CN114355507B - Micro-ring resonator based on inverted ridge type silicon dioxide/polymer mixed waveguide and preparation method thereof - Google Patents
Micro-ring resonator based on inverted ridge type silicon dioxide/polymer mixed waveguide and preparation method thereof Download PDFInfo
- Publication number
- CN114355507B CN114355507B CN202210086692.0A CN202210086692A CN114355507B CN 114355507 B CN114355507 B CN 114355507B CN 202210086692 A CN202210086692 A CN 202210086692A CN 114355507 B CN114355507 B CN 114355507B
- Authority
- CN
- China
- Prior art keywords
- waveguide
- layer
- straight waveguide
- polymer
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 229920000642 polymer Polymers 0.000 title claims abstract description 68
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 43
- 235000012239 silicon dioxide Nutrition 0.000 title claims description 22
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 239000010410 layer Substances 0.000 claims abstract description 57
- 238000005253 cladding Methods 0.000 claims abstract description 33
- 239000012792 core layer Substances 0.000 claims abstract description 33
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 8
- 230000008878 coupling Effects 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 16
- 229920001486 SU-8 photoresist Polymers 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000005452 bending Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 5
- 238000011049 filling Methods 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 239000002861 polymer material Substances 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000000233 ultraviolet lithography Methods 0.000 claims description 3
- 230000001808 coupling effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/136—Integrated optical circuits characterised by the manufacturing method by etching
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29335—Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
- G02B6/29338—Loop resonators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
一种基于倒脊型二氧化硅/聚合物混合波导的微环谐振器及其制备方法,属于倒脊型二氧化硅/聚合物混合波导集成芯片制备技术领域。从下至上由Si衬底、SiO2下包层、条形聚合物芯层和聚合物平板层组成;条形聚合物芯层由微环谐振部分和耦合部分组成;微环谐振部分由第一弯曲波导、第一直波导、第二弯曲波导和第二直波导顺次连接组成,为跑道型微环结构;耦合部分由输入直波导、第三直波导和输出直波导顺次连接组成,第二直波导和第三直波导构成定向耦合器。本发明的微环谐振器具有损耗低、结构紧凑、制备工艺简单、成本低等优点,在光网络中可以用于制备开关、滤波器、调制器,在传感领域实现温度、折射率、生物传感等传感功能。
A microring resonator based on an inverted ridge silica/polymer hybrid waveguide and a preparation method thereof, which belongs to the technical field of integrated chip preparation of an inverted ridge silica/polymer hybrid waveguide. From bottom to top, it is composed of Si substrate, SiO 2 lower cladding layer, strip polymer core layer and polymer flat layer; the strip polymer core layer is composed of a micro-ring resonance part and a coupling part; the micro-ring resonance part is composed of the first The curved waveguide, the first straight waveguide, the second curved waveguide and the second straight waveguide are connected in sequence, which is a racetrack micro-ring structure; the coupling part is composed of the input straight waveguide, the third straight waveguide and the output straight waveguide being connected in sequence. The second straight waveguide and the third straight waveguide constitute a directional coupler. The microring resonator of the present invention has the advantages of low loss, compact structure, simple preparation process, and low cost. It can be used to prepare switches, filters, and modulators in optical networks, and can realize temperature, refractive index, biological Sensing and other sensing functions.
Description
技术领域Technical field
本发明属于倒脊型二氧化硅/聚合物混合波导集成芯片制备技术领域,具体涉及一种基于倒脊型二氧化硅/聚合物混合波导的微环谐振器及其制备方法。The invention belongs to the technical field of preparing integrated chips of inverted ridge silica/polymer hybrid waveguides, and specifically relates to a microring resonator based on inverted ridge silica/polymer hybrid waveguides and a preparation method thereof.
背景技术Background technique
为了满足人们日常生活中对信息传递容量的需求,以光为媒介的通信方式在通信系统中,起到了越来越大作用。在平板光波导(Planar Lightwave Circuit,PLC)器件的研究中,根据芯层材料的不同主要分为二氧化硅基PLC、磷化铟PLC和聚合物PLC三大类,其中聚合物PLC具有着较大的热光系数(-1.86×10-4K-1),制备工艺简单,成本极低等优点被广泛的应用在平板光波导器件当中,特别是可变光衰减器、光开关、可调谐滤波器等有源平板光波导器件。In order to meet the demand for information transmission capacity in people's daily lives, communication methods using light as a medium play an increasingly important role in communication systems. In the research of planar lightwave circuit (PLC) devices, according to different core layer materials, they are mainly divided into three categories: silica-based PLC, indium phosphide PLC and polymer PLC. Among them, polymer PLC has more advantages. The advantages of large thermo-optical coefficient (-1.86×10 -4 K -1 ), simple preparation process, and extremely low cost are widely used in flat optical waveguide devices, especially variable optical attenuators, optical switches, and tunable Filters and other active planar optical waveguide devices.
通常,制备聚合物PLC的工艺为在接触式曝光之后,湿法刻蚀形成芯层,再旋涂聚合物包层,通过加热固化退火的过程,实现芯层包层的紧密接触,制备波导器件。然而聚合物芯层、包层中存在相同的溶剂,这会使得在加热固化的过程中,会使得芯层、包层互溶,从而使得端面侧壁不陡直,芯层变得圆润,引入光斑模式的变化,轻则产生额外的损耗,重则导致器件功能失效。Usually, the process for preparing polymer PLC is to form a core layer by wet etching after contact exposure, and then spin-coat the polymer cladding. Through the process of heating, solidification and annealing, the core layer and cladding are in close contact to prepare a waveguide device. . However, the same solvent exists in the polymer core layer and cladding layer, which will cause the core layer and cladding layer to dissolve into each other during the heating and curing process, so that the end side walls are not steep, the core layer becomes rounded, and light spots are introduced. Changes in the mode may cause additional losses at best, or cause device function failure at worst.
发明内容Contents of the invention
为了解决背景技术中的问题,本发明提出了一种基于倒脊型二氧化硅/聚合物混合波导的微环谐振器及其制备方法。本发明首先在二氧化硅下包层中通过电感耦合等离子体(Inductively Coupled Plasma,ICP)刻蚀的方法刻蚀出一个凹槽,再在凹槽和二氧化硅下包层上旋涂聚合物,形成倒脊型二氧化硅/聚合物混合波导结构,由于凹槽结构是二氧化硅材料,不会与芯层聚合物发生反应,所以形成的芯层波导侧壁陡直、光滑,形成的器件损耗也随之降低。In order to solve the problems in the background technology, the present invention proposes a microring resonator based on an inverted ridge silica/polymer hybrid waveguide and a preparation method thereof. In the present invention, a groove is first etched in the silicon dioxide lower cladding layer by inductively coupled plasma (ICP) etching, and then a polymer is spin-coated on the groove and the silicon dioxide lower cladding layer. , forming an inverted ridge silica/polymer hybrid waveguide structure. Since the groove structure is made of silica material, it will not react with the core polymer, so the side walls of the core waveguide formed are steep and smooth, forming Device losses are also reduced.
本发明所述的基于倒脊型二氧化硅/聚合物混合波导的微环谐振器,从下至上由Si衬底(1)、SiO2下包层(2)、条形聚合物芯层(3)和聚合物平板层(4)组成;条形聚合物芯层(3)被包覆在SiO2下包层(2)之中,聚合物芯层(3)的上表面与SiO2下包层(2)的上表面位于同一平面;条形聚合物芯层(3)由微环谐振部分(100)和耦合部分组成;其中,微环谐振部分(100)由第一弯曲波导(101)、第一直波导(102)、第二弯曲波导(103)和第二直波导(104)顺次连接组成,为跑道型微环结构;耦合部分由输入直波导(201)、第三直波导(202)和输出直波导(203)顺次连接组成,第二直波导(104)和第三直波导(202)构成定向耦合器(200);第二弯曲波导(103)的输入端与第二直波导(104)的输出端连接,第二弯曲波导(103)的输出端连接第一直波导(102)的输入端,第一直波导(102)的输出端连接第一弯曲波导(101)的输入端,第一弯曲波导(101)的输出端连接第二直波导(104)的输入端;宽谱光源输出的光信号耦合进入输入直波导(201),经过定向耦合器(200)的耦合作用分成两束光,一部分光耦合进入第二直波导(104),从而进入微环谐振部分(100),另一部分光从输出直波导(203)输出;耦合进入微环谐振部分(100)的光,其中满足微环谐振条件的波长的光(在微环谐振部分(100)传输一周相位的改变为2π的整数倍的光)将在环中传输,不再通过定向耦合器(200)耦合进入第三直波导(202);而不满足微环谐振条件的波长的光,将通过定向耦合器(200)耦合进入第三直波导(202),相同波长的光强度线性叠加后从输出直波导(203)中输出。The microring resonator based on the inverted ridge silicon dioxide/polymer hybrid waveguide of the present invention consists from bottom to top of Si substrate (1), SiO 2 lower cladding layer (2), strip polymer core layer ( 3) and a polymer flat layer (4); the strip polymer core layer (3) is covered in the SiO 2 lower cladding layer (2), and the upper surface of the polymer core layer (3) is in contact with the SiO 2 lower cladding layer. The upper surface of the cladding (2) is located on the same plane; the strip polymer core layer (3) is composed of a microring resonance part (100) and a coupling part; wherein the microring resonance part (100) is composed of the first curved waveguide (101 ), the first straight waveguide (102), the second curved waveguide (103) and the second straight waveguide (104) are connected in sequence, forming a racetrack-type micro-ring structure; the coupling part consists of the input straight waveguide (201), the third straight waveguide (104) and the second straight waveguide (104). The waveguide (202) and the output straight waveguide (203) are connected in sequence, and the second straight waveguide (104) and the third straight waveguide (202) form a directional coupler (200); the input end of the second curved waveguide (103) is connected to The output end of the second straight waveguide (104) is connected, the output end of the second curved waveguide (103) is connected with the input end of the first straight waveguide (102), and the output end of the first straight waveguide (102) is connected with the first curved waveguide (102). 101), the output end of the first curved waveguide (101) is connected to the input end of the second straight waveguide (104); the optical signal output by the wide-spectrum light source is coupled into the input straight waveguide (201), and passes through the directional coupler (200 ) is divided into two beams of light, one part of the light is coupled into the second straight waveguide (104) and then enters the microring resonant part (100), and the other part of the light is output from the output straight waveguide (203); it is coupled into the microring resonant part ( 100) of light, in which the light of a wavelength that satisfies the microring resonance condition (the light whose phase changes for one cycle is an integral multiple of 2π when transmitted in the microring resonance part (100)) will be transmitted in the ring and will no longer pass through the directional coupler ( 200) is coupled into the third straight waveguide (202); light with wavelengths that do not meet the microring resonance conditions will be coupled into the third straight waveguide (202) through the directional coupler (200), and the light intensities of the same wavelength are linearly superimposed. Output from the output straight waveguide (203).
所述的聚合物芯层和聚合物平板层为同种材料,为具有负热光系数的聚合物材料,包括SU-8 2002、SU-8 2005、EpoCore等。The polymer core layer and the polymer flat layer are made of the same material, which is a polymer material with a negative thermo-optical coefficient, including SU-8 2002, SU-8 2005, EpoCore, etc.
本发明所述的基于倒脊型二氧化硅/聚合物混合波导的微环谐振器的制备方法,其步骤如下:The preparation method of the microring resonator based on the inverted ridge silica/polymer hybrid waveguide according to the present invention has the following steps:
1)在硅晶圆衬底上,通过热氧化法生长一层致密的12~18μm厚的二氧化硅下包层;1) On the silicon wafer substrate, grow a dense 12-18 μm thick silicon dioxide lower cladding layer through thermal oxidation method;
2)使用真空匀胶机在二氧化硅下包层上旋涂光刻胶层,前烘处理后自然降温固化;2) Use a vacuum leveling machine to spin-coat the photoresist layer on the silica lower cladding, and then cool down and solidify naturally after pre-baking;
3)通过紫外光刻、显影、后烘,将掩模版上与需要制备的条形聚合物芯层波导结构相同(光刻胶层为正性光刻胶)或互补(光刻胶层为负性光刻胶)的图形转移到光刻胶层上,形成用于掩膜的光刻胶层波导结构;3) Through UV lithography, development, and post-baking, the structure of the strip-shaped polymer core waveguide to be prepared on the mask plate is the same (the photoresist layer is positive photoresist) or complementary (the photoresist layer is negative) (Plastic photoresist) pattern is transferred to the photoresist layer to form a photoresist layer waveguide structure for masking;
4)通过ICP刻蚀方法,在光刻胶层波导结构的掩膜下,在二氧化硅下包层上制备得到用于填充聚合物芯层材料的凹槽,然后再去掉二氧化硅下包层上的光刻胶层;4) Through the ICP etching method, under the mask of the photoresist layer waveguide structure, a groove for filling the polymer core layer material is prepared on the silicon dioxide lower cladding, and then the silicon dioxide lower cladding is removed. photoresist layer on the layer;
5)使用真空匀胶机在二氧化硅下包层上旋涂聚合物芯层和平板层,再经过前烘、紫外光刻、后烘,制备得到本发明所述的倒脊型二氧化硅/聚合物混合波导微环谐振器;聚合物芯层尺寸与二氧化硅凹槽尺寸一致,宽度2~5μm,厚度2~5μm;聚合物平板层厚度通过调整聚合物材料和旋涂转速,根据器件应用领域的不同,可以实现0~5μm的厚度。5) Use a vacuum leveling machine to spin-coat the polymer core layer and flat layer on the silica lower cladding, and then go through pre-baking, ultraviolet photolithography, and post-baking to prepare the inverted ridge silica of the present invention. /Polymer hybrid waveguide microring resonator; the size of the polymer core layer is consistent with the size of the silicon dioxide groove, with a width of 2 to 5 μm and a thickness of 2 to 5 μm; the thickness of the polymer flat plate layer is determined by adjusting the polymer material and spin coating speed. Depending on the application field of the device, a thickness of 0~5μm can be achieved.
与现有技术相比,本发明的创新之处在于:Compared with the existing technology, the innovations of the present invention are:
1.波导为倒脊型二氧化硅/聚合物混合波导,通过填充二氧化硅凹槽,得到的聚合物芯层侧壁陡直,降低器件损耗;1. The waveguide is an inverted ridge silica/polymer hybrid waveguide. By filling the silica grooves, the side walls of the polymer core layer obtained are steep, which reduces device loss;
2.波导为倒脊型二氧化硅/聚合物混合波导,以聚合物材料为波导芯层,芯包折射率差大,可以实现更紧凑的端面尺寸、弯曲半径,利于制备大规模平板光波导集成回路;2. The waveguide is an inverted ridge silica/polymer hybrid waveguide. The polymer material is used as the waveguide core layer. The core-clad refractive index difference is large, which can achieve a more compact end face size and bending radius, which is conducive to the preparation of large-scale flat optical waveguides. integrated circuit;
3.波导为倒脊型二氧化硅/聚合物混合波导,仅仅通过简单的接触式曝光即可完成器件的制备,所需要加工成本极低;3. The waveguide is an inverted ridge silicon dioxide/polymer hybrid waveguide. The device can be prepared through simple contact exposure, and the required processing cost is extremely low;
4.器件结构采用跑道型微环结构,结构紧凑,消光比大,易于大规模集成。4. The device structure adopts a runway-type micro-ring structure, which is compact in structure, has a large extinction ratio, and is easy to be integrated on a large scale.
综上所述,本发明提出的倒脊型二氧化硅/聚合物混合波导微环谐振器具有损耗低、结构紧凑、制备工艺简单、成本低等优点,在光网络中起到光域优化、路由、保护以及功率均衡等作用,在传感领域也可以实现温度、折射率、生物传感等多功能传感功能,具有广阔的应用前景。In summary, the inverted ridge silica/polymer hybrid waveguide microring resonator proposed by the present invention has the advantages of low loss, compact structure, simple preparation process, low cost, etc., and plays an important role in optical domain optimization and optimization in optical networks. It has functions such as routing, protection and power equalization. In the field of sensing, it can also realize multi-functional sensing functions such as temperature, refractive index, and biological sensing, and has broad application prospects.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1:本发明所述倒脊型微环谐振器截面示意图;Figure 1: Schematic cross-sectional view of the inverted ridge microring resonator according to the present invention;
图2:本发明所述倒脊型微环谐振器结构示意图;Figure 2: Schematic structural diagram of the inverted ridge microring resonator according to the present invention;
图3:本发明所述倒脊型微环谐振器制备工艺流程图;Figure 3: Flow chart of the preparation process of the inverted ridge micro-ring resonator according to the present invention;
图4:本发明所述倒脊型微环谐振器二氧化硅凹槽截面示意图;Figure 4: Schematic cross-section of the silicon dioxide groove of the inverted ridge microring resonator according to the present invention;
图5:本发明所述倒脊型微环谐振器聚合物填充后截面示意图;Figure 5: A schematic cross-sectional view of the inverted ridge microring resonator after polymer filling according to the present invention;
图6:本发明所述倒脊型微环谐振器近场光斑示意图;Figure 6: Schematic diagram of the near-field light spot of the inverted ridge microring resonator according to the present invention;
图7:本发明所述倒脊型微环谐振器归一化透射功率光谱图。Figure 7: Normalized transmission power spectrum of the inverted ridge microring resonator of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清晰、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on this The embodiments in the invention and all other embodiments obtained by those of ordinary skill in the art without exerting creative efforts belong to the protection scope of the invention.
实施例1:Example 1:
如附图1所示,为倒脊型微环谐振器截面示意图,从下至上,由Si衬底(1)、SiO2下包层(2)、聚合物芯层(3)、聚合物平板层(4)组成。所述的SiO2下包层(2)可以采用热氧化法生长或(Plasma Enhanced Chemical Vapor Deposition,PECVD)沉积法生长,本实施例中采用热氧化发生长SiO2,折射率为1.4456。所述的聚合物芯层(3)和聚合物平板层(4)为同种材料,可以采用具有负热光系数的聚合物材料,包括SU-8 2002、SU-8 2005、EpoCore等,在本实施例中,采用SU-8 2002材料作为聚合物芯层(3)材料,折射率为1.573。为了降低波导内模式串扰与偏振相关损耗,同时降低工艺难度,聚合物芯层(3)波导的尺寸设计为2.5μm×2.5μm的方型波导。聚合物平板层(4)的平板层厚度为2μm。As shown in Figure 1, it is a schematic cross-sectional view of an inverted ridge microring resonator. From bottom to top, it consists of Si substrate (1), SiO 2 lower cladding layer (2), polymer core layer (3), and polymer flat plate. Composed of layer (4). The SiO 2 lower cladding layer (2) can be grown using a thermal oxidation method or a (Plasma Enhanced Chemical Vapor Deposition, PECVD) deposition method. In this embodiment, thermal oxidation is used to grow SiO 2 with a refractive index of 1.4456. The polymer core layer (3) and the polymer flat layer (4) are made of the same material, and polymer materials with negative thermo-optical coefficients can be used, including SU-8 2002, SU-8 2005, EpoCore, etc., in In this embodiment, SU-8 2002 material is used as the material of the polymer core layer (3), with a refractive index of 1.573. In order to reduce mode crosstalk and polarization-related losses within the waveguide and reduce process difficulty, the size of the waveguide in the polymer core layer (3) is designed to be a square waveguide of 2.5 μm × 2.5 μm. The thickness of the polymer flat layer (4) is 2 μm.
如附图2所示,为倒脊型微环谐振器结构示意图。微环谐振部分(100)由第一弯曲波导(101)、第一直波导(102)、第二弯曲波导(103)和第二直波导(104)组成;为了制备紧凑的微环器件,第一弯曲波导(101)和第二弯曲波导(103)的弯曲半径为1400μm,第一弯曲波导(101)和第二弯曲波导(103)为半圆形结构;耦合部分由输入直波导(201)、第三直波导(202)和输出直波导(203)组成,其中定向耦合器(200)由第二直波导(104)和第三直波导(202)构成;为了制备紧凑的微环器件,综合考虑工艺原因,第二直波导(104)和第三直波导(202)之间间距(Gap)为1.5μm;为实现高消光比器件,经过计算,定向耦合器长度确定为1400μm。即第一直波导(102)、第二直波导(104)和第三直波导(202)长度均为1400μm。第二弯曲波导(103)的输入端与第二直波导(104)的输出端连接,第二弯曲波导(103)的输出端连接第一直波导(102)的输入端,第一直波导(102)的输出端连接第一弯曲波导(101)的输入端,第一弯曲波导(101)的输出端连接第二直波导(104)的输入端;宽谱光源输出的光信号耦合进入输入直波导(201),经过定向耦合器(200)的耦合作用分成两束光,一部分耦合进入第二直波导(104),从而进入微环谐振部分(100),另一部分从输出直波导(203)直接输出。耦合进入微环谐振部分(100)的光,其中满足微环谐振条件的波长的光,即在微环谐振部分(100)一周的相位改变为为2π的整数倍的光将在环中传输,不在通过定向耦合器(200)耦合进入第三直波导(202),从输出直波导(203)中输出,不满足微环谐振条件的,将再次通过定向耦合器(200)耦合进入第三直波导(202),相同波长的光强度线性叠加后从输出直波导(203)中输出。As shown in Figure 2, it is a schematic structural diagram of an inverted ridge microring resonator. The microring resonant part (100) is composed of a first curved waveguide (101), a first straight waveguide (102), a second curved waveguide (103) and a second straight waveguide (104); in order to prepare a compact microring device, the The bending radius of the first curved waveguide (101) and the second curved waveguide (103) is 1400 μm. The first curved waveguide (101) and the second curved waveguide (103) are semicircular structures; the coupling part is composed of the input straight waveguide (201) , a third straight waveguide (202) and an output straight waveguide (203), where the directional coupler (200) is composed of a second straight waveguide (104) and a third straight waveguide (202); in order to prepare a compact microring device, Considering process reasons, the gap (Gap) between the second straight waveguide (104) and the third straight waveguide (202) is 1.5 μm; in order to achieve a high extinction ratio device, after calculation, the directional coupler length is determined to be 1400 μm. That is, the lengths of the first straight waveguide (102), the second straight waveguide (104) and the third straight waveguide (202) are all 1400 μm. The input end of the second curved waveguide (103) is connected to the output end of the second straight waveguide (104), the output end of the second curved waveguide (103) is connected to the input end of the first straight waveguide (102), and the first straight waveguide (102) The output end of 102) is connected to the input end of the first curved waveguide (101), and the output end of the first curved waveguide (101) is connected to the input end of the second straight waveguide (104); the optical signal output by the wide-spectrum light source is coupled into the input straight waveguide. The waveguide (201) is divided into two beams of light through the coupling effect of the directional coupler (200). One part is coupled into the second straight waveguide (104) and thus enters the microring resonance part (100), and the other part is output from the straight waveguide (203) Direct output. The light coupled into the microring resonance part (100), the light with a wavelength that satisfies the microring resonance condition, that is, the light whose phase changes in one cycle of the microring resonance part (100) to an integer multiple of 2π, will be transmitted in the ring, If it is no longer coupled into the third straight waveguide (202) through the directional coupler (200) and output from the output straight waveguide (203), and does not meet the microring resonance conditions, it will be coupled into the third straight waveguide (202) through the directional coupler (200) again. Waveguide (202), the light intensity of the same wavelength is linearly superimposed and output from the output straight waveguide (203).
如附图3所示,本发明所述倒脊型微环谐振器制备工艺流程图,其步骤如下:As shown in Figure 3, the process flow chart for preparing the inverted ridge microring resonator of the present invention has the following steps:
1)在硅晶圆衬底(1)上,通过热氧化法生长一层致密的15μm厚的二氧化硅下包层(21);1) On the silicon wafer substrate (1), grow a dense 15 μm thick silicon dioxide lower cladding layer (21) through thermal oxidation method;
2)使用真空匀胶机在二氧化硅下包层(21)表面旋涂Micro Chem公司的SU-8 2002光刻胶,首先需要在60℃下10分钟、90℃下20分钟前烘处理并自然降温固化,通过控制转速600转/分,旋涂时间20s,形成3μm厚的SU-8光刻胶层(51);2) Use a vacuum leveling machine to spin-coat Micro Chem's SU-8 2002 photoresist on the surface of the silicon dioxide lower cladding (21). First, it needs to be baked at 60°C for 10 minutes and 90°C for 20 minutes. Natural cooling and solidification, by controlling the rotation speed to 600 rpm and the spin coating time to 20 seconds, a 3 μm thick SU-8 photoresist layer is formed (51);
3)将步骤2)的器件放置在365nm的紫外光光刻机下,光功率为23mW/cm2,对版光刻,所用掩模版Ⅰ的结构与需要制备的条形聚合物芯层波导(3)结构互补,曝光时间3.5s,之后再进行65℃下10分钟、95℃下20分钟的后烘,冷却至室温,放入PGMEA(Propyleneglygol-monomethylether-acetate)显影液中显影,再放入异丙醇中漂洗除去余胶,用去离子水洗净反应液;然后在120℃下,坚膜30分钟,形成SU-8光刻胶层(52),用于刻蚀的掩膜;3) Place the device in step 2) under a 365nm ultraviolet lithography machine with a light power of 23mW/cm 2 and perform photolithography. The structure of the mask I used is consistent with the strip-shaped polymer core waveguide to be prepared ( 3) The structure is complementary, the exposure time is 3.5s, and then post-baked at 65°C for 10 minutes and 95°C for 20 minutes, cooled to room temperature, put into PGMEA (Propyleneglygol-monomethylether-acetate) developer for development, and then placed in Rinse in isopropyl alcohol to remove residual glue, and wash the reaction solution with deionized water; then harden the film at 120°C for 30 minutes to form an SU-8 photoresist layer (52), which is used as a mask for etching;
4)通过ICP刻蚀方法,在SU-8光刻胶层(52)的掩膜下,在二氧化硅下包层(21)上制备得到二氧化硅凹槽,深度2.5μm,宽度2.5μm;为了保证波导的侧壁陡直,ICP通入的气体为C4F8/SF8混合气体,再去掉二氧化硅下包层(2)上的SU-8光刻胶层(52);形成的倒脊型微环谐振器二氧化硅凹槽截面图,如附图4所示;4) Using the ICP etching method, prepare a silicon dioxide groove on the silicon dioxide lower cladding layer (21) under the mask of the SU-8 photoresist layer (52), with a depth of 2.5 μm and a width of 2.5 μm. ;In order to ensure that the side walls of the waveguide are steep, the gas passed through the ICP is C 4 F 8 /SF 8 mixed gas, and then the SU-8 photoresist layer (52) on the silicon dioxide lower cladding layer (2) is removed; The cross-sectional view of the silicon dioxide groove of the inverted ridge microring resonator is shown in Figure 4;
5)使用真空匀胶机在二氧化硅下包层(2)表面旋涂Micro Chem公司的SU-8 2002光刻胶,首先需要在60℃下10分钟、90℃下20分钟前烘处理并自然降温固化,通过控制转速3000转/分,旋涂时间20s,将二氧化硅凹槽填满,形成聚合物芯层(3),由于SU-8具有自平整型,将形成2μm厚的平整的SU-8聚合物平板层(4);将器件放置在365nm的紫外光光刻机下,光功率为23mW/cm2,曝光时间5s,之后再进行65℃下10分钟,95℃下20分钟的后烘,冷却至室温,形成的倒脊型微环谐振器聚合物填充后截面图,如附图5所示;5) Use a vacuum leveling machine to spin-coat Micro Chem's SU-8 2002 photoresist on the surface of the silica lower cladding (2). First, it needs to be baked at 60°C for 10 minutes and 90°C for 20 minutes. Natural cooling and solidification, by controlling the rotation speed to 3000 rpm and spin coating time for 20 seconds, fill the silica grooves to form the polymer core layer (3). Since SU-8 has a self-leveling type, a 2 μm thick flat layer will be formed. SU-8 polymer flat layer (4); place the device under a 365nm UV lithography machine with a light power of 23mW/cm 2 and an exposure time of 5s, followed by 10 minutes at 65°C and 20 minutes at 95°C. After several minutes of post-baking and cooling to room temperature, the formed inverted ridge micro-ring resonator has a cross-sectional view after polymer filling, as shown in Figure 5;
如附图6所示,为本发明所述倒脊型微环谐振器近场光斑示意图,将1550nm波长的光耦合进入波导中,近场红外CCD可以观测到圆润的光斑。As shown in Figure 6, it is a schematic diagram of the near-field light spot of the inverted ridge microring resonator of the present invention. Light with a wavelength of 1550 nm is coupled into the waveguide, and a round light spot can be observed by the near-field infrared CCD.
如附图7所示,为本发明所述倒脊型微环谐振器归一化透射功率光谱图,圆圈为测量值,通过洛伦兹拟合,得到拟合曲线,拟合效果良好,得到半波宽为74pm,当前谐振峰中心波长为1500.154nm,计算得到当前谐振锋的Q值为谐振峰中心波长与半波宽的比值,即20272,表明本发明器件具有较高的Q值。As shown in Figure 7, it is the normalized transmission power spectrum diagram of the inverted ridge microring resonator of the present invention. The circles are the measured values. Through Lorentz fitting, the fitting curve is obtained. The fitting effect is good, and we get The half-wave width is 74pm, and the current resonance peak center wavelength is 1500.154 nm. The calculated Q value of the current resonance front is the ratio of the resonance peak center wavelength to the half-wave width, which is 20272, indicating that the device of the present invention has a high Q value.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210086692.0A CN114355507B (en) | 2022-01-25 | 2022-01-25 | Micro-ring resonator based on inverted ridge type silicon dioxide/polymer mixed waveguide and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210086692.0A CN114355507B (en) | 2022-01-25 | 2022-01-25 | Micro-ring resonator based on inverted ridge type silicon dioxide/polymer mixed waveguide and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114355507A CN114355507A (en) | 2022-04-15 |
CN114355507B true CN114355507B (en) | 2023-12-05 |
Family
ID=81093143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210086692.0A Active CN114355507B (en) | 2022-01-25 | 2022-01-25 | Micro-ring resonator based on inverted ridge type silicon dioxide/polymer mixed waveguide and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114355507B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115308839B (en) * | 2022-08-10 | 2023-07-21 | 吉林大学 | A multi-port waveguide crossover device based on silica/polymer embedded waveguide platform and its preparation method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259847B1 (en) * | 1999-04-07 | 2001-07-10 | Lucent Technologies Inc. | Optical communication system including broadband all-pass filter for dispersion compensation |
CN101261223A (en) * | 2008-04-15 | 2008-09-10 | 浙江大学 | Optical microring resonant sensor based on slit waveguide and its fabrication method |
CN102338940A (en) * | 2011-08-31 | 2012-02-01 | 清华大学 | Electric absorption modulator based on ring cavity |
CN103649798A (en) * | 2011-06-15 | 2014-03-19 | 惠普发展公司,有限责任合伙企业 | Micro-ring resonator |
CN105659450A (en) * | 2013-10-15 | 2016-06-08 | 慧与发展有限责任合伙企业 | Coupling-modulated optical resonator |
CN109541745A (en) * | 2018-12-14 | 2019-03-29 | 电子科技大学 | A kind of follow-on micro-ring resonator in coupled zone and preparation method thereof |
CN111090149A (en) * | 2019-10-20 | 2020-05-01 | 天津理工大学 | High quality factor microring resonator and method based on lithium niobate insulator |
CN113325518A (en) * | 2021-05-31 | 2021-08-31 | 吉林大学 | Silicon dioxide flat plate optical waveguide tunable micro-ring resonator with ultra-narrow line width and preparation method thereof |
CN113568245A (en) * | 2021-07-23 | 2021-10-29 | 吉林大学 | A silicon-based erbium-ytterbium co-doped polymer green light optical waveguide amplifier and preparation method thereof |
CN113933935A (en) * | 2021-11-03 | 2022-01-14 | 山东师范大学 | Method for preparing KTP nonlinear runway type micro-ring resonator |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100487A1 (en) * | 2002-05-24 | 2003-12-04 | The Regents Of The University Of Michigan | Polymer micro-ring resonator device and fabrication method |
US7280721B2 (en) * | 2002-11-06 | 2007-10-09 | Azna Llc | Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology |
WO2005019798A2 (en) * | 2003-08-13 | 2005-03-03 | The Regents Of The University Of Michigan | Biochemical sensors with micro-resonators |
US7853108B2 (en) * | 2006-12-29 | 2010-12-14 | Massachusetts Institute Of Technology | Fabrication-tolerant waveguides and resonators |
-
2022
- 2022-01-25 CN CN202210086692.0A patent/CN114355507B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6259847B1 (en) * | 1999-04-07 | 2001-07-10 | Lucent Technologies Inc. | Optical communication system including broadband all-pass filter for dispersion compensation |
CN101261223A (en) * | 2008-04-15 | 2008-09-10 | 浙江大学 | Optical microring resonant sensor based on slit waveguide and its fabrication method |
CN103649798A (en) * | 2011-06-15 | 2014-03-19 | 惠普发展公司,有限责任合伙企业 | Micro-ring resonator |
CN102338940A (en) * | 2011-08-31 | 2012-02-01 | 清华大学 | Electric absorption modulator based on ring cavity |
CN105659450A (en) * | 2013-10-15 | 2016-06-08 | 慧与发展有限责任合伙企业 | Coupling-modulated optical resonator |
CN109541745A (en) * | 2018-12-14 | 2019-03-29 | 电子科技大学 | A kind of follow-on micro-ring resonator in coupled zone and preparation method thereof |
CN111090149A (en) * | 2019-10-20 | 2020-05-01 | 天津理工大学 | High quality factor microring resonator and method based on lithium niobate insulator |
CN113325518A (en) * | 2021-05-31 | 2021-08-31 | 吉林大学 | Silicon dioxide flat plate optical waveguide tunable micro-ring resonator with ultra-narrow line width and preparation method thereof |
CN113568245A (en) * | 2021-07-23 | 2021-10-29 | 吉林大学 | A silicon-based erbium-ytterbium co-doped polymer green light optical waveguide amplifier and preparation method thereof |
CN113933935A (en) * | 2021-11-03 | 2022-01-14 | 山东师范大学 | Method for preparing KTP nonlinear runway type micro-ring resonator |
Non-Patent Citations (2)
Title |
---|
High-Q-Factor Silica-based Racetrack Microring Resonators;Zhang Daming等;《Photonics》;全文 * |
铒镱共掺微环谐振器的放大特性分析;张大明等;《光学学报》(第3期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114355507A (en) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tung et al. | Polymeric optical waveguides using direct ultraviolet photolithography process | |
Garner et al. | Three-dimensional integrated optics using polymers | |
CN110989076B (en) | A kind of thin-film lithium niobate single-polarization waveguide and preparation method thereof | |
CN108107506A (en) | A kind of optical communicating waveband polymer waveguide grating coupler and preparation method thereof | |
CN113296292B (en) | An organic-inorganic hybrid integrated polymer variable optical attenuator and its preparation method | |
CN111367014B (en) | On-chip edge coupler with spot-size conversion function for optical interconnection | |
CN111522096B (en) | Preparation method of silicon waveguide and silicon oxide waveguide mode converter | |
CN114089474B (en) | Organic-inorganic hybrid integrated variable optical attenuator and preparation method thereof | |
CN113625392B (en) | A 4×4 Optical Switch Array Based on Organic-Inorganic Hybrid Integration | |
CN114153027B (en) | MMI structure-based few-mode waveguide optical power divider and preparation method thereof | |
CN111175898A (en) | Silicon dioxide-polymer three-dimensional MZI waveguide thermo-optical switch and preparation method thereof | |
CN113325518A (en) | Silicon dioxide flat plate optical waveguide tunable micro-ring resonator with ultra-narrow line width and preparation method thereof | |
CN114153025A (en) | Mode-insensitive optical waveguide type optical switch and preparation method thereof | |
CN114296182A (en) | A three-dimensional optical interleaver based on silicon-based optical waveguide and preparation method thereof | |
CN114995010B (en) | Silicon-based three-dimensional waveguide mode optical switch based on phase change material | |
CN115437062B (en) | An edge coupler based on gradient-index inverted-ridge waveguide | |
CN114355507B (en) | Micro-ring resonator based on inverted ridge type silicon dioxide/polymer mixed waveguide and preparation method thereof | |
CN114608632B (en) | Multilayer multi-wavelength multi-mode multi-parameter micro-ring sensor and preparation method thereof | |
CN114296177A (en) | Racetrack-type microring optical switch based on silica/polymer hybrid waveguide and preparation method thereof | |
CN115877595A (en) | A 1×3 thermo-optic switch based on silica/polymer hybrid waveguide and its preparation method | |
CN114153028B (en) | Dual-mode waveguide thermo-optical switch based on MZI structure and preparation method thereof | |
CN113281843B (en) | A polymer-based four-mode mode cyclic converter | |
CN115267969A (en) | Silicon dioxide-based AWG (arrayed waveguide grating) and polymer-based VOA (volatile organic compound) hybrid integrated chip and preparation method of polymer-based VOA array | |
CN113532493B (en) | Organic-inorganic hybrid integrated polymer temperature sensor and preparation method thereof | |
CN115755272B (en) | Polymer/silicon nitride hybrid integrated variable optical attenuator and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |