CN114348952B - A MEMS pressure sensor package structure - Google Patents
A MEMS pressure sensor package structure Download PDFInfo
- Publication number
- CN114348952B CN114348952B CN202210255118.3A CN202210255118A CN114348952B CN 114348952 B CN114348952 B CN 114348952B CN 202210255118 A CN202210255118 A CN 202210255118A CN 114348952 B CN114348952 B CN 114348952B
- Authority
- CN
- China
- Prior art keywords
- pressure sensor
- mems pressure
- corrugated diaphragm
- package structure
- sensor package
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0009—Structural features, others than packages, for protecting a device against environmental influences
- B81B7/0029—Protection against environmental influences not provided for in groups B81B7/0012 - B81B7/0025
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0032—Packages or encapsulation
- B81B7/0058—Packages or encapsulation for protecting against damages due to external chemical or mechanical influences, e.g. shocks or vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/005—Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0264—Pressure sensors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种传感器封装结构,具体涉及一种MEMS(Micro-Electro-Mechanical System,微机电系统)压力传感器封装结构。The invention relates to a sensor packaging structure, in particular to a MEMS (Micro-Electro-Mechanical System, micro-electromechanical system) pressure sensor packaging structure.
背景技术Background technique
传感器的封装能够将MEMS传感器芯片与外界恶劣环境隔离,抑制和屏蔽外界环境的干扰,同时还具有电连接、热管理和增强机械强度等功能。另一方面,传感器的封装又极易对传感器的性能产生影响。The package of the sensor can isolate the MEMS sensor chip from the external harsh environment, suppress and shield the interference of the external environment, and also have the functions of electrical connection, thermal management and enhanced mechanical strength. On the other hand, the packaging of the sensor can easily affect the performance of the sensor.
根据压力传感器封装管壳的材料,MEMS压力传感器的封装形式主要分为塑料封装、金属封装和陶瓷封装。MEMS压力传感器封装结构的装配方式则主要包括焊接装配和密封胶装配。对于现有带有波纹膜片和硅油密封的MEMS压力传感器封装结构而言,虽然采用焊接装配的气密性要高于采用密封胶装配的气密性,但是焊接装配会带来比密封胶装配更大的预应力,焊接装配也容易在封装密封腔体内产生气泡,并且焊接装配对于封装管壳材料的限制还很大,而密封胶装配能够很好地弥补焊接装配上述的这些缺点。此外,金属材质的波纹膜片容易遭受恶劣工作环境的腐蚀和破坏,并且其气密性会随着传感器工作时间的增长而逐渐下降,导致外界污物进入封装密闭腔体后下沉到MEMS压力传感器芯片表面,从而造成传感器性能的降低。According to the material of the pressure sensor package, the packaging forms of MEMS pressure sensors are mainly divided into plastic packaging, metal packaging and ceramic packaging. The assembly methods of the MEMS pressure sensor package structure mainly include welding assembly and sealant assembly. For the existing MEMS pressure sensor package structure with corrugated diaphragm and silicone oil seal, although the airtightness of the welding assembly is higher than that of the sealant assembly, the welding assembly will bring more air-tightness than the sealant assembly. With greater pre-stress, the welding assembly is also prone to generate air bubbles in the sealing cavity of the package, and the welding assembly has great restrictions on the packaging material, and the sealant assembly can well compensate for the above shortcomings of the welding assembly. In addition, the corrugated diaphragm made of metal is prone to corrosion and damage in harsh working environments, and its air tightness will gradually decrease with the increase of the working time of the sensor, causing external dirt to enter the sealed cavity of the package and sink to the MEMS pressure. sensor chip surface, resulting in reduced sensor performance.
发明内容SUMMARY OF THE INVENTION
发明目的:针对上述现有技术,提出一种MEMS压力传感器封装结构,解决封装气密性随传感器工作时间的增长逐渐下降,导致外界污物进入封装腔体后下沉到MEMS压力传感器芯片表面,从而造成传感器性能下降的问题。Purpose of the invention: In view of the above prior art, a MEMS pressure sensor packaging structure is proposed, which solves the problem that the air tightness of the package gradually decreases with the increase of the working time of the sensor, causing external dirt to enter the packaging cavity and sink to the surface of the MEMS pressure sensor chip. As a result, the sensor performance is degraded.
技术方案:一种MEMS压力传感器封装结构,包括波纹膜片、外壳、可伐合金基板;所述可伐合金基板上设有若干连通到基板底部外的金属电极;所述外壳为直筒结构,在所述外壳的内侧壁上贴合有一组相对设置的金属极板,所述金属极板的底端连接有开口朝上的污物收集槽,相对设置的所述金属极板所连接的污物收集槽环绕所述外壳内侧壁设置;MEMS压力传感器芯片固定在所述可伐合金基板上,所述MEMS压力传感器芯片的引脚以及相对设置的所述金属极板分别与所述可伐合金基板上对应的金属电极连接;所述波纹膜片和可伐合金基板分别密封连接在所述外壳的顶端和底端,形成密封腔体结构,所述密封腔体结构内填充硅油。Technical solution: a MEMS pressure sensor package structure, comprising a corrugated diaphragm, a casing, and a Kovar alloy substrate; the Kovar alloy substrate is provided with a number of metal electrodes connected to the bottom of the substrate; the casing is a straight cylinder structure, A set of oppositely arranged metal electrode plates are attached to the inner side wall of the casing, the bottom end of the metal electrode plates is connected with a dirt collection tank with an upward opening, and the dirts connected to the oppositely arranged metal electrode plates are connected. The collection tank is arranged around the inner side wall of the casing; the MEMS pressure sensor chip is fixed on the Kovar alloy substrate, and the pins of the MEMS pressure sensor chip and the oppositely arranged metal plates are respectively connected to the Kovar alloy substrate The corrugated diaphragm and the Kovar alloy substrate are sealed and connected to the top and bottom ends of the casing, respectively, to form a sealed cavity structure, and the sealed cavity structure is filled with silicone oil.
进一步的,所述波纹膜片为盖状结构,所述外壳的顶端设有一圈凹槽,所述波纹膜片的竖直边缘插入所述凹槽内,并在所述凹槽内注入密封胶来固定所述波纹膜片,所述波纹膜片的水平处不与所述外壳发生接触。Further, the corrugated diaphragm is a cover-like structure, the top of the casing is provided with a groove, the vertical edge of the corrugated diaphragm is inserted into the groove, and the sealant is injected into the groove. To fix the corrugated diaphragm, the level of the corrugated diaphragm is not in contact with the housing.
进一步的,所述波纹膜片的材料为高韧性陶瓷。Further, the material of the corrugated diaphragm is high-toughness ceramics.
进一步的,所述外壳的材料为有机硅塑料、不锈钢金属或氮化硅陶瓷。Further, the material of the casing is organic silicon plastic, stainless steel metal or silicon nitride ceramics.
进一步的,所述可伐合金基板的材料为铁镍钴合金。Further, the material of the Kovar alloy substrate is an iron-nickel-cobalt alloy.
进一步的,所述金属电极与可伐合金基板之间设有绝缘子。Further, an insulator is provided between the metal electrode and the Kovar substrate.
进一步的,所述可伐合金基板上设有注油孔。Further, the Kovar alloy substrate is provided with oil injection holes.
进一步的,所述密封胶采用有机硅树脂灌封胶。Further, the sealant adopts silicone resin potting glue.
进一步的,所述高韧性陶瓷为氧化铝陶瓷。Further, the high toughness ceramics are alumina ceramics.
进一步的,所述高韧性陶瓷为氧化锆陶瓷。Further, the high toughness ceramics are zirconia ceramics.
有益效果:与现有带有波纹膜片和硅油密封的封装结构相比,本发明具有以下优点:Beneficial effects: Compared with the existing package structure with corrugated diaphragm and silicone oil seal, the present invention has the following advantages:
1、现有封装结构对于传感器使用过程中气密性下降问题没有应对的措施,本发明增加了具有自清洁功能的结构来弥补这一不足,利用介电分离效应抑制封装气密性下降造成外界污物沉积到传感器芯片表面所带来的负面影响。1. The existing packaging structure has no measures to deal with the problem of air tightness decline during the use of the sensor. The present invention adds a structure with a self-cleaning function to make up for this deficiency, and uses the dielectric separation effect to suppress the air tightness of the package. Negative effects of contamination deposited on the sensor chip surface.
2、与现有封装结构中金属材质的波纹膜片不同,本发明中的波纹膜片采用高韧性陶瓷材料,具有良好的化学稳定性、抗老化性和抗疲劳性,这不仅有助于抑制恶劣工作环境对波纹膜片的腐蚀和破坏,还有助于拓展传感器的应用场合,提高传感器的性能和使用寿命。2. Different from the corrugated diaphragm made of metal material in the existing packaging structure, the corrugated diaphragm in the present invention is made of high-toughness ceramic material, which has good chemical stability, aging resistance and fatigue resistance, which not only helps to suppress The corrosion and damage of the corrugated diaphragm in the harsh working environment also helps to expand the application of the sensor and improve the performance and service life of the sensor.
3、与现有封装结构中平面状的波纹膜片不同,本发明中的波纹膜片被设计成了盖状,不仅能使其竖直边缘处配合外壳顶端的凹槽进行密封胶装配,还能确保波纹膜片的水平处在装配后不与外壳相接触。这样能有效提高密封胶装配的封装气密性,减小波纹膜片上的预应力和热应力,提升传感器的性能。3. Different from the flat corrugated diaphragm in the existing packaging structure, the corrugated diaphragm in the present invention is designed into a cover shape, which not only enables the vertical edge of the corrugated diaphragm to fit into the groove at the top of the casing for sealant assembly, but also allows for sealing. It can ensure that the level of the corrugated diaphragm is not in contact with the housing after assembly. This can effectively improve the air tightness of the sealant assembly, reduce the prestress and thermal stress on the corrugated diaphragm, and improve the performance of the sensor.
附图说明Description of drawings
图1为本发明的一种MEMS压力传感器封装结构的正视图;1 is a front view of a MEMS pressure sensor package structure of the present invention;
图2为本发明的一种MEMS压力传感器封装结构的正视图对应的剖面图;2 is a cross-sectional view corresponding to a front view of a MEMS pressure sensor packaging structure of the present invention;
图3为本发明的一种MEMS压力传感器封装结构的盖状波纹膜片的俯视图;3 is a top view of a lid-shaped corrugated diaphragm of a MEMS pressure sensor packaging structure of the present invention;
图4为本发明的一种MEMS压力传感器封装结构的盖状波纹膜片正视图;4 is a front view of a lid-shaped corrugated diaphragm of a MEMS pressure sensor packaging structure of the present invention;
图5为本发明的一种MEMS压力传感器封装结构的金属极板的俯视图;5 is a top view of a metal electrode plate of a MEMS pressure sensor packaging structure of the present invention;
图6为本发明的一种MEMS压力传感器封装结构的金属极板的正视图;6 is a front view of a metal plate of a MEMS pressure sensor packaging structure of the present invention;
图7为本发明的一种MEMS压力传感器封装结构的金属极板的右视图;7 is a right side view of a metal plate of a MEMS pressure sensor packaging structure of the present invention;
图8为本发明的一种MEMS压力传感器封装结构的整体装配图。FIG. 8 is an overall assembly diagram of a MEMS pressure sensor package structure of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.
如图1、图2以及图8所示,一种MEMS压力传感器封装结构,包括波纹膜片2、外壳4、可伐合金基板8。可伐合金基板8上设有若干连通到基板底部外的金属电极7。外壳4为直筒结构,在外壳4的内侧壁上贴合有一组相对设置的金属极板5,金属极板5的底端连接有开口朝上的污物收集槽11,相对设置的金属极板5所连接的污物收集槽11环绕外壳4内侧壁设置。MEMS压力传感器芯片6固定在可伐合金基板8上,MEMS压力传感器芯片6的引脚以及相对设置的金属极板5均分别与可伐合金基板8上的对应的金属电极7连接。波纹膜片2和可伐合金基板8分别密封连接在外壳4的顶端和底端,形成密封腔体结构,密封腔体结构内填充硅油1,可伐合金基板8上设有注油孔10。As shown in FIG. 1 , FIG. 2 and FIG. 8 , a MEMS pressure sensor package structure includes a
具体的,波纹膜片2为盖状结构,外壳4的顶端设有一圈凹槽,波纹膜片2的竖直边缘插入凹槽内,并在凹槽内注入密封胶3来固定波纹膜片2,并达到密封效果,波纹膜片2的水平处不与外壳4发生接触。外壳4选用有机硅塑料、不锈钢金属材料或者氮化硅陶瓷材料。波纹膜片2的材料为具有高韧性的陶瓷材料,如氧化铝陶瓷、氧化锆陶瓷。密封胶3采用有机硅树脂灌封胶。可伐合金基板8的材料为铁镍钴合金。金属极板5和金属电极7的材料一般选用铝、镍铜锌合金或不锈钢。本实施例中,金属电极7一共有七个,其中五个与MEMS压力传感器芯片6的引脚互连,两个直接连接在金属极板5的下表面。金属电极7与可伐合金基板8之间设有绝缘子9,起到绝缘和密封作用。Specifically, the
本实施例中,金属极板5与其底部的污物收集槽11为一体结构,即将金属极板5的底边向内侧经过两侧弯折,并对侧面进行封边形成的结构。两个金属极板5以及污物收集槽11端部设有用于绝缘的间隙。In this embodiment, the
对于现有带有波纹膜片和硅油密封的MEMS压力传感器封装,其结构的气密性会随着传感器工作时间的增长而逐渐下降,导致外界污物进入充满硅油的密闭腔体中。本发明的封装结构包含了自清洁功能:相对设置的一组金属极板5在通入电压后会在靠近波纹膜片2的下方形成电场,根据介电分离效应,在该电场的作用下,渗入密封腔体的外界污物因其介电常数通常比硅油的介电常数大很多,所以会发生明显的介电分离现象使得污物向着金属极板5运动和聚集,然后附着在金属极板5的表面,金属极板5下端的污物收集槽11用于收集因重力等作用从金属极板5表面下沉的污物,有效避免了进入封装密闭腔体的外界污物下沉到MEMS压力传感器芯片表面,从而造成的传感器性能的降低。For the existing MEMS pressure sensor package with corrugated diaphragm and silicone oil seal, the airtightness of the structure will gradually decrease with the increase of the working time of the sensor, resulting in the entry of external dirt into the closed cavity filled with silicone oil. The packaging structure of the present invention includes a self-cleaning function: a set of oppositely arranged
此外,本发明中的波纹膜片采用高韧性陶瓷材料,具有良好的化学稳定性、抗老化性和抗疲劳性,这不仅有助于抑制恶劣工作环境对波纹膜片的腐蚀和破坏,还有助于配合陶瓷管壳的使用以拓展传感器的应用场合。将波纹膜片2设计成盖状,使其竖直边缘处配合外壳4顶端的凹槽进行密封胶装配,同时确保波纹膜片2的水平处在装配后不与外壳4相接触。这样能有效提高密封胶装配的封装气密性,减小波纹膜片上的预应力和热应力,提升传感器的性能。In addition, the corrugated diaphragm in the present invention is made of high-toughness ceramic material, which has good chemical stability, aging resistance and fatigue resistance, which not only helps to inhibit the corrosion and damage of the corrugated diaphragm in harsh working environments, but also Helps to expand the application of the sensor with the use of the ceramic case. The
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210255118.3A CN114348952B (en) | 2022-03-16 | 2022-03-16 | A MEMS pressure sensor package structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210255118.3A CN114348952B (en) | 2022-03-16 | 2022-03-16 | A MEMS pressure sensor package structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114348952A CN114348952A (en) | 2022-04-15 |
CN114348952B true CN114348952B (en) | 2022-05-20 |
Family
ID=81095086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210255118.3A Active CN114348952B (en) | 2022-03-16 | 2022-03-16 | A MEMS pressure sensor package structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114348952B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115548131B (en) * | 2022-10-26 | 2025-06-06 | 南京鹤梦信息技术有限公司 | A photoelectric sensor packaging structure and packaging method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001083030A (en) * | 1999-09-16 | 2001-03-30 | Tokin Corp | Electrostatic capacity type pressure sensor |
CN101799344A (en) * | 2010-04-21 | 2010-08-11 | 无锡莱顿电子有限公司 | Packaging structure of silicon pressure sensor |
CN113579085A (en) * | 2021-07-16 | 2021-11-02 | 杭州科岛微电子有限公司 | Manufacturing method of oil-filled core packaging structure of diffused silicon pressure sensor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4774678B2 (en) * | 2003-08-29 | 2011-09-14 | 富士電機株式会社 | Pressure sensor device |
-
2022
- 2022-03-16 CN CN202210255118.3A patent/CN114348952B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001083030A (en) * | 1999-09-16 | 2001-03-30 | Tokin Corp | Electrostatic capacity type pressure sensor |
CN101799344A (en) * | 2010-04-21 | 2010-08-11 | 无锡莱顿电子有限公司 | Packaging structure of silicon pressure sensor |
CN113579085A (en) * | 2021-07-16 | 2021-11-02 | 杭州科岛微电子有限公司 | Manufacturing method of oil-filled core packaging structure of diffused silicon pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
CN114348952A (en) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112284578B (en) | A kind of MEMS pressure sensor and preparation method thereof | |
CN101331080B (en) | Substrate-level assembly for an integrated device, manufacturing process thereof and related integrated device | |
CN102401715B (en) | Pressure transducer | |
CN114348952B (en) | A MEMS pressure sensor package structure | |
CN110655033B (en) | Improved stress decoupling MEMS sensor | |
CN103959030A (en) | Differential pressure sensor device | |
US7600432B2 (en) | Pressure sensor with sensing chip protected by protective material | |
US20130133432A1 (en) | Pressure sensor assembly | |
EP2873958B1 (en) | Capacitive pressure sensors for high temperature applications | |
CN217179808U (en) | Sensor base capable of preventing silicone oil leakage | |
CN115655534A (en) | Pressure sensor and method for manufacturing pressure sensor | |
JP6588321B2 (en) | Pressure sensor | |
JP6556620B2 (en) | Pressure sensor | |
CN115235681B (en) | Packaging structure and method of MEMS pressure sensor | |
CN209947794U (en) | Waterproof encapsulation of photomultiplier based on microchannel plate structure | |
CN208937609U (en) | A kind of piezoceramic structures and the piezoelectric acceleration sensor with it | |
CN218781937U (en) | Differential pressure sensor | |
US20170016788A1 (en) | High-temperature headers with ribbed components for stress-relieved hermetic sealing | |
CN115235682B (en) | Packaging structure and method of MEMS pressure sensor | |
WO2024169146A1 (en) | Battery cover plate, battery cell, and battery pack | |
CN214604448U (en) | Vacuum adsorption carrier module | |
CN212509493U (en) | A kind of sealing structure and equipment with sealing structure | |
CN221945434U (en) | An immersion pressure sensor | |
JP4224224B2 (en) | Converter case structure | |
CN102183333B (en) | A capacitive pressure sensor containing through-silicon holes and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |