CN114367029A - Magnetic drive separation built-in type fluctuation pumping blood ventricle blood pump - Google Patents
Magnetic drive separation built-in type fluctuation pumping blood ventricle blood pump Download PDFInfo
- Publication number
- CN114367029A CN114367029A CN202210135018.7A CN202210135018A CN114367029A CN 114367029 A CN114367029 A CN 114367029A CN 202210135018 A CN202210135018 A CN 202210135018A CN 114367029 A CN114367029 A CN 114367029A
- Authority
- CN
- China
- Prior art keywords
- blood
- assembly
- flexible membrane
- cavity
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000008280 blood Substances 0.000 title claims abstract description 106
- 210000004369 blood Anatomy 0.000 title claims abstract description 106
- 238000005086 pumping Methods 0.000 title claims abstract description 25
- 238000000926 separation method Methods 0.000 title claims description 12
- 239000012528 membrane Substances 0.000 claims abstract description 59
- 230000002861 ventricular Effects 0.000 claims abstract description 26
- 238000005192 partition Methods 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 34
- 230000033001 locomotion Effects 0.000 claims description 13
- 230000035515 penetration Effects 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 208000007536 Thrombosis Diseases 0.000 abstract description 5
- 206010018910 Haemolysis Diseases 0.000 abstract description 4
- 230000008588 hemolysis Effects 0.000 abstract description 4
- 239000000306 component Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 241001646071 Prioneris Species 0.000 description 7
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000005381 potential energy Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 208000030304 gastrointestinal bleeding Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/247—Positive displacement blood pumps
- A61M60/253—Positive displacement blood pumps including a displacement member directly acting on the blood
- A61M60/268—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/424—Details relating to driving for positive displacement blood pumps
- A61M60/457—Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being magnetic
- A61M60/462—Electromagnetic force
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- External Artificial Organs (AREA)
Abstract
本发明公开了一种磁力驱动分隔内置式波动泵送血液心室血泵,包括泵盖扣合在泵体上形成的泵体组件,泵盖上设有血液出口,泵体内设有内隔板,内隔板将泵体组件内腔分成流动腔和驱动腔,泵体上设有血液进口。导向组件穿过内隔板上的开口在流动腔和驱动腔内贯通,导向组件上套有从动组件,从动组件处于驱动腔的部分嵌固有永磁体而处于流动腔内的部分与介于导向组件与泵盖之间的柔性膜组件连接,驱动腔内安装的磁力驱动组件围绕永磁体设置。在磁力驱动组件的交变磁场作用下,从动组件带动柔性膜组件做振荡运动,使柔性膜沿径向产生波动来对血液实现波动泵送,从而降低溶血、血栓等并发症发生风险,提高血液相容性。
The invention discloses a magnetic drive partitioned built-in wave pumping blood ventricular blood pump, comprising a pump body assembly formed by snapping a pump cover on a pump body, the pump cover is provided with a blood outlet, and the pump body is provided with an inner baffle, The inner baffle divides the inner cavity of the pump body assembly into a flow cavity and a driving cavity, and the pump body is provided with a blood inlet. The guide assembly passes through the opening on the inner partition plate and passes through the flow cavity and the drive cavity. The guide assembly is sleeved with a driven assembly. The part of the driven assembly in the drive cavity is embedded with a permanent magnet, and the part in the flow cavity is connected with the intermediate part. The guide assembly is connected with the flexible membrane assembly between the pump cover, and the magnetic drive assembly installed in the drive cavity is arranged around the permanent magnet. Under the action of the alternating magnetic field of the magnetic drive component, the driven component drives the flexible membrane component to oscillate, causing the flexible membrane to fluctuate in the radial direction to achieve fluctuating pumping of blood, thereby reducing the risk of complications such as hemolysis and thrombosis, and improving blood compatibility.
Description
技术领域technical field
本发明涉及一种磁力驱动分隔内置式波动泵送血液心室血泵,属于心室血泵技术领域。The invention relates to a magnetic drive separation built-in wave pumping blood ventricular blood pump, which belongs to the technical field of ventricular blood pumps.
背景技术Background technique
心室辅助装置目前是临床治疗心力衰竭终末期的一种常见医疗器械,其主要以左心室辅助装置为主。左心室辅助装置的核心部件为左心室血泵,目前出现并应用的左心室血泵主要有轴流式和磁悬浮离心式两种。这两种左心室血泵采用的都是机械旋转原理,也就是依靠转子的高速转动来对血液做功,将旋转的机械能转化为对血液的压力势能,从而对血液产生泵送效果,将血液供给至全身各器官。但是,从实际使用中可以发现,这两种左心室血泵在长期使用后,一方面会导致许多并发症,如导致患者体内血液的流动失去脉动性,从而引起器官炎症、消化道出血、主动脉瓣反流等并发症,严重时甚至会导致患者死亡,另一方面,还会引发溶血、血栓等血液相容性问题,有待解决。Ventricular assist device is currently a common medical device for the clinical treatment of end-stage heart failure, mainly left ventricular assist device. The core component of the left ventricular assist device is the left ventricular blood pump. At present, there are two main types of left ventricular blood pumps: axial flow and magnetic levitation centrifugal. These two types of left ventricular blood pumps use the principle of mechanical rotation, that is, relying on the high-speed rotation of the rotor to do work on the blood, and convert the mechanical energy of rotation into pressure potential energy on the blood, thereby producing a pumping effect on the blood and supplying the blood. to all organs of the body. However, from the actual use, it can be found that after long-term use of these two left ventricular blood pumps, on the one hand, many complications will occur, such as the loss of pulsatile blood flow in the patient's body, thereby causing organ inflammation, gastrointestinal bleeding, main Complications such as arterial regurgitation can even lead to death of patients in severe cases. On the other hand, hemolysis, thrombosis and other blood compatibility problems need to be solved.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种磁力驱动分隔内置式波动泵送血液心室血泵,其对血液实现了波动泵送的效果,具有可降低溶血、血栓等并发症发生风险、提高血液相容性等特点。The purpose of the present invention is to provide a magnetic drive separation built-in wave pumping blood ventricular blood pump, which achieves the effect of wave pumping on blood, and has the advantages of reducing the risk of complications such as hemolysis and thrombosis, improving blood compatibility, etc. Features.
为了实现上述目的,本发明采用了以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种磁力驱动分隔内置式波动泵送血液心室血泵,其特征在于:它包括圆盘状泵盖扣合在桶状泵体上形成的泵体组件,泵盖上设有血液出口,泵体内设有内隔板,内隔板将泵体组件的内腔分隔成流动腔和驱动腔,流动腔介于泵盖与内隔板之间,流动腔经由内隔板上的开口与驱动腔连通,泵体上与流动腔相对的部位上设有血液进口;导向组件穿过开口在流动腔和驱动腔内贯通设置,导向组件上活动套有从动组件,从动组件处于驱动腔的部分上嵌固有永磁体,从动组件处于流动腔内的部分与柔性膜组件固定连接,柔性膜组件介于导向组件与泵盖之间,驱动腔内安装的磁力驱动组件围绕永磁体设置;在磁力驱动组件产生的交变磁场作用下,固定有永磁体的从动组件在导向组件上做振荡运动的同时,从动组件带动柔性膜组件做振荡运动,以使柔性膜组件的柔性膜沿自身径向方向产生波动,继而使血液进口流入的血液在柔性膜的波动作用下从血液出口流出。A magnetic drive separation built-in wave pumping blood ventricular blood pump is characterized in that: it includes a pump body assembly formed by a disc-shaped pump cover buckled on a barrel-shaped pump body, the pump cover is provided with a blood outlet, and the pump body is provided with a blood outlet. There is an inner baffle, which divides the inner cavity of the pump body assembly into a flow cavity and a drive cavity, the flow cavity is between the pump cover and the inner baffle, and the flow cavity communicates with the drive cavity through the opening on the inner baffle , the pump body is provided with a blood inlet on the part opposite to the flow cavity; the guide assembly is arranged through the opening in the flow cavity and the drive cavity, the guide assembly is movably sleeved with a driven assembly, and the driven assembly is located on the part of the drive cavity A permanent magnet is embedded, the part of the driven component in the flow chamber is fixedly connected with the flexible membrane component, the flexible membrane component is between the guide component and the pump cover, and the magnetic drive component installed in the drive cavity is arranged around the permanent magnet; Under the action of the alternating magnetic field generated by the component, the driven component fixed with the permanent magnet makes an oscillating motion on the guiding component, and the driven component drives the flexible membrane component to make an oscillating motion, so that the flexible membrane of the flexible membrane component moves along its own radial direction. The direction fluctuates, which in turn causes the blood flowing into the blood inlet to flow out of the blood outlet under the undulating action of the flexible membrane.
本发明的优点是:The advantages of the present invention are:
本发明将柔性膜的形变能转化为对血液的压力势能,对血液实现了波动泵送的效果,一方面使血液的流动产生具有生理特征的脉动性,促进血液对全身器官的灌注作用,另一方面,刚度小的柔性膜运动柔和,与已有左心室血泵相比,对血液产生的剪切应力要小很多,且柔性膜不存在旋转,因而在泵送血液的过程中有效避免了高转速、高剪切力等非生理流动特性的产生,降低了溶血、血栓等并发症的发生风险,另外,本发明的结构设计提高了血液相容性。The invention converts the deformation energy of the flexible membrane into the pressure potential energy of the blood, and realizes the effect of wave pumping for the blood. On the one hand, the flexible membrane with small stiffness moves softly, and compared with the existing left ventricular blood pump, the shear stress on the blood is much smaller, and the flexible membrane does not rotate, so it can effectively avoid the process of pumping blood. The generation of non-physiological flow characteristics such as high rotational speed and high shear force reduces the risk of complications such as hemolysis and thrombosis. In addition, the structural design of the present invention improves blood compatibility.
附图说明Description of drawings
图1是本发明心室血泵的结构示意图。FIG. 1 is a schematic structural diagram of a ventricular blood pump of the present invention.
图2是柔性膜组件的立体示意图。FIG. 2 is a schematic perspective view of the flexible membrane assembly.
图3是金属环的立体示意图。FIG. 3 is a schematic perspective view of a metal ring.
图4是安装有导向组件的泵体组件的立体剖视示意图。Figure 4 is a schematic perspective cross-sectional view of the pump body assembly with the guide assembly installed.
图5是泵盖的立体示意图。Figure 5 is a schematic perspective view of the pump cover.
图6是泵体的立体剖视示意图。FIG. 6 is a schematic perspective cross-sectional view of the pump body.
图7是从动组件的立体示意图。FIG. 7 is a schematic perspective view of a driven assembly.
图8是从动组件的环型架朝向围挡、导向盘设置的锯齿结构放大示意图。FIG. 8 is an enlarged schematic view of the sawtooth structure of the ring frame of the driven assembly facing the enclosure and the guide plate.
图9是本发明的柔性膜处于波动状态的示意图。FIG. 9 is a schematic view of the flexible film of the present invention in a wave state.
具体实施方式Detailed ways
如图1至图9所示,本发明磁力驱动分隔内置式波动泵送血液心室血泵包括由圆盘状泵盖31扣合在桶状泵体32的敞口上形成的泵体组件30,泵盖31上设有血液出口310,泵体32内设有内隔板321,内隔板321将泵体组件30的内腔分隔成流动腔33和驱动腔34,流动腔33介于泵盖31与内隔板321之间,流动腔33经由内隔板321上开设的开口3210与驱动腔34连通,泵体32上与流动腔33相对的部位(侧壁)上设有血液进口320,血液进口320经由流动腔33与血液出口310连通;导向组件50穿过开口3210在流动腔33和驱动腔34内贯通设置,导向组件50上活动套有从动组件40,从动组件40处于驱动腔34的部分上嵌固有永磁体60,从动组件40处于流动腔33内的部分与柔性膜组件10固定连接,柔性膜组件10介于导向组件50与泵盖31之间,驱动腔34内安装的磁力驱动组件20围绕永磁体60设置;在磁力驱动组件20产生的交变磁场作用下,固定有永磁体60的从动组件40在导向组件50上做振荡运动的同时,从动组件40带动柔性膜组件10在泵盖31与导向组件50之间形成的狭窄的流动通道70内做振荡运动,以使柔性膜组件10的柔性膜11沿柔性膜11自身径向方向产生波动,即柔性膜11产生类似鱼尾鳍拍动的效果,继而使血液进口320流入的血液流进流动通道70后,在柔性膜11的波动作用下从血液出口310流出,从而达到波动泵送血液的效果。As shown in FIGS. 1 to 9 , the magnetic drive partitioned built-in wave pumping blood ventricular blood pump of the present invention includes a
如图1和图2,柔性膜组件10包括具有弹性的圆形柔性膜11,柔性膜11的中心设有一导流口110,导流口110的直径应接近血液出口310的内径,以促进血液的流出,柔性膜11的圆周边沿内嵌有一金属环12,金属环12上固定的金属连接座121伸出柔性膜11的同时,金属连接座121的侧壁被延伸的柔性膜11(参见图2标号113所示部分)包裹,换句话说,金属连接座121仅露出其用于与从动组件40的金属连接件43连接的端面。As shown in FIG. 1 and FIG. 2 , the
通常,金属连接座121在金属环12上沿圆周均布,金属连接座121的数量可根据实际情况合理设计,图3示出了设计有3个金属连接座121的情形。Usually, the
在本发明中,导流口110的作用在于,当血液流经柔性膜11时可以更好地分布在柔性膜11的上下两个表面。In the present invention, the function of the
在本发明中,金属环12的作用在于可以增强柔性膜11自身圆周边沿部分进行往复运动的效果,有利于提升对血液的压力。In the present invention, the function of the
如图2,柔性膜11内嵌金属环12的圆周边沿部分(即图2所示倾斜区域112)外厚内薄而其余部分,即柔性膜11内嵌金属环12之外的部分(即图2所示水平区域111)的厚度均匀,其中:柔性膜11处于泵盖31与导向组件50之间形成的狭窄的流动通道70内时,柔性膜11与泵盖31之间、柔性膜11与导向组件50之间留有间隙。As shown in FIG. 2 , the peripheral edge portion of the
在实际设计中,例如,柔性膜11可设计成水平区域111厚度为0.5mm-1mm,倾斜区域112的厚度由内向外增大,最终圆周边沿厚度为1mm-1.5mm。另外,柔性膜11与泵盖31、导向盘51之间的间隙设计为约1mm。In practical design, for example, the
在实际设计中,带有金属连接座121的金属环12与柔性膜11一体注塑成型。In the actual design, the
在本发明中,柔性膜11为有机硅或聚氨酯复合材料制成,具有刚度小、密度低的特点,柔性膜11的这种弹性特点在发生大变形时可以将变形能储存起来再释放,转化为对血液的压力势能。在实际中,柔性膜11的制作材质不受限制,只要其在振荡力、流体力等综合作用下可沿自身径向方向产生大变形的波动效果即可。In the present invention, the
在本发明中,金属环12及其上的金属连接座121为钛合金材质制成,由于金属环12的刚度、硬度均大于柔性膜11,因此,柔性膜11的圆心处可对血液产生类似活塞做功的效果,强化了血液在柔性膜11附近的流动性,起到了血液顺利传输的效果,以及有效冲刷流道、减小血栓产生的效果。In the present invention, the
如图1、图4所示,导向组件50包括处于流动腔33内的导向盘51,导向柱52的一端与导向盘51连接而另一端穿过开口3210后与驱动腔34内设置的装配座323固定连接,导向柱52与装配座323之间的连接可采用螺接、焊接或粘接等连接方式,不受局限。As shown in FIG. 1 and FIG. 4 , the
如图1、图7所示,从动组件40包括从动柱44,从动柱44的一端通过用于提高结构强度的连接梁42与一环型架41连接,环型架41上设有多个金属连接件43,金属连接件43的数量和排布应根据柔性膜组件10的金属连接座121的数量和排布合理设计,从动柱44的另一端间隔设有多个分隔板45,相邻两个分隔板45之间形成环形凹槽46(图7示出了设有2个凹槽46的情形),凹槽46内固定有永磁体60,相邻的永磁体60之间的磁极极性相反,如具有N磁极极性的永磁体60所相邻的永磁体60的磁极极性为S。As shown in FIG. 1 and FIG. 7 , the driven
进一步来说,在磁力驱动组件20产生的交变磁场作用下,当固定有永磁体60的从动柱44通过从动柱44上沿轴向设置的穿孔440套在导向柱52外并在导向柱52上做振荡运动时,环型架41套在导向盘51外并在导向盘51上做振荡运动,同时环型架41带动柔性膜11一起做振荡运动,其中:柔性膜11通过金属连接座121与金属连接件43之间的固定连接而与环型架41相固定。Further, under the action of the alternating magnetic field generated by the
如图1,内隔板321朝向流动腔33的端面上设有围挡322,环型架41介于导向盘51与围挡322之间,且环型架41与导向盘51、围挡322相接触。在本发明中,围挡322一方面有效阻挡了从血液进口320流入的血液绕过柔性膜11而进入驱动腔34造成血液损失,另一方面,围挡322与环型架41、导向盘51一起有效防止了血液从其间缝隙流入驱动腔34,减小了血液的损失,提高了泵血效率。As shown in FIG. 1 , the end face of the
如图8,更佳的设计为,环型架41朝向导向盘51、围挡322的侧壁上设有提高密封性能、防止血液渗透的锯齿结构410,即环型架41在围挡322与导向盘51之间进行振荡运动的过程中,锯齿结构410更加有效地防止了血液从环型架41与围挡322、导向盘51之间的缝隙流入驱动腔34。在实际设计时,锯齿结构410包括多排锯齿,锯齿的形状可为三角状、矩形形状等,不受局限。As shown in FIG. 8 , a better design is that the
如图1,导向盘51朝向柔性膜11的端面上设有类似圆锥状的导向锥510,导向锥510与血液出口310相对设置,泵盖31的内端面上设有凸部311,凸部311朝向柔性膜11的端面为弧形凸面3110,其中:凸部311的截面面积与导向盘51的截面面积相等或说大致相等,凸部311与导向盘51之间形成中间薄、四周厚的流动通道70,即流动通道70呈中心位置空间最小,沿其径向方向向外逐渐扩大空间的结构,这样有利于柔性膜11在进行振荡运动、自身径向方向产生波浪运动时更贴近凸部311、导向盘51的表面,从而可以形成利于向外输送血液的“血袋”,减少回流现象。As shown in FIG. 1 , the end surface of the
在实际设计中,为了便于金属连接件43与金属连接座之间的连接,导向盘51的盘边可设计成台阶状,如图1所示。In actual design, in order to facilitate the connection between the
如图1,磁力驱动组件20包括沿泵体32的内壁设置在驱动腔34内的一圈线圈架21,线圈架21上设有多个环形线槽210(图1示出了设有2个线槽210的情形),线槽210内缠绕有电磁线圈22,电磁线圈22围绕永磁体60设置,即从动组件40固定有永磁体60的部分及导向柱52贯穿线圈架21的中心孔(图中未标出)设置,其中:永磁体60与电磁线圈22之间具有一定间隙,间隙的大小应根据实际情况合理设计。As shown in FIG. 1 , the
在实际设计中,电磁线圈22采用铜导线,电磁线圈22连接的线缆穿过线圈架21、泵体32引出至外部而与相关供电设备连接。In the actual design, the
在实际设计中,泵盖31、泵体32及内隔板321、围挡322为具有优良血液相容性的钛合金材质制成,泵盖31与泵体32之间可通过螺栓连接方式互相扣合紧固,除血液进口320外,两者均为轴对称结构,且两者扣合安装时应保证同轴度。In the actual design, the
另外,在本发明中,导向组件50、从动组件40也为钛合金材质制成。换句话说,本发明中需要与血液接触的部件均应为钛合金材质制成,以提高血液相容性。In addition, in the present invention, the
本发明磁力驱动分隔内置式波动泵送血液心室血泵主要用做左心室血泵。使用时,电磁线圈22通入变化电流形成交变磁场,交变磁场对N、S不同磁极极性的永磁体60产生吸引与排斥作用,于是,永磁体60在交变磁场作用下带动从动组件40在导向组件50上做振荡运动,继而从动组件40经由金属连接件43与金属连接座121之间的连接结构而带动柔性膜11在狭窄的流动通道70内做同频率、同幅度的振荡运动(振荡幅度在1mm左右)。于是,柔性膜11在做振荡运动的同时,沿自身径向方向产生波动,类似鱼尾鳍拍动的效果,从而柔性膜11将其产生的这种形变能转化为了对血液的压力势能,使流入血液进口320的血液在柔性膜11的波动作用下,以及在导向锥510、导流口110的导流作用下,直接被波动泵送至血液出口310流出。The magnetic drive separation built-in wave pumping blood ventricular blood pump of the present invention is mainly used as a left ventricular blood pump. When in use, the
在泵送血液的过程中,借由环型架41与导向盘51、围挡322之间的结构设计,特别是锯齿结构410的设计,可有效阻挡血液从环型架41与导向盘51、围挡322之间的缝隙流入驱动腔34,从而减小了血液的损失,提高了泵血效果。In the process of pumping blood, the structure design between the
以上所述是本发明较佳实施例及其所运用的技术原理,对于本领域的技术人员来说,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案基础上的等效变换、简单替换等显而易见的改变,均属于本发明保护范围之内。The above are the preferred embodiments of the present invention and the technical principles used by them. For those skilled in the art, without departing from the spirit and scope of the present invention, any technology based on the technical solutions of the present invention, etc. Obvious changes such as effective transformation, simple replacement, etc., all fall within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210135018.7A CN114367029B (en) | 2022-02-14 | 2022-02-14 | Magnetic drive separated built-in wave pumping blood ventricular blood pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210135018.7A CN114367029B (en) | 2022-02-14 | 2022-02-14 | Magnetic drive separated built-in wave pumping blood ventricular blood pump |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114367029A true CN114367029A (en) | 2022-04-19 |
CN114367029B CN114367029B (en) | 2023-08-18 |
Family
ID=81146862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210135018.7A Active CN114367029B (en) | 2022-02-14 | 2022-02-14 | Magnetic drive separated built-in wave pumping blood ventricular blood pump |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114367029B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023209547A1 (en) * | 2022-04-26 | 2023-11-02 | CorWave SA | Blood pumps having an encapsulated actuator |
US12005245B2 (en) | 2016-04-11 | 2024-06-11 | CorWave SA | Implantable pump system having an undulating membrane |
US12017059B2 (en) | 2022-11-15 | 2024-06-25 | CorWave SA | Implantable heart pump systems including an improved apical connector and/or graft connector |
US12214182B2 (en) | 2017-11-29 | 2025-02-04 | CorWave SA | Implantable pump system having an undulating membrane with improved hydraulic performance |
US12257427B2 (en) | 2022-11-15 | 2025-03-25 | CorWave SA | Implantable heart pump systems including an improved apical connector and/or graft connector |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2681789A1 (en) * | 1991-09-30 | 1993-04-02 | Nippon Zeon Co | Apparatus for circulatory assistance |
US20090287305A1 (en) * | 2008-05-19 | 2009-11-19 | Amalaha Leonard D | Wholly implantable non-natural heart for humans |
US20170290967A1 (en) * | 2016-04-11 | 2017-10-12 | CorWave SA | Implantable pump system having a coaxial ventricular cannula |
CN108601873A (en) * | 2016-02-05 | 2018-09-28 | 柏林心脏有限公司 | With the supported blood pump of passive magnetic means |
-
2022
- 2022-02-14 CN CN202210135018.7A patent/CN114367029B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2681789A1 (en) * | 1991-09-30 | 1993-04-02 | Nippon Zeon Co | Apparatus for circulatory assistance |
US20090287305A1 (en) * | 2008-05-19 | 2009-11-19 | Amalaha Leonard D | Wholly implantable non-natural heart for humans |
CN108601873A (en) * | 2016-02-05 | 2018-09-28 | 柏林心脏有限公司 | With the supported blood pump of passive magnetic means |
US20170290967A1 (en) * | 2016-04-11 | 2017-10-12 | CorWave SA | Implantable pump system having a coaxial ventricular cannula |
Non-Patent Citations (1)
Title |
---|
GUANG-MAO, LIU, DONG-HAI, JIN, JIAN-YE, ZHOU, YAN, ZHANG, HAI-BO, CHEN, HAN-SONG, SUN, SHENG-SHOU, HU, XING-MIN, GUI: "Numerical Investigation of the Influence of Blade Radial Gap Flow on Axial Blood Pump Performance", 《ASAIO JOURNAL (AMERICAN SOCIETY FOR ARTIFICIAL INTERNAL ORGANS : 1992)》, vol. 1, no. 65, pages 59 - 69 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12005245B2 (en) | 2016-04-11 | 2024-06-11 | CorWave SA | Implantable pump system having an undulating membrane |
US12214182B2 (en) | 2017-11-29 | 2025-02-04 | CorWave SA | Implantable pump system having an undulating membrane with improved hydraulic performance |
WO2023209547A1 (en) * | 2022-04-26 | 2023-11-02 | CorWave SA | Blood pumps having an encapsulated actuator |
US12251550B2 (en) * | 2022-04-26 | 2025-03-18 | CorWave SA | Blood pumps having an encapsulated actuator |
US12017059B2 (en) | 2022-11-15 | 2024-06-25 | CorWave SA | Implantable heart pump systems including an improved apical connector and/or graft connector |
US12257427B2 (en) | 2022-11-15 | 2025-03-25 | CorWave SA | Implantable heart pump systems including an improved apical connector and/or graft connector |
Also Published As
Publication number | Publication date |
---|---|
CN114367029B (en) | 2023-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114367029B (en) | Magnetic drive separated built-in wave pumping blood ventricular blood pump | |
CN103191476B (en) | Single-fulcrum magnetomotive centrifugal blood pump | |
CN108175884B (en) | Ventricular assist pump | |
US10500321B2 (en) | Implantable blood pump | |
US5211546A (en) | Axial flow blood pump with hydrodynamically suspended rotor | |
EP3219339B1 (en) | High efficiency blood pump | |
CN108066834B (en) | Double-suspension artificial heart blood pump | |
CN107890590B (en) | Dynamic magnetic balance suspension centrifugal blood pump | |
CA2624704A1 (en) | Axial flow pump with multi-grooved rotor | |
JP2011530315A (en) | Cardiac assist device | |
CN114470512A (en) | Magnetic drive built-in type ventricle blood pump for pumping blood by fluctuation | |
EP1047462A2 (en) | Improved sealless blood pump | |
WO2023226910A1 (en) | Magnetic levitation centrifugal pump | |
WO2021120724A1 (en) | Extracorporeal circulation blood pump and method | |
CN111012963B (en) | Artificial heart power pump | |
CN116440404B (en) | Closed micropump based on magnetic force drive | |
CN217908610U (en) | Moving magnet external drive type left ventricular blood pump for pumping blood by fluctuation | |
CN217908609U (en) | Magnetic drive partition built-in wave pumping left ventricular blood pump | |
EP4512460A1 (en) | Magnetic suspension type centrifugal pump | |
CN114377289B (en) | Magnetic force driven external type ventricular blood pump capable of pumping blood in fluctuation mode | |
CN202761778U (en) | Novel centrifugal blood pump | |
CN217908608U (en) | A left ventricular blood pump that pumps blood with external fluctuations driven by magnetic force | |
CN114470510A (en) | Moving magnet externally driven wave pumping blood ventricular blood pump | |
CN117899350A (en) | Dual-heart auxiliary centrifugal blood pump | |
CN113546297B (en) | Implanted miniature magnetic suspension axial flow blood pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |