specific value of A 2 is a 2 , and the specific value of B 1 is b 1 , Specifically, B 2 is b 2 , that is, A 1 =a 1 , A 2 =a 2 , B 1 =b 1 , and B 2 =b 2 . At this time, the functional relationship between the propagation factor and the measurement height is: In S20, bringing h into the functional relationship, we get
在上述各实施例中,虽然对步骤进行了编号S1、S2等,但只是本申请 给出的具体实施例,本领域的技术人员可根据实际情况调整S1、S2等的执 行顺序,此也在本发明的保护范围内,可以理解,在一些实施例中,可以包 含如上述各实施方式中的部分或全部。In the above embodiments, although the steps are numbered S1, S2, etc., they are only specific embodiments given in this application. Those skilled in the art can adjust the execution order of S1, S2, etc. according to the actual situation. Within the protection scope of the present invention, it can be understood that in some embodiments, some or all of the above-mentioned embodiments may be included.
如图4所示,本发明实施例的一种管道腐蚀的监测系统200,包括第一 获取模块210、第二获取模块220、计算模块230和预警模块240;As shown in FIG. 4 , a pipeline
第一获取模块210用于:获取参照管道的轴心线上的第一预设位置,在 预设单位测量高度时的第一磁场梯度模量;The
第二获取模块220用于:获取待监测管道的轴心线上的第二预设位置, 在预设测量高度时的第二磁场梯度模量,并根据第一磁场梯度模量和第二磁 场梯度模量,确定第二预设位置的损伤等级指标,其中,参照管道与待监测 管道的规格相同;The
计算模块230用于:根据损伤等级指标确定第二预设位置的当前缺陷应 力值与待监测管道的材质所对应的屈服强度之间的当前比值;The
预警模块240用于:根据当前比值与预设预警策略进行预警。The
获取并根据参照管道对应的第一磁场梯度模量,可以实时将第二磁场梯 度模量自动转化为待监测管道的第二预设位置的当前缺陷应力值与待监测 管道的材质所对应的屈服强度之间的比值,能够有效评估待监测管道的第二 预设位置的应力安全状态。而且,是由于待监测管道的管壁缺陷引起的局部 应力变化而造成的腐蚀管段磁信号变化情况,因此,待监测管道的内壁杂质 不会引起缺陷处局部应力变化,所以不会对测试精度产生影响,极大提高测 试结果的准确性和可靠性。Obtaining and according to the first magnetic field gradient modulus corresponding to the reference pipeline, the second magnetic field gradient modulus can be automatically converted into the current defect stress value of the second preset position of the pipeline to be monitored and the yield corresponding to the material of the pipeline to be monitored in real time. The ratio between the strengths can effectively evaluate the stress safety state of the second preset position of the pipeline to be monitored. Moreover, it is the change of the magnetic signal of the corroded pipe section caused by the local stress change caused by the pipe wall defect of the pipeline to be monitored. Therefore, the impurities on the inner wall of the pipeline to be monitored will not cause the local stress change at the defect, so it will not affect the test accuracy. It greatly improves the accuracy and reliability of the test results.
可选地,在上述技术方案中,第一获取模块210具体用于:Optionally, in the above technical solution, the first obtaining
通过磁力传感器采集参照管道的轴心线上的第一预设位置,在预设单位 测量高度时的初始磁场数据;Collect the initial magnetic field data when measuring the height in the preset unit with reference to the first preset position on the axis of the pipeline through the magnetic sensor;
根据初始磁场数据获取:垂直于参照管道的轴心线的磁场梯度的x分量 y分量和z分量 Obtained from the initial magnetic field data: the x-component of the magnetic field gradient perpendicular to the axis of the reference pipe y-component and the z component
根据第一公式,计算第一磁场梯度模量G′, According to the first formula, the first magnetic field gradient modulus G' is calculated,
可选地,在上述技术方案中,第二获取模块220具体用于:Optionally, in the above technical solution, the second obtaining
利用第二公式计算第二预设位置的损伤等级指标F,第二公式为: 其中,GM=Gf(h),A表示修正系数,G表示 第二磁场梯度模量,h表示预设测量高度。Use the second formula to calculate the damage level index F of the second preset position. The second formula is: where G M =Gf(h), A represents the correction coefficient, G represents the second magnetic field gradient modulus, and h represents the preset measurement height.
可选地,在上述技术方案中,计算模块230具体用于:Optionally, in the above technical solution, the
利用第三公式确定计算当前比值,第三公式为σd/σs=(-283.1F1.08+383.3), 其中,σd表示第二预设位置的当前缺陷应力值,σs表示待监测管道的材质所 对应的屈服强度。The third formula is used to determine and calculate the current ratio. The third formula is σ d /σ s =(-283.1F 1.08 +383.3), where σ d represents the current defect stress value at the second preset position, and σ s represents the pipeline to be monitored The corresponding yield strength of the material.
可选地,在上述技术方案中,还包括第三获取模块;Optionally, in the above technical solution, a third acquisition module is also included;
第三获取模块用于:获取并根据参照管道的轴心线上的第三预设位置在 不同测量高度时的第三磁场梯度模量,拟合传播因子与测量高度之间的函数 关系。The third acquisition module is used for: acquiring and fitting the functional relationship between the propagation factor and the measurement height according to the third magnetic field gradient moduli at different measurement heights at the third preset position on the axis of the reference pipeline.
可选地,在上述技术方案中,第三获取模块具体用于:Optionally, in the above technical solution, the third acquisition module is specifically used for:
根据第四公式计算任一第三磁场梯度模量对应的传播因子f,直至得到 每个第三磁场梯度模量对应的传播因子,第四公式为G″表示任一第 三磁场梯度模量;Calculate the propagation factor f corresponding to any third magnetic field gradient modulus according to the fourth formula until the propagation factor corresponding to each third magnetic field gradient modulus is obtained. The fourth formula is: G" represents any third magnetic field gradient modulus;
根据第五公式确定:A1=a1、A2=a2、B1=b1、B2=b2,得到传播因子与测量 高度之间的函数关系为:H表示测量高度,第五公式为其中,A1、A2、B1和B2均为系数。Determined according to the fifth formula: A 1 =a 1 , A 2 =a 2 , B 1 =b 1 , B 2 =b 2 , the functional relationship between the propagation factor and the measurement height is obtained as: H represents the measurement height, and the fifth formula is Among them, A 1 , A 2 , B 1 and B 2 are all coefficients.
上述关于本发明的一种管道腐蚀的监测系统200中的各参数和各个单元 模块实现相应功能的步骤,可参考上文中关于一种管道腐蚀的监测方法的实 施例中的各参数和步骤,在此不做赘述。The above-mentioned parameters and steps of each unit module in the
本申请具有如下有益效果:This application has the following beneficial effects:
1)设备易安装,可靠性好。本发明提供的远程监测方法无需开挖管道, 监测系统直接安装于埋地腐蚀管道上方地表位置,并采取了防护措施。设备 不易被侵蚀,也便于定期检查与维护,使用寿命长。1) The equipment is easy to install and has good reliability. The remote monitoring method provided by the present invention does not need to excavate the pipeline, the monitoring system is directly installed on the surface position above the buried corrosion pipeline, and protective measures are taken. The equipment is not easy to be corroded, and it is convenient for regular inspection and maintenance, and has a long service life.
2)准确评估腐蚀管段安全状态。本发明提供的远程监测方法能够通过 腐蚀管段远程磁场局部应力计算模型,准确获取埋地腐蚀管段的应力变化情 况,从而有效评估管道的安全状态。2) Accurately assess the safety status of the corroded pipe section. The remote monitoring method provided by the present invention can accurately obtain the stress change of the buried corroded pipe section through the remote magnetic field local stress calculation model of the corroded pipe section, thereby effectively evaluating the safety state of the pipeline.
3)干扰因素少,数据采集稳定。本发明提供的远程监测方法基于磁机 械效应,其监测的磁信号变化仅来源于缺陷处的局部应力变化,不受管道内 壁杂质的累积影响,保证长期有效地监测腐蚀管段安全状态。3) There are few interference factors, and the data collection is stable. The remote monitoring method provided by the present invention is based on the magneto-mechanical effect, and the monitored magnetic signal change only comes from the local stress change at the defect, and is not affected by the accumulation of impurities on the inner wall of the pipeline, ensuring long-term effective monitoring of the safety state of the corroded pipe section.
适用范围为:适用于油气站场管道内腐蚀缺陷的安全监测领域。The scope of application is: It is suitable for the safety monitoring of corrosion defects in pipelines in oil and gas stations.
应用前景如下:The application prospects are as follows:
管道是国家油气资源运输的关键设施,其缺陷检测与监测是管道安全运 行的重要保障。而在役油气管道监测与缺陷高精度量化技术更是世界性难题, 在关键技术及应用等方面存在诸多瓶颈。发展具有自主知识产权的在役油气 管道检测与监测技术,对于打破国外技术壁垒、保障国家能源安全、抢占国 际技术制高点,具有重大意义和迫切需求。Pipelines are the key facilities for the transportation of national oil and gas resources, and defect detection and monitoring are important guarantees for the safe operation of pipelines. In-service oil and gas pipeline monitoring and high-precision quantification of defects are even more difficult worldwide, and there are many bottlenecks in key technologies and applications. The development of in-service oil and gas pipeline inspection and monitoring technology with independent intellectual property rights is of great significance and urgent need for breaking foreign technical barriers, ensuring national energy security, and seizing the commanding heights of international technology.
本发明实施例的一种电子设备,包括存储器、处理器及存储在存储器上 并在处理器上运行的程序,处理器执行程序时实现上述任一实施的一种管道 腐蚀的监测方法的步骤。An electronic device according to an embodiment of the present invention includes a memory, a processor, and a program stored in the memory and running on the processor. When the processor executes the program, the steps of any one of the above-mentioned methods for monitoring pipeline corrosion are implemented.
其中,电子设备可以选用电脑、手机等,相对应地,其程序为电脑软件 或手机APP等,且上述关于本发明的一种电子设备中的各参数和步骤,可 参考上文中一种管道腐蚀的监测方法的实施例中的各参数和步骤,在此不做 赘述。Among them, the electronic equipment can be a computer, a mobile phone, etc. Correspondingly, its program is computer software or a mobile phone APP, etc., and the above-mentioned parameters and steps in an electronic equipment of the present invention can be referred to the above-mentioned pipeline corrosion The parameters and steps in the embodiments of the monitoring method are not repeated here.
所属技术领域的技术人员知道,本发明可以实现为系统、方法或计算机 程序产品。As will be appreciated by one skilled in the art, the present invention may be embodied as a system, method or computer program product.
因此,本公开可以具体实现为以下形式,即:可以是完全的硬件、也可 以是完全的软件(包括固件、驻留软件、微代码等),还可以是硬件和软件 结合的形式,本文一般称为“电路”、“模块”或“系统”。此外,在一些实 施例中,本发明还可以实现为在一个或多个计算机可读介质中的计算机程序 产品的形式,该计算机可读介质中包含计算机可读的程序代码。Therefore, the present disclosure can be embodied in the following forms, that is: it can be complete hardware, it can also be complete software (including firmware, resident software, microcode, etc.), or it can be a combination of hardware and software. Called a "circuit," "module," or "system." Furthermore, in some embodiments, the present invention may also be implemented in the form of a computer program product on one or more computer-readable media having computer-readable program code embodied thereon.
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可 以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例 如可以是一一但不限于——电、磁、光、电磁、红外线、或半导体的系统、 装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非 穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、 随机存取存储器(RAM),只读存储器(ROM)、可擦式可编程只读存储器 (EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器 件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存 储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、 装置或者器件使用或者与其结合使用。Any combination of one or more computer-readable media may be employed. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. A computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable Programmable Read Only Memory (EPROM or Flash), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing. In this document, a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施 例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发 明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111626034.8A CN114383998B (en) | 2021-12-28 | 2021-12-28 | Pipeline corrosion monitoring method, system and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111626034.8A CN114383998B (en) | 2021-12-28 | 2021-12-28 | Pipeline corrosion monitoring method, system and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114383998A true CN114383998A (en) | 2022-04-22 |
CN114383998B CN114383998B (en) | 2024-09-06 |
Family
ID=81198831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111626034.8A Active CN114383998B (en) | 2021-12-28 | 2021-12-28 | Pipeline corrosion monitoring method, system and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114383998B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115575308A (en) * | 2022-08-25 | 2023-01-06 | 哈尔滨工业大学 | An electrochemical corrosion device and test method for FRP reinforced defective pipelines |
CN118702317A (en) * | 2024-06-05 | 2024-09-27 | 江苏省海洋水产研究所 | A circulating water treatment process for seawater shrimp farming |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051977A (en) * | 1997-01-22 | 2000-04-18 | Kawasaki Steel Corporation | Method and apparatus for locating coating faults on buried pipelines |
CN102954997A (en) * | 2011-08-26 | 2013-03-06 | 中国石油天然气股份有限公司 | Non-contact magnetic stress detection method for pipeline body defects |
CN105403618A (en) * | 2015-06-12 | 2016-03-16 | 宁波市鄞州磁泰电子科技有限公司 | Buried pipeline defect magnetic detection method |
CN107941900A (en) * | 2018-01-12 | 2018-04-20 | 西南石油大学 | A kind of steel bend pipe defect non-contact detection method |
CN109681785A (en) * | 2019-01-18 | 2019-04-26 | 陕西泰诺特检测技术有限公司 | A kind of Non-contact Magnetic stress mornitoring system and application method |
RU2697008C1 (en) * | 2018-09-20 | 2019-08-08 | Публичное акционерное общество "Газпром нефть" | Method for in-pipe diagnostics of pipeline technical state |
CN111307031A (en) * | 2020-03-16 | 2020-06-19 | 西南石油大学 | Buried pipeline safety state monitoring and early warning method |
CN113063844A (en) * | 2021-03-25 | 2021-07-02 | 西南石油大学 | Method for judging pipeline safety based on non-contact detection and comparison of pipeline magnetic field strength at different times |
CN113218541A (en) * | 2021-05-08 | 2021-08-06 | 西南石油大学 | Stress detection method for large-caliber high-steel-grade mountain pipeline |
-
2021
- 2021-12-28 CN CN202111626034.8A patent/CN114383998B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051977A (en) * | 1997-01-22 | 2000-04-18 | Kawasaki Steel Corporation | Method and apparatus for locating coating faults on buried pipelines |
CN102954997A (en) * | 2011-08-26 | 2013-03-06 | 中国石油天然气股份有限公司 | Non-contact magnetic stress detection method for pipeline body defects |
CN105403618A (en) * | 2015-06-12 | 2016-03-16 | 宁波市鄞州磁泰电子科技有限公司 | Buried pipeline defect magnetic detection method |
CN107941900A (en) * | 2018-01-12 | 2018-04-20 | 西南石油大学 | A kind of steel bend pipe defect non-contact detection method |
RU2697008C1 (en) * | 2018-09-20 | 2019-08-08 | Публичное акционерное общество "Газпром нефть" | Method for in-pipe diagnostics of pipeline technical state |
CN109681785A (en) * | 2019-01-18 | 2019-04-26 | 陕西泰诺特检测技术有限公司 | A kind of Non-contact Magnetic stress mornitoring system and application method |
CN111307031A (en) * | 2020-03-16 | 2020-06-19 | 西南石油大学 | Buried pipeline safety state monitoring and early warning method |
CN113063844A (en) * | 2021-03-25 | 2021-07-02 | 西南石油大学 | Method for judging pipeline safety based on non-contact detection and comparison of pipeline magnetic field strength at different times |
CN113218541A (en) * | 2021-05-08 | 2021-08-06 | 西南石油大学 | Stress detection method for large-caliber high-steel-grade mountain pipeline |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115575308A (en) * | 2022-08-25 | 2023-01-06 | 哈尔滨工业大学 | An electrochemical corrosion device and test method for FRP reinforced defective pipelines |
CN118702317A (en) * | 2024-06-05 | 2024-09-27 | 江苏省海洋水产研究所 | A circulating water treatment process for seawater shrimp farming |
Also Published As
Publication number | Publication date |
---|---|
CN114383998B (en) | 2024-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108918405B (en) | Online monitoring system and method for corrosion prevention effect of oil well pipeline | |
CN111156425B (en) | Pipeline condition monitoring method, device and system | |
CN100449199C (en) | In-service pipeline corrosion and leakage safety monitoring and early warning system and control method thereof | |
CN102156089B (en) | Buried pipeline internal corrosion evaluation method | |
CN103499023B (en) | A kind of fuel gas pipeline leakage on-line checkingi and localization method and device thereof | |
CN103590444B (en) | Leakage continuous monitoring method and pipe burst early warning system for large buried pressure water pipeline | |
CN114383998B (en) | Pipeline corrosion monitoring method, system and electronic equipment | |
CN106323385A (en) | Online detection of storage tank, assessment method and device | |
CN1901418A (en) | Method and system for monitoring soil property side slope distributive fiber optic strain | |
CN101894454A (en) | Oil Derrick Stress Measurement and Data Acquisition System Based on Wireless Sensor Network | |
CN208937478U (en) | A kind of oil pipeline anticorrosion ability on-line monitoring system | |
CN204164672U (en) | A kind of liquid detecting ball for natural gas line supervisory system | |
CN103293105B (en) | A Fiber Bragg Grating Detection Device for Reinforcement Corrosion in Reinforced Concrete Members | |
CN105387349A (en) | Liquid detection ball used for natural gas pipeline monitoring system | |
CN108037274A (en) | A kind of concrete structure real-time monitoring device and method | |
CN111664364B (en) | An online monitoring system and monitoring method for buried pipeline leakage | |
RU2262634C1 (en) | Method of detecting pipeline sections disposed to corrosion cracking under stressing | |
CN115451800A (en) | Testing method of portable field testing imager for cement electric pole | |
CN118190275B (en) | Method and system for accurately detecting leakage of underground structure | |
CN115479549A (en) | A portable on-site test imager for cement poles | |
CN105572329A (en) | Concrete crack scale distance adaptive monitoring method | |
Wu et al. | Development of offshore platform stress monitoring system based on Internet of Things technology | |
JP4698318B2 (en) | Anticorrosion state monitoring method and system | |
CN118408590B (en) | Pipeline health monitoring system based on machine learning | |
CN104614438A (en) | Intelligent drainage pipeline crack monitoring system and monitoring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241025 Address after: Room 08-10, 6 / F, block a, No. 5, Dongtucheng Road, Chaoyang District, Beijing 100013 Patentee after: National Petroleum and natural gas pipeline network Group Co.,Ltd. Country or region after: China Patentee after: Sichuan East Natural Gas Pipeline Co.,Ltd. Address before: 430223 floors 1-5, Wuhan control center, Sichuan East gas transmission pipeline project, No. 126, Guanggu Avenue, Donghu New Technology Development Zone, Wuhan, Hubei Province Patentee before: Sichuan East Natural Gas Pipeline Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |