[go: up one dir, main page]

CN114377929A - Transducer probe, manufacturing method and medical equipment - Google Patents

Transducer probe, manufacturing method and medical equipment Download PDF

Info

Publication number
CN114377929A
CN114377929A CN202011115530.2A CN202011115530A CN114377929A CN 114377929 A CN114377929 A CN 114377929A CN 202011115530 A CN202011115530 A CN 202011115530A CN 114377929 A CN114377929 A CN 114377929A
Authority
CN
China
Prior art keywords
layer
ultrasonic
rib
electrode
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011115530.2A
Other languages
Chinese (zh)
Inventor
陈昱
张池
王开安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Industrial Utechnology Research Institute
Original Assignee
Shanghai Industrial Utechnology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Industrial Utechnology Research Institute filed Critical Shanghai Industrial Utechnology Research Institute
Priority to CN202011115530.2A priority Critical patent/CN114377929A/en
Publication of CN114377929A publication Critical patent/CN114377929A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本申请提供一种换能器探头、制作方法及医用设备。所述换能器探头包括基底芯片、绝缘层、双压电层和导电组件。绝缘层覆盖在所述基底芯片的上表面。双压电层设置在所述绝缘层上表面,包括压力层、超声层和位于所述压力层和超声层中间并能够屏蔽超声层和压力层之间信号干扰的隔离层;所述超声层位于所述压力层的上方。导电组件包括用于电连接所述基底芯片与所述压力层的第一导电组件和用于电连接所述基底芯片与所述超声层的第二导电组件。本申请将具有压力探测的压力层和具有超声成像功能的超声层设置在一个换能器探头结构中,压力信号和超声信号同步独立检测,因此能够在进行压力探测的同时还可进行超声成像,拓展了产品的功能,拓宽了应用场景。

Figure 202011115530

The present application provides a transducer probe, a manufacturing method and medical equipment. The transducer probe includes a base chip, an insulating layer, a bi-piezoelectric layer and a conductive component. An insulating layer covers the upper surface of the base chip. The piezoelectric bilayer is arranged on the upper surface of the insulating layer, and includes a pressure layer, an ultrasonic layer, and an isolation layer located between the pressure layer and the ultrasonic layer and capable of shielding signal interference between the ultrasonic layer and the pressure layer; the ultrasonic layer is located in the middle of the pressure layer and the ultrasonic layer. above the pressure layer. The conductive components include a first conductive component for electrically connecting the base chip and the pressure layer and a second conductive component for electrically connecting the base chip and the ultrasonic layer. In the present application, the pressure layer with pressure detection and the ultrasonic layer with ultrasonic imaging function are arranged in a transducer probe structure, and the pressure signal and the ultrasonic signal are detected synchronously and independently, so ultrasonic imaging can be performed simultaneously with the pressure detection, Expand the function of the product and broaden the application scenarios.

Figure 202011115530

Description

换能器探头、制作方法及医用设备Transducer probe, manufacturing method and medical equipment

技术领域technical field

本申请涉及换能器技术领域,具体而言,涉及一种换能器探头及使用该换能器探头的医用设备。The present application relates to the technical field of transducers, and in particular, to a transducer probe and medical equipment using the transducer probe.

背景技术Background technique

压力换能器是能够感受压力信号,并将压力信号转化为电信号的能量转化器件。其核心部件为压力敏感元件,例如压电晶片,现各种压力换能器广泛应用于工业、生活和医疗领域。A pressure transducer is an energy conversion device that can sense pressure signals and convert them into electrical signals. Its core components are pressure sensitive elements, such as piezoelectric wafers, and various pressure transducers are now widely used in industry, life and medical fields.

超声换能器是在超声频率范围内将交变的电信号转化为声信号或者将外界的声信号转换为电信号的能量转化器件。由于超声波具有穿透性,可以穿透物体表面,可以通过超声波遇到界面和障碍物时其回波信号的变化,无损探测物体内部的结构。An ultrasonic transducer is an energy conversion device that converts alternating electrical signals into acoustic signals or converts external acoustic signals into electrical signals in the ultrasonic frequency range. Due to the penetrating nature of ultrasonic waves, it can penetrate the surface of objects, and can detect the internal structure of objects non-destructively through changes in the echo signals of ultrasonic waves when they encounter interfaces and obstacles.

在既需要使用压力换能器又需要超声换能器的使用场景时,压力换能器和超声换能器分别进行相应的检测。更换不同的检测设备势必会花费较多的仪器安装时间和检测时间。由于压力换能器和超声换能器核心部件都是压力敏感元件,且用于探测不同频率的信号,因此如何提供一种兼具压力换能器和超声换能器的检测设备,成为本领域研究的重点。When both the pressure transducer and the ultrasonic transducer are required to be used in a usage scenario, the pressure transducer and the ultrasonic transducer are respectively tested accordingly. Replacing different testing equipment will inevitably cost more time for instrument installation and testing. Since the core components of the pressure transducer and the ultrasonic transducer are both pressure sensitive elements and are used to detect signals of different frequencies, how to provide a detection device that has both a pressure transducer and an ultrasonic transducer has become a problem in the art The focus of the research.

发明内容SUMMARY OF THE INVENTION

本申请实施例的目的在于提供一种换能器探头,其同时具备压力探测和超声成像功能,能拓展产品的功能,拓宽应用范围。The purpose of the embodiments of the present application is to provide a transducer probe, which has the functions of pressure detection and ultrasonic imaging at the same time, can expand the function of the product, and widen the scope of application.

第一方面,提供了一种换能器探头,包括:In a first aspect, a transducer probe is provided, comprising:

基底芯片;base chip;

绝缘层,覆盖在所述基底芯片的上表面;an insulating layer covering the upper surface of the base chip;

双压电层,设置在所述绝缘层上表面,包括压力层、超声层和位于所述压力层和超声层中间并能够屏蔽超声层和压力层之间信号干扰的隔离层;所述超声层位于所述压力层的上方;A double piezoelectric layer is arranged on the upper surface of the insulating layer, and includes a pressure layer, an ultrasonic layer, and an isolation layer located between the pressure layer and the ultrasonic layer and capable of shielding signal interference between the ultrasonic layer and the pressure layer; the ultrasonic layer above the pressure layer;

导电组件,包括用于电连接所述基底芯片与所述压力层的第一导电组件和用于电连接所述基底芯片与所述超声层的第二导电组件。The conductive component includes a first conductive component for electrically connecting the base chip and the pressure layer and a second conductive component for electrically connecting the base chip and the ultrasonic layer.

在一种可实施的方案中,所述双压电层包括:In an implementable solution, the piezoelectric bilayer includes:

第一电极层,设置在所述绝缘层的上表面且面积小于所述绝缘层的面积,包括第一电极主体和第一支肋;所述第一支肋与所述第一电极主体电连接并作为所述第一电极主体的引出端;A first electrode layer, disposed on the upper surface of the insulating layer and having an area smaller than that of the insulating layer, includes a first electrode body and a first rib; the first rib is electrically connected to the first electrode body and serve as the lead-out end of the first electrode body;

压力压电层,设置在所述绝缘层上并将所述第一电极层覆盖,所述压力压电层上布置若干阵列排布的压电换能器单元;a pressure piezoelectric layer, which is arranged on the insulating layer and covers the first electrode layer, and a plurality of piezoelectric transducer units arranged in an array are arranged on the pressure piezoelectric layer;

中间层,设置在所述压力压电层的上表面且面积小于所述压力压电层的面积;an intermediate layer, arranged on the upper surface of the pressure piezoelectric layer and having an area smaller than that of the pressure piezoelectric layer;

超声压电层,设置在所述中间层上并将所述中间层覆盖,用于产生超声信号;an ultrasonic piezoelectric layer, disposed on the intermediate layer and covering the intermediate layer, for generating ultrasonic signals;

第四电极层,设置在所述超声压电层的上表面且面积小于所述超声压电层的面积,包括第四电极主体和第四支肋;所述第四支肋与所述第四电极主体电连接并作为所述第四电极主体的引出端;A fourth electrode layer, arranged on the upper surface of the ultrasonic piezoelectric layer and having an area smaller than that of the ultrasonic piezoelectric layer, includes a fourth electrode body and a fourth rib; the fourth rib and the fourth The electrode body is electrically connected and serves as the lead-out end of the fourth electrode body;

所述中间层被配置为:屏蔽所述超声压电层和所述压力压电层之间的信号干扰,以及与所述压力压电层和所述第一电极层构成所述压力层并将所述压力压电层产生的压力信号传输至所述基底芯片;以及与所述超声压电层和所述第四电极层构成所述超声层并将所述超声压电层产生的超声信号传输至所述基底芯片。The intermediate layer is configured to shield signal interference between the ultrasonic piezoelectric layer and the pressure piezoelectric layer, and to form the pressure layer with the pressure piezoelectric layer and the first electrode layer and to The pressure signal generated by the pressure piezoelectric layer is transmitted to the base chip; and the ultrasonic layer is formed with the ultrasonic piezoelectric layer and the fourth electrode layer and the ultrasonic signal generated by the ultrasonic piezoelectric layer is transmitted to the base chip.

在一种可实施的方案中,所述中间层包括:In an implementable solution, the intermediate layer includes:

第二电极层,包括第二电极主体和第二支肋;所述第二支肋与所述第二电极主体电连接并作为所述第二电极主体的引出端;所述第二电极层位于所述第一电极层的正上方;The second electrode layer includes a second electrode body and a second rib; the second rib is electrically connected to the second electrode body and serves as a lead-out end of the second electrode body; the second electrode layer is located at the directly above the first electrode layer;

所述超声压电层与所述第二电极层接触的部分极化,与所述压力压电层接触的部分不极化。The portion of the ultrasonic piezoelectric layer in contact with the second electrode layer is polarized, and the portion in contact with the pressure piezoelectric layer is not polarized.

在另一种可实施的方案中,所述中间层包括:In another feasible solution, the intermediate layer includes:

第二电极层,设置在所述压力压电层的上表面且面积小于所述压力压电层的面积,包括第二电极主体和第二支肋;所述第二支肋与所述第二电极主体电连接并作为所述第二电极主体的引出端;A second electrode layer, disposed on the upper surface of the pressure piezoelectric layer and having an area smaller than that of the pressure piezoelectric layer, includes a second electrode body and a second rib; the second rib and the second The electrode body is electrically connected and serves as the lead-out end of the second electrode body;

所述隔离层;the isolation layer;

第三电极层,位于所述隔离层的上方,包括第三电极主体和第三支肋,所述第三支肋与所述第三电极主体电连接并作为所述第三电极主体的引出端;所述超声压电层设置在所述隔离层上并将所述第三电极层覆盖;A third electrode layer, located above the isolation layer, includes a third electrode body and a third rib, the third rib is electrically connected to the third electrode body and serves as a lead-out end of the third electrode body ; The ultrasonic piezoelectric layer is arranged on the isolation layer and covers the third electrode layer;

所述第一电极层和所述第二电极层用于将所述压电换能器单元产生的压力信号传输至所述基底芯片,所述第三电极层和所述第四电极层用于将所述超声换能器单元产生的超声信号传输至所述基底芯片。The first electrode layer and the second electrode layer are used for transmitting the pressure signal generated by the piezoelectric transducer unit to the base chip, and the third electrode layer and the fourth electrode layer are used for The ultrasonic signal generated by the ultrasonic transducer unit is transmitted to the base chip.

在一种可实施的方案中,所述基底芯片上配置有第一接触点、第二接触点和第四接触点;In an implementable solution, a first contact point, a second contact point and a fourth contact point are configured on the base chip;

所述第一接触点与第一支肋通过第一导电柱连接;所述第二接触点与第二支肋通过第二导电柱连接;所述第四接触点与第四支肋通过第四导电柱连接;The first contact point and the first rib are connected through a first conductive column; the second contact point and the second rib are connected through a second conductive column; the fourth contact point and the fourth rib are connected through a fourth Conductive column connection;

所述第一导电柱、第二导电柱、第四导电柱均穿设所述双压电层并避让所述第一电极层、第二电极层和第四电极层;The first conductive column, the second conductive column, and the fourth conductive column all pass through the piezoelectric bilayer and avoid the first electrode layer, the second electrode layer, and the fourth electrode layer;

所述第一接触点、第一导电柱、第二接触点和第二导电柱构成所述第一导电组件;所述第二接触点、第二导电柱、第四接触点和第四导电柱构成所述第二导电组件。The first contact point, the first conductive column, the second contact point and the second conductive column constitute the first conductive component; the second contact point, the second conductive column, the fourth contact point and the fourth conductive column constitute the second conductive component.

在一种可实施的方案中,所述第一导电柱的截面积小于第一支肋的截面积;所述第二导电柱的截面积小于第二支肋的截面积;所述第四导电柱的截面积小于第三支肋的截面积。In an implementable solution, the cross-sectional area of the first conductive column is smaller than the cross-sectional area of the first rib; the cross-sectional area of the second conductive column is smaller than the cross-sectional area of the second support rib; the fourth conductive column The cross-sectional area of the column is smaller than the cross-sectional area of the third rib.

在一种可实施的方案中,所述第一电极层、第四电极层、中间层中的第二电极层或中间层中的第二电极层和所述第三电极层上均刻蚀有激励层。In an implementable solution, the first electrode layer, the fourth electrode layer, the second electrode layer in the intermediate layer, or the second electrode layer in the intermediate layer and the third electrode layer are all etched with incentive layer.

在一种可实施的方案中,换能器探头还包括保护层,设置在所述超声压电层的上方并覆盖所述第四电极层;In an implementable solution, the transducer probe further includes a protective layer disposed above the ultrasonic piezoelectric layer and covering the fourth electrode layer;

在一种可实施的方案中,所述超声压电层的厚度与所述压力压电层的厚度不同。In one possible implementation, the thickness of the ultrasonic piezoelectric layer is different from the thickness of the piezoelectric piezoelectric layer.

根据本申请的第二方面,还提供了一种医用设备,包括如上任一项所述结构的换能器探头。According to the second aspect of the present application, there is also provided a medical device, comprising the transducer probe of any one of the above structures.

根据本申请的第三个方面,还提供了一种换能器探头的制作方法,包括:According to a third aspect of the present application, a method for manufacturing a transducer probe is also provided, including:

基于CMOS工艺形成基底芯片;Forming a base chip based on a CMOS process;

在所述基底芯片的表面形成绝缘层;forming an insulating layer on the surface of the base chip;

在所述绝缘层的表面自下而上依次沉积压力层、隔离层和超声层;所述隔离层用于屏蔽所述超声层和所述压力层之间的信号干扰;所述压力层、隔离层和超声层构成双压电层;A pressure layer, an isolation layer and an ultrasonic layer are sequentially deposited on the surface of the insulating layer from bottom to top; the isolation layer is used to shield signal interference between the ultrasonic layer and the pressure layer; the pressure layer, the isolation layer The layer and the ultrasonic layer constitute a double piezoelectric layer;

在所述基底芯片和所述压力层之间设置电连接所述基底芯片和所述压力层的第一导电组件,以及在所述基底芯片和所述超声层之间设置用于电连接所述基底芯片和所述超声层的第二导电组件;所述第一导电组件和所述第二导电组件构成所述换能器探头的导电组件。A first conductive member for electrically connecting the base chip and the pressure layer is provided between the base chip and the pressure layer, and between the base chip and the ultrasonic layer for electrically connecting the The base chip and the second conductive component of the ultrasonic layer; the first conductive component and the second conductive component constitute the conductive component of the transducer probe.

在一种实施方案中,所述双压电层的制作流程包括:In one embodiment, the fabrication process of the piezoelectric bilayer includes:

制作所述压电层:在所述绝缘层的表面沉积一层金属材料作为所述第一电极层;在所述绝缘层和所述第一电极层上沉积压力压电层;在所述压力压电层上沉积一层金属材料作为第二电极层;Making the piezoelectric layer: depositing a layer of metal material on the surface of the insulating layer as the first electrode layer; depositing a pressure piezoelectric layer on the insulating layer and the first electrode layer; A layer of metal material is deposited on the piezoelectric layer as the second electrode layer;

制作所述隔离层:在第二电极层上沉积一层隔离层,所述隔离层的厚度为四分之一超声波波长的奇数倍;Making the isolation layer: depositing a layer of isolation layer on the second electrode layer, the thickness of the isolation layer is an odd multiple of a quarter ultrasonic wavelength;

制作所述超声层:在所述隔离层上沉积一层金属材料作为第三电极层;在所述第三电极层上方涂覆所述超声压电层;超声压电层与第三电极层接触的部分完成极化,未与第三电极层接触的部分不进行极化;在所述超声压电层上沉积一层金属材料作为第四电极层。Making the ultrasonic layer: depositing a layer of metal material on the isolation layer as the third electrode layer; coating the ultrasonic piezoelectric layer on the third electrode layer; the ultrasonic piezoelectric layer is in contact with the third electrode layer The part that is not in contact with the third electrode layer is not polarized; a layer of metal material is deposited on the ultrasonic piezoelectric layer as the fourth electrode layer.

在另一种实施方案中,所述双压电层的制作流程包括:In another embodiment, the fabrication process of the piezoelectric bilayer includes:

在所述绝缘层的表面沉积一层金属材料作为所述第一电极层;depositing a layer of metal material on the surface of the insulating layer as the first electrode layer;

在所述绝缘层和所述第一电极层上沉积压力压电层;depositing a piezoelectric piezoelectric layer on the insulating layer and the first electrode layer;

在所述压力压电层上沉积一层金属材料作为第二电极层,且所述第二电极层位于所述第一电极层的正上方;depositing a layer of metal material on the pressure piezoelectric layer as a second electrode layer, and the second electrode layer is located directly above the first electrode layer;

在所述第二电极层上方涂覆超声压电层;所述超声压电层与第二电极层接触的部分完成极化,未与第二电极层接触的部分不进行极化;Coating an ultrasonic piezoelectric layer above the second electrode layer; the part of the ultrasonic piezoelectric layer in contact with the second electrode layer is polarized, and the part not in contact with the second electrode layer is not polarized;

在所述超声压电层上沉积一层金属材料作为第四电极层。A layer of metal material is deposited on the ultrasonic piezoelectric layer as a fourth electrode layer.

在一种实施方案中,所述导电组件电连接所述基底芯片和所述压力层,以及电连接所述基底芯片和所述超声层的方法包括:In one embodiment, the conductive component electrically connects the base chip and the pressure layer, and the method of electrically connecting the base chip and the ultrasonic layer includes:

在所述基底芯片上设置第一至第四接触点;providing first to fourth contact points on the base chip;

第一电极层包括相距预定距离且电连接的第一电极主体和第一支肋;第二电极层包括相距预定距离且电连接的第二电极主体和第二支肋;第三电极层包括相距预定距离且电连接的第三电极主体和第三支肋;第四电极层包括相距预定距离且电连接的第四电极主体和第四支肋;第一支肋、第二支肋、第三支肋和第四支肋错位布置;The first electrode layer includes a first electrode body and a first rib that are separated by a predetermined distance and electrically connected; the second electrode layer includes a second electrode body and a second rib that are separated by a predetermined distance and are electrically connected; the third electrode layer includes a distance a third electrode body and a third rib that are electrically connected with a predetermined distance; the fourth electrode layer includes a fourth electrode body and a fourth rib that are separated by a predetermined distance and are electrically connected; the first rib, the second rib, the third rib The support rib and the fourth support rib are dislocated;

在第一支肋和第一接触点相对的区域,第二支肋和第二接触点相对的区域,第三支肋和第三接触点相对的区域,以及第四支肋和第四接触点相对的区域,形成第一通孔、第二通孔、第三通孔和第四通孔;In the area where the first rib is opposite to the first contact point, the area where the second rib is opposite to the second contact point, the area where the third rib and the third contact point are opposite, and the fourth rib and the fourth contact point In the opposite area, a first through hole, a second through hole, a third through hole and a fourth through hole are formed;

所述第一通孔穿过所述超声压电层、压力压电层、第一支肋、绝缘层并使第一接触点漏出;第二通孔穿过隔离层、第二支肋、压力压电层、绝缘层并使第二接触点漏出;第三通孔穿过超声压电层、第三支肋、压力层、绝缘层并使第三接触点漏出,第四通孔穿过第四支肋、超声压电层、第四支肋、压力压电层、绝缘层并使第四接触点漏出;The first through hole passes through the ultrasonic piezoelectric layer, the pressure piezoelectric layer, the first support rib, the insulating layer, and makes the first contact point leak out; the second through hole passes through the isolation layer, the second support rib, the pressure The piezoelectric layer, the insulating layer and the second contact point leak out; the third through hole passes through the ultrasonic piezoelectric layer, the third rib, the pressure layer, and the insulating layer and causes the third contact point to leak out, and the fourth through hole passes through the third contact point. Four rib, ultrasonic piezoelectric layer, fourth rib, pressure piezoelectric layer, insulating layer and make the fourth contact point leak out;

在第一通孔、第二通孔、第三通孔和第四通孔的内部以及上方沉积导电介质以形成第一导电柱、第二导电柱、第三导电柱和第四导电柱;depositing a conductive medium in and over the first, second, third, and fourth vias to form first, second, third, and fourth conductive pillars;

第一导电柱和第二导电柱用于电性连接基底芯片与所述压力压电层;第三导电柱和第四导电柱用于电性连接所述基底芯片与所述超声压电层。The first conductive column and the second conductive column are used to electrically connect the base chip and the pressure piezoelectric layer; the third conductive column and the fourth conductive column are used to electrically connect the base chip and the ultrasonic piezoelectric layer.

在一种实施方案中,所述导电组件电连接所述基底芯片和所述压力层,以及电连接所述基底芯片和所述超声层的方法包括:In one embodiment, the conductive component electrically connects the base chip and the pressure layer, and the method of electrically connecting the base chip and the ultrasonic layer includes:

在所述基底芯片上设置第一接触点、第二接触点和第四接触点;disposing a first contact point, a second contact point and a fourth contact point on the base chip;

第一电极层包括相距预定距离且电连接的第一电极主体和第一支肋;第二电极层包括相距预定距离且电连接的第二电极主体和第二支肋;第四电极层包括相距预定距离且电连接的第四电极主体和第四支肋;第一支肋、第二支肋和第四支肋错位布置;The first electrode layer includes a first electrode body and a first rib that are separated by a predetermined distance and electrically connected; the second electrode layer includes a second electrode body and a second rib that are separated by a predetermined distance and are electrically connected; the fourth electrode layer includes a distance a fourth electrode body and a fourth rib that are electrically connected at a predetermined distance; the first rib, the second rib and the fourth rib are dislocated;

在第一支肋和第一接触点相对的区域,第二支肋和第二接触点相对的区域,以及第四支肋和第四接触点相对的区域,形成第一通孔、第二通孔和第四通孔;In the area where the first rib is opposite to the first contact point, the area where the second branch rib is opposite to the second contact point, and the area where the fourth branch rib is opposite to the fourth contact point, a first through hole and a second through hole are formed. hole and fourth through hole;

所述第一通孔穿过所述超声压电层、压力压电层、第一支肋、绝缘层并使第一接触点漏出;第二通孔穿过超声压电层、第二支肋、压力压电层、绝缘层并使第二接触点漏出;第四通孔穿过第四支肋、超声压电层、第二支肋、压力压电层、绝缘层并使第四接触点漏出;The first through hole passes through the ultrasonic piezoelectric layer, the pressure piezoelectric layer, the first support rib, and the insulating layer and allows the first contact point to leak out; the second through hole passes through the ultrasonic piezoelectric layer, the second support rib , pressure piezoelectric layer, insulating layer and make the second contact point leak out; the fourth through hole passes through the fourth support rib, ultrasonic piezoelectric layer, second support rib, pressure piezoelectric layer, insulating layer and makes the fourth contact point leakage;

在第一通孔、第二通孔和第四通孔的内部以及上方沉积导电介质以形成第一导电柱、第二导电柱和第四导电柱。A conductive medium is deposited in and over the first, second, and fourth vias to form first, second, and fourth conductive pillars.

在一种进一步的实施方案中,换能器探头的制作方法还包括:In a further embodiment, the method of making the transducer probe further comprises:

在所述超声层的上方沉积一层保护层;所述保护层覆盖所述超声压电层、第四电极层及各导电柱的顶端。A protective layer is deposited above the ultrasonic layer; the protective layer covers the ultrasonic piezoelectric layer, the fourth electrode layer and the top of each conductive column.

由以上技术方案可知,本申请将具有压力探测的压力层和具有超声成像功能的超声层设置在一个换能器探头结构中,压力信号和超声信号同步独立检测,能够在进行压力探测的同时还可进行超声成像,从而拓展了产品的功能,拓宽了应用场景。As can be seen from the above technical solutions, the present application arranges the pressure layer with pressure detection and the ultrasonic layer with ultrasonic imaging function in a transducer probe structure, and the pressure signal and the ultrasonic signal are independently detected synchronously. Ultrasound imaging can be performed, thereby expanding the function of the product and broadening the application scenarios.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following drawings will briefly introduce the drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.

图1为根据本申请实施例示出的一种换能器探头的结构示意图;1 is a schematic structural diagram of a transducer probe according to an embodiment of the present application;

图2为根据本申请实施例示出的另一种换能器探头的结构示意图;2 is a schematic structural diagram of another transducer probe according to an embodiment of the present application;

图3为图2所示换能器探头的截面图;Figure 3 is a cross-sectional view of the transducer probe shown in Figure 2;

图4~图13为实施图2所述换能器探头第一步骤至第十步骤各步骤的结构示意图。4 to 13 are schematic structural diagrams of implementing the steps from the first step to the tenth step of the transducer probe shown in FIG. 2 .

具体实施方式Detailed ways

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。In order to make the purposes, technical solutions and advantages of the embodiments of the present application more clear, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of the present application, but not all of the embodiments. The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.

因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。Thus, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.

图1为根据本申请实施例示出的一种换能器探头的结构示意图。参见图1,换能器探头包括基底芯片100、绝缘层200、双压电层300和导电组件。FIG. 1 is a schematic structural diagram of a transducer probe according to an embodiment of the present application. Referring to FIG. 1 , the transducer probe includes a base chip 100 , an insulating layer 200 , a piezoelectric bilayer 300 and conductive components.

绝缘层200覆盖在基底芯片100的上表面。双压电层300设置在绝缘层200 上表面,双压电层300包括压力层310、超声层320和位于压力层310和超声层 320中间的隔离层330。超声层320位于压力层310的上方。其中,压力层310 用于压力探测,超声层320用于超声成像。隔离层330用于屏蔽超声层320和压力层310之间的信号干扰,以保证两者均能够正常发挥其效用。导电组件包括用于电连接基底芯片100与压力层310的第一导电组件和用于电连接基底芯片100 与超声层320的第二导电组件。The insulating layer 200 covers the upper surface of the base chip 100 . The piezoelectric bilayer 300 is disposed on the upper surface of the insulating layer 200. The piezoelectric bilayer 300 includes a pressure layer 310, an ultrasonic layer 320, and an isolation layer 330 located between the pressure layer 310 and the ultrasonic layer 320. The ultrasonic layer 320 is located above the pressure layer 310 . The pressure layer 310 is used for pressure detection, and the ultrasonic layer 320 is used for ultrasonic imaging. The isolation layer 330 is used for shielding the signal interference between the ultrasonic layer 320 and the pressure layer 310, so as to ensure that both can function normally. The conductive components include a first conductive component for electrically connecting the base chip 100 and the pressure layer 310 and a second conductive component for electrically connecting the base chip 100 and the ultrasonic layer 320 .

由于压力换能器和超声换能器的核心部件都是压力敏感元件,且用于探测不同频率的信号,因此本申请在上述实现过程中,将具有压力探测的压力层310 和具有超声成像功能的超声层320设置在一个换能器探头结构中,压力信号和超声信号同步独立检测,从而使本申请中的换能器探头在进行压力探测的同时还可进行超声成像,从而拓展了产品的功能,拓宽了应用场景。Since the core components of the pressure transducer and the ultrasonic transducer are both pressure sensitive elements and are used to detect signals of different frequencies, in the above implementation process, the present application will have a pressure layer 310 for pressure detection and an ultrasonic imaging function. The ultrasonic layer 320 is arranged in a transducer probe structure, and the pressure signal and the ultrasonic signal are detected synchronously and independently, so that the transducer probe in this application can perform ultrasonic imaging at the same time as the pressure detection, thereby expanding the product range. functions, broadening the application scenarios.

在一种可实施的方案中,压力层310包括第一电极层311、压力压电层312 和第二电极层313。第一电极层311设置在绝缘层200的上表面且面积小于绝缘层200的面积,包括第一电极主体和第一支肋314,第一支肋314与第一电极主体电连接并作为第一电极主体的引出端。压力压电层312设置在绝缘层200上并将第一电极层311覆盖,压力压电层312上布置若干阵列排布的压电换能器单元 (图中未示出)。第二电极层313设置在压力压电层312的上表面且面积小于压力压电层312的面积,包括第二电极主体和第二支肋315;第二支肋315与第二电极主体电连接并作为第二电极主体的引出端。在压力压电层312接受到压力时,第一电极层311和第二电极层313用于将压电换能器单元产生的压力信号传输至基底芯片100。In an embodiment, the pressure layer 310 includes a first electrode layer 311 , a pressure piezoelectric layer 312 and a second electrode layer 313 . The first electrode layer 311 is disposed on the upper surface of the insulating layer 200 and has an area smaller than that of the insulating layer 200 , and includes a first electrode body and a first rib 314 . The first rib 314 is electrically connected to the first electrode body and serves as the first electrode body. The terminal of the electrode body. The pressure piezoelectric layer 312 is disposed on the insulating layer 200 and covers the first electrode layer 311, and several piezoelectric transducer units (not shown in the figure) arranged in an array are arranged on the pressure piezoelectric layer 312. The second electrode layer 313 is disposed on the upper surface of the pressure piezoelectric layer 312 and has an area smaller than that of the pressure piezoelectric layer 312 , and includes a second electrode body and a second rib 315 ; the second rib 315 is electrically connected to the second electrode body and serve as the lead-out end of the second electrode body. When the pressure piezoelectric layer 312 receives pressure, the first electrode layer 311 and the second electrode layer 313 are used to transmit the pressure signal generated by the piezoelectric transducer unit to the base chip 100 .

超声层320包括第三电极层321、超声压电层322和第四电极层323。第三电极层321位于隔离层330的上方,包括第三电极主体和第三支肋324,第三支肋324与第三电极主体电连接并作为第三电极主体的引出端。超声压电层322 设置在隔离层330上并将第三电极层321覆盖。第四电极层323设置在超声压电层322的上表面且面积小于超声压电层322的面积,包括第四电极主体和第四支肋325;第四支肋325与第四电极主体电连接并作为第四电极主体的引出端。在超声压电层322接受到压力时,第三电极层321和第四电极层323用于将超声换能器单元产生的超声信号传输至基底芯片100。The ultrasonic layer 320 includes a third electrode layer 321 , an ultrasonic piezoelectric layer 322 and a fourth electrode layer 323 . The third electrode layer 321 is located above the isolation layer 330 and includes a third electrode body and a third rib 324. The third rib 324 is electrically connected to the third electrode body and serves as a lead-out end of the third electrode body. The ultrasonic piezoelectric layer 322 is disposed on the isolation layer 330 and covers the third electrode layer 321 . The fourth electrode layer 323 is disposed on the upper surface of the ultrasonic piezoelectric layer 322 and has an area smaller than that of the ultrasonic piezoelectric layer 322, and includes a fourth electrode body and a fourth rib 325; the fourth rib 325 is electrically connected to the fourth electrode body and serve as the lead-out end of the fourth electrode body. When the ultrasonic piezoelectric layer 322 receives pressure, the third electrode layer 321 and the fourth electrode layer 323 are used to transmit the ultrasonic signal generated by the ultrasonic transducer unit to the base chip 100 .

在该实施方案中,第二电极层313、隔离层330和第三电极层321构成中间层。In this embodiment, the second electrode layer 313, the isolation layer 330, and the third electrode layer 321 constitute an intermediate layer.

在另一种可实施的方案中,中间层只包括第二电极层,该实施例中第二电极层所起的作用与上一实施例中的第二电极层313、隔离层330和第三电极层321 的作用相同。图2为根据本申请实施例示出的另一种换能器探头的结构示意图。图3为图2所示换能器探头的截面图。参见图2和图3,第二电极层313位于第一电极层311的正上方,且超声压电层322与第二电极层313接触的部分极化,与压力压电层312接触的部分不极化。In another feasible solution, the intermediate layer only includes the second electrode layer, and the functions of the second electrode layer in this embodiment are the same as those of the second electrode layer 313 , the isolation layer 330 and the third electrode layer in the previous embodiment. The function of the electrode layer 321 is the same. FIG. 2 is a schematic structural diagram of another transducer probe according to an embodiment of the present application. FIG. 3 is a cross-sectional view of the transducer probe shown in FIG. 2 . 2 and 3, the second electrode layer 313 is located directly above the first electrode layer 311, and the part of the ultrasonic piezoelectric layer 322 in contact with the second electrode layer 313 is polarized, and the part in contact with the pressure piezoelectric layer 312 is not polarization.

在一种可实施的方案中,基底芯片100上配置有第一接触点110、第二接触点120(与第三接触点130重合)和第四接触点140。第一接触点110与第一支肋314通过第一导电柱500连接;第二接触点120与第二支肋315通过第二导电柱600(与第三导电柱700重合)连接;第四接触点140与第四支肋325通过第四导电柱800连接。第一导电柱500、第二导电柱600、第四导电柱800均穿设双压电层300并避让第一电极层311、第二电极层313和第四电极层323。第一接触点110、第一导电柱500、第二接触点120和第二导电柱600构成第一导电组件;第二接触点120、第二导电柱600、第四接触点140和第四导电柱800构成第二导电组件。In an implementable solution, the base chip 100 is provided with a first contact point 110 , a second contact point 120 (coinciding with the third contact point 130 ) and a fourth contact point 140 . The first contact point 110 and the first rib 314 are connected through the first conductive column 500; the second contact point 120 and the second rib 315 are connected through the second conductive column 600 (overlapping the third conductive column 700); the fourth contact The dots 140 are connected to the fourth rib 325 through the fourth conductive pillar 800 . The first conductive column 500 , the second conductive column 600 , and the fourth conductive column 800 pass through the piezoelectric bilayer 300 and avoid the first electrode layer 311 , the second electrode layer 313 and the fourth electrode layer 323 . The first contact point 110, the first conductive pillar 500, the second contact point 120 and the second conductive pillar 600 constitute a first conductive component; the second contact point 120, the second conductive pillar 600, the fourth contact point 140 and the fourth conductive element Post 800 constitutes a second conductive component.

在一种可实施的方案中,第一导电柱500的截面积小于第一支肋314的截面积;第二导电柱600的截面积小于第二支肋315的截面积;第四导电柱800的截面积小于第四支肋325的截面积。In an implementable solution, the cross-sectional area of the first conductive pillar 500 is smaller than the cross-sectional area of the first rib 314 ; the cross-sectional area of the second conductive pillar 600 is smaller than the cross-sectional area of the second rib 315 ; the fourth conductive pillar 800 The cross-sectional area of is smaller than the cross-sectional area of the fourth rib 325 .

在一种可实施的方案中,第一电极层311、第二电极层313、第三电极层321 和第四电极层323上均刻蚀有激励层。In an implementable solution, an excitation layer is etched on the first electrode layer 311 , the second electrode layer 313 , the third electrode layer 321 and the fourth electrode layer 323 .

在一种可实施的方案中,换能器探头还包括保护层400,设置在超声压电层 322的上方并覆盖第四电极层323。In an implementable solution, the transducer probe further includes a protective layer 400 disposed above the ultrasonic piezoelectric layer 322 and covering the fourth electrode layer 323.

在本申请所实施的方案中,超声压电层322的厚度与压力压电层312的厚度可相同也可以不同。In the solution implemented in the present application, the thickness of the ultrasonic piezoelectric layer 322 and the thickness of the pressure piezoelectric layer 312 may be the same or different.

根据本申请的一个方面,还提供了一种换能器探头的制作方法,包括:According to an aspect of the present application, there is also provided a method for making a transducer probe, comprising:

基于CMOS工艺形成基底芯片;Forming a base chip based on a CMOS process;

在基底芯片的表面形成绝缘层;forming an insulating layer on the surface of the base chip;

在绝缘层的表面自下而上依次沉积压力层、隔离层和超声层;隔离层用于屏蔽超声层和压力层之间的信号干扰;压力层、隔离层和超声层构成双压电层;The pressure layer, the isolation layer and the ultrasonic layer are sequentially deposited on the surface of the insulating layer from bottom to top; the isolation layer is used to shield the signal interference between the ultrasonic layer and the pressure layer; the pressure layer, the isolation layer and the ultrasonic layer constitute a double piezoelectric layer;

在基底芯片和压力层之间设置电连接基底芯片和压力层的第一导电组件,以及在基底芯片和超声层之间设置用于电连接基底芯片和超声层的第二导电组件;所述第一导电组件和所述第二导电组件构成所述换能器探头的导电组件。A first conductive component for electrically connecting the substrate chip and the pressure layer is disposed between the base chip and the pressure layer, and a second conductive component for electrically connecting the base chip and the ultrasonic layer is disposed between the base chip and the ultrasonic layer; the first conductive component is disposed between the base chip and the ultrasonic layer. A conductive component and the second conductive component constitute the conductive component of the transducer probe.

具体地,以下提供图1所示换能器探头结构的制作流程,包括:Specifically, the manufacturing process of the transducer probe structure shown in FIG. 1 is provided below, including:

1)、基于CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺形成信号处理器基底芯片100,该基底芯片100基于硅晶圆、玻璃或者其他材料的基底。基底芯片100设置四个接触点,分别为第一接触点 110,第二接触点120,第三接触点130,第四接触点140,可看作是CMOS芯片的四个I/O端口。1) A signal processor base chip 100 is formed based on a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) process, and the base chip 100 is based on a silicon wafer, a glass or a substrate of other materials. The base chip 100 is provided with four contact points, namely the first contact point 110, the second contact point 120, the third contact point 130, and the fourth contact point 140, which can be regarded as four I/O ports of the CMOS chip.

2)、在基底芯片100表面形成绝缘层200,绝缘层200可以为二氧化硅或者其他本领域的各种绝缘材料,本实施例中的绝缘层200材质选用聚酰亚胺 (polyimide,PI)。2), an insulating layer 200 is formed on the surface of the base chip 100. The insulating layer 200 can be silicon dioxide or other various insulating materials in the field. The insulating layer 200 in this embodiment is made of polyimide (polyimide, PI). .

3)、完成步骤2)后,在绝缘层200表面沉积一层金属材料作为第一电极层 311,并进行图形化工艺,刻蚀出激励层的第一电极层311。第一电极层311包括第一电极主体以及第一支肋314,第一支肋314可以看做第一电极层311的引出端,第一电极主体与第一支肋314的一端连接,第一支肋314用于与基底芯片 100中的第一接触点110电连接。在本申请实施例中,第一电极层311的材质可以为金属、金属硅化物、金属氮化物、金属氧化物或导电碳等导电材料。如,第一电极层311的材质例如可以为Mo、Al、Cu、Ag、Au、Ni、Co、TiAl、TiN或TaN等。此外,下文提及的金属材料的选择可以参考本部分的描述,不再赘述。3) After completing step 2), a layer of metal material is deposited on the surface of the insulating layer 200 as the first electrode layer 311, and a patterning process is performed to etch the first electrode layer 311 of the excitation layer. The first electrode layer 311 includes a first electrode body and a first rib 314. The first rib 314 can be regarded as the leading end of the first electrode layer 311. The first electrode body is connected to one end of the first rib 314. The first The rib 314 is used for electrical connection with the first contact point 110 in the base chip 100 . In the embodiment of the present application, the material of the first electrode layer 311 may be a conductive material such as metal, metal silicide, metal nitride, metal oxide, or conductive carbon. For example, the material of the first electrode layer 311 can be, for example, Mo, Al, Cu, Ag, Au, Ni, Co, TiAl, TiN, TaN, or the like. In addition, the selection of metal materials mentioned below can refer to the description in this section, and will not be repeated.

4)、完成步骤3)后,在绝缘层200和第一电极层311上沉积压力压电层312,压电层可由物理气相沉积、化学气相沉积、丝网印刷等方法形成,压电材料可以为压电晶体、压电陶瓷或压电聚合物等。同时制作若干阵列排布的压电换能器单元,则若干压电换能器单元的之间的压电层可以是连续的。在本实施例中采用的压电材料为锆钛酸铅(PZT)。4) After completing step 3), a pressure piezoelectric layer 312 is deposited on the insulating layer 200 and the first electrode layer 311. The piezoelectric layer can be formed by physical vapor deposition, chemical vapor deposition, screen printing, etc., and the piezoelectric material can be For piezoelectric crystals, piezoelectric ceramics or piezoelectric polymers. At the same time, when several piezoelectric transducer units are arranged in an array, the piezoelectric layers between the several piezoelectric transducer units may be continuous. The piezoelectric material used in this embodiment is lead zirconate titanate (PZT).

5)、完成步骤4)后,参照步骤3),在压力压电层312上沉积一层金属材料作为电极,并进行图形化处理,得到第二电极层313。第二电极层313包括第二电极主体和第二支肋315,第二电极主体作为压力压电层312的上电极,第二支肋315可以看做第二电极层313的引出端,第二电极主体与第二支肋315的一端连接,第二支肋315用于与基底芯片100中的第二接触点120电连接。用于压力探测时,第一电极层311与第二电极层313可以分别与基底芯片100的第一接触点110和第二接触点120电性连接,以便于接受压力信号并将压力信号传输到基底芯片1005) After completing step 4), referring to step 3), deposit a layer of metal material on the pressure piezoelectric layer 312 as an electrode, and perform patterning treatment to obtain the second electrode layer 313. The second electrode layer 313 includes a second electrode body and a second rib 315. The second electrode body serves as the upper electrode of the pressure piezoelectric layer 312. The second rib 315 can be regarded as the leading end of the second electrode layer 313. The electrode body is connected to one end of the second rib 315 , and the second rib 315 is used for electrical connection with the second contact point 120 in the base chip 100 . When used for pressure detection, the first electrode layer 311 and the second electrode layer 313 can be electrically connected to the first contact point 110 and the second contact point 120 of the base chip 100, respectively, so as to receive the pressure signal and transmit the pressure signal to the base chip 100. base chip 100

6)、完成步骤5)后,在第二电极层313上沉积一层隔离层,隔离层的制作材料为金属、陶瓷或者其他高阻抗的材料,或者空气等低阻抗材料。隔离层用于充当信号隔离层330,超声层320位于压力层310的上方,在超声波的传播路径中,当膜层间声阻抗失配,且隔离层厚度为四分之一超声波波长的奇数倍时,超声波在隔离层界面处几乎全部反射,所以从超声压电层322传出来的超声波,在隔离层界面处几乎全反射,不会向下传播到压力层310,从而避免压力压电层312 探测压力信号时受到超声波的干扰。6) After completing step 5), deposit an isolation layer on the second electrode layer 313, and the isolation layer is made of metal, ceramic or other high-impedance materials, or low-impedance materials such as air. The isolation layer is used as the signal isolation layer 330, and the ultrasonic layer 320 is located above the pressure layer 310. In the propagation path of the ultrasonic wave, when the acoustic impedance between the film layers is mismatched, and the thickness of the isolation layer is an odd multiple of a quarter of the ultrasonic wave wavelength When the ultrasonic wave is almost completely reflected at the interface of the isolation layer, the ultrasonic wave transmitted from the ultrasonic piezoelectric layer 322 is almost totally reflected at the interface of the isolation layer, and will not propagate downward to the pressure layer 310, thereby avoiding the pressure piezoelectric layer 312. The detection of pressure signals is disturbed by ultrasonic waves.

7)、完成步骤6)后,在隔离层上沉积一层金属材料作为电极,并进行图形化处理,得到第三电极层321。第三电极层321包括第三电极主体和第三支肋324,第三电极主体用于作为超声层320的下电极,第三支肋324可以看做第三电极层 321的引出端,第三电极主体与第三支肋324的一端连接,第三支肋324用于与基底芯片100中的第三接触点130电连接。7) After completing step 6), a layer of metal material is deposited on the isolation layer as an electrode, and a patterning process is performed to obtain a third electrode layer 321 . The third electrode layer 321 includes a third electrode body and a third rib 324. The third electrode body is used as the lower electrode of the ultrasonic layer 320. The third rib 324 can be regarded as the lead end of the third electrode layer 321. The electrode body is connected to one end of the third rib 324 , and the third rib 324 is used for electrical connection with the third contact point 130 in the base chip 100 .

8)、完成7)后,在第三电极层321上方涂覆超声压电层322,超声压电层 322的材料和厚度可以和压力压电层312相同,也可以不同。在本实施例中压电材料为偏氟乙烯-三氟乙烯共聚物(PVDF-Tri),涂覆完超声压电层322,进行原位极化,下面有电极的部分完成极化,下面没有电极的部分不能极化,被极化的超声压电层322具有压电性能,其余未极化的压电层区域不具有压电性能。8), after completing 7), coat the ultrasonic piezoelectric layer 322 above the third electrode layer 321, the material and thickness of the ultrasonic piezoelectric layer 322 can be the same as the pressure piezoelectric layer 312, or can be different. In this embodiment, the piezoelectric material is vinylidene fluoride-trifluoroethylene copolymer (PVDF-Tri). After coating the ultrasonic piezoelectric layer 322, in-situ polarization is performed. Parts of the electrodes cannot be polarized, the polarized ultrasonic piezoelectric layer 322 has piezoelectric properties, and the remaining unpolarized piezoelectric layer regions do not have piezoelectric properties.

9)、完成8)后,参照步骤3)沉积一层金属材料作为电极层,并进行图形化工艺,刻蚀出激励层的第四电极层323。第四电极层323包括第四电极主体和第四支肋325,第四电极主体用于作为超声层320的上电极,第四支肋325可以看做第四电极层323的引出端,第四电极主体与第四支肋325的一端连接,第四支肋325用于与基底芯片100中的第四接触点140电连接。9) After completing 8), refer to step 3) to deposit a layer of metal material as an electrode layer, and perform a patterning process to etch the fourth electrode layer 323 of the excitation layer. The fourth electrode layer 323 includes a fourth electrode body and a fourth rib 325. The fourth electrode body is used as the upper electrode of the ultrasonic layer 320. The fourth rib 325 can be regarded as the leading end of the fourth electrode layer 323. The electrode body is connected to one end of the fourth rib 325 , and the fourth rib 325 is used for electrical connection with the fourth contact point 140 in the base chip 100 .

10)、完成9)后,执行刻蚀工艺,在第一支肋314和第一接触点110相对的区域,以及第二支肋315和第二接触点120相对的区域,第三支肋324和第三接触点130相对的区域,第四支肋325和第四接触点140相对的区域,形成第一通孔、第二通孔、第三通孔和第四通孔。第一通孔穿过超声压电层322、压力压电层312、第一支肋314、绝缘层200,漏出对应的基底芯片100的第一接触点 110,第二通孔穿过隔离层、第二支肋315、压力压电层312、绝缘层200,漏出对应的基底芯片100的第二接触点120。第三通孔穿过超声压电层322、第三支肋324、压力层310、绝缘层200,漏出对应的基底芯片100的第三接触点130,第四通孔穿过第四支肋325、超声压电层322、第四支肋325、压力压电层312、绝缘层200,漏出对应的基底芯片100的第四接触点140,本实施例中,通过对通孔制作工艺的控制,第一通孔优选的漏出第一支肋314的至少部分上表面,以便增强后续第一支肋314与导电介质的接触面积。同样,第二通孔、第三通孔、第四通孔均漏出相应支肋的至少部分上表面,以便增强后续与导电介质的接触面积。10) After completing 9), perform an etching process, and in the area where the first rib 314 is opposite to the first contact point 110, and the area where the second rib 315 is opposite to the second contact point 120, the third rib 324 A first through hole, a second through hole, a third through hole and a fourth through hole are formed in the area opposite to the third contact point 130 and the area opposite to the fourth support rib 325 and the fourth contact point 140 . The first through hole passes through the ultrasonic piezoelectric layer 322, the pressure piezoelectric layer 312, the first rib 314, and the insulating layer 200, and leaks out of the corresponding first contact point 110 of the base chip 100, and the second through hole passes through the isolation layer, The second rib 315 , the pressure piezoelectric layer 312 , and the insulating layer 200 leak out from the corresponding second contact point 120 of the base chip 100 . The third through hole passes through the ultrasonic piezoelectric layer 322 , the third rib 324 , the pressure layer 310 , and the insulating layer 200 , and leaks out of the corresponding third contact point 130 of the base chip 100 , and the fourth through hole passes through the fourth rib 325 , the ultrasonic piezoelectric layer 322 , the fourth rib 325 , the pressure piezoelectric layer 312 , and the insulating layer 200 , leak out the corresponding fourth contact point 140 of the base chip 100 . In this embodiment, through the control of the through hole fabrication process, The first through hole preferably leaks out of at least part of the upper surface of the first rib 314 so as to enhance the contact area between the subsequent first rib 314 and the conductive medium. Likewise, the second through hole, the third through hole, and the fourth through hole all leak out at least part of the upper surface of the corresponding support rib, so as to enhance the subsequent contact area with the conductive medium.

11)、完成10)后,在第一通孔,第二通孔、第三通孔和第四通孔的内部以及上方沉积导电介质,导电介质填满第一通孔,第二通孔、第三通孔和第四通孔。在本实施例中,导电介质为铝,通过物理气相沉积形成,导电介质也可以为其他导电材料。在沉积完导电介质后,执行图形化工艺,去除第一通孔,第二通孔、第三通孔和第四通孔外的部分导电介质,填满第一通孔的为第一导电柱500,填满第二通孔的为第二导电柱600,填满第三通孔的为第三导电柱700,填满第四通孔的为第四导电柱800。第一导电柱500分别与基底芯片100的第一接触点110 与第一支肋314电接触,从而电性连通基底芯片100的第一接触点110与第一电极层311,第二导电柱600分别与基底芯片100的第二接触点120与第二支肋315 电接触,从而电性连通基底芯片100的第二接触点120与第二电极层313,第三导电柱700分别与基底芯片100的第三接触点130与第三支肋324电接触,从而电性连通基底芯片100的第三接触点130与第三电极层321,第四导电柱800分别与基底芯片100的第四接触点140与第四支肋325电接触,从而电性连通基底芯片100的第四接触点140与第四电极层323。利用上述第一导电柱500及第二导电柱600,实现了基底芯片100电路单元与上方的压力压电层312之间的电性连接,也即实现了信号处理器基底与压力换能器之间的电性连接。利用上述第三导电柱700及第四导电柱800,实现了基底芯片100电路单元与超声压电层322 之间的电性连接,也即实现了信号处理器基底与超声换能器之间的电性连接。11) After completing 10), a conductive medium is deposited inside and above the first through hole, the second through hole, the third through hole and the fourth through hole, and the conductive medium fills the first through hole, the second through hole, The third through hole and the fourth through hole. In this embodiment, the conductive medium is aluminum, which is formed by physical vapor deposition, and the conductive medium can also be other conductive materials. After the conductive medium is deposited, a patterning process is performed to remove the first through hole, part of the conductive medium outside the second through hole, the third through hole, and the fourth through hole, and the first conductive column fills the first through hole 500, the second conductive pillar 600 is filled with the second through hole, the third conductive pillar 700 is filled with the third through hole, and the fourth conductive pillar 800 is filled with the fourth through hole. The first conductive pillar 500 is in electrical contact with the first contact point 110 of the base chip 100 and the first rib 314 respectively, so as to electrically connect the first contact point 110 of the base chip 100 with the first electrode layer 311 and the second conductive pillar 600 They are in electrical contact with the second contact point 120 and the second rib 315 of the base chip 100 respectively, thereby electrically connecting the second contact point 120 of the base chip 100 with the second electrode layer 313 , and the third conductive pillar 700 is respectively connected with the base chip 100 The third contact point 130 is in electrical contact with the third rib 324 , thereby electrically connecting the third contact point 130 of the base chip 100 with the third electrode layer 321 , and the fourth conductive pillar 800 is respectively connected with the fourth contact point of the base chip 100 The 140 is in electrical contact with the fourth rib 325 so as to electrically connect the fourth contact point 140 of the base chip 100 with the fourth electrode layer 323 . Using the first conductive pillar 500 and the second conductive pillar 600, the electrical connection between the circuit unit of the substrate chip 100 and the pressure piezoelectric layer 312 above is realized, that is, the connection between the signal processor substrate and the pressure transducer is realized. electrical connection between. Using the third conductive pillar 700 and the fourth conductive pillar 800, the electrical connection between the circuit unit of the substrate chip 100 and the ultrasonic piezoelectric layer 322 is realized, that is, the connection between the signal processor substrate and the ultrasonic transducer is realized. Electrical connection.

12)、完成11)后,在芯片上方沉积一层保护层400,保护层400覆盖超声压电层322、第四电极层323、第一导电柱500、第二导电柱600和第三导电柱 700。可利用本领域公知的沉积工艺沉积上述保护层400。保护层400一方面可以起到对压电层的密封绝缘保护作用,另一方面保护层400还可以兼作为超声换能器像素结构的匹配层。由此第一电极层311、第二电极层313、第三电极层321、第四电极层323、压力压电层312、超声压电层322、保护层400配合形成了对应于基底芯片100电路单元而形成的压力和超声双压电层300换能器像素结构。上述各层的厚度和平面尺寸进行优化组合可获得理想的谐振频率和更高的灵敏度。在本实施例中,保护层400的材料为硅橡胶,也可以为本领域的其他绝缘材料或组合。12) After completing 11), a protective layer 400 is deposited on the top of the chip, and the protective layer 400 covers the ultrasonic piezoelectric layer 322, the fourth electrode layer 323, the first conductive column 500, the second conductive column 600 and the third conductive column 700. The protective layer 400 can be deposited using deposition processes known in the art. On the one hand, the protective layer 400 can play a role in sealing and insulating the piezoelectric layer, and on the other hand, the protective layer 400 can also serve as a matching layer for the pixel structure of the ultrasonic transducer. Therefore, the first electrode layer 311 , the second electrode layer 313 , the third electrode layer 321 , the fourth electrode layer 323 , the pressure piezoelectric layer 312 , the ultrasonic piezoelectric layer 322 , and the protective layer 400 cooperate to form a circuit corresponding to the base chip 100 The pressure and ultrasonic bilayer 300 transducer pixel structure formed by the unit. The optimal combination of the thicknesses and plane dimensions of the above-mentioned layers can obtain an ideal resonant frequency and higher sensitivity. In this embodiment, the material of the protective layer 400 is silicon rubber, and may also be other insulating materials or combinations in the field.

以下提供图2所示换能器探头结构的制作流程。图2所示换能器探头结构的制作流程与图1所示换能器探头结构的制作流程部分相同,其不同之处在于接触点的数量和电极层数量不同,具体如下:The manufacturing process of the transducer probe structure shown in FIG. 2 is provided below. The fabrication process of the transducer probe structure shown in Figure 2 is partially the same as the fabrication process of the transducer probe structure shown in Figure 1, except that the number of contact points and the number of electrode layers are different, as follows:

1)、基于CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺形成信号处理器基底芯片100,该基底芯片100基于硅晶圆、玻璃或者其他材料的基底。基底芯片100设置三个接触点,分别为第一接触点 110,第二接触点120,第四接触点140,可看作是CMOS芯片的三个I/O端口。参见图3。1) A signal processor base chip 100 is formed based on a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) process, and the base chip 100 is based on a silicon wafer, a glass or a substrate of other materials. The base chip 100 is provided with three contact points, namely the first contact point 110, the second contact point 120, and the fourth contact point 140, which can be regarded as three I/O ports of the CMOS chip. See Figure 3.

2)、在基底芯片100表面形成绝缘层200,参见图4,绝缘层200可以为二氧化硅或者其他本领域的各种绝缘材料,本实施例中的绝缘层200材质选用聚酰亚胺(polyimide,PI)。2), an insulating layer 200 is formed on the surface of the base chip 100. Referring to FIG. 4, the insulating layer 200 can be silicon dioxide or other various insulating materials in the field. The insulating layer 200 in this embodiment is made of polyimide (polyimide). polyimide, PI).

3)、完成步骤2)后,在绝缘层200表面沉积一层金属材料作为第一电极层 311,并进行图形化工艺,刻蚀出激励层的第一电极层311,参见图6。第一电极层311包括第一电极主体以及第一支肋314,第一支肋314可以看做第一电极层311的引出端,第一电极主体与第一支肋314的一端连接,第一支肋314用于与基底芯片100中的第一接触点110电连接。在本申请实施例中,第一电极层311 的材质可以为金属、金属硅化物、金属氮化物、金属氧化物或导电碳等导电材料。如,第一电极层311的材质例如可以为Mo、Al、Cu、Ag、Au、Ni、Co、TiAl、TiN或TaN等。此外,下文提及的金属材料的选择可以参考本部分的描述,不再赘述。3) After completing step 2), a layer of metal material is deposited on the surface of the insulating layer 200 as the first electrode layer 311, and a patterning process is performed to etch the first electrode layer 311 of the excitation layer, see FIG. 6 . The first electrode layer 311 includes a first electrode body and a first rib 314. The first rib 314 can be regarded as the leading end of the first electrode layer 311. The first electrode body is connected to one end of the first rib 314. The first The rib 314 is used for electrical connection with the first contact point 110 in the base chip 100 . In the embodiment of the present application, the material of the first electrode layer 311 may be a conductive material such as metal, metal silicide, metal nitride, metal oxide, or conductive carbon. For example, the material of the first electrode layer 311 can be, for example, Mo, Al, Cu, Ag, Au, Ni, Co, TiAl, TiN, TaN, or the like. In addition, the selection of metal materials mentioned below can refer to the description in this section, and will not be repeated.

4)、完成步骤3)后,在绝缘层200和第一电极层311上沉积压力压电层312,参见图7。压电层可由物理气相沉积、化学气相沉积、丝网印刷等方法形成,压电材料可以为压电晶体、压电陶瓷或压电聚合物等。同时制作若干阵列排布的压电换能器单元,则若干压电换能器单元的之间的压电层可以是连续的。在本实施例中采用的压电材料为锆钛酸铅(PZT)。4) After completing the step 3), the pressure piezoelectric layer 312 is deposited on the insulating layer 200 and the first electrode layer 311, see FIG. 7 . The piezoelectric layer can be formed by physical vapor deposition, chemical vapor deposition, screen printing, etc. The piezoelectric material can be piezoelectric crystal, piezoelectric ceramic or piezoelectric polymer. At the same time, when several piezoelectric transducer units are arranged in an array, the piezoelectric layers between the several piezoelectric transducer units may be continuous. The piezoelectric material used in this embodiment is lead zirconate titanate (PZT).

5)、完成步骤4)后,参照步骤3),在压力压电层312上沉积一层金属材料作为电极,并进行图形化处理,得到第二电极层313,参见图8。第二电极层313 包括第二电极主体和第二支肋315,第二电极主体作为压力压电层312的上电极,第二支肋315可以看做第二电极层313的引出端,第二电极主体与第二支肋315 的一端连接,第二支肋315用于与基底芯片100中的第二接触点120电连接。用于压力探测时,第一电极层311与第二电极层313可以分别与基底芯片100的第一接触点110和第二接触点120电性连接,以便于接受压力信号并将压力信号传输到基底芯片100。在该实施例中,第二电极层313合成了上一实施例中第二电极层313、隔离层和第三电极层321三者的功能,即除了作为压力压电层312的上电极之外,还可以作为下述超声压电层322的下电极,以及充当信号隔离层 330,在超声波的传播路径中,当膜层间声阻抗失配,且隔离层厚度为四分之一超声波波长的奇数倍时,超声波在隔离层界面处几乎全部反射,所以从超声压电层322传出来的超声波,在第二电极层313界面处几乎全反射,不会向下传播到压力压电层312,从而避免压力压电层312探测压力信号时受到超声波的干扰。5) After completing step 4), referring to step 3), a layer of metal material is deposited on the pressure piezoelectric layer 312 as an electrode, and patterning is performed to obtain a second electrode layer 313, see FIG. 8 . The second electrode layer 313 includes a second electrode body and a second rib 315. The second electrode body serves as the upper electrode of the piezoelectric layer 312. The electrode body is connected to one end of the second rib 315 , and the second rib 315 is used for electrical connection with the second contact point 120 in the base chip 100 . When used for pressure detection, the first electrode layer 311 and the second electrode layer 313 can be electrically connected to the first contact point 110 and the second contact point 120 of the base chip 100, respectively, so as to receive the pressure signal and transmit the pressure signal to the base chip 100. The base chip 100 . In this embodiment, the second electrode layer 313 combines the functions of the second electrode layer 313 , the isolation layer and the third electrode layer 321 in the previous embodiment, that is, in addition to being the upper electrode of the pressure piezoelectric layer 312 , can also be used as the lower electrode of the following ultrasonic piezoelectric layer 322, and as the signal isolation layer 330. In the propagation path of the ultrasonic wave, when the acoustic impedance between the film layers is mismatched, and the thickness of the isolation layer is a quarter of the ultrasonic wave wavelength At odd times, the ultrasonic wave is almost completely reflected at the interface of the isolation layer, so the ultrasonic wave transmitted from the ultrasonic piezoelectric layer 322 is almost completely reflected at the interface of the second electrode layer 313, and will not propagate downward to the pressure piezoelectric layer 312. Therefore, the interference of the ultrasonic wave when the pressure piezoelectric layer 312 detects the pressure signal is avoided.

6)、完成步骤5)后,在第二电极层313上方涂覆超声压电层322,参见图 9。超声压电层322的材料和厚度可以和压力压电层312相同,也可以不同。在本实施例中压电材料为偏氟乙烯-三氟乙烯共聚物(PVDF-Tri),涂覆完超声压电层322,进行原位极化,下面有电极的部分完成极化,下面没有电极的部分不能极化,被极化的超声压电层322具有压电性能,其余未极化的压电层区域不具有压电性能。6) After completing step 5), the ultrasonic piezoelectric layer 322 is coated on the second electrode layer 313, see FIG. 9 . The material and thickness of the ultrasonic piezoelectric layer 322 may be the same as or different from those of the pressure piezoelectric layer 312 . In this embodiment, the piezoelectric material is vinylidene fluoride-trifluoroethylene copolymer (PVDF-Tri). After coating the ultrasonic piezoelectric layer 322, in-situ polarization is performed. Parts of the electrodes cannot be polarized, the polarized ultrasonic piezoelectric layer 322 has piezoelectric properties, and the remaining unpolarized piezoelectric layer regions do not have piezoelectric properties.

7)、完成步骤6)后,参照步骤3)沉积一层金属材料作为电极层,并进行图形化工艺,刻蚀出激励层的第四电极层323。参见图10,第四电极层323包括第四电极主体和第四支肋325,第四电极主体用于作为超声层320的上电极,第四支肋325可以看做第四电极层323的引出端,第四电极主体与第四支肋325 的一端连接,第四支肋325用于与基底芯片100中的第四接触点140电连接。7) After completing step 6), refer to step 3) to deposit a layer of metal material as an electrode layer, and perform a patterning process to etch the fourth electrode layer 323 of the excitation layer. Referring to FIG. 10 , the fourth electrode layer 323 includes a fourth electrode body and a fourth rib 325 , the fourth electrode body is used as the upper electrode of the ultrasonic layer 320 , and the fourth rib 325 can be regarded as the lead out of the fourth electrode layer 323 The fourth electrode body is connected to one end of the fourth rib 325 , and the fourth rib 325 is used for electrical connection with the fourth contact point 140 in the base chip 100 .

8)、完成步骤7)后,执行刻蚀工艺,在第一支肋314和第一接触点110相对的区域,以及第二支肋315和第二接触点120相对的区域,第四支肋325和第四接触点140相对的区域,形成第一通孔340、第二通孔350、第四通孔360,参见图11。第一通孔340穿过超声压电层322、压力压电层312、第一支肋314、绝缘层200,漏出对应的基底芯片100的第一接触点110,第二通孔350穿过超声压电层322、第二支肋315、压力压电层312、绝缘层200,漏出对应的基底芯片100的第二接触点120。第四通孔360穿过第四支肋325、超声压电层322、第二支肋315、压力压电层312、绝缘层200,漏出对应的基底芯片100的第四接触点140。本实施例中,通过对通孔制作工艺的控制,第一通孔340优选的漏出第一支肋314的至少部分上表面,以便增强后续第一支肋314与导电介质的接触面积。同样,第二通孔350、第四通孔360均漏出相应支肋的至少部分上表面,以便增强后续与导电介质的接触面积。8) After completing step 7), perform an etching process, in the area where the first rib 314 and the first contact point 110 are opposite, and the area where the second rib 315 and the second contact point 120 are opposite, the fourth branch rib A first through hole 340 , a second through hole 350 , and a fourth through hole 360 are formed in the region opposite to the fourth contact point 140 , see FIG. 11 . The first through hole 340 passes through the ultrasonic piezoelectric layer 322 , the pressure piezoelectric layer 312 , the first rib 314 , and the insulating layer 200 , and leaks out from the corresponding first contact point 110 of the base chip 100 , and the second through hole 350 passes through the ultrasonic The piezoelectric layer 322 , the second rib 315 , the pressure piezoelectric layer 312 , and the insulating layer 200 leak out from the corresponding second contact point 120 of the base chip 100 . The fourth through holes 360 pass through the fourth rib 325 , the ultrasonic piezoelectric layer 322 , the second rib 315 , the pressure piezoelectric layer 312 , and the insulating layer 200 , and leak out the corresponding fourth contact point 140 of the base chip 100 . In this embodiment, through the control of the through hole fabrication process, the first through hole 340 preferably leaks at least part of the upper surface of the first rib 314 to enhance the contact area between the first rib 314 and the conductive medium. Likewise, both the second through holes 350 and the fourth through holes 360 leak out at least part of the upper surface of the corresponding support rib, so as to enhance the subsequent contact area with the conductive medium.

9)、完成步骤8)后,在第一通孔340,第二通孔350和第四通孔360的内部以及上方沉积导电介质,导电介质填满第一通孔340,第二通孔350和第四通孔360,每个通孔内导电介质的上表面高出孔外的压电层上表面,在本实施例中,所述导电介质为铝,通过物理气相沉积形成,导电介质也可以为其他导电材料。在沉积完导电介质后,执行图形化工艺,去除第一通孔340,第二通孔350和第四通孔360外的部分导电介质,填满第一通孔340的为第一导电柱500,填满第二通孔350的为第二导电柱600(相当于图1中的第二导电柱600和第三导电柱 700),填满第四通孔360的为第四导电柱800,参见图12。第一导电柱500分别与基底芯片100的第一接触点110与第一支肋314电接触,从而电性连通基底芯片100的第一接触点110与第一电极层311,第二导电柱600分别与基底芯片100 的第二接触点120与第二支肋315电接触,从而电性连通基底芯片100的第二接触点120与第二电极层313,第四导电柱800分别与基底芯片100的第四接触点 140与第四支肋325电接触,从而电性连通基底芯片100的第四接触点140与第二电极层313。利用上述第一导电柱500及第二导电柱600,实现了基底芯片100 电路单元与上方的压力压电层312之间的电性连接,也即实现了信号处理器基底与压力换能器之间的电性连接。利用上述第二导电柱600及第四导电柱800,实现了基底芯片100电路单元与超声压电层322之间的电性连接,也即实现了信号处理器基底与超声换能器之间的电性连接。9) After completing step 8), a conductive medium is deposited inside and above the first through hole 340, the second through hole 350 and the fourth through hole 360, and the conductive medium fills the first through hole 340 and the second through hole 350 and the fourth through hole 360, the upper surface of the conductive medium in each through hole is higher than the upper surface of the piezoelectric layer outside the hole. In this embodiment, the conductive medium is aluminum, which is formed by physical vapor deposition, and the conductive medium is also Other conductive materials are possible. After the conductive medium is deposited, a patterning process is performed to remove part of the conductive medium outside the first through hole 340 , the second through hole 350 and the fourth through hole 360 , and the first conductive pillar 500 fills the first through hole 340 , the second conductive column 600 (equivalent to the second conductive column 600 and the third conductive column 700 in FIG. 1 ) is filled with the second through hole 350 , the fourth conductive column 800 is filled with the fourth through hole 360 , See Figure 12. The first conductive post 500 is in electrical contact with the first contact point 110 of the base chip 100 and the first rib 314 respectively, so as to electrically connect the first contact point 110 of the base chip 100 with the first electrode layer 311 and the second conductive post 600 The second contact point 120 and the second rib 315 of the base chip 100 are respectively in electrical contact, so as to be electrically connected to the second contact point 120 of the base chip 100 and the second electrode layer 313 , and the fourth conductive column 800 is respectively connected to the base chip 100 The fourth contact point 140 of the base chip 100 is in electrical contact with the fourth rib 325 , so as to electrically connect the fourth contact point 140 of the base chip 100 and the second electrode layer 313 . Using the first conductive pillar 500 and the second conductive pillar 600, the electrical connection between the circuit unit of the substrate chip 100 and the pressure piezoelectric layer 312 above is realized, that is, the connection between the signal processor substrate and the pressure transducer is realized. electrical connection between. Using the second conductive pillar 600 and the fourth conductive pillar 800, the electrical connection between the circuit unit of the substrate chip 100 and the ultrasonic piezoelectric layer 322 is realized, that is, the electrical connection between the signal processor substrate and the ultrasonic transducer is realized. Electrical connection.

10)、完成步骤9)后,在超声层上方沉积一层保护层400,参见图13,保护层400覆盖超声压电层322、第四电极层323、第一导电柱500、第二导电柱 600和第四导电柱800。可利用本领域公知的沉积工艺沉积上述保护层400。保护层400一方面可以起到对压电层的密封绝缘保护作用,另一方面保护层400 还可以兼作为超声换能器像素结构的匹配层。由此第一电极层311、第二电极层 313、第四电极层323、压力压电层312、超声压电层322、保护层400配合形成了对应于基底芯片100电路单元而形成的压力和超声双压电层300换能器像素结构。上述各层的厚度和平面尺寸进行优化组合可获得理想的谐振频率和更高的灵敏度。在本实施例中,保护层400的材料为硅橡胶,也可以为本领域的其他绝缘材料或组合。10) After completing step 9), a protective layer 400 is deposited on the ultrasonic layer. Referring to FIG. 13, the protective layer 400 covers the ultrasonic piezoelectric layer 322, the fourth electrode layer 323, the first conductive column 500, and the second conductive column. 600 and the fourth conductive pillar 800 . The protective layer 400 can be deposited using deposition processes known in the art. On the one hand, the protective layer 400 can play a role of sealing, insulating and protecting the piezoelectric layer, and on the other hand, the protective layer 400 can also serve as a matching layer for the pixel structure of the ultrasonic transducer. Therefore, the first electrode layer 311 , the second electrode layer 313 , the fourth electrode layer 323 , the pressure piezoelectric layer 312 , the ultrasonic piezoelectric layer 322 , and the protective layer 400 cooperate to form the pressure and the pressure corresponding to the circuit unit of the base chip 100 . Ultrasonic piezoelectric bilayer 300 transducer pixel structure. The optimal combination of the thicknesses and plane dimensions of the above-mentioned layers can obtain an ideal resonant frequency and higher sensitivity. In this embodiment, the material of the protective layer 400 is silicon rubber, and may also be other insulating materials or combinations in the field.

由以上技术方案可知,本申请将具有压力探测的压力层和具有超声成像功能的超声层设置在一个换能器探头结构中,压力信号和超声信号同步独立检测,因此能够在进行压力探测的同时还可进行超声成像,从而拓展了产品的功能,拓宽了应用场景。It can be seen from the above technical solutions that in the present application, the pressure layer with pressure detection and the ultrasonic layer with ultrasonic imaging function are arranged in a transducer probe structure, and the pressure signal and the ultrasonic signal are detected synchronously and independently, so the pressure detection can be performed at the same time. Ultrasound imaging can also be performed, thereby expanding the functions of the product and broadening the application scenarios.

根据本申请的另一方面,还提供了一种医用设备,包括如上所述任一结构的换能器探头。According to another aspect of the present application, there is also provided a medical device comprising the transducer probe of any of the structures described above.

医用设备应用案例1:Medical equipment application case 1:

血管内检测:换能器探头中的压力换能器用于血管内触诊,可探测血管内凸出位置和粗糙表面的凹凸间隔;换能器探头中的超声换能器用于血管内壁成像和血流检测,两者结合得到血管内壁的真实形貌。Intravascular detection: The pressure transducer in the transducer probe is used for intravascular palpation, which can detect the convex position in the blood vessel and the unevenness of the rough surface; the ultrasonic transducer in the transducer probe is used for imaging of the inner wall of the blood vessel and blood vessels. Flow detection, the combination of the two can get the real appearance of the inner wall of the blood vessel.

医用设备应用案例2:Medical equipment application case 2:

皮肤及皮下组织检测:换能器探头中的压力换能器,可贴在皮肤表面探测脉搏。由于超声波能穿透皮肤表层,检测皮下组织,所以换能器探头中的超声换能器可用于探测皮下组织中的肿物、结节以及血流等情况。Skin and subcutaneous tissue detection: The pressure transducer in the transducer probe can be attached to the skin surface to detect the pulse. Since ultrasonic waves can penetrate the skin surface and detect subcutaneous tissue, the ultrasonic transducer in the transducer probe can be used to detect tumors, nodules, and blood flow in the subcutaneous tissue.

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.

Claims (16)

1.一种换能器探头,其特征在于,包括:1. a transducer probe, is characterized in that, comprises: 基底芯片;base chip; 绝缘层,覆盖在所述基底芯片的上表面;an insulating layer covering the upper surface of the base chip; 双压电层,设置在所述绝缘层上表面,包括压力层、超声层和位于所述压力层和所述超声层中间并能够屏蔽所述超声层和所述压力层之间信号干扰的隔离层;所述超声层位于所述压力层的上方;A double piezoelectric layer, disposed on the upper surface of the insulating layer, includes a pressure layer, an ultrasonic layer, and an isolation device located between the pressure layer and the ultrasonic layer and capable of shielding signal interference between the ultrasonic layer and the pressure layer layer; the ultrasonic layer is located above the pressure layer; 导电组件,包括用于电连接所述基底芯片与所述压力层的第一导电组件和用于电连接所述基底芯片与所述超声层的第二导电组件。The conductive component includes a first conductive component for electrically connecting the base chip and the pressure layer and a second conductive component for electrically connecting the base chip and the ultrasonic layer. 2.根据权利要求1所述的换能器探头,其特征在于,所述双压电层包括:2. The transducer probe according to claim 1, wherein the bi-piezoelectric layer comprises: 第一电极层,设置在所述绝缘层的上表面且面积小于所述绝缘层的面积,包括第一电极主体和第一支肋;所述第一支肋与所述第一电极主体电连接并作为所述第一电极主体的引出端;A first electrode layer, disposed on the upper surface of the insulating layer and having an area smaller than that of the insulating layer, includes a first electrode body and a first rib; the first rib is electrically connected to the first electrode body and serve as the lead-out end of the first electrode body; 压力压电层,设置在所述绝缘层上并将所述第一电极层覆盖,所述压力压电层上布置若干阵列排布的压电换能器单元;a pressure piezoelectric layer, which is arranged on the insulating layer and covers the first electrode layer, and a plurality of piezoelectric transducer units arranged in an array are arranged on the pressure piezoelectric layer; 中间层,设置在所述压力压电层的上表面且面积小于所述压力压电层的面积;an intermediate layer, arranged on the upper surface of the pressure piezoelectric layer and having an area smaller than that of the pressure piezoelectric layer; 超声压电层,设置在所述中间层上并将所述中间层覆盖,用于产生超声信号;an ultrasonic piezoelectric layer, disposed on the intermediate layer and covering the intermediate layer, for generating ultrasonic signals; 第四电极层,设置在所述超声压电层的上表面且面积小于所述超声压电层的面积,包括第四电极主体和第四支肋;所述第四支肋与所述第四电极主体电连接并作为所述第四电极主体的引出端;A fourth electrode layer, arranged on the upper surface of the ultrasonic piezoelectric layer and having an area smaller than that of the ultrasonic piezoelectric layer, includes a fourth electrode body and a fourth rib; the fourth rib and the fourth The electrode body is electrically connected and serves as the lead-out end of the fourth electrode body; 所述中间层被配置为:屏蔽所述超声压电层和所述压力压电层之间的信号干扰,以及与所述压力压电层和所述第一电极层构成所述压力层并将所述压力压电层产生的压力信号传输至所述基底芯片;以及与所述超声压电层和所述第四电极层构成所述超声层并将所述超声压电层产生的超声信号传输至所述基底芯片。The intermediate layer is configured to shield signal interference between the ultrasonic piezoelectric layer and the pressure piezoelectric layer, and to form the pressure layer with the pressure piezoelectric layer and the first electrode layer and to The pressure signal generated by the pressure piezoelectric layer is transmitted to the base chip; and the ultrasonic layer is formed with the ultrasonic piezoelectric layer and the fourth electrode layer and the ultrasonic signal generated by the ultrasonic piezoelectric layer is transmitted to the base chip. 3.根据权利要求2所述的换能器探头,其特征在于,所述中间层包括:3. The transducer probe of claim 2, wherein the intermediate layer comprises: 第二电极层,包括第二电极主体和第二支肋;所述第二支肋与所述第二电极主体电连接并作为所述第二电极主体的引出端;所述第二电极层位于所述第一电极层的正上方;The second electrode layer includes a second electrode body and a second rib; the second rib is electrically connected to the second electrode body and serves as a lead-out end of the second electrode body; the second electrode layer is located at the directly above the first electrode layer; 所述超声压电层与所述第二电极层接触的部分极化,与所述压力压电层接触的部分不极化。The portion of the ultrasonic piezoelectric layer in contact with the second electrode layer is polarized, and the portion in contact with the pressure piezoelectric layer is not polarized. 4.根据权利要求2所述的换能器探头,其特征在于,所述中间层包括:4. The transducer probe of claim 2, wherein the intermediate layer comprises: 第二电极层,设置在所述压力压电层的上表面且面积小于所述压力压电层的面积,包括第二电极主体和第二支肋;所述第二支肋与所述第二电极主体电连接并作为所述第二电极主体的引出端;A second electrode layer, disposed on the upper surface of the pressure piezoelectric layer and having an area smaller than that of the pressure piezoelectric layer, includes a second electrode body and a second rib; the second rib and the second The electrode body is electrically connected and serves as the lead-out end of the second electrode body; 所述隔离层;the isolation layer; 第三电极层,位于所述隔离层的上方,包括第三电极主体和第三支肋,所述第三支肋与所述第三电极主体电连接并作为所述第三电极主体的引出端;所述超声压电层设置在所述隔离层上并将所述第三电极层覆盖;A third electrode layer, located above the isolation layer, includes a third electrode body and a third rib, the third rib is electrically connected to the third electrode body and serves as a lead-out end of the third electrode body ; The ultrasonic piezoelectric layer is arranged on the isolation layer and covers the third electrode layer; 所述第一电极层和所述第二电极层用于将所述压电换能器单元产生的压力信号传输至所述基底芯片,所述第三电极层和所述第四电极层用于将所述超声换能器单元产生的超声信号传输至所述基底芯片。The first electrode layer and the second electrode layer are used for transmitting the pressure signal generated by the piezoelectric transducer unit to the base chip, and the third electrode layer and the fourth electrode layer are used for The ultrasonic signal generated by the ultrasonic transducer unit is transmitted to the base chip. 5.根据权利要求3所述的换能器探头,其特征在于,所述基底芯片上配置有第一接触点、第二接触点和第四接触点;5. The transducer probe according to claim 3, wherein a first contact point, a second contact point and a fourth contact point are configured on the base chip; 所述第一接触点与第一支肋通过第一导电柱连接;所述第二接触点与第二支肋通过第二导电柱连接;所述第四接触点与第四支肋通过第四导电柱连接;The first contact point and the first rib are connected through a first conductive column; the second contact point and the second rib are connected through a second conductive column; the fourth contact point and the fourth rib are connected through a fourth Conductive column connection; 所述第一导电柱、第二导电柱、第四导电柱均穿设所述双压电层并避让所述第一电极层、第二电极层和第四电极层;The first conductive column, the second conductive column, and the fourth conductive column all pass through the piezoelectric bilayer and avoid the first electrode layer, the second electrode layer, and the fourth electrode layer; 所述第一接触点、第一导电柱、第二接触点和第二导电柱构成所述第一导电组件;所述第二接触点、第二导电柱、第四接触点和第四导电柱构成所述第二导电组件。The first contact point, the first conductive column, the second contact point and the second conductive column constitute the first conductive component; the second contact point, the second conductive column, the fourth contact point and the fourth conductive column constitute the second conductive component. 6.根据权利要求5所述的换能器探头,其特征在于,所述第一导电柱的截面积小于第一支肋的截面积;所述第二导电柱的截面积小于所述第二支肋的截面积;所述第四导电柱的截面积小于所述第四支肋的截面积。6 . The transducer probe according to claim 5 , wherein the cross-sectional area of the first conductive column is smaller than that of the first rib; and the cross-sectional area of the second conductive column is smaller than that of the second conductive column. 7 . The cross-sectional area of the support rib; the cross-sectional area of the fourth conductive column is smaller than the cross-sectional area of the fourth support rib. 7.根据权利要求3或4所述的换能器探头,其特征在于,所述第一电极层、第四电极层、中间层中的第二电极层或中间层中的第二电极层和所述第三电极层上均刻蚀有激励层。7. The transducer probe according to claim 3 or 4, wherein the first electrode layer, the fourth electrode layer, the second electrode layer in the intermediate layer or the second electrode layer in the intermediate layer and An excitation layer is etched on the third electrode layer. 8.根据权利要求7所述的换能器探头,其特征在于,还包括保护层,设置在所述超声压电层的上方并覆盖所述第四电极层。8 . The transducer probe according to claim 7 , further comprising a protective layer disposed above the ultrasonic piezoelectric layer and covering the fourth electrode layer. 9 . 9.根据权利要求3所述的换能器探头,其特征在于,所述超声压电层的厚度与所述压力压电层的厚度不同。9 . The transducer probe of claim 3 , wherein the thickness of the ultrasonic piezoelectric layer is different from the thickness of the pressure piezoelectric layer. 10 . 10.一种医用设备,其特征在于,包括如权利要求1至9中任一项所述的换能器探头。10. A medical device, comprising the transducer probe of any one of claims 1 to 9. 11.一种换能器探头的制作方法,其特征在于,包括:11. A method for making a transducer probe, comprising: 基于CMOS工艺形成基底芯片;Forming a base chip based on a CMOS process; 在所述基底芯片的表面形成绝缘层;forming an insulating layer on the surface of the base chip; 在所述绝缘层的表面自下而上依次沉积压力层、隔离层和超声层;所述隔离层用于屏蔽所述超声层和所述压力层之间的信号干扰;所述压力层、所述隔离层和所述超声层构成双压电层;A pressure layer, an isolation layer and an ultrasonic layer are sequentially deposited on the surface of the insulating layer from bottom to top; the isolation layer is used to shield the signal interference between the ultrasonic layer and the pressure layer; The isolation layer and the ultrasonic layer constitute a bi-piezoelectric layer; 在所述基底芯片和所述压力层之间设置电连接所述基底芯片和所述压力层的第一导电组件,以及在所述基底芯片和所述超声层之间设置用于电连接所述基底芯片和所述超声层的第二导电组件;所述第一导电组件和所述第二导电组件构成所述换能器探头的导电组件。A first conductive member for electrically connecting the base chip and the pressure layer is provided between the base chip and the pressure layer, and between the base chip and the ultrasonic layer for electrically connecting the The base chip and the second conductive component of the ultrasonic layer; the first conductive component and the second conductive component constitute the conductive component of the transducer probe. 12.根据权利要求11所述的制作方法,其特征在于,所述双压电层的制作流程包括:12. The manufacturing method according to claim 11, wherein the manufacturing process of the piezoelectric bilayer comprises: 制作所述压电层:在所述绝缘层的表面沉积一层金属材料作为第一电极层;在所述绝缘层和所述第一电极层上沉积压力压电层;在所述压力压电层上沉积一层金属材料作为第二电极层;Making the piezoelectric layer: depositing a layer of metal material on the surface of the insulating layer as a first electrode layer; depositing a pressure piezoelectric layer on the insulating layer and the first electrode layer; depositing a pressure piezoelectric layer on the insulating layer and the first electrode layer; depositing a layer of metal material on the layer as the second electrode layer; 制作所述隔离层:在第二电极层上沉积一层隔离层,所述隔离层的厚度为四分之一超声波波长的奇数倍;Making the isolation layer: depositing a layer of isolation layer on the second electrode layer, the thickness of the isolation layer is an odd multiple of a quarter ultrasonic wavelength; 制作所述超声层:在所述隔离层上沉积一层金属材料作为第三电极层;在所述第三电极层上方涂覆超声压电层;所述超声压电层与所述第三电极层接触的部分完成极化,未与所述第三电极层接触的部分不进行极化;在所述超声压电层上沉积一层金属材料作为第四电极层。Making the ultrasonic layer: depositing a layer of metal material on the isolation layer as the third electrode layer; coating the ultrasonic piezoelectric layer on the third electrode layer; the ultrasonic piezoelectric layer and the third electrode The part in contact with the layer is polarized, and the part not in contact with the third electrode layer is not polarized; a layer of metal material is deposited on the ultrasonic piezoelectric layer as the fourth electrode layer. 13.根据权利要求11所述的制作方法,其特征在于,所述双压电层的制作流程包括:13. The manufacturing method according to claim 11, wherein the manufacturing process of the piezoelectric bilayer comprises: 在所述绝缘层的表面沉积一层金属材料作为第一电极层;A layer of metal material is deposited on the surface of the insulating layer as a first electrode layer; 在所述绝缘层和所述第一电极层上沉积压力压电层;depositing a piezoelectric piezoelectric layer on the insulating layer and the first electrode layer; 在所述压力压电层上沉积一层金属材料作为第二电极层,且所述第二电极层位于所述第一电极层的正上方;depositing a layer of metal material on the pressure piezoelectric layer as a second electrode layer, and the second electrode layer is located directly above the first electrode layer; 在所述第二电极层上方涂覆超声压电层;所述超声压电层与所述第二电极层接触的部分完成极化,未与所述第二电极层接触的部分不进行极化;An ultrasonic piezoelectric layer is coated on the second electrode layer; the part of the ultrasonic piezoelectric layer in contact with the second electrode layer is polarized, and the part not in contact with the second electrode layer is not polarized ; 在所述超声压电层上沉积一层金属材料作为第四电极层。A layer of metal material is deposited on the ultrasonic piezoelectric layer as a fourth electrode layer. 14.根据权利要求12所述的制作方法,其特征在于,所述导电组件电连接所述基底芯片和所述压力层,以及电连接所述基底芯片和所述超声层的方法包括:14. The manufacturing method according to claim 12, wherein the conductive component electrically connects the base chip and the pressure layer, and the method for electrically connecting the base chip and the ultrasonic layer comprises: 在所述基底芯片上设置第一至第四接触点;providing first to fourth contact points on the base chip; 所述第一电极层包括相距预定距离且电连接的第一电极主体和第一支肋;所述第二电极层包括相距预定距离且电连接的第二电极主体和第二支肋;所述第三电极层包括相距预定距离且电连接的第三电极主体和第三支肋;所述第四电极层包括相距预定距离且电连接的第四电极主体和第四支肋;所述第一支肋、所述第二支肋、所述第三支肋和所述第四支肋错位布置;The first electrode layer includes a first electrode body and a first rib that are separated from a predetermined distance and electrically connected; the second electrode layer includes a second electrode body and a second rib that are separated from a predetermined distance and are electrically connected; the The third electrode layer includes a third electrode body and a third rib that are separated by a predetermined distance and are electrically connected; the fourth electrode layer includes a fourth electrode body and a fourth rib that are separated by a predetermined distance and are electrically connected; the first The supporting rib, the second supporting rib, the third supporting rib and the fourth supporting rib are dislocated; 在所述第一支肋和所述第一接触点相对的区域,所述第二支肋和所述第二接触点相对的区域,所述第三支肋和所述第三接触点相对的区域,以及所述第四支肋和所述第四接触点相对的区域,形成第一通孔、第二通孔、第三通孔和第四通孔;In the area where the first branch rib is opposite to the first contact point, the second branch rib is opposite to the second contact point, the third branch rib is opposite to the third contact point an area, and an area where the fourth rib and the fourth contact point are opposite to form a first through hole, a second through hole, a third through hole and a fourth through hole; 所述第一通孔穿过所述超声压电层、压力压电层、第一支肋、绝缘层并使第一接触点漏出;所述第二通孔穿过所述隔离层、第二支肋、压力压电层、绝缘层并使第二接触点漏出;所述第三通孔穿过所述超声压电层、第三支肋、压力层、绝缘层并使所述第三接触点漏出,所述第四通孔穿过所述第四支肋、超声压电层、第四支肋、压力压电层、绝缘层并使所述第四接触点漏出;The first through hole passes through the ultrasonic piezoelectric layer, the pressure piezoelectric layer, the first support rib, and the insulating layer and allows the first contact point to leak out; the second through hole passes through the isolation layer, the second through hole The support rib, the pressure piezoelectric layer, the insulating layer make the second contact point leak out; the third through hole passes through the ultrasonic piezoelectric layer, the third support rib, the pressure layer, the insulating layer and makes the third contact point point leakage, the fourth through hole passes through the fourth support rib, the ultrasonic piezoelectric layer, the fourth support rib, the pressure piezoelectric layer, and the insulating layer, and causes the fourth contact point to leak out; 在所述第一通孔、所述第二通孔、所述第三通孔和所述第四通孔的内部以及上方沉积导电介质以形成第一导电柱、第二导电柱、第三导电柱和第四导电柱;A conductive medium is deposited in and over the first via, the second via, the third via, and the fourth via to form a first conductive post, a second conductive post, and a third conductive a column and a fourth conductive column; 所述第一导电柱和所述第二导电柱用于电性连接所述基底芯片与所述压力压电层;所述第三导电柱和所述第四导电柱用于电性连接所述基底芯片与所述超声压电层。The first conductive column and the second conductive column are used to electrically connect the base chip and the pressure piezoelectric layer; the third conductive column and the fourth conductive column are used to electrically connect the A base chip and the ultrasonic piezoelectric layer. 15.根据权利要求13所述的制作方法,其特征在于,所述导电组件电连接所述基底芯片和所述压力层,以及电连接所述基底芯片和所述超声层的方法包括:15. The manufacturing method according to claim 13, wherein the conductive component electrically connects the base chip and the pressure layer, and the method for electrically connecting the base chip and the ultrasonic layer comprises: 在所述基底芯片上设置第一接触点、第二接触点和第四接触点;disposing a first contact point, a second contact point and a fourth contact point on the base chip; 所述第一电极层包括相距预定距离且电连接的第一电极主体和第一支肋;所述第二电极层包括相距预定距离且电连接的第二电极主体和第二支肋;所述第四电极层包括相距预定距离且电连接的第四电极主体和第四支肋;所述第一支肋、所述第二支肋和所述第四支肋错位布置;The first electrode layer includes a first electrode body and a first rib that are separated from a predetermined distance and electrically connected; the second electrode layer includes a second electrode body and a second rib that are separated from a predetermined distance and are electrically connected; the the fourth electrode layer includes a fourth electrode body and a fourth rib electrically connected with a predetermined distance; the first rib, the second rib and the fourth rib are dislocated; 在所述第一支肋和所述第一接触点相对的区域,所述第二支肋和所述第二接触点相对的区域,以及所述第四支肋和所述第四接触点相对的区域,形成第一通孔、第二通孔和第四通孔;In the area where the first rib is opposite to the first contact point, the area where the second branch is opposite to the second contact point, and the fourth rib is opposite to the fourth contact point area, forming a first through hole, a second through hole and a fourth through hole; 所述第一通孔穿过所述超声压电层、压力压电层、第一支肋、绝缘层并使所述第一接触点漏出;所述第二通孔穿过超声压电层、第二支肋、压力压电层、绝缘层并使所述第二接触点漏出;所述第四通孔穿过第四支肋、超声压电层、第二支肋、压力压电层、绝缘层并使所述第四接触点漏出;The first through hole passes through the ultrasonic piezoelectric layer, the pressure piezoelectric layer, the first support rib, and the insulating layer and causes the first contact point to leak out; the second through hole passes through the ultrasonic piezoelectric layer, The second support rib, the pressure piezoelectric layer, the insulating layer and the second contact point leak out; the fourth through hole passes through the fourth support rib, the ultrasonic piezoelectric layer, the second support rib, the pressure piezoelectric layer, insulating layer and leaking the fourth contact point; 在所述第一通孔、所述第二通孔和所述第四通孔的内部以及上方沉积导电介质以形成第一导电柱、第二导电柱和第四导电柱。A conductive medium is deposited in and over the first, second, and fourth vias to form first, second, and fourth conductive pillars. 16.根据权利要求14或15所述的制作方法,其特征在于,还包括:16. The manufacturing method according to claim 14 or 15, characterized in that, further comprising: 在所述超声层的上方沉积一层保护层;所述保护层覆盖所述超声压电层、所述第四电极层及各导电柱的顶端。A protective layer is deposited on the ultrasonic layer; the protective layer covers the ultrasonic piezoelectric layer, the fourth electrode layer and the top of each conductive column.
CN202011115530.2A 2020-10-19 2020-10-19 Transducer probe, manufacturing method and medical equipment Pending CN114377929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011115530.2A CN114377929A (en) 2020-10-19 2020-10-19 Transducer probe, manufacturing method and medical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011115530.2A CN114377929A (en) 2020-10-19 2020-10-19 Transducer probe, manufacturing method and medical equipment

Publications (1)

Publication Number Publication Date
CN114377929A true CN114377929A (en) 2022-04-22

Family

ID=81193414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011115530.2A Pending CN114377929A (en) 2020-10-19 2020-10-19 Transducer probe, manufacturing method and medical equipment

Country Status (1)

Country Link
CN (1) CN114377929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116169151A (en) * 2023-04-25 2023-05-26 合肥晶合集成电路股份有限公司 Semiconductor structure, manufacturing method of semiconductor structure and image sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746707A (en) * 2008-12-03 2010-06-23 黄勇力 Capacitive type micromachined ultrasonic transducer
US20140145244A1 (en) * 2012-11-28 2014-05-29 Invensense, Inc. Mems device and process for rf and low resistance applications
CN104089985A (en) * 2014-07-10 2014-10-08 天津大学 Visual multiphase flow test method based on electric and ultrasonic sensing principle
CN214183917U (en) * 2020-10-19 2021-09-14 上海新微技术研发中心有限公司 Transducer probe and medical equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746707A (en) * 2008-12-03 2010-06-23 黄勇力 Capacitive type micromachined ultrasonic transducer
US20140145244A1 (en) * 2012-11-28 2014-05-29 Invensense, Inc. Mems device and process for rf and low resistance applications
CN104089985A (en) * 2014-07-10 2014-10-08 天津大学 Visual multiphase flow test method based on electric and ultrasonic sensing principle
CN214183917U (en) * 2020-10-19 2021-09-14 上海新微技术研发中心有限公司 Transducer probe and medical equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116169151A (en) * 2023-04-25 2023-05-26 合肥晶合集成电路股份有限公司 Semiconductor structure, manufacturing method of semiconductor structure and image sensor device

Similar Documents

Publication Publication Date Title
US7449821B2 (en) Piezoelectric micromachined ultrasonic transducer with air-backed cavities
JP6617536B2 (en) Piezoelectric device, piezoelectric module and electronic apparatus
JP6065421B2 (en) Ultrasonic probe and ultrasonic inspection device
JP5019997B2 (en) Ultrasonic transducer, ultrasonic diagnostic apparatus and ultrasonic microscope
KR100634994B1 (en) Manufacturing method of polymer-based capacitive ultrasonic transducer
Zamora et al. Monolithic single PMUT-on-CMOS ultrasound system with+ 17 dB SNR for imaging applications
US20100036257A1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
US20200282424A1 (en) Optically transparent micromachined ultrasonic transducer (cmut)
CN102988079A (en) Ultrasonic probe and ultrasonic image diagnostic device
JP6852366B2 (en) Ultrasonic device and ultrasonic device
JP7089992B2 (en) Ultrasonic Transducer Array and Ultrasonic Probe
JP6601190B2 (en) Piezoelectric module, ultrasonic module and electronic device
CN109231150B (en) Combined film pMUTs and preparation method thereof
TWI738290B (en) Transducer apparatus、transducer structure and fabricating method thereof
CN114377929A (en) Transducer probe, manufacturing method and medical equipment
CN214183917U (en) Transducer probe and medical equipment
KR101350520B1 (en) Multi-layer active material type ultrasonic transducer and manufacturing method thereof
CN102553091B (en) Ultrasonic transducer probe
US20150229236A1 (en) Zero-bias capacitive micromachined ultrasonic transducers and fabrication method thereof
JP2017069662A (en) Piezoelectric element substrate, piezoelectric module, ultrasonic module and ultrasonic device
JPH01312485A (en) Electrostatic capacitor type ultrasonic wave transducer
US20250152137A1 (en) Ultrasonic transducer device and ultrasonic probe using the same
Bierregaard et al. Cost-effective screen printed linear arrays for medical imaging fabricated using PZT thick films
JP7671436B2 (en) Ultrasonic transducer, ultrasonic probe, ultrasonic diagnostic device, and method for manufacturing ultrasonic transducer
WO2024093318A1 (en) Ultrasonic transducer, fingerprint recognition module, and electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination