CN114359673B - Small sample smoke detection method, device and equipment based on metric learning - Google Patents
Small sample smoke detection method, device and equipment based on metric learning Download PDFInfo
- Publication number
- CN114359673B CN114359673B CN202210019924.0A CN202210019924A CN114359673B CN 114359673 B CN114359673 B CN 114359673B CN 202210019924 A CN202210019924 A CN 202210019924A CN 114359673 B CN114359673 B CN 114359673B
- Authority
- CN
- China
- Prior art keywords
- image block
- distance
- current frame
- smoke
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000779 smoke Substances 0.000 title claims abstract description 96
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- 230000004044 response Effects 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000004590 computer program Methods 0.000 claims description 10
- 238000012549 training Methods 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 5
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
Abstract
Description
技术领域Technical Field
本公开的实施例涉及计算机技术领域,具体涉及一种基于度量学习的小样本烟雾检测方法、装置、设备和计算机可读介质。Embodiments of the present disclosure relate to the field of computer technology, and in particular to a small sample smoke detection method, apparatus, device, and computer-readable medium based on metric learning.
背景技术Background technique
现有的基于深度学习的烟检测技术中,为了保证检测结果的可靠性往往需要大量的训练数据,由于烟雾场景的有限、烟雾形状的不规则性,这些训练数据的获取与标注需要耗费大量的人力,给基于深度学习进行烟雾检测带来了挑战。In existing deep learning-based smoke detection technology, a large amount of training data is often required to ensure the reliability of detection results. Due to the limited smoke scenes and irregular smoke shapes, the acquisition and labeling of these training data requires a lot of manpower, which brings challenges to smoke detection based on deep learning.
发明内容Summary of the invention
本公开的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本公开的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。The content of this disclosure is used to introduce concepts in a brief form, which will be described in detail in the detailed implementation section below. The content of this disclosure is not intended to identify the key features or essential features of the technical solution claimed for protection, nor is it intended to limit the scope of the technical solution claimed for protection.
本公开的一些实施例提出了一种基于度量学习的小样本烟雾检测方法、装置、设备和计算机可读介质,来解决以上背景技术部分提到的技术问题。Some embodiments of the present disclosure propose a small sample smoke detection method, apparatus, device and computer-readable medium based on metric learning to solve the technical problems mentioned in the above background technology section.
第一方面,本公开的一些实施例提供了一种基于度量学习的小样本烟雾检测方法,该方法包括:获取目标视频的第一帧和当前帧;将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤:将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离;响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离;响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块。In a first aspect, some embodiments of the present disclosure provide a small sample smoke detection method based on metric learning, the method comprising: acquiring a first frame and a current frame of a target video; dividing the first frame and the current frame into corresponding sub-image blocks, and performing the following steps for each pair of sub-image blocks: inputting the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance; in response to the first distance being greater than a first threshold, inputting the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block into a second metric network to obtain a second distance; in response to the second distance satisfying a preset condition, determining the current frame sub-image block as a smoke image block.
第二方面,本公开的一些实施例提供了一种基于度量学习的小样本烟雾检测装置,装置包括:获取单元,被配置成获取目标视频的第一帧和当前帧;划分单元,被配置成将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤:第一输入单元,被配置成将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离;第二输入单元,被配置成响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离;确定单元,被配置成响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块。In a second aspect, some embodiments of the present disclosure provide a small sample smoke detection device based on metric learning, the device comprising: an acquisition unit, configured to acquire a first frame and a current frame of a target video; a division unit, configured to divide the first frame and the current frame into corresponding sub-image blocks, and perform the following steps for each pair of sub-image blocks: a first input unit, configured to input the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance; a second input unit, configured to input the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block into a second metric network to obtain a second distance in response to the first distance being greater than a first threshold; and a determination unit, configured to determine the current frame sub-image block as a smoke image block in response to the second distance satisfying a preset condition.
第三方面,本公开的一些实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第一方面中任一实现方式描述的方法。In a third aspect, some embodiments of the present disclosure provide an electronic device comprising: one or more processors; a storage device on which one or more programs are stored, and when the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any implementation manner in the first aspect.
第四方面,本公开的一些实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,程序被处理器执行时实现如第一方面中任一实现方式描述的方法。In a fourth aspect, some embodiments of the present disclosure provide a computer-readable medium having a computer program stored thereon, wherein when the program is executed by a processor, the method described in any implementation manner in the first aspect is implemented.
本公开的上述各个实施例中的一个实施例具有如下有益效果:通过使用度量学习,降低了对烟雾训练数据的需求,使得基于深度学习的烟雾检测技术可以在数据缺乏的场景中展开应用。One of the above-mentioned embodiments of the present disclosure has the following beneficial effects: by using metric learning, the demand for smoke training data is reduced, so that the smoke detection technology based on deep learning can be applied in scenarios where data is scarce.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。The above and other features, advantages and aspects of the embodiments of the present disclosure will become more apparent with reference to the following detailed description in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same or similar reference numerals represent the same or similar elements. It should be understood that the drawings are schematic and that components and elements are not necessarily drawn to scale.
图1是本公开的一些实施例的基于度量学习的小样本烟雾检测方法的一个应用场景的示意图;FIG1 is a schematic diagram of an application scenario of a small sample smoke detection method based on metric learning according to some embodiments of the present disclosure;
图2是根据本公开的基于度量学习的小样本烟雾检测方法的一些实施例的流程图;FIG2 is a flow chart of some embodiments of a small sample smoke detection method based on metric learning according to the present disclosure;
图3是根据本公开的基于度量学习的小样本烟雾检测方法的另一些实施例的流程图;FIG3 is a flow chart of other embodiments of a small sample smoke detection method based on metric learning according to the present disclosure;
图4是根据本公开的烟雾检测装置的一些实施例的结构示意图;FIG4 is a schematic diagram of the structure of some embodiments of the smoke detection device according to the present disclosure;
图5是适于用来实现本公开的一些实施例的电子设备的结构示意图。FIG. 5 is a schematic diagram of the structure of an electronic device suitable for implementing some embodiments of the present disclosure.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。Embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that the present disclosure can be implemented in various forms and should not be construed as being limited to the embodiments set forth herein. On the contrary, these embodiments are provided to provide a more thorough and complete understanding of the present disclosure. It should be understood that the drawings and embodiments of the present disclosure are only for exemplary purposes and are not intended to limit the scope of protection of the present disclosure.
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。It should also be noted that, for ease of description, only the parts related to the invention are shown in the drawings. In the absence of conflict, the embodiments and features in the embodiments of the present disclosure may be combined with each other.
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that the concepts such as "first" and "second" mentioned in the present disclosure are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present disclosure are illustrative rather than restrictive, and those skilled in the art should understand that unless otherwise clearly indicated in the context, it should be understood as "one or more".
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present disclosure are only used for illustrative purposes and are not used to limit the scope of these messages or information.
下面将参考附图并结合实施例来详细说明本公开。The present disclosure will be described in detail below with reference to the accompanying drawings and in conjunction with embodiments.
图1示出了可以应用本公开的一些实施例的基于度量学习的小样本烟雾检测方法的一个应用场景的示意图。FIG1 is a schematic diagram showing an application scenario of a small sample smoke detection method based on metric learning to which some embodiments of the present disclosure can be applied.
在图1所示的应用场景中,计算设备101首先获取目标视频102的第一帧103和当前帧104,然后,将第一帧103和当前帧104划分为对应的子图像块,在本实施例中,计算设备101将第一帧103和当前帧104划分为了四个子图像块,对每对子图像块执行以下步骤:将第一帧子图像块108和对应的当前帧子图像块111输入到第一度量网络105,得到第一距离106,在本实施例中,第一距离106为2.45。响应于第一距离106大于第一阈值107,在本实施例中,第一阈值107为1,第一距离106满足大于第一阈值的条件,将第一帧子图像块108与烟雾模板图像109的叠加结果110和当前帧子图像块111输入到第二度量网络112,得到第二距离113,在本实施例中,第二距离113为0.16。响应于第二距离113满足预设条件114,将当前帧子图像块111确定为烟雾图像块,在本实施例中,第二距离113满足预设条件“<0.5”,于是,计算设备101将当前帧子图像块确定为烟雾图像块。In the application scenario shown in FIG1 , the computing device 101 first obtains the first frame 103 and the current frame 104 of the target video 102, and then divides the first frame 103 and the current frame 104 into corresponding sub-image blocks. In this embodiment, the computing device 101 divides the first frame 103 and the current frame 104 into four sub-image blocks, and performs the following steps for each pair of sub-image blocks: the first frame sub-image block 108 and the corresponding current frame sub-image block 111 are input into the first metric network 105 to obtain a first distance 106. In this embodiment, the first distance 106 is 2.45. In response to the first distance 106 being greater than the first threshold 107, in this embodiment, the first threshold 107 is 1, and the first distance 106 satisfies the condition of being greater than the first threshold, the superposition result 110 of the first frame sub-image block 108 and the smoke template image 109 and the current frame sub-image block 111 are input into the second metric network 112 to obtain a second distance 113. In this embodiment, the second distance 113 is 0.16. In response to the second distance 113 satisfying the preset condition 114, the current frame sub-image block 111 is determined as a smoke image block. In this embodiment, the second distance 113 satisfies the preset condition "<0.5", so the computing device 101 determines the current frame sub-image block as a smoke image block.
需要说明的是,上述计算设备101可以是硬件,也可以是软件。当计算设备为硬件时,可以实现成多个服务器或电子设备组成的分布式集群,也可以实现成单个服务器或单个电子设备。当计算设备体现为软件时,可以实现成例如用来提供分布式服务的多个软件或软件模块,也可以实现成单个软件或软件模块。在此不做具体限定。It should be noted that the computing device 101 can be hardware or software. When the computing device is hardware, it can be implemented as a distributed cluster consisting of multiple servers or electronic devices, or as a single server or a single electronic device. When the computing device is embodied as software, it can be implemented as multiple software or software modules for providing distributed services, or as a single software or software module. No specific limitation is made here.
应该理解,图1中的计算设备101的数目仅仅是示意性的。根据实现需要,可以具有任意数目的计算设备101。It should be understood that the number of computing devices 101 in FIG1 is merely illustrative and any number of computing devices 101 may be provided according to implementation requirements.
继续参考图2,示出了根据本公开的基于度量学习的小样本烟雾检测方法的一些实施例的流程200。该基于度量学习的小样本烟雾检测方法,包括以下步骤:2, a process 200 of some embodiments of a small sample smoke detection method based on metric learning according to the present disclosure is shown. The small sample smoke detection method based on metric learning includes the following steps:
步骤201,获取目标视频的第一帧和当前帧。Step 201, obtaining the first frame and the current frame of the target video.
在一些实施例中,基于度量学习的小样本烟雾检测方法的执行主体(例如图1所示的计算设备)可以通过离线的方式获取上述目标视频的第一帧和当前帧。In some embodiments, the execution subject of the small sample smoke detection method based on metric learning (eg, the computing device shown in FIG. 1 ) can obtain the first frame and the current frame of the target video in an offline manner.
在一些实施例中,上述执行主体还可以通过无线通信的方式获取上述目标视频的第一帧和当前帧。In some embodiments, the execution subject may also obtain the first frame and the current frame of the target video by wireless communication.
步骤202,将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤。Step 202: divide the first frame and the current frame into corresponding sub-image blocks, and perform the following steps on each pair of sub-image blocks.
在一些实施例中,上述执行主体可以将第一帧和当前帧划分为不重叠的对应的子图像块,例如,每隔100列、100行进行一次大小为100*100的划分。In some embodiments, the execution entity may divide the first frame and the current frame into corresponding non-overlapping sub-image blocks, for example, dividing the sub-image blocks into 100*100 blocks every 100 columns and 100 rows.
在一些实施例中,上述执行主体还可以将第一帧和当前帧划分为有重叠区域的对应的子图像块,例如,每隔50列、50行进行一次大小为100*100的划分。In some embodiments, the execution entity may further divide the first frame and the current frame into corresponding sub-image blocks with overlapping areas, for example, dividing the sub-image blocks into 100*100 blocks every 50 columns and 50 rows.
步骤203,将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离。Step 203: input the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance.
在一些实施例中,上述第一度量网络可以是使用烟雾数据集训练的网络。In some embodiments, the first metric network may be a network trained using a smoke dataset.
在一些实施例的一些可选的实现方式中,上述第一度量网络可以是使用非烟雾数据集训练的度量网络。In some optional implementations of some embodiments, the first metric network may be a metric network trained using a non-smoke dataset.
在一些实施例的一些可选的实现方式中,上述第一度量网络可以是使用非烟雾数据集训练、使用烟雾数据集微调的度量网络。In some optional implementations of some embodiments, the first metric network may be a metric network trained using a non-smoke dataset and fine-tuned using a smoke dataset.
步骤204,响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离。Step 204: In response to the first distance being greater than the first threshold, the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block are input into a second metric network to obtain a second distance.
在一些实施例中,上述第二度量网络可以是使用烟雾数据集训练的网络。In some embodiments, the second metric network may be a network trained using a smoke dataset.
在一些实施例的一些可选的实现方式中,上述第二度量网络可以是使用非烟雾数据集训练的度量网络。In some optional implementations of some embodiments, the second metric network may be a metric network trained using a non-smoke dataset.
在一些实施例的一些可选的实现方式中,上述第二度量网络可以是使用非烟雾数据集训练、使用烟雾数据集微调的度量网络。In some optional implementations of some embodiments, the second metric network may be a metric network trained using a non-smoke dataset and fine-tuned using a smoke dataset.
步骤205,响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块。Step 205: In response to the second distance satisfying a preset condition, the sub-image block of the current frame is determined as a smoke image block.
在一些实施例中,上述执行主体可以响应于第二距离小于上述第一距离,将当前帧子图像块确定为烟雾图像块。In some embodiments, the execution entity may determine the sub-image block of the current frame as a smoke image block in response to the second distance being smaller than the first distance.
在一些实施例的一些可选的实现方式中,上述执行主体可以响应于第二距离小于第二阈值,将当前帧子图像块确定为烟雾图像块。In some optional implementations of some embodiments, the execution entity may determine the sub-image block of the current frame as a smoke image block in response to the second distance being smaller than a second threshold.
在一些实施例的一些可选的实现方式中,上述执行主体可以首先获取目标图像集合,然后将目标图像集合中的每个图像依次和当前帧子图像块输入到第二度量网络,得到第三距离集合,最后,响应于第二距离小于第三距离集合中的每个第三距离,将当前帧子图像块确定为烟雾图像块。In some optional implementations of some embodiments, the above-mentioned execution entity may first acquire a target image set, and then input each image in the target image set and the current frame sub-image block into a second metric network in turn to obtain a third distance set, and finally, in response to the second distance being less than each third distance in the third distance set, determine the current frame sub-image block as a smoke image block.
本公开的一些实施例提供的方法可以更好的应对检测场景中云雾等形态的噪声。The methods provided by some embodiments of the present disclosure can better cope with noise in the form of clouds and fog in the detection scene.
进一步参考图3,其示出了基于度量学习的小样本烟雾检测方法的另一些实施例的流程300。该基于灰度值增加数量序列的森林火灾烟雾检测方法的流程300,包括以下步骤:Further referring to FIG3 , it shows a process 300 of another embodiment of a small sample smoke detection method based on metric learning. The process 300 of the forest fire smoke detection method based on gray value increasing number sequence comprises the following steps:
步骤301,获取目标视频的第一帧和当前帧。Step 301, obtaining the first frame and the current frame of the target video.
步骤302,将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤。Step 302: Divide the first frame and the current frame into corresponding sub-image blocks, and perform the following steps on each pair of sub-image blocks.
步骤303,将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离。Step 303: input the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance.
步骤304,响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离。Step 304: In response to the first distance being greater than the first threshold, the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block are input into a second metric network to obtain a second distance.
在一些实施例中,步骤301-304的具体实现及其所带来的技术效果,可以参考图2对应的实施例中的步骤201-204,在此不再赘述。In some embodiments, the specific implementation of steps 301-304 and the technical effects brought about by them can refer to steps 201-204 in the embodiment corresponding to Figure 2, and will not be repeated here.
步骤305,获取目标图像集合。Step 305: Acquire a target image set.
在一些实施例中,基于度量学习的小样本烟雾检测方法的执行主体(例如图1所示的计算设备)可以通过离线的方式获取上述目标视频的第一帧和当前帧。In some embodiments, the execution subject of the small sample smoke detection method based on metric learning (eg, the computing device shown in FIG. 1 ) can obtain the first frame and the current frame of the target video in an offline manner.
在一些实施例中,上述执行主体还可以通过无线通信的方式获取上述目标视频的第一帧和当前帧。In some embodiments, the execution subject may also obtain the first frame and the current frame of the target video by wireless communication.
步骤306,将目标图像集合中的每个图像依次和当前帧子图像块输入到第二度量网络,得到第三距离集合。Step 306: Input each image in the target image set and the sub-image block of the current frame into the second metric network in sequence to obtain a third distance set.
步骤307,响应于第二距离小于第三距离集合中的每个第三距离,将当前帧子图像块确定为烟雾图像块。Step 307: In response to the second distance being smaller than each third distance in the third distance set, determining the sub-image block of the current frame as a smoke image block.
从图3中可以看出,与图2对应的一些实施例的描述相比,图3对应的一些实施例中的基于度量学习的小样本烟雾检测方法的流程300体现了将目标图像集合中的每个图像与当前帧子图像块进行度量的步骤,通过该步骤,该方法可以有效地排除目标图像集合中所包含的干扰物体,例如汽车、行人等,从而对场景中的噪声更具有鲁棒性。It can be seen from Figure 3 that, compared with the description of some embodiments corresponding to Figure 2, the process 300 of the small sample smoke detection method based on metric learning in some embodiments corresponding to Figure 3 embodies the step of measuring each image in the target image set with the sub-image block of the current frame. Through this step, the method can effectively exclude interfering objects contained in the target image set, such as cars, pedestrians, etc., thereby being more robust to noise in the scene.
进一步参考图4,作为对上述各图所示方法的实现,本公开提供了一种烟雾检测装置的一些实施例,这些装置实施例与图2所示的那些方法实施例相对应,该装置具体可以应用于各种电子设备中。Further referring to FIG. 4 , as an implementation of the methods shown in the above figures, the present disclosure provides some embodiments of a smoke detection device, which correspond to the method embodiments shown in FIG. 2 , and the device can be specifically applied to various electronic devices.
如图4所示,一些实施例的烟雾检测装置400包括:获取单元401、划分单元402、第一输入单元403、第二输入单元404和确定单元405。其中,根据本公开的一个或多个实施例,提供了一种烟雾检测装置,包括:获取单元401,被配置成获取目标视频的第一帧和当前帧;划分单元402,被配置成将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤:第一输入单元403,被配置成将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离;第二输入单元404,被配置成响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离;确定单元405,被配置成响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块。As shown in FIG4 , a smoke detection device 400 of some embodiments includes: an acquisition unit 401, a division unit 402, a first input unit 403, a second input unit 404, and a determination unit 405. According to one or more embodiments of the present disclosure, a smoke detection device is provided, including: an acquisition unit 401, configured to acquire a first frame and a current frame of a target video; a division unit 402, configured to divide the first frame and the current frame into corresponding sub-image blocks, and perform the following steps for each pair of sub-image blocks: a first input unit 403, configured to input the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance; a second input unit 404, configured to input the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block into a second metric network in response to the first distance being greater than a first threshold value, and obtaining a second distance; a determination unit 405, configured to determine the current frame sub-image block as a smoke image block in response to the second distance satisfying a preset condition.
在一些实施例的可选实现方式中,确定单元405进一步被配置成:响应于第二距离小于第二阈值,将当前帧子图像块确定为烟雾图像块。In an optional implementation of some embodiments, the determination unit 405 is further configured to: in response to the second distance being smaller than the second threshold, determine the sub-image block of the current frame as a smoke image block.
在一些实施例的可选实现方式中,装置400还包括:获取单元,被配置成:获取目标图像集合;第三输入单元,被配置成:将目标图像集合中的每个图像依次和当前帧子图像块输入到第二度量网络,得到第三距离集合。In an optional implementation of some embodiments, the device 400 also includes: an acquisition unit, configured to: acquire a target image set; a third input unit, configured to: input each image in the target image set and the current frame sub-image block into the second metric network in turn to obtain a third distance set.
在一些实施例的可选实现方式中,确定单元405进一步被配置成:响应于第二距离小于第三距离集合中的每个第三距离,将当前帧子图像块确定为烟雾图像块。In an optional implementation of some embodiments, the determination unit 405 is further configured to: in response to the second distance being smaller than each third distance in the third distance set, determine the sub-image block of the current frame as a smoke image block.
在一些实施例的可选实现方式中,第一度量网络、第二度量网络包括使用非烟雾数据集训练的度量网络。In an optional implementation of some embodiments, the first metric network and the second metric network include metric networks trained using a non-smoke dataset.
在一些实施例的可选实现方式中,第一度量网络、第二度量网络包括使用非烟雾数据集训练、使用烟雾数据集微调的度量网络。In an optional implementation of some embodiments, the first metric network and the second metric network include metric networks trained using a non-smoke dataset and fine-tuned using a smoke dataset.
可以理解的是,该装置400中记载的诸单元与参考图2描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作、特征以及产生的有益效果同样适用于装置400及其中包含的单元,在此不再赘述。It is understandable that the units recorded in the device 400 correspond to the steps in the method described with reference to Figure 2. Therefore, the operations, features and beneficial effects described above for the method are also applicable to the device 400 and the units contained therein, and will not be repeated here.
下面参考图5,其示出了适于用来实现本公开的一些实施例的电子设备(例如图1中的服务器或终端设备)500的结构示意图。本公开的一些实施例中的电子设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图5示出的电子设备仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。Referring to FIG5 below, it shows a schematic diagram of the structure of an electronic device (e.g., the server or terminal device in FIG1 ) 500 suitable for implementing some embodiments of the present disclosure. The electronic devices in some embodiments of the present disclosure may include, but are not limited to, mobile terminals such as mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (e.g., vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc. The electronic device shown in FIG5 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
如图5所示,电子设备500可以包括处理装置(例如中央处理器、图形处理器等)501,其可以根据存储在只读存储器(ROM)502中的程序或者从存储装置508加载到随机访问存储器(RAM)503中的程序而执行各种适当的动作和处理。在RAM 503中,还存储有电子设备500操作所需的各种程序和数据。处理装置501、ROM 502以及RAM503通过总线504彼此相连。输入/输出(I/O)接口505也连接至总线504。As shown in FIG5 , the electronic device 500 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 501, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 502 or a program loaded from a storage device 508 into a random access memory (RAM) 503. In the RAM 503, various programs and data required for the operation of the electronic device 500 are also stored. The processing device 501, the ROM 502, and the RAM 503 are connected to each other via a bus 504. An input/output (I/O) interface 505 is also connected to the bus 504.
通常,以下装置可以连接至I/O接口505:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置506;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置507;包括例如磁带、硬盘等的存储装置508;以及通信装置509。通信装置509可以允许电子设备500与其他设备进行无线或有线通信以交换数据。虽然图5示出了具有各种装置的电子设备500,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图5中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。Typically, the following devices may be connected to the I/O interface 505: input devices 506 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 507 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 508 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 509. The communication device 509 may allow the electronic device 500 to communicate with other devices wirelessly or by wire to exchange data. Although FIG. 5 shows an electronic device 500 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively. Each box shown in FIG. 5 may represent one device, or may represent multiple devices as needed.
特别地,根据本公开的一些实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的一些实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的一些实施例中,该计算机程序可以通过通信装置509从网络上被下载和安装,或者从存储装置508被安装,或者从ROM 502被安装。在该计算机程序被处理装置501执行时,执行本公开的一些实施例的方法中限定的上述功能。In particular, according to some embodiments of the present disclosure, the process described above with reference to the flowchart can be implemented as a computer software program. For example, some embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program includes a program code for executing the method shown in the flowchart. In some such embodiments, the computer program can be downloaded and installed from the network through the communication device 509, or installed from the storage device 508, or installed from the ROM 502. When the computer program is executed by the processing device 501, the above-mentioned functions defined in the method of some embodiments of the present disclosure are executed.
需要说明的是,本公开的一些实施例所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开的一些实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的一些实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium described in some embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two. The computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In some embodiments of the present disclosure, the computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device. In some embodiments of the present disclosure, the computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. This propagated data signal may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. The computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText TransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。In some embodiments, the client and the server may communicate using any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol), and may be interconnected with any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取目标视频的第一帧和当前帧;将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤:将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离;响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离;响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块。该方法通过使用度量学习,降低了对烟雾训练数据的需求。The computer-readable medium may be included in the electronic device; or it may exist independently without being assembled into the electronic device. The computer-readable medium carries one or more programs. When the one or more programs are executed by the electronic device, the electronic device: obtains the first frame and the current frame of the target video; divides the first frame and the current frame into corresponding sub-image blocks, and performs the following steps for each pair of sub-image blocks: inputs the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance; in response to the first distance being greater than a first threshold, inputs the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block into a second metric network to obtain a second distance; in response to the second distance satisfying a preset condition, determines the current frame sub-image block as a smoke image block. This method reduces the demand for smoke training data by using metric learning.
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的一些实施例的操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing the operations of some embodiments of the present disclosure may be written in one or more programming languages or a combination thereof, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages. The program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server. In cases involving a remote computer, the remote computer may be connected to the user's computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the system, method and computer program product according to various embodiments of the present disclosure. In this regard, each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some implementations as replacements, the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
描述于本公开的一些实施例中的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括获取单元、划分单元、第一输入单元、第二输入单元和确定单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,确定单元还可以被描述为“确定烟雾图像块的单元”。The units described in some embodiments of the present disclosure may be implemented by software or hardware. The units described may also be set in a processor, for example, it may be described as: a processor includes an acquisition unit, a division unit, a first input unit, a second input unit, and a determination unit. The names of these units do not constitute a limitation on the units themselves in some cases, for example, the determination unit may also be described as a "unit for determining a smoke image block".
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described above herein may be performed at least in part by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLDs), and the like.
根据本公开的一个或多个实施例,提供了一种基于度量学习的小样本烟雾检测方法,包括:获取目标视频的第一帧和当前帧;将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤:将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离;响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离;响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块。According to one or more embodiments of the present disclosure, a small sample smoke detection method based on metric learning is provided, comprising: acquiring a first frame and a current frame of a target video; dividing the first frame and the current frame into corresponding sub-image blocks, and performing the following steps for each pair of sub-image blocks: inputting the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance; in response to the first distance being greater than a first threshold, inputting the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block into a second metric network to obtain a second distance; in response to the second distance satisfying a preset condition, determining the current frame sub-image block as a smoke image block.
根据本公开的一个或多个实施例,响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块,包括:响应于第二距离小于第二阈值,将当前帧子图像块确定为烟雾图像块。According to one or more embodiments of the present disclosure, in response to the second distance satisfying a preset condition, determining the current frame sub-image block as a smoke image block includes: in response to the second distance being less than a second threshold, determining the current frame sub-image block as a smoke image block.
根据本公开的一个或多个实施例,在响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离之后,方法还包括:获取目标图像集合;将目标图像集合中的每个图像依次和当前帧子图像块输入到第二度量网络,得到第三距离集合。According to one or more embodiments of the present disclosure, in response to the first distance being greater than a first threshold, the superposition result of the first frame sub-image block and the smoke template image and the current frame sub-image block are input into a second metric network to obtain a second distance, and the method further includes: acquiring a target image set; inputting each image in the target image set and the current frame sub-image block into the second metric network in turn to obtain a third distance set.
根据本公开的一个或多个实施例,响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块,包括:响应于第二距离小于第三距离集合中的每个第三距离,将当前帧子图像块确定为烟雾图像块。According to one or more embodiments of the present disclosure, in response to the second distance satisfying a preset condition, determining the current frame sub-image block as a smoke image block includes: in response to the second distance being less than each third distance in a third distance set, determining the current frame sub-image block as a smoke image block.
根据本公开的一个或多个实施例,第一度量网络、第二度量网络包括使用非烟雾数据集训练的度量网络。According to one or more embodiments of the present disclosure, the first metric network and the second metric network include metric networks trained using a non-smoke dataset.
根据本公开的一个或多个实施例,第一度量网络、第二度量网络包括使用非烟雾数据集训练、使用烟雾数据集微调的度量网络。According to one or more embodiments of the present disclosure, the first metric network and the second metric network include metric networks trained using a non-smoke dataset and fine-tuned using a smoke dataset.
根据本公开的一个或多个实施例,提供了一种烟雾检测装置,包括:获取单元,被配置成获取目标视频的第一帧和当前帧;划分单元,被配置成将第一帧和当前帧划分为对应的子图像块,对每对子图像块执行以下步骤:第一输入单元,被配置成将第一帧子图像块和对应的当前帧子图像块输入到第一度量网络,得到第一距离;第二输入单元,被配置成响应于第一距离大于第一阈值,将第一帧子图像块与烟雾模板图像的叠加结果和当前帧子图像块输入到第二度量网络,得到第二距离;确定单元,被配置成响应于第二距离满足预设条件,将当前帧子图像块确定为烟雾图像块。According to one or more embodiments of the present disclosure, a smoke detection device is provided, comprising: an acquisition unit, configured to acquire a first frame and a current frame of a target video; a division unit, configured to divide the first frame and the current frame into corresponding sub-image blocks, and perform the following steps for each pair of sub-image blocks: a first input unit, configured to input the first frame sub-image block and the corresponding current frame sub-image block into a first metric network to obtain a first distance; a second input unit, configured to, in response to the first distance being greater than a first threshold, input a superposition result of the first frame sub-image block and a smoke template image and the current frame sub-image block into a second metric network to obtain a second distance; and a determination unit, configured to, in response to the second distance satisfying a preset condition, determine the current frame sub-image block as a smoke image block.
根据本公开的一个或多个实施例,确定单元进一步被配置成:响应于第二距离小于第二阈值,将当前帧子图像块确定为烟雾图像块。According to one or more embodiments of the present disclosure, the determination unit is further configured to: in response to the second distance being smaller than a second threshold, determine the sub-image block of the current frame as a smoke image block.
根据本公开的一个或多个实施例,装置还包括:获取单元,被配置成:获取目标图像集合;第三输入单元,被配置成:将目标图像集合中的每个图像依次和当前帧子图像块输入到第二度量网络,得到第三距离集合。According to one or more embodiments of the present disclosure, the device also includes: an acquisition unit, configured to: acquire a target image set; a third input unit, configured to: input each image in the target image set and the current frame sub-image block into the second metric network in sequence to obtain a third distance set.
根据本公开的一个或多个实施例,确定单元进一步被配置成:响应于第二距离小于第三距离集合中的每个第三距离,将当前帧子图像块确定为烟雾图像块。According to one or more embodiments of the present disclosure, the determination unit is further configured to: in response to the second distance being smaller than each third distance in the third distance set, determine the current frame sub-image block as a smoke image block.
根据本公开的一个或多个实施例,第一度量网络、第二度量网络包括使用非烟雾数据集训练的度量网络。According to one or more embodiments of the present disclosure, the first metric network and the second metric network include metric networks trained using a non-smoke dataset.
根据本公开的一个或多个实施例,第一度量网络、第二度量网络包括使用非烟雾数据集训练、使用烟雾数据集微调的度量网络。According to one or more embodiments of the present disclosure, the first metric network and the second metric network include metric networks trained using a non-smoke dataset and fine-tuned using a smoke dataset.
根据本公开的一个或多个实施例,提供了一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如上述任一的方法。According to one or more embodiments of the present disclosure, there is provided an electronic device, comprising: one or more processors; a storage device having one or more programs stored thereon, wherein when the one or more programs are executed by the one or more processors, the one or more processors implement any of the above methods.
根据本公开的一个或多个实施例,提供了一种计算机可读介质,其上存储有计算机程序,其中,程序被处理器执行时实现如上述任一的方法。According to one or more embodiments of the present disclosure, a computer-readable medium is provided, on which a computer program is stored, wherein when the program is executed by a processor, any of the above methods is implemented.
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above descriptions are only some preferred embodiments of the present disclosure and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the embodiments of the present disclosure is not limited to the technical solutions formed by a specific combination of the above-mentioned technical features, but should also cover other technical solutions formed by any combination of the above-mentioned technical features or their equivalent features without departing from the above-mentioned inventive concept. For example, the above-mentioned features are replaced with the technical features with similar functions disclosed in the embodiments of the present disclosure (but not limited to) and the technical solutions formed.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210019924.0A CN114359673B (en) | 2022-01-10 | 2022-01-10 | Small sample smoke detection method, device and equipment based on metric learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210019924.0A CN114359673B (en) | 2022-01-10 | 2022-01-10 | Small sample smoke detection method, device and equipment based on metric learning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114359673A CN114359673A (en) | 2022-04-15 |
CN114359673B true CN114359673B (en) | 2024-04-09 |
Family
ID=81106759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210019924.0A Active CN114359673B (en) | 2022-01-10 | 2022-01-10 | Small sample smoke detection method, device and equipment based on metric learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114359673B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109271929A (en) * | 2018-09-14 | 2019-01-25 | 北京字节跳动网络技术有限公司 | Detection method and device |
CN110363104A (en) * | 2019-06-24 | 2019-10-22 | 中国科学技术大学 | A kind of detection method of diesel black smoke vehicle |
CN111126293A (en) * | 2019-12-25 | 2020-05-08 | 国网智能科技股份有限公司 | A method and system for detecting abnormality of flame and smoke |
CN111400533A (en) * | 2020-03-02 | 2020-07-10 | 北京三快在线科技有限公司 | Image screening method and device, electronic equipment and storage medium |
CN113033555A (en) * | 2021-03-25 | 2021-06-25 | 天津大学 | Visual SLAM closed loop detection method based on metric learning |
-
2022
- 2022-01-10 CN CN202210019924.0A patent/CN114359673B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109271929A (en) * | 2018-09-14 | 2019-01-25 | 北京字节跳动网络技术有限公司 | Detection method and device |
WO2020052062A1 (en) * | 2018-09-14 | 2020-03-19 | 北京字节跳动网络技术有限公司 | Detection method and device |
CN110363104A (en) * | 2019-06-24 | 2019-10-22 | 中国科学技术大学 | A kind of detection method of diesel black smoke vehicle |
CN111126293A (en) * | 2019-12-25 | 2020-05-08 | 国网智能科技股份有限公司 | A method and system for detecting abnormality of flame and smoke |
CN111400533A (en) * | 2020-03-02 | 2020-07-10 | 北京三快在线科技有限公司 | Image screening method and device, electronic equipment and storage medium |
CN113033555A (en) * | 2021-03-25 | 2021-06-25 | 天津大学 | Visual SLAM closed loop detection method based on metric learning |
Non-Patent Citations (1)
Title |
---|
基于小波的实时烟雾检测;帅师;周平;汪亚明;周维达;;计算机应用研究;20070310(第03期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114359673A (en) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112650790B (en) | Target point cloud plane determining method and device, electronic equipment and storage medium | |
CN111784712B (en) | Image processing method, device, equipment and computer readable medium | |
CN114399589B (en) | Three-dimensional lane line generation method, apparatus, electronic device and computer readable medium | |
CN113435393B (en) | Forest fire smoke root node detection method, device and equipment | |
CN111858381B (en) | Application fault tolerance capability test method, electronic device and medium | |
CN111459364B (en) | Icon updating method and device and electronic equipment | |
WO2022105622A1 (en) | Image segmentation method and apparatus, readable medium, and electronic device | |
CN118965348A (en) | Detection method, device, equipment and computer medium applied to program code | |
WO2023138468A1 (en) | Virtual object generation method and apparatus, device, and storage medium | |
CN112434064B (en) | Data processing method, device, medium and electronic equipment | |
CN111258582B (en) | Window rendering method and device, computer equipment and storage medium | |
CN111338827B (en) | Method and device for pasting form data and electronic equipment | |
CN114359673B (en) | Small sample smoke detection method, device and equipment based on metric learning | |
CN115272760A (en) | Small sample smoke image fine classification method suitable for forest fire smoke detection | |
CN111680754B (en) | Image classification method, device, electronic equipment and computer readable storage medium | |
CN112699289B (en) | House source information aggregation display method and device, electronic equipment and computer readable medium | |
CN112906551B (en) | Video processing method, device, storage medium and electronic device | |
CN112418233B (en) | Image processing method and device, readable medium and electronic equipment | |
CN114490718A (en) | Data output method, data output device, electronic equipment and computer readable medium | |
CN113807056A (en) | Method, device and equipment for correcting error of document name sequence number | |
CN116188256A (en) | Super-resolution image processing method, device, equipment and medium | |
CN112215789B (en) | Image defogging method, device, equipment and computer readable medium | |
CN118212289A (en) | Forest fire smoke movement information node detection method, device and equipment | |
CN113744259B (en) | Forest fire smoke detection method and equipment based on gray value increasing number sequence | |
CN115690246B (en) | Image texture information generation method, device, apparatus, medium and program product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |