CN114369309B - Preparation method of polyetherimide coated magnesium oxide/polypropylene nano composite film - Google Patents
Preparation method of polyetherimide coated magnesium oxide/polypropylene nano composite film Download PDFInfo
- Publication number
- CN114369309B CN114369309B CN202210102874.2A CN202210102874A CN114369309B CN 114369309 B CN114369309 B CN 114369309B CN 202210102874 A CN202210102874 A CN 202210102874A CN 114369309 B CN114369309 B CN 114369309B
- Authority
- CN
- China
- Prior art keywords
- magnesium oxide
- polyetherimide
- polypropylene
- oxide nanoparticles
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 title claims abstract description 145
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 239000000395 magnesium oxide Substances 0.000 title claims abstract description 113
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 82
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 82
- 239000004697 Polyetherimide Substances 0.000 title claims abstract description 74
- 229920001601 polyetherimide Polymers 0.000 title claims abstract description 74
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 69
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000002105 nanoparticle Substances 0.000 claims abstract description 131
- -1 polypropylene Polymers 0.000 claims description 46
- 239000000725 suspension Substances 0.000 claims description 44
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 40
- 239000000243 solution Substances 0.000 claims description 32
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 claims description 30
- 229940018564 m-phenylenediamine Drugs 0.000 claims description 30
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 26
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 21
- 238000007731 hot pressing Methods 0.000 claims description 20
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 125000003277 amino group Chemical group 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 14
- 239000008096 xylene Substances 0.000 claims description 13
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 10
- 229920001721 polyimide Polymers 0.000 claims description 10
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 9
- 238000005576 amination reaction Methods 0.000 claims description 9
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 8
- 238000011065 in-situ storage Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 238000010992 reflux Methods 0.000 claims description 8
- 239000004642 Polyimide Substances 0.000 claims description 7
- 239000011247 coating layer Substances 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- 239000000178 monomer Substances 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 5
- 238000004381 surface treatment Methods 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims 3
- 238000005406 washing Methods 0.000 claims 3
- 238000001816 cooling Methods 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 29
- 229920000642 polymer Polymers 0.000 abstract description 13
- 239000011159 matrix material Substances 0.000 abstract description 9
- 239000003989 dielectric material Substances 0.000 abstract description 5
- 230000007423 decrease Effects 0.000 abstract description 3
- 229920006254 polymer film Polymers 0.000 abstract description 2
- 239000005416 organic matter Substances 0.000 abstract 1
- 230000007704 transition Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 26
- 230000033444 hydroxylation Effects 0.000 description 8
- 238000005805 hydroxylation reaction Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000007822 coupling agent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229960000935 dehydrated alcohol Drugs 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002390 rotary evaporation Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
- C08G73/1028—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
- C08G73/1053—Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/222—Magnesia, i.e. magnesium oxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明公开了聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合薄膜的制备方法,首先在无机纳米粒子表面包覆一层有机物形成过渡层,减弱由于纳米填料与聚合物基体间存在较大的介电性质差异而导致的纳米复合电介质击穿强度的降低,为协同提升介电常数和击穿场强,从而实现聚合物薄膜能量密度最大化提供新的思路。
The invention discloses a preparation method of a polyetherimide-coated magnesium oxide/polypropylene nanocomposite film. First, a layer of organic matter is coated on the surface of the inorganic nanoparticle to form a transition layer, which weakens the gap between the nanofiller and the polymer matrix. The decrease in breakdown strength of nanocomposite dielectrics caused by the difference in dielectric properties of the nanocomposite provides a new idea for synergistically improving the dielectric constant and breakdown field strength, thereby maximizing the energy density of polymer films.
Description
技术领域technical field
本发明属于聚合物纳米复合电介质制备领域,具体涉及一种高击穿强度的聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合薄膜的制备方法。The invention belongs to the field of polymer nanocomposite dielectric preparation, and particularly relates to a preparation method of a polyetherimide-coated magnesium oxide/polypropylene nanocomposite film with high breakdown strength.
背景技术Background technique
能源是人类赖以生存和发展的关键要素,化石能源等不可再生能源由于其不可再生性、对环境的危害性,人类无法长久利用。当今全球能源格局已经出现了深刻变革,清洁能源的利用逐渐成为关注的热点。然而,风能和太阳能的利用较为困难且低效,目前光伏、风力发电可以将两种清洁能源转为电能,但受制于太阳能和风能的不稳定、间断的缺点,为了保证电网的稳定性,并不能直接将清洁能源接入电网。此外,受制于清洁能源分布不均匀的缺点,清洁能源的消纳成为不可忽视的问题。为了解决以上问题,储能已经成为清洁能源集中接入电网的重要节点。Energy is a key element for human survival and development. Fossil energy and other non-renewable energy sources cannot be used for a long time due to their non-renewability and harm to the environment. Today's global energy landscape has undergone profound changes, and the utilization of clean energy has gradually become a focus of attention. However, the utilization of wind energy and solar energy is difficult and inefficient. At present, photovoltaic and wind power can convert two clean energy sources into electric energy, but they are subject to the instability and discontinuity of solar energy and wind energy. In order to ensure the stability of the power grid, and Clean energy cannot be directly connected to the grid. In addition, due to the disadvantage of uneven distribution of clean energy, the consumption of clean energy has become a problem that cannot be ignored. In order to solve the above problems, energy storage has become an important node for the centralized access of clean energy to the power grid.
电容器由于其简单的制作工艺、较高的功率密度和出色的充放电能力成为储能技术的关键器件。聚合物纳米复合电介质作为第三代绝缘材料,是发展下一代薄膜电容器的关键材料。聚合物纳米复合电介质结合了无机填料优异的介电性能与聚合物基体的高击穿场强和易加工性而被广泛用于薄膜电容器中。但由于纳米填料与聚合物基体间存在较大的介电性质差异,导致纳米复合电介质击穿强度降低,例如Fridin等人将氧化铝粒子处理后掺入聚丙烯基体中,成功使聚丙烯的相对介电常数提升至15.4,但却是以牺牲击穿场强为代价。这严重限制了聚丙烯纳米复合电介质储能性能的提升。Capacitors have become key devices in energy storage technology due to their simple fabrication process, high power density, and excellent charge-discharge capability. Polymer nanocomposite dielectrics, as third-generation insulating materials, are key materials for the development of next-generation thin-film capacitors. Polymer nanocomposite dielectrics combine the excellent dielectric properties of inorganic fillers with the high breakdown field strength and ease of processing of polymer matrices and are widely used in film capacitors. However, due to the large difference in dielectric properties between the nanofiller and the polymer matrix, the breakdown strength of the nanocomposite dielectric decreases. For example, Fridin et al. The dielectric constant is increased to 15.4, but at the expense of the breakdown field strength. This severely limits the improvement of the energy storage performance of polypropylene nanocomposite dielectrics.
发明内容SUMMARY OF THE INVENTION
为了协同提高聚合物纳米复合电介质的介电和击穿性能,从而提升其储能性能,本发明提出了一种高击穿强度的聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电介质薄膜的制备方法。In order to synergistically improve the dielectric and breakdown properties of the polymer nanocomposite dielectric, thereby enhancing its energy storage performance, the present invention proposes a high breakdown strength polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric film preparation method.
为达到上述目的,本发明所述聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合薄膜的制备方法,包括以下步骤:In order to achieve the above purpose, the preparation method of the polyetherimide-coated magnesium oxide/polypropylene nanocomposite film of the present invention comprises the following steps:
步骤1、用双氧水对氧化镁纳米粒子进行表面处理,得到羟基化后的氧化镁纳米粒子;
步骤2、对羟基化后的氧化镁纳米粒子进行表面氨基化处理,在羟基化后的氧化镁纳米粒子表面形成氨基,得到氨基化后的氧化镁纳米粒子;
步骤3、借助氧化镁纳米粒子表面的氨基,将双酚A型二醚二酐单体(BPADA)接在氨基化后氧化镁纳米粒子表面,加入间苯二胺(mPDA),利用原位聚合法在氧化镁纳米粒子表面形成聚醚酰亚胺包覆层,得到聚醚酰亚胺包覆后的氧化镁纳米粒子;
步骤4、采用溶液共混法向聚丙烯中掺入聚醚酰亚胺包覆后的氧化镁纳米粒子,其中,聚丙烯和聚醚酰亚胺包覆后的纳米粒子的质量比为:1:(0.005-0.05),并蒸发溶剂,制备聚丙烯纳米复合电介质;Step 4. Incorporating polyetherimide-coated magnesium oxide nanoparticles into polypropylene by a solution blending method, wherein the mass ratio of polypropylene and polyetherimide-coated nanoparticles is: 1 : (0.005-0.05), and evaporate the solvent to prepare polypropylene nanocomposite dielectric;
步骤5、利用平板热压法将聚丙烯纳米复合电介质热压,制得聚丙烯纳米复合电介质薄膜。
进一步的,步骤1包括以下步骤:Further,
步骤1.1、将氧化镁纳米粒子烘干;Step 1.1, drying the magnesium oxide nanoparticles;
步骤1.2、向烘干的氧化镁纳米粒子中加入双氧水,超声分散成悬浊液;Step 1.2, adding hydrogen peroxide to the dried magnesium oxide nanoparticles, and ultrasonically dispersing into a suspension;
步骤1.3、将悬浊液加热至80℃以上,然后用冷凝管冷凝回流,待氧化镁纳米粒子和双氧水反应6h以上,得到悬浊液A;Step 1.3, heating the suspension to above 80°C, then condensing and refluxing with a condenser tube, and waiting for the magnesium oxide nanoparticles to react with hydrogen peroxide for more than 6 hours to obtain suspension A;
步骤1.4、将悬浊液A离心沉淀,利用双氧水反复洗涤后,真空烘干,得到羟基化后的氧化镁纳米粒子。In step 1.4, the suspension A is centrifuged, washed repeatedly with hydrogen peroxide, and dried in vacuum to obtain hydroxylated magnesium oxide nanoparticles.
进一步的,步骤2包括以下步骤:Further,
步骤2.1、向羟基化后的氧化镁纳米粒子中加入甲苯,超声分散成悬浊液B;Step 2.1, adding toluene to the hydroxylated magnesium oxide nanoparticles, and ultrasonically dispersing into suspension B;
步骤2.2、将硅烷偶联剂滴入悬浊液B中,再次超声分散;Step 2.2, drop the silane coupling agent into suspension B, and ultrasonically disperse again;
步骤2.3、将分散后悬浊液加热至110℃,然后用冷凝管冷凝回流,反应6h以上;Step 2.3, heating the dispersed suspension to 110°C, then condensing and refluxing with a condenser tube, and reacting for more than 6 hours;
步骤2.4、将反应后的悬浊液B离心沉淀,反复洗涤后,真空烘干,得到氨基化后的氧化镁纳米粒子。In step 2.4, the reacted suspension B is centrifugally precipitated, washed repeatedly, and dried in vacuum to obtain aminated magnesium oxide nanoparticles.
进一步的,步骤2.2中,硅烷偶联剂为KH550。Further, in step 2.2, the silane coupling agent is KH550.
进一步的,步骤3包括以下步骤:Further,
步骤3.1、向氨基化后的氧化镁纳米粒子加入无水乙醇,超声分散成悬浊液C;Step 3.1, adding absolute ethanol to the aminated magnesium oxide nanoparticles, and ultrasonically dispersing into suspension C;
步骤3.2、将双酚A型二醚二酐和间苯二胺分别溶解于二甲基乙酰胺溶液中,得到BPADA溶液和mPDA溶液;Step 3.2, dissolving bisphenol A type diether dianhydride and m-phenylenediamine in dimethylacetamide solution respectively to obtain BPADA solution and mPDA solution;
步骤3.3、将BPADA溶液加入悬浊液C中进行超声分散,得到物质D;Step 3.3, adding the BPADA solution to suspension C for ultrasonic dispersion to obtain substance D;
步骤3.4、将mPDA溶液加入物质D中,同时通入氮气,加装干燥管,进行反应;Step 3.4, adding mPDA solution to substance D, feeding nitrogen at the same time, adding a drying tube, and reacting;
步骤3.5、反应结束后,将悬浊液离心沉淀,用无水乙醇洗涤后,置于烘箱中完成热酰亚胺化,得到聚醚酰亚胺包覆后的氧化镁纳米粒子。Step 3.5. After the reaction, the suspension is centrifuged and precipitated, washed with absolute ethanol, and placed in an oven to complete thermal imidization to obtain magnesium oxide nanoparticles coated with polyetherimide.
进一步的,步骤3.4中,分三次将mPDA溶液加入物质D中。Further, in step 3.4, mPDA solution was added to substance D in three times.
进一步的,步骤3.5中,热酰亚胺化的过程为:先升温至70℃保持1h以除去残留二甲基乙酰胺,接着以1℃/min的升温速率阶梯升温,并在100℃、150℃、200℃、250℃各停留1h,待烘箱自然冷却至常温后,得到聚醚酰亚胺包覆后的氧化镁纳米粒子。Further, in step 3.5, the thermal imidization process is as follows: firstly, the temperature is raised to 70 °C for 1 h to remove residual dimethylacetamide, and then the temperature is stepped up at a heating rate of 1 °C/min, and the temperature is increased at 100 °C and 150 °C. ℃, 200 ℃, 250 ℃ each for 1 hour, and after the oven is naturally cooled to room temperature, the magnesium oxide nanoparticles coated with polyetherimide are obtained.
进一步的,步骤4包括以下步骤:Further, step 4 includes the following steps:
4.1、清洗并烘干聚丙烯粒子;4.1. Clean and dry polypropylene particles;
4.2、将烘干后的聚丙烯粒子置于容器A中,并加入二甲苯,同时通入氮气,加装蛇形冷凝管和干燥管,搅拌溶解;4.2. Place the dried polypropylene particles in container A, add xylene, introduce nitrogen at the same time, install a serpentine condenser tube and a drying tube, and stir to dissolve;
4.3、将聚醚酰亚胺包覆后的氧化镁纳米粒子加入容器B中,并加入二甲苯,超声分散,得到纳米粒子分散液;4.3. Add the polyetherimide-coated magnesium oxide nanoparticles into container B, add xylene, and ultrasonically disperse to obtain a nanoparticle dispersion;
4.4、将纳米粒子分散液加入容器A中,反应完全后,得到混合液;4.4. Add the nanoparticle dispersion into the container A, and after the reaction is complete, a mixed solution is obtained;
4.5、去除混合液中的二甲苯,得到聚丙烯纳米复合电介质。4.5. Remove xylene in the mixed solution to obtain a polypropylene nanocomposite dielectric.
进一步的,步骤5包括以下步骤:Further,
5.1、将聚丙烯纳米复合电介质放入聚酰亚胺模具中间,再将模具放入两块导热板之间,接着将两者置于热压设备中;5.1. Put the polypropylene nanocomposite dielectric into the middle of the polyimide mold, then put the mold between two thermally conductive plates, and then place the two in a hot-pressing device;
5.2、在无压力状态下预压10min,使聚丙烯纳米复合电介质熔融;接着分别在10MPa、15MPa和20MPa下加压5min,每次加压前开模排气;之后冷却至室温后打开模具,得到聚丙烯纳米复合电介质薄膜。5.2. Pre-press for 10 minutes under no pressure to melt the polypropylene nanocomposite dielectric; then press for 5 minutes at 10 MPa, 15 MPa and 20 MPa, respectively, open the mold to exhaust before each pressurization; then cool down to room temperature and open the mold, A polypropylene nanocomposite dielectric film was obtained.
进一步的,所述步骤4中,纳米粒子的掺杂质量分数为3wt%。Further, in the step 4, the doping mass fraction of the nanoparticles is 3wt%.
与现有技术相比,本发明至少具有以下有益的技术效果:Compared with the prior art, the present invention has at least the following beneficial technical effects:
本发明提出了一种高击穿强度的聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电介质的制备方法,首先,在无机纳米粒子表面包覆一层有机物形成过渡层,减弱由于纳米填料与聚合物基体间存在较大的介电性质差异而导致的纳米复合电介质击穿强度的降低,为协同提升介电常数和击穿场强,从而实现聚合物薄膜能量密度最大化提供新的思路。The present invention proposes a method for preparing a high breakdown strength polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric. The decrease of the breakdown strength of the nanocomposite dielectric due to the large difference in dielectric properties with the polymer matrix provides a new idea for synergistically improving the dielectric constant and breakdown field strength, thereby maximizing the energy density of polymer films .
本发明提供的纳米复合电介质的制备方法操作简便、易于实现。羟基化处理氧化镁纳米粒子表面可以使氧化镁表面接连更多的羟基,使偶联剂更容易接在粒子表面。溶液共混法在聚丙烯中掺杂纳米粒子,通过不停地加热搅拌,可实现纳米粒子在基体中的均匀分散。The preparation method of the nanocomposite dielectric provided by the present invention is simple to operate and easy to realize. Hydroxylation treatment of the surface of magnesium oxide nanoparticles can connect more hydroxyl groups to the surface of magnesium oxide, making it easier for the coupling agent to connect to the surface of the particles. Nanoparticles are doped into polypropylene by solution blending method, and the uniform dispersion of nanoparticles in the matrix can be achieved by continuous heating and stirring.
进一步的,采用KH550处理纳米粒子引入更多的氨基,可以使纳米粒子表面形成更均匀严密的包覆层。Further, using KH550 to treat the nanoparticles to introduce more amino groups can form a more uniform and tight coating layer on the surface of the nanoparticles.
进一步的,三明治结构热压薄膜使薄膜厚度可控且均匀,减小厚度误差。Further, the sandwich structure hot pressing film makes the film thickness controllable and uniform, and reduces the thickness error.
进一步的,本发明大幅度提高了聚丙烯聚合物的直流击穿强度。本发明在聚醚酰亚胺包覆氧化镁纳米粒子过程中,双酚A型二醚二酐(BPADA)和间苯二胺(mPDA)的比例和加入顺序有严格要求,先加入双酚A型二醚二酐并且其过量,再分三次加入间苯二胺,双酚A型二醚二酐和间苯二胺的摩尔比为(1.02-1.03):1,保证双酚A型二醚二酐充分与氧化镁纳米粒子表面的氨基反应,后加入的间苯二胺可以充分与接入到氧化镁纳米粒子表面的双酚A型二醚二酐反应。此过程可以最大程度提高聚醚酰亚胺的包覆几率,避免聚醚酰亚胺处于游离状态。Further, the present invention greatly improves the DC breakdown strength of the polypropylene polymer. In the present invention, in the process of coating magnesium oxide nanoparticles with polyetherimide, the ratio and addition sequence of bisphenol A diether dianhydride (BPADA) and m-phenylenediamine (mPDA) have strict requirements, and bisphenol A is added first. Type diether dianhydride and its excess, then add m-phenylenediamine three times, the molar ratio of bisphenol A type diether dianhydride and m-phenylenediamine is (1.02-1.03): 1, to ensure that bisphenol A type diether The dianhydride fully reacts with the amino group on the surface of the magnesium oxide nanoparticle, and the m-phenylenediamine added later can fully react with the bisphenol A type diether dianhydride connected to the surface of the magnesium oxide nanoparticle. This process can maximize the coating probability of the polyetherimide and avoid the polyetherimide being in a free state.
附图说明Description of drawings
图1为纳米粒子表面处理流程图;Fig. 1 is a flow chart of nanoparticle surface treatment;
图2为纳米粒子氨基化原理图;Fig. 2 is a schematic diagram of nanoparticle amination;
图3为聚醚酰亚胺包覆纳米粒子反应原理图;Figure 3 is a schematic diagram of the reaction principle of polyetherimide-coated nanoparticles;
图4为氧化镁纳米粒子红外光谱图;Fig. 4 is the infrared spectrogram of magnesium oxide nanoparticles;
图5为聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电薄膜直流击穿场强威布尔分布图;Fig. 5 is the Weibull distribution diagram of DC breakdown field strength of polyetherimide-coated magnesium oxide/polypropylene nanocomposite electric thin film;
图6为聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电薄膜直流击穿场强特征击穿场强图。FIG. 6 is a characteristic breakdown field strength diagram of DC breakdown field strength of polyetherimide-coated magnesium oxide/polypropylene nanocomposite electric film.
具体实施方式Detailed ways
为了使本发明的目的和技术方案更加清晰和便于理解。以下结合附图和实施例,对本发明进行进一步的详细说明,此处所描述的具体实施例仅用于解释本发明,并非用于限定本发明。In order to make the purpose and technical solutions of the present invention clearer and easier to understand. The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. The specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合薄膜的制备方法,包括以下步骤:The preparation method of polyetherimide-coated magnesium oxide/polypropylene nanocomposite film comprises the following steps:
步骤1、利用30%双氧水对氧化镁纳米粒子进行表面处理,以引入更多羟基,得到羟基化后的氧化镁纳米粒子。
步骤2、选择硅烷偶联剂对羟基化后的氧化镁纳米粒子进行表面氨基化处理,在羟基化后的氧化镁纳米粒子表面形成氨基,得到氨基化后的氧化镁纳米粒子。Step 2: Select a silane coupling agent to aminate the surface of the hydroxylated magnesium oxide nanoparticles, and form amino groups on the surface of the hydroxylated magnesium oxide nanoparticles to obtain aminated magnesium oxide nanoparticles.
步骤3、借助氧化镁纳米粒子表面的氨基,将双酚A型二醚二酐(BPADA)单体接在氨基化后的氧化镁纳米粒子表面,加入间苯二胺(mPDA),氧化镁纳米粒子、BPADA、mPDA的质量比为1g:1.6942g:0.3402g,利用原位聚合法形成氧化镁纳米粒子表面的聚醚酰亚胺包覆层,得到聚醚酰亚胺包覆后的氧化镁纳米粒子。
步骤4、溶液共混法向聚丙烯基体中掺入聚醚酰亚胺包覆后的纳米粒子填料,其中,聚丙烯和聚醚酰亚胺包覆后的纳米粒子的质量比为:1:(0.005-0.05),并用旋蒸仪蒸发溶剂,制备聚丙烯纳米复合电介质。Step 4. Incorporating the polyetherimide-coated nanoparticle filler into the polypropylene matrix by the solution blending method, wherein the mass ratio of the polypropylene and the polyetherimide-coated nanoparticles is: 1: (0.005-0.05), and the solvent was evaporated with a rotary evaporator to prepare a polypropylene nanocomposite dielectric.
步骤5、利用平板热压法采用三明治结构热压制得聚丙烯纳米复合电介质薄膜。三明治结构即底部和顶部为完整的聚酰亚胺膜模具,中间为圆孔结构的聚酰亚胺薄膜模具,以保证试样厚度的均匀性,圆孔结构的聚酰亚胺薄膜模具的厚度决定电介质薄膜的厚度。
作为本发明的进一步改进,步骤1的具体步骤为:As a further improvement of the present invention, the concrete steps of
1.1)将氧化镁纳米粒子烘干;1.1) drying the magnesium oxide nanoparticles;
1.2)将烘干的氧化镁纳米粒子置于单口烧瓶A中,加入30%双氧水,超声分散成悬浊液;氧化镁纳米粒子与30%双氧水固液比为1g:16ml;1.2) place the dried magnesium oxide nanoparticles in the single-necked flask A, add 30% hydrogen peroxide, and ultrasonically disperse it into a suspension; the magnesium oxide nanoparticles and 30% hydrogen peroxide solid-liquid ratio are 1g:16ml;
1.3)将单口烧瓶A加热至80℃,加装蛇形冷凝管冷凝回流,待氧化镁纳米粒子和双氧水反应6h以上,得到悬浊液;1.3) heating the single-necked flask A to 80°C, adding a serpentine condenser to condense and refluxing, and reacting the magnesium oxide nanoparticles with hydrogen peroxide for more than 6 hours to obtain a suspension;
1.4)反应结束后,将悬浊液离心沉淀,利用双氧水反复洗涤后,置于真空烘箱烘干12h,得到羟基化后的纳米粒子。1.4) After the reaction, the suspension was centrifuged for precipitation, washed repeatedly with hydrogen peroxide, and dried in a vacuum oven for 12 hours to obtain hydroxylated nanoparticles.
作为本发明的进一步改进,步骤2的具体步骤为:As a further improvement of the present invention, the concrete steps of
2.1)将羟基化后的氧化镁纳米粒子研磨后置于单口烧瓶B中,并加入甲苯,超声分散成悬浊液;氧化镁纳米粒子与甲苯固液比为1g:60ml;2.1) place in the single-necked flask B after grinding the magnesium oxide nanoparticles after the hydroxylation, and add toluene, and ultrasonically disperse into a suspension; the magnesium oxide nanoparticles and the toluene solid-to-liquid ratio are 1g:60ml;
2.2)将KH550偶联剂缓慢滴加入悬浊液中,再次超声分散;氧化镁纳米粒子与偶联剂固液比为1g:1ml;2.2) Slowly add KH550 coupling agent dropwise into the suspension, and ultrasonically disperse again; the solid-liquid ratio of magnesium oxide nanoparticles to coupling agent is 1g:1ml;
2.3)将分散后悬浊液加热至110℃,加装蛇形冷凝管冷凝回流,反应6h以上;2.3) Heat the dispersed suspension to 110°C, install a serpentine condenser to condense and reflux, and react for more than 6 hours;
2.4)反应结束后,将悬浊液离心沉淀,利用甲苯反复洗涤后,置于真空烘箱烘干12h以上,得到氨基化后的氧化镁纳米粒子。2.4) After the reaction, the suspension was centrifuged and precipitated, washed repeatedly with toluene, and dried in a vacuum oven for more than 12 hours to obtain aminated magnesium oxide nanoparticles.
作为本发明的进一步改进,步骤3的具体步骤为:As a further improvement of the present invention, the concrete steps of
3.1)将氨基化后的纳米粒子研磨后置于三口烧瓶A中,并加入无水乙醇,超声分散成悬浊液;纳米粒子与无水乙醇固液比为1g:125ml;3.1) the aminated nanoparticles are ground and placed in the there-necked flask A, and add dehydrated alcohol, and ultrasonically disperse into a suspension; the nanoparticle and dehydrated alcohol solid-to-liquid ratio is 1g:125ml;
3.2)将双酚A型二醚二酐(BPADA)和间苯二胺(mPDA)分别溶解于二甲基乙酰胺(DMAc)溶液中,得到BPADA溶液和mPDA溶液,相同体积的DMAc溶液中,BPADA与mPDA的质量比为1.6942g:0.3402g;3.2) Dissolve bisphenol A diether dianhydride (BPADA) and m-phenylenediamine (mPDA) in dimethylacetamide (DMAc) solution respectively to obtain BPADA solution and mPDA solution, in the same volume of DMAc solution, The mass ratio of BPADA to mPDA is 1.6942g: 0.3402g;
3.3)将BPADA溶液加入3.1步中的悬浊液中,超声30min;3.3) Add the BPADA solution to the suspension in step 3.1, and ultrasonicate for 30min;
3.4)将三口烧瓶A置于磁力搅拌器上,维持温度10℃以下,分三次将mPDA溶液缓慢加入三口烧瓶A中,同时通入氮气,加装干燥管,反应24h;3.4) Place the three-necked flask A on a magnetic stirrer, keep the temperature below 10°C, slowly add the mPDA solution into the three-necked flask A in three times, introduce nitrogen at the same time, install a drying tube, and react for 24h;
3.5)反应结束后,将悬浊液离心沉淀,利用无水乙醇反复洗涤后,置于鼓风烘箱中完成热酰亚胺化过程。具体步骤为:先升温至70℃保持1h以除去残留DMAc,接着以1℃/min的升温速率阶梯升温,在100℃、150℃、200℃、250℃各停留1h,待烘箱自然冷却至常温后,得到聚醚酰亚胺包覆后的氧化镁纳米粒子。3.5) After the reaction is completed, the suspension is centrifuged for precipitation, washed repeatedly with absolute ethanol, and then placed in a blast oven to complete the thermal imidization process. The specific steps are: firstly raise the temperature to 70°C for 1h to remove residual DMAc, then step up the temperature at a heating rate of 1°C/min, stay at 100°C, 150°C, 200°C, and 250°C for 1h each, and let the oven cool down to room temperature naturally Then, magnesium oxide nanoparticles coated with polyetherimide are obtained.
作为本发明的进一步改进,步骤4的具体步骤为:As a further improvement of the present invention, the concrete steps of step 4 are:
4.1)分别利用去离子水和无水乙醇超声清洗聚丙烯粒子,后置于真空烘箱中烘干12h以上;4.1) Use deionized water and absolute ethanol to ultrasonically clean the polypropylene particles respectively, and then place them in a vacuum oven to dry for more than 12 hours;
4.2)将烘干后的聚丙烯粒子置于三口烧瓶B中,并加入二甲苯,升高温度至140℃,同时通入氮气,加装蛇形冷凝管和干燥管,搅拌溶解90min;聚丙烯粒子和二甲苯的固液比为1g:20ml;4.2) Place the dried polypropylene particles in the three-necked flask B, add xylene, raise the temperature to 140°C, feed nitrogen at the same time, add a serpentine condenser and a drying tube, stir and dissolve for 90min; The solid-liquid ratio of particles and xylene is 1g:20ml;
4.3)将聚醚酰亚胺包覆后的氧化镁纳米粒子加入烧杯中,并加入二甲苯,超声分散30min,得到纳米粒子分散液;4.3) adding the magnesium oxide nanoparticles coated with polyetherimide into a beaker, adding xylene, and ultrasonically dispersing for 30 min to obtain a nanoparticle dispersion;
4.4)将纳米粒子分散液缓慢加入三口烧瓶B中,反应12h,得到混合液;4.4) Slowly add the nanoparticle dispersion into the three-necked flask B, and react for 12h to obtain a mixed solution;
4.5)反应结束后,将混合液转移至单口烧瓶C中,利用旋蒸法去除二甲苯,置于80℃真空烘箱中干燥12h,蒸发二甲苯,得到聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料。4.5) After the reaction was completed, the mixed solution was transferred to a single-necked flask C, the xylene was removed by rotary evaporation, dried in a vacuum oven at 80° C. for 12 h, and the xylene was evaporated to obtain a polyetherimide-coated magnesium oxide/ Polypropylene nanocomposites.
作为本发明的进一步改进,步骤5的具体步骤为:As a further improvement of the present invention, the concrete steps of
5.1)称取一定质量的聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料放入聚酰亚胺模具中间,再将模具放入两块导热板之间,接着将两者置于热压设备中;5.1) Weigh a certain quality of polyetherimide-coated magnesium oxide/polypropylene nanocomposite material and put it in the middle of the polyimide mold, then put the mold between two thermally conductive plates, and then place the two in the middle of the polyimide mold. in hot pressing equipment;
5.2)在无压力、温度为180℃状态下预压10min,使材料熔融;接着分别在10MPa、15MPa、20MPa下加压5min,每次加压前开模排气2-3s;之后水冷10min至室温后打开模具,得到23-27微米的聚丙烯纳米复合电介质薄膜。5.2) Pre-press for 10min under no pressure and temperature of 180℃ to melt the material; then pressurize for 5min at 10MPa, 15MPa and 20MPa respectively, open the mold for 2-3s before each pressurization; then water-cool for 10min to The mold was opened after room temperature to obtain a polypropylene nanocomposite dielectric film of 23-27 microns.
实施例1Example 1
一种高击穿强度聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电介质薄膜的制备方法,具体步骤如下:A preparation method of a high breakdown strength polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric film, the specific steps are as follows:
步骤1、纳米粒子羟基化
1.1)将氧化镁纳米粒子置于80℃的真空烘箱中烘干12h;1.1) Dry the magnesium oxide nanoparticles in a vacuum oven at 80°C for 12h;
1.2)将2.5g烘干的纳米粒子置于150ml的单口烧瓶中A,加入40ml 30%双氧水,超声分散30min成悬浊液;1.2) 2.5g of dried nanoparticles are placed in a 150ml single-necked flask A, add 40ml of 30% hydrogen peroxide, and ultrasonically disperse for 30min to form a suspension;
1.3)将悬浊液由40℃每10min升温10℃,阶梯升温至80℃,加装300ml蛇形冷凝管冷凝回流,反应6h以上;1.3) The suspension was heated from 40°C to 10°C every 10min, and the temperature was raised to 80°C in steps, and a 300ml serpentine condenser was added to condense and reflux, and the reaction was performed for more than 6h;
1.4)反应结束后,将悬浊液离心沉淀10min,转速6000r/min,利用双氧水洗涤3次,每次5min,将沉淀置于80℃的真空烘箱中烘干12h,得到羟基化后的氧化镁纳米粒子。1.4) After the reaction, the suspension was centrifuged for 10 min at a speed of 6000 r/min, washed with
步骤2、纳米粒子氨基化
2.1)将2g羟基化后的氧化镁纳米粒子研磨后置于250ml的单口烧瓶B中,并加入120ml甲苯,超声分散30min成悬浊液;2.1) place in the single-necked flask B of 250ml after grinding the magnesium oxide nanoparticles after 2g hydroxylation, and add 120ml toluene, ultrasonically disperse 30min into a suspension;
2.2)将2ml KH550偶联剂利用移液枪缓慢滴加入悬浮液中,再次超声分散15min,使其充分水解;2.2) 2ml of KH550 coupling agent was slowly added dropwise to the suspension using a pipette, and ultrasonically dispersed again for 15min to fully hydrolyze;
2.3)将分散后悬浮液由70℃阶梯升温至110℃,每10min升温20℃,加装200ml蛇形冷凝管冷凝回流,反应6h以上;2.3) The suspension after dispersion was heated from 70°C to 110°C in steps, and the temperature was increased by 20°C every 10 minutes, and a 200ml serpentine condenser was added to condense and reflux, and the reaction was performed for more than 6 hours;
2.4)反应结束后,将悬浊液离心沉淀10min,转速6000r/min,利用甲苯反复洗涤3次,每次5min,将沉淀置于80℃的真空烘箱中烘干12h,得到氨基化后的氧化镁纳米粒子。2.4) After the reaction, the suspension was centrifuged for 10 min at a speed of 6000 r/min, washed with toluene for 3 times, 5 min each time, and the precipitate was dried in a vacuum oven at 80 ° C for 12 h to obtain the aminated oxidation Magnesium nanoparticles.
步骤3、聚醚酰亚胺包覆氧化镁纳米粒子
3.1)将1g氨基化后的氧化镁纳米粒子研磨后置于500ml的三口烧瓶A中,并加入125ml无水乙醇,超声分散30min成悬浊液;3.1) place in the three-necked flask A of 500ml after grinding the magnesium oxide nanoparticles after 1g amination, and add 125ml absolute ethanol, ultrasonically disperse 30min into a suspension;
3.2)将1.6942g的BPADA和0.3402g的mPDA分别溶解于装有20ml的DMAc溶液的50ml烧杯中;3.2) The BPADA of 1.6942g and the mPDA of 0.3402g are respectively dissolved in the 50ml beaker containing the DMAc solution of 20ml;
3.3)将BPADA溶液加入悬浊液中,超声30min;3.3) Add the BPADA solution to the suspension, ultrasonically for 30min;
3.4)将三口烧瓶A置于磁力搅拌器上,维持温度10℃以下,分三次将mPDA溶液缓慢加入三口烧瓶A中,同时通入氮气,加装干燥管,反应24h;3.4) Place the three-necked flask A on a magnetic stirrer, keep the temperature below 10°C, slowly add the mPDA solution into the three-necked flask A in three times, introduce nitrogen at the same time, install a drying tube, and react for 24h;
3.5)反应结束后,将悬浊液离心沉淀10min,转速6000r/min,利用无水乙醇洗涤3次,每次5min,将沉淀置于鼓风烘箱中完成热酰亚胺化过程,具体步骤为:先升温至70℃保持1h以除去残留DMAc,接着以1℃/min的升温速率梯度升温,在100℃、150℃、200℃、250℃各停留1h,待烘箱自然冷却至常温后,得到聚醚酰亚胺包覆后的氧化镁纳米粒子。3.5) After the reaction is completed, the suspension is centrifuged for 10 minutes at a rotational speed of 6000 r/min, washed with absolute ethanol for 3 times, 5 minutes each time, and the precipitate is placed in a blast oven to complete the thermal imidization process. The specific steps are as follows: : First heat up to 70°C and hold for 1h to remove residual DMAc, then ramp up the temperature at a heating rate of 1°C/min, stay at 100°C, 150°C, 200°C, and 250°C for 1h each, and wait for the oven to naturally cool to room temperature to obtain Magnesium oxide nanoparticles coated with polyetherimide.
步骤4、聚丙烯掺杂氧化镁纳米粒子:纳米粒子质量分数为0.5wt%。Step 4, polypropylene-doped magnesium oxide nanoparticles: the mass fraction of nanoparticles is 0.5 wt%.
4.1)分别利用去离子水和无水乙醇超声清洗聚丙烯粒子15min,后置于80℃真空烘箱中烘干12h;4.1) The polypropylene particles were ultrasonically cleaned with deionized water and absolute ethanol for 15 minutes, and then dried in a vacuum oven at 80°C for 12 hours;
4.2)将3g聚丙烯粒子置于250ml的三口烧瓶B中,并加入60ml二甲苯,由70℃阶梯升温至140℃,同时通入氮气,加装200ml蛇形冷凝管和干燥管,搅拌溶解90min;4.2) Place 3g of polypropylene particles in a 250ml three-necked flask B, add 60ml of xylene, step up the temperature from 70°C to 140°C, introduce nitrogen at the same time, add a 200ml serpentine condenser and a drying tube, stir and dissolve for 90min ;
4.3)将0.015g聚醚酰亚胺包覆后的氧化镁纳米粒子加入50ml烧杯中,并加入25ml二甲苯,超声分散30min,得到聚醚酰亚胺包覆后的氧化镁纳米粒子分散液;4.3) adding 0.015g of polyetherimide-coated magnesium oxide nanoparticles into a 50ml beaker, and adding 25ml of xylene, and ultrasonically dispersing for 30min to obtain a polyetherimide-coated magnesium oxide nanoparticle dispersion;
4.4)将聚醚酰亚胺包覆后的氧化镁纳米粒子分散液缓慢加入三口烧瓶B中,反应12h,,得到混合液;4.4) Slowly add the magnesium oxide nanoparticle dispersion solution coated with polyetherimide into the three-necked flask B, and react for 12h to obtain a mixed solution;
4.5)反应结束后,将三口烧瓶B中的混合液转移至250ml单口烧瓶C中,利用旋蒸法去除二甲苯,置于80℃真空烘箱中干燥12h,蒸发二甲苯,得到聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料。4.5) After the reaction, the mixed solution in the three-necked flask B was transferred to a 250ml single-necked flask C, the xylene was removed by rotary evaporation, dried in a vacuum oven at 80°C for 12 h, and the xylene was evaporated to obtain polyetherimide. Coated magnesium oxide/polypropylene nanocomposites.
步骤5、热压法制得聚丙烯纳米复合电介质薄膜
5.1)将底层和中间25微米的圆孔结构聚酰亚胺模具垒叠铺放,称取四份44.6mg的聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料分别放入圆孔结构聚酰亚胺模具的四个孔中,盖上上层的聚酰亚胺模具,放入两块导热板之间,并置于热压设备中;5.1) Lay down the bottom layer and the 25-micron circular hole structure polyimide mold in the middle, and weigh four 44.6 mg polyetherimide-coated magnesium oxide/polypropylene nanocomposites into the circular holes respectively. In the four holes of the structural polyimide mold, cover the upper polyimide mold, put it between two heat-conducting plates, and place it in a hot-pressing equipment;
5.2)在无压力、温度为180℃状态下预压10min,使材料熔融;接着分别在10MPa、15MPa、20MPa下加压5min,每次加压前开模排气2-3s;之后水冷10min至室温后打开模具,得到聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合电介质薄膜。5.2) Pre-press for 10min under no pressure and temperature of 180℃ to melt the material; then pressurize for 5min at 10MPa, 15MPa and 20MPa respectively, open the mold for 2-3s before each pressurization; then water-cool for 10min to After room temperature, the mold was opened to obtain a polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric film.
实施例2Example 2
一种高击穿强度聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电介质薄膜的制备方法,步骤如下:A preparation method of a high breakdown strength polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric film, the steps are as follows:
步骤1、利用30%双氧水对氧化镁纳米粒子进行表面羟基化处理。
步骤2、选择KH550硅烷偶联剂对羟基化后的氧化镁纳米粒子进行表面氨基化处理。
步骤3、借助氧化镁纳米粒子表面的氨基,将BPADA单体接在氧化镁纳米粒子表面,加入mPDA,利用原位聚合法形成氧化镁纳米粒子表面的聚醚酰亚胺包覆层,得到聚醚酰亚胺包覆后的氧化镁纳米粒子。
步骤4、溶液共混法向3g聚丙烯基体中掺入0.030g聚醚酰亚胺包覆后的氧化镁纳米粒子,并用旋蒸仪蒸发溶剂,制备纳米掺杂质量分数为1.0wt%的聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料。Step 4. Add 0.030 g of polyetherimide-coated magnesium oxide nanoparticles into 3 g of polypropylene matrix by solution blending method, and use a rotary evaporator to evaporate the solvent to prepare a nano-doped polymer with a mass fraction of 1.0 wt %. Etherimide-coated magnesium oxide/polypropylene nanocomposites.
步骤5、利用平板热压法采用三明治结构热压制得聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合电介质薄膜。
其余具体步骤同实施例1。The remaining specific steps are the same as those in Example 1.
实施例3Example 3
一种高击穿强度聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电介质薄膜的制备方法,步骤如下:A preparation method of a high breakdown strength polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric film, the steps are as follows:
步骤1、利用30%双氧水对氧化镁纳米粒子进行表面羟基化处理。
步骤2、选择KH550硅烷偶联剂对羟基化后的氧化镁纳米粒子进行表面氨基化处理。
步骤3、借助氧化镁纳米粒子表面的氨基,将BPADA单体接在氧化镁纳米粒子表面,加入mPDA,利用原位聚合法形成氧化镁纳米粒子表面的聚醚酰亚胺包覆层。Step 3: Connect the BPADA monomer on the surface of the magnesium oxide nanoparticle with the help of the amino group on the surface of the magnesium oxide nanoparticle, add mPDA, and use the in-situ polymerization method to form a polyetherimide coating layer on the surface of the magnesium oxide nanoparticle.
步骤4、溶液共混法向3g聚丙烯基体中掺入0.061g聚醚酰亚胺包覆后的氧化镁纳米粒子,并用旋蒸仪蒸发溶剂,制备纳米掺杂质量分数为2.0wt%的聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料。Step 4. Add 0.061 g of polyetherimide-coated magnesium oxide nanoparticles into 3 g of polypropylene matrix by solution blending method, and use a rotary evaporator to evaporate the solvent to prepare a nano-doped polymer with a mass fraction of 2.0 wt %. Etherimide-coated magnesium oxide/polypropylene nanocomposites.
步骤5、利用平板热压法采用三明治结构热压制得聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合电介质薄膜。
其余具体步骤同实施例1。The remaining specific steps are the same as those in Example 1.
实施例4Example 4
一种高击穿强度聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电介质薄膜的制备方法,步骤如下:A preparation method of a high breakdown strength polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric film, the steps are as follows:
步骤1、利用30%双氧水对氧化镁纳米粒子进行表面羟基化处理。
步骤2、选择KH550硅烷偶联剂对羟基化后的氧化镁纳米粒子进行表面氨基化处理。
步骤3、借助氧化镁纳米粒子表面的氨基,将BPADA单体接在氧化镁纳米粒子表面,加入mPDA,利用原位聚合法形成氧化镁纳米粒子表面的聚醚酰亚胺包覆层。Step 3: Connect the BPADA monomer on the surface of the magnesium oxide nanoparticle with the help of the amino group on the surface of the magnesium oxide nanoparticle, add mPDA, and use the in-situ polymerization method to form a polyetherimide coating layer on the surface of the magnesium oxide nanoparticle.
步骤4、溶液共混法向3g聚丙烯基体中掺入0.093g聚醚酰亚胺包覆后的氧化镁纳米粒子,并用旋蒸仪蒸发溶剂,制备纳米掺杂质量分数为3.0wt%的聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料。Step 4. Add 0.093 g of polyetherimide-coated magnesium oxide nanoparticles into 3 g of polypropylene matrix by solution blending method, and use a rotary evaporator to evaporate the solvent to prepare a nano-doped polymer with a mass fraction of 3.0 wt %. Etherimide-coated magnesium oxide/polypropylene nanocomposites.
步骤5、利用平板热压法采用三明治结构热压制得聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合电介质薄膜。
其余具体步骤同实施例1。The remaining specific steps are the same as those in Example 1.
实施例5Example 5
一种高击穿强度聚醚酰亚胺包覆氧化镁/聚丙烯纳米复合电介质薄膜的制备方法,步骤如下:A preparation method of a high breakdown strength polyetherimide-coated magnesium oxide/polypropylene nanocomposite dielectric film, the steps are as follows:
步骤1、利用30%双氧水对氧化镁纳米粒子进行表面羟基化处理。
步骤2、选择KH550硅烷偶联剂对羟基化后的氧化镁纳米粒子进行表面氨基化处理。
步骤3、借助氧化镁纳米粒子表面的氨基,将BPADA单体接在氧化镁纳米粒子表面,加入mPDA,利用原位聚合法形成氧化镁纳米粒子表面的聚醚酰亚胺包覆层。Step 3: Connect the BPADA monomer on the surface of the magnesium oxide nanoparticle with the help of the amino group on the surface of the magnesium oxide nanoparticle, add mPDA, and use the in-situ polymerization method to form a polyetherimide coating layer on the surface of the magnesium oxide nanoparticle.
步骤4、溶液共混法向3g聚丙烯基体中掺入0.158g聚醚酰亚胺包覆后的氧化镁纳米粒子,并用旋蒸仪蒸发溶剂,制备纳米掺杂质量分数为5.0wt%的聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合材料。Step 4. Add 0.158g of polyetherimide-coated magnesium oxide nanoparticles into 3g of polypropylene matrix by solution blending method, and use a rotary evaporator to evaporate the solvent to prepare a nano-doped polymer with a mass fraction of 5.0wt%. Etherimide-coated magnesium oxide/polypropylene nanocomposites.
步骤5、利用平板热压法采用三明治结构热压制得聚醚酰亚胺包覆的氧化镁/聚丙烯纳米复合电介质薄膜。
其余具体步骤同实施例1。The remaining specific steps are the same as those in Example 1.
双氧水处理氧化镁纳米粒子使其表面连接更多的羟基,偶联剂遇到羟基会以Si-O键的形式连接在氧化镁表面,形成氨基。BPADA则会连接在氧化镁表面的氨基上,再加入mPDA与BPADA原位聚合生成聚醚酰亚胺,从而实现聚醚酰亚胺对氧化镁纳米粒子的包覆。反应原理如图1至图3所示。The magnesium oxide nanoparticles are treated with hydrogen peroxide to connect more hydroxyl groups on the surface. When the coupling agent encounters hydroxyl groups, it will connect to the surface of magnesium oxide in the form of Si-O bonds to form amino groups. BPADA will be connected to the amino group on the surface of magnesium oxide, and then mPDA and BPADA will be added to polymerize in situ to form polyetherimide, so as to realize the coating of magnesium oxide nanoparticles by polyetherimide. The reaction principle is shown in Figures 1 to 3.
利用红外透射模式可观察到未处理氧化镁、羟基化氧化镁、氨基化氧化镁、包覆后氧化镁的红外谱图,如图4所示。在1775cm-1、1721cm-1处为C=O键的振动,1620cm-1、1503cm-1处为苯环的特征峰,1081cm-1、1238cm-1处为R-O-R'醚键的特征峰。由此证明聚醚酰亚胺包覆成功。Using the infrared transmission mode, the infrared spectra of untreated magnesium oxide, hydroxylated magnesium oxide, aminated magnesium oxide, and coated magnesium oxide can be observed, as shown in FIG. 4 . 1775cm -1 and 1721cm -1 are vibrations of C=O bond, 1620cm -1 and 1503cm -1 are characteristic peaks of benzene ring, 1081cm -1 and 1238cm -1 are characteristic peaks of RO-R' ether bond . This proves that the polyetherimide coating is successful.
直流击穿场强测试:将聚丙烯纳米复合电介质薄膜置于球球铜电极中间,以1kV/s的速率施加线性直流电压,直至试样发生击穿,记录试样的击穿电压,计算得到其直流击穿场强,整个实验过程在室温的变压器油中进行。分别对纯聚丙烯和掺杂浓度为0.5wt%、1.0wt%、2.0wt%、3.0wt%、5.0wt%的聚丙烯纳米复合电介质薄膜进行直流击穿测试,测试结果如图5和图6所示。DC breakdown field strength test: place the polypropylene nanocomposite dielectric film in the middle of the spherical copper electrode, apply a linear DC voltage at a rate of 1kV/s until the sample breaks down, record the breakdown voltage of the sample, and calculate Its DC breakdown field strength, the whole experimental process is carried out in the transformer oil at room temperature. DC breakdown tests were performed on pure polypropylene and polypropylene nanocomposite dielectric films with doping concentrations of 0.5wt%, 1.0wt%, 2.0wt%, 3.0wt%, and 5.0wt%, respectively. The test results are shown in Figure 5 and Figure 6. shown.
由直流击穿场强结果来看,掺杂纳米粒子有助于提高聚丙烯电介质的击穿性能。随着掺杂浓度的增加,聚丙烯纳米复合电介质的击穿性能先升后降,当纳米粒子的掺杂质量分数为3wt%时,聚丙烯纳米复合电介质的击穿性能提升19%,击穿性能提高最佳。From the DC breakdown field strength results, the doping of nanoparticles helps to improve the breakdown performance of polypropylene dielectrics. With the increase of doping concentration, the breakdown performance of polypropylene nanocomposite dielectric increased first and then decreased. When the doping mass fraction of nanoparticles was 3wt%, the breakdown performance of polypropylene nanocomposite dielectric increased by 19%, and the breakdown Best performance increase.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solution according to the technical idea proposed by the present invention all fall within the scope of the claims of the present invention. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210102874.2A CN114369309B (en) | 2022-01-27 | 2022-01-27 | Preparation method of polyetherimide coated magnesium oxide/polypropylene nano composite film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210102874.2A CN114369309B (en) | 2022-01-27 | 2022-01-27 | Preparation method of polyetherimide coated magnesium oxide/polypropylene nano composite film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114369309A CN114369309A (en) | 2022-04-19 |
CN114369309B true CN114369309B (en) | 2022-10-14 |
Family
ID=81145717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210102874.2A Active CN114369309B (en) | 2022-01-27 | 2022-01-27 | Preparation method of polyetherimide coated magnesium oxide/polypropylene nano composite film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114369309B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117447841A (en) * | 2023-10-30 | 2024-01-26 | 东莞宇隆电工材料有限公司 | High-temperature-resistant high-frequency-resistant fine enamelled round copper wire |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105315587A (en) * | 2015-11-27 | 2016-02-10 | 北京科技大学 | Polymer-based dielectric energy storage composite film material with core-shell structure and preparation method |
CN107417959A (en) * | 2017-06-28 | 2017-12-01 | 常州市雄泰纺织品有限公司 | A kind of preparation method of high-biocompatibility Kapton electrode |
CN111004507A (en) * | 2019-11-25 | 2020-04-14 | 吉林大学 | Preparation method and application of cross-linked polyetherimide dielectric composite film |
-
2022
- 2022-01-27 CN CN202210102874.2A patent/CN114369309B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105315587A (en) * | 2015-11-27 | 2016-02-10 | 北京科技大学 | Polymer-based dielectric energy storage composite film material with core-shell structure and preparation method |
CN107417959A (en) * | 2017-06-28 | 2017-12-01 | 常州市雄泰纺织品有限公司 | A kind of preparation method of high-biocompatibility Kapton electrode |
CN111004507A (en) * | 2019-11-25 | 2020-04-14 | 吉林大学 | Preparation method and application of cross-linked polyetherimide dielectric composite film |
Non-Patent Citations (1)
Title |
---|
"Preparation,characterization and dielectric properties of polyetherimide nanocomposites containting surface-functionalized BaTiO3 nanoparticles";Arup Choudhury;《Society of Chemical Industry》;20120306;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114369309A (en) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103275488B (en) | Polyimide high dielectric composite material and preparation method thereof | |
CN109400956B (en) | Preparation method and application of polyphosphazene modified black phosphorus alkene | |
CN113105735B (en) | A kind of high thermal conductive polymer composite thermal conductive material and preparation method thereof | |
CN105367811A (en) | Carbonyl-containing material-coated barium titanate/polymer composite film and preparation method thereof and application | |
CN106750296A (en) | A kind of modified graphene/polyimides heat-conductive composite material and preparation method thereof | |
CN111004507B (en) | Preparation method and application of cross-linked polyetherimide dielectric composite film | |
CN114369309B (en) | Preparation method of polyetherimide coated magnesium oxide/polypropylene nano composite film | |
CN105576267A (en) | Organic-inorganic hybrid proton exchange membrane and preparation method and application thereof | |
CN111471299B (en) | Heat-conducting and insulating polyimide nano composite film and preparation method thereof | |
WO2021093741A1 (en) | Composite thermal interface material and preparation method therefor | |
CN113637275B (en) | A kind of charged polythiophene modified graphene thermal conductive filler and thermal conductive composite material based thereon | |
CN111592738A (en) | EP/h-BN/MWCNTs @ Al2O3Heat-conducting, insulating and heat-conducting composite material and preparation method thereof | |
CN112812318A (en) | High-dielectric nano boron nitride modified epoxy resin composite material and preparation method thereof | |
CN116426086A (en) | Preparation method of epoxy resin/boron nitride composite material with high surface charge dissipation rate | |
CN115626834A (en) | A kind of preparation method of silicon carbide fiber, carbon fiber reinforced polyimide graphite film | |
CN101891936A (en) | Preparation method of composite material based on epoxy resin and phosphazene nanotubes | |
CN113717598A (en) | Preparation method of organic conductive anticorrosive coating on surface of stainless steel bipolar plate | |
CN117334927A (en) | Bipolar plate for hydrogen fuel cell and preparation method thereof | |
CN114409939B (en) | Preparation method of polyimide coated magnesium oxide/polypropylene nano dielectric film | |
CN115746404B (en) | Surface modified hexagonal boron nitride nanosheet, modification method thereof and epoxy composite material | |
CN113265160B (en) | Preparation method of 12-hydroxystearic acid structure modified graphene oxide material | |
CN115948053A (en) | 3D heat-conducting framework/polyimide heat-conducting composite material and preparation method thereof | |
CN117683258B (en) | Preparation method and application of hydroxylated boron nitride filler-polyimide insulating composite film | |
CN115558241B (en) | High-heat-conductivity carbon fiber fabric composite material and preparation method thereof | |
CN114656750B (en) | Epoxy resin-based anti-ultraviolet aging insulating material for outdoor use, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |