CN114336282B - GaN-based vertical cavity surface emitting laser with conductive DBR structure and manufacturing method thereof - Google Patents
GaN-based vertical cavity surface emitting laser with conductive DBR structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN114336282B CN114336282B CN202011078799.8A CN202011078799A CN114336282B CN 114336282 B CN114336282 B CN 114336282B CN 202011078799 A CN202011078799 A CN 202011078799A CN 114336282 B CN114336282 B CN 114336282B
- Authority
- CN
- China
- Prior art keywords
- semiconductor layer
- dbr structure
- dbr
- gan
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000004065 semiconductor Substances 0.000 claims abstract description 114
- 238000000034 method Methods 0.000 claims abstract description 62
- 230000008569 process Effects 0.000 claims abstract description 46
- 230000015556 catabolic process Effects 0.000 claims abstract description 39
- 238000012545 processing Methods 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 53
- 239000002184 metal Substances 0.000 claims description 53
- 239000000758 substrate Substances 0.000 claims description 50
- 150000004767 nitrides Chemical class 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 22
- 230000005684 electric field Effects 0.000 claims description 19
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 8
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 229910052682 stishovite Inorganic materials 0.000 claims description 5
- 229910052905 tridymite Inorganic materials 0.000 claims description 5
- 238000002513 implantation Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 18
- 239000007924 injection Substances 0.000 abstract description 18
- 238000002360 preparation method Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 127
- 238000002310 reflectometry Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 229910052594 sapphire Inorganic materials 0.000 description 8
- 239000010980 sapphire Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000000313 electron-beam-induced deposition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 241000155258 Plebejus glandon Species 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及一种GaN基垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL),特别是涉及一种具有导电DBR结构的GaN基垂直腔面发射激光器及其制作方法。The present application relates to a GaN-based vertical-cavity surface-emitting laser (VCSEL), and in particular to a GaN-based vertical-cavity surface-emitting laser with a conductive DBR structure and a manufacturing method thereof.
背景技术Background technique
基于Ⅲ族氮化物材料的半导体激光器因效率高,损耗低,体积小,寿命长,重量轻等优点受到普遍关注。传统的边发射激光器基于垂直于薄膜表面的谐振腔产生光增益,是激光器的主流结构。相比于边发射激光器,GaN基垂直腔面发射激光器(Vertical-CavitySurface-Emitting Laser,VCSEL)则具有有源区体积小、易于实现单纵模发光、激射阈值低、发散角小、与光纤及其他光学元件耦合效率高等优点;此外VCSEL激光器可以实现高速调制,能够应用于长距离、高速率的光纤通信系统。基于这些特点,VCSEL器件在显示器、生物传感、光通信等领域具有十分巨大的应用前景。Semiconductor lasers based on group III nitride materials have attracted widespread attention due to their high efficiency, low loss, small size, long life, and light weight. Traditional edge-emitting lasers generate optical gain based on a resonant cavity perpendicular to the film surface and are the mainstream structure of lasers. Compared with edge-emitting lasers, GaN-based vertical-cavity surface-emitting lasers (VCSELs) have the advantages of small active area, easy single longitudinal mode luminescence, low lasing threshold, small divergence angle, and high coupling efficiency with optical fibers and other optical components; in addition, VCSEL lasers can achieve high-speed modulation and can be used in long-distance, high-speed fiber-optic communication systems. Based on these characteristics, VCSEL devices have great application prospects in the fields of displays, biosensors, optical communications, etc.
自1996年Redwing等人首次成功制备了光泵浦的GaN基VCSEL以来,发光在可见波段的VCSEL进入人们的视野。有研究者利用键合及衬底激光剥离技术,首次成功制备了室温下连续波长电注入式GaN基双介质布拉格反射镜(DBR)的VCSEL,阈值电流7mA,发光波长约414nm。有研究者通过优化蓝宝石衬底的激光剥离工艺,优化增益区设计和高反射率介质DBR的制作工艺,研制电注入式GaN基VCSEL,并在室温光泵条件下实现激射,发光波长449.5nm,阈值6.5mJ/cm2。对于已报道的GaN VCSEL,技术难点是获得高反射率的反射镜。其中上反射镜一般采用工艺较成熟的介质DBR,如SiO2/HfO2等折射系数差值较大的材料周期性交替生长,而下反射镜的材料则介质DBR和氮化物DBR均可采用。例如,采用AlN/GaN外延薄膜作为下DBR,可以避免芯片倒装工艺带来的良率和成本问题,但由于AlN/GaN界面之间存在严重的晶格失配和热失配,因此氮化物DBR的晶体质量不高,而且AlN/GaN的折射系数差别较小,要想实现较高的反射率必须生长周期数较多的DBR,进一步增大了外延困难程度,提高了薄膜开裂的风险。如采用介质DBR作为下DBR,由于氮化物有源层无法直接在介质材料上外延生长,因此必须采用键合及外延层激光剥离技术制备倒装芯片,由此制备双介质的GaN VCSEL。Since Redwing et al. successfully prepared the optically pumped GaN-based VCSEL for the first time in 1996, VCSELs emitting in the visible band have entered people's field of vision. Some researchers have successfully prepared a continuous wavelength electrically injected GaN-based dual dielectric Bragg reflector (DBR) VCSEL at room temperature for the first time using bonding and substrate laser lift-off technology, with a threshold current of 7mA and a light emission wavelength of about 414nm. Some researchers have developed an electrically injected GaN-based VCSEL by optimizing the laser lift-off process of the sapphire substrate, optimizing the gain zone design and the manufacturing process of the high-reflectivity dielectric DBR, and achieved lasing under room temperature optical pumping conditions, with a light emission wavelength of 449.5nm and a threshold of 6.5mJ/ cm2 . For the reported GaN VCSELs, the technical difficulty is to obtain a high-reflectivity reflector. The upper reflector generally uses a relatively mature dielectric DBR, such as SiO2 / HfO2 , which is grown periodically and alternately with materials with a large refractive index difference, while the material of the lower reflector can be both dielectric DBR and nitride DBR. For example, using AlN/GaN epitaxial film as the lower DBR can avoid the yield and cost issues caused by the chip flip-chip process. However, due to the serious lattice mismatch and thermal mismatch between the AlN/GaN interface, the crystal quality of the nitride DBR is not high, and the difference in the refractive index of AlN/GaN is small. In order to achieve a higher reflectivity, a DBR with a large number of growth cycles must be grown, which further increases the difficulty of epitaxy and the risk of film cracking. If a dielectric DBR is used as the lower DBR, since the nitride active layer cannot be directly epitaxially grown on the dielectric material, bonding and epitaxial layer laser lift-off technology must be used to prepare a flip chip, thereby preparing a dual-dielectric GaN VCSEL.
无论采用氮化物DBR还是介质DBR,其导电性均较差,因此无法直接通过DBR进行电流的传输和扩展,只能通过刻蚀工艺在侧边形成台阶结构,并沉积欧姆接触电极。这往往会带来多个问题,例如:易出现电流拥堵效应,器件稳定性较低、易于老化,以及制备工艺复杂,成本高,良率低等。Whether using nitride DBR or dielectric DBR, its conductivity is poor, so it is impossible to directly transmit and expand current through DBR. It can only form a step structure on the side through the etching process and deposit an ohmic contact electrode. This often brings multiple problems, such as: easy to appear current congestion effect, low device stability, easy aging, complex preparation process, high cost, low yield, etc.
为了缓解这类问题,一种解决方案是开发具有高导电特性的DBR,从而制备垂直结构VCSEL器件,改善电流拥堵效应,提高电流密度,降低激射阈值。有研究人员提出采用透明导电材料ITO或者TiN交替组成以提供反射,并基于刻蚀技术在DBR中制备通孔。除了采用透明导电层作为导电DBR材料,也有有研究人员采用多孔导电的GaN DBR,其中DBR采用电化学腐蚀,形成高孔洞率的多孔GaN和低孔洞率的多孔GaN交替堆叠的多周期DBR结构,制备了具有多孔GaN导电DBR结构的GaN基VCSEL。In order to alleviate such problems, one solution is to develop a DBR with high conductivity to prepare vertical structure VCSEL devices, improve current congestion effects, increase current density, and reduce the lasing threshold. Some researchers have proposed using transparent conductive materials ITO or TiN to provide reflections, and to prepare through holes in the DBR based on etching technology. In addition to using transparent conductive layers as conductive DBR materials, some researchers have also used porous conductive GaN DBRs, in which the DBRs are electrochemically etched to form a multi-period DBR structure in which porous GaN with high porosity and porous GaN with low porosity are alternately stacked, and a GaN-based VCSEL with a porous GaN conductive DBR structure is prepared.
制备高折射系数差、高晶体质量的导电DBR是获得高功率、低阈值,大电流注入的GaN基VCSEL器件的关键。透明导电薄膜(ITO等)制备导电DBR虽然工艺简单可行,然而实际操作中实现大的折射率差较为困难,若想获得较高反射率的DBR,需要生长相当层数的透明导电层,经济及时间成本较大;采用多孔GaN制备导电DBR结构,同样也需要生长较多层数才可以获得较高的反射率,而且多孔GaN采用的电化学腐蚀,很难精准控制每一层GaN的折射率,导致器件整体反射率降低,工艺稳定性有待提高,影响器件发光效率。The key to obtain high-power, low-threshold, and high-current-injection GaN-based VCSEL devices is to prepare conductive DBRs with high refractive index difference and high crystal quality. Although the process of preparing conductive DBRs with transparent conductive films (such as ITO) is simple and feasible, it is difficult to achieve a large refractive index difference in actual operation. If you want to obtain a DBR with a higher reflectivity, you need to grow a considerable number of transparent conductive layers, which is economically and time-consuming. The use of porous GaN to prepare conductive DBR structures also requires the growth of more layers to obtain a higher reflectivity. In addition, the electrochemical corrosion used in porous GaN makes it difficult to accurately control the refractive index of each layer of GaN, resulting in a decrease in the overall reflectivity of the device. The process stability needs to be improved, which affects the luminous efficiency of the device.
发明内容Summary of the invention
本申请的目的在于提供一种具有导电DBR结构的GaN基垂直腔面发射激光器及其制作方法,以克服现有技术中的不足。The purpose of the present application is to provide a GaN-based vertical cavity surface emitting laser with a conductive DBR structure and a manufacturing method thereof, so as to overcome the deficiencies in the prior art.
为实现上述目的,本申请提供如下技术方案:To achieve the above objectives, this application provides the following technical solutions:
本申请实施例提供了一种具有导电DBR结构的GaN基垂直腔面发射激光器,其包括第一半导体层、第二半导体层和设置在第一半导体层、第二半导体层之间的有源层,所述第一半导体层、第二半导体层分别与第一DBR结构、第二DBR结构连接,所述第二DBR结构为导电DBR结构,所述导电DBR结构是采用电学击穿工艺对介质DBR结构进行处理后形成,所述第一半导体层还与第一电极电连接;所述第一半导体层、第二半导体层中的任一者为n型半导体层,另一者为p型半导体层。An embodiment of the present application provides a GaN-based vertical cavity surface emitting laser with a conductive DBR structure, which includes a first semiconductor layer, a second semiconductor layer and an active layer arranged between the first semiconductor layer and the second semiconductor layer, the first semiconductor layer and the second semiconductor layer are respectively connected to the first DBR structure and the second DBR structure, the second DBR structure is a conductive DBR structure, the conductive DBR structure is formed by processing a dielectric DBR structure using an electrical breakdown process, and the first semiconductor layer is also electrically connected to a first electrode; either the first semiconductor layer or the second semiconductor layer is an n-type semiconductor layer, and the other is a p-type semiconductor layer.
在一些实施方式中,所述第二DBR结构与导电衬底键合,所述导电衬底至少用作第二电极。In some embodiments, the second DBR structure is bonded to a conductive substrate, which serves as at least a second electrode.
在一些实施方式中,所述的GaN基垂直腔面发射激光器包括沿指定方向依次设置的衬底、第一DBR结构、第一半导体层、有源层、第二半导体层和第二DBR结构,所述第一半导体层、第二DBR结构分别与第一电极、第二电极电性结合。In some embodiments, the GaN-based vertical cavity surface emitting laser includes a substrate, a first DBR structure, a first semiconductor layer, an active layer, a second semiconductor layer and a second DBR structure arranged in sequence along a specified direction, and the first semiconductor layer and the second DBR structure are electrically combined with a first electrode and a second electrode, respectively.
本申请实施例还提供了一种具有导电DBR结构的GaN基垂直腔面发射激光器的制作方法,其包括:The embodiment of the present application also provides a method for manufacturing a GaN-based vertical cavity surface emitting laser having a conductive DBR structure, which comprises:
依次生长形成第一半导体层、有源层和第二半导体层;sequentially growing and forming a first semiconductor layer, an active layer, and a second semiconductor layer;
在所述第二半导体层上生长介质DBR结构,并通过电学击穿工艺在该介质DBR结构中形成导电通道,获得导电的第二DBR结构,以及,将所述第二DBR结构与导电衬底键合,所述导电衬底至少用作第二电极;Growing a dielectric DBR structure on the second semiconductor layer, and forming a conductive channel in the dielectric DBR structure by an electrical breakdown process to obtain a conductive second DBR structure, and bonding the second DBR structure to a conductive substrate, wherein the conductive substrate is at least used as a second electrode;
在第一半导体层上生长第一DBR结构,以及,在所述第一半导体层上设置第一电极。A first DBR structure is grown on a first semiconductor layer, and a first electrode is disposed on the first semiconductor layer.
本申请实施例还提供了一种具有导电DBR结构的GaN基垂直腔面发射激光器的制作方法,其包括:The embodiment of the present application also provides a method for manufacturing a GaN-based vertical cavity surface emitting laser having a conductive DBR structure, which comprises:
依次生长形成氮化物DBR结构、第一半导体层、有源层、第二半导体层和介质DBR结构,所述氮化物DBR结构用作第一DBR结构;Growing a nitride DBR structure, a first semiconductor layer, an active layer, a second semiconductor layer and a dielectric DBR structure in sequence, wherein the nitride DBR structure is used as a first DBR structure;
通过电学击穿工艺在介质DBR结构中形成导电通道,获得导电的第二DBR结构;在所述第一半导体层、第二DBR结构上分别设置第一电极、第二电极。A conductive channel is formed in the dielectric DBR structure through an electrical breakdown process to obtain a conductive second DBR structure; a first electrode and a second electrode are respectively arranged on the first semiconductor layer and the second DBR structure.
在一些实施方式中,所述电学击穿工艺包括:在所述介质DBR结构上沉积一个以上金属点,之后在所述一个以上金属点与第二半导体层之间施加击穿电压,使所述介质DBR结构内形成导电通道,从而获得导电DBR结构。In some embodiments, the electrical breakdown process includes: depositing one or more metal dots on the dielectric DBR structure, and then applying a breakdown voltage between the one or more metal dots and the second semiconductor layer to form a conductive channel in the dielectric DBR structure, thereby obtaining a conductive DBR structure.
与现有技术相比,本申请实施例提出的技术方案至少有如下有益效果:Compared with the prior art, the technical solution proposed in the embodiment of the present application has at least the following beneficial effects:
(1)利用电学击穿工艺得到导电DBR,电极和导电DBR直接接触,形成的垂直电路结构避免了p-GaN和电极之间存在的电流拥堵效应,提高电极注入效率,缓解p-GaN的局部焦耳过热,延长器件寿命;(1) The conductive DBR is obtained by the electrical breakdown process. The electrode and the conductive DBR are in direct contact. The vertical circuit structure formed avoids the current congestion effect between p-GaN and the electrode, improves the electrode injection efficiency, alleviates the local Joule overheating of p-GaN, and prolongs the device life;
(2)p型金属接触电极的注入面积为导电DBR的整个面积,注入面积增大,有利于器件在较大电流下工作。(2) The injection area of the p-type metal contact electrode is the entire area of the conductive DBR. The increase in the injection area is beneficial for the device to operate at a larger current.
(3)在采用倒装结构时,器件工作过程中产生的热量可以通过导电衬底散出,散热能力显著增强。(3) When a flip-chip structure is used, the heat generated during the operation of the device can be dissipated through the conductive substrate, and the heat dissipation capacity is significantly enhanced.
(4)在采用倒装结构时,器件中的上、下布拉格反射器均采用氧化物DBR,介质膜之间折射率差较大,可以实现较高反射率;(4) When the flip-chip structure is adopted, the upper and lower Bragg reflectors in the device are both made of oxide DBR, and the refractive index difference between the dielectric films is large, which can achieve a higher reflectivity;
(5)器件制作工艺简单,可控性好,成本低,产品良率高。(5) The device manufacturing process is simple, controllable, low cost and high product yield.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments recorded in the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为现有的一种GaN基VCSEL的结构示意图;FIG1 is a schematic diagram of the structure of an existing GaN-based VCSEL;
图2为本申请一实施例中一种GaN基VCSEL的结构示意图;FIG2 is a schematic structural diagram of a GaN-based VCSEL in one embodiment of the present application;
图3为本申请一实施例中一种GaN基VCSEL的制备工艺原理图;FIG3 is a schematic diagram of a manufacturing process of a GaN-based VCSEL in an embodiment of the present application;
图4为本申请另一实施例中一种GaN基VCSEL的结构示意图;FIG4 is a schematic structural diagram of a GaN-based VCSEL in another embodiment of the present application;
图5为本申请另一实施例中一种GaN基VCSEL的制备工艺原理图;FIG5 is a schematic diagram of a manufacturing process of a GaN-based VCSEL in another embodiment of the present application;
图6是本申请实施例1中一种导电介质DRB在被电学击穿前后的I-V曲线图。FIG6 is an I-V curve diagram of a conductive medium DRB before and after being electrically broken down in Example 1 of the present application.
具体实施方案Specific implementation plan
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。In view of the deficiencies in the prior art, the inventor of this case has proposed the technical solution of this application after long-term research and extensive practice. The technical solution, its implementation process and principle will be further explained as follows.
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present application, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc., indicating the orientation or positional relationship, are based on the orientation or positional relationship shown in the drawings, and are only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the present application. In addition, the terms "first", "second", and "third" are used for descriptive purposes only and cannot be understood as indicating or implying relative importance.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that, unless otherwise clearly specified and limited, the terms "installed", "connected", and "connected" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components. For ordinary technicians in this field, the specific meanings of the above terms in this application can be understood according to specific circumstances.
如前所述,现有的利用具有高导电特性的DBR制备垂直结构VCSEL器件的多种方案均或多或少存在一些缺陷,有鉴于此,本案发明人进行了大量研究,并在此过程中发现,直接通过电击穿方式制备导电介质在理论上可以实现导电DBR结构,进而有望籍此实现垂直结构VCSEL器件,并克服现有技术中的缺陷,然而本领域迄今为止未见相关报道。As mentioned above, the various existing solutions for preparing vertical structure VCSEL devices using DBRs with high conductivity all have some defects to a greater or lesser extent. In view of this, the inventors of this case have conducted a lot of research and found in the process that directly preparing a conductive medium by electrical breakdown can theoretically realize a conductive DBR structure, thereby hopefully realizing a vertical structure VCSEL device and overcoming the defects in the prior art. However, no relevant reports have been found in the field so far.
尽管有一些研究人员曾采用电学击穿方式获得导电结构,并将之应用于LED中。例如,有研究人员在LED顶部沉积较薄(8nm)的AlN在LED p-AlGaN顶部,并结合透明导电薄膜ITO进行电学击穿,从而得到一种新型的AlN/ITO透明导电层,有利于将产生的光子从顶部进行提取,提高LED的光子提取效率。又例如,有研究人员在40nm的AlN表面沉积Ni金属,通过电学击穿制备了一种导电的Ni/AlN全方向反射镜结构(ODR),并进一步沉积高紫外反射率的金属铝,将LED产生的光子进行反射,从衬底部位进行提取。然而,这些工作的根本出发点在于提高LED的光子提取效率,即通过在接触电阻和光子反射率(或透射率)之间形成平衡,综合提升LED器件的发光功率,其无助于解决现有VCSEL器件中存在的技术问题。Although some researchers have used electrical breakdown to obtain conductive structures and applied them to LEDs. For example, some researchers deposited a thinner (8nm) AlN on the top of the LED p-AlGaN, and combined it with a transparent conductive film ITO for electrical breakdown, thereby obtaining a new type of AlN/ITO transparent conductive layer, which is conducive to extracting the generated photons from the top and improving the photon extraction efficiency of the LED. For another example, some researchers deposited Ni metal on the surface of 40nm AlN, prepared a conductive Ni/AlN omnidirectional reflector structure (ODR) by electrical breakdown, and further deposited metal aluminum with high ultraviolet reflectivity to reflect the photons generated by the LED and extract them from the substrate. However, the fundamental starting point of these works is to improve the photon extraction efficiency of the LED, that is, by forming a balance between contact resistance and photon reflectivity (or transmittance), comprehensively improving the luminous power of the LED device, which does not help to solve the technical problems existing in existing VCSEL devices.
并且,考虑到LED与VCSEL在结构及工作原理等方面的显著差异,前述适用于LED的方案也无法直接在GaN基VCSEL器件的制备工艺中应用。例如,对于LED来说,需要被电学击穿的大多是单层或较薄的AlN或氧化物薄膜,并不需要施加很高的电压。而VCSEL中的DBR厚度通常较大,传统方法并不能实现电学击穿。又例如,LED的芯片面积较大,而VCSEL的增益区域则较小(10微米左右)。在制备VCSEL器件用的导电DBR时,必须保证导电通道的均匀性,因此需要对电场施加的速度、频率予以调整(例如,电场采用正负交变电场,振幅从5V至50V逐渐增大,正负电压施加的频率为1Hz-100Hz,电压振幅的增大速率为0.1V/s-10V/s之间)。此外,相较于LED,VCSEL需要的工作电流密度更大(kA/cm2量级),因此对于电流拥堵效应更为敏感。Moreover, considering the significant differences between LED and VCSEL in structure and working principle, the aforementioned scheme applicable to LED cannot be directly applied in the preparation process of GaN-based VCSEL devices. For example, for LED, most of the layers that need to be electrically broken down are single-layer or thin AlN or oxide films, and it is not necessary to apply a very high voltage. However, the thickness of the DBR in VCSEL is usually large, and the traditional method cannot achieve electrical breakdown. For another example, the chip area of LED is large, while the gain area of VCSEL is small (about 10 microns). When preparing the conductive DBR for VCSEL devices, the uniformity of the conductive channel must be ensured, so the speed and frequency of the electric field application need to be adjusted (for example, the electric field adopts a positive and negative alternating electric field, the amplitude gradually increases from 5V to 50V, the frequency of the positive and negative voltage application is 1Hz-100Hz, and the rate of increase of the voltage amplitude is between 0.1V/s-10V/s). In addition, compared with LED, VCSEL requires a larger working current density (kA/cm2 level), so it is more sensitive to the current congestion effect.
本案发明人在前述发现的基础上,通过进一步的研究和大量实践,得以提出本申请的技术方案,如下将予以更为详细的解释说明。Based on the above findings, the inventor of this case, through further research and extensive practice, was able to propose the technical solution of this application, which will be explained in more detail below.
本申请实施例的一个方面提供的一种具有导电DBR结构的GaN基垂直腔面发射激光器包括第一半导体层、第二半导体层和设置在第一半导体层、第二半导体层之间的有源层,所述第一半导体层、第二半导体层分别与第一DBR结构、第二DBR结构连接,所述第二DBR结构为导电DBR结构,所述第一半导体层还与第一电极电连接;所述第一半导体层、第二半导体层中的任一者为n型半导体层,另一者为p型半导体层。One aspect of an embodiment of the present application provides a GaN-based vertical cavity surface emitting laser with a conductive DBR structure, including a first semiconductor layer, a second semiconductor layer and an active layer arranged between the first semiconductor layer and the second semiconductor layer, the first semiconductor layer and the second semiconductor layer are respectively connected to the first DBR structure and the second DBR structure, the second DBR structure is a conductive DBR structure, and the first semiconductor layer is also electrically connected to the first electrode; either the first semiconductor layer or the second semiconductor layer is an n-type semiconductor layer, and the other is a p-type semiconductor layer.
进一步的,所述导电DBR结构是采用电学击穿工艺对介质DBR结构进行处理后形成,因此可以被定义为导电介质DBR结构。Furthermore, the conductive DBR structure is formed by processing the dielectric DBR structure using an electrical breakdown process, and thus can be defined as a conductive dielectric DBR structure.
在一些实施方式中,所述第二DBR结构与导电衬底键合,所述导电衬底至少用作第二电极。In some embodiments, the second DBR structure is bonded to a conductive substrate, which serves as at least a second electrode.
进一步的,所述导电衬底包括表面镜面抛光的金属片(如Cu、Al、Ag片等)、透明导电薄膜(如ITO等)或底部沉积有欧姆电极的高掺杂浓度Si片等等,且不限于此。Furthermore, the conductive substrate includes a metal sheet with a mirror-polished surface (such as Cu, Al, Ag sheet, etc.), a transparent conductive film (such as ITO, etc.), or a high-doping concentration Si sheet with an ohmic electrode deposited on the bottom, etc., but is not limited thereto.
进一步的,用作p型接触电极的导电衬底包括但不限于金刚石、石墨、Si、SiC等具有良好导电特性的材料。Furthermore, the conductive substrate used as the p-type contact electrode includes, but is not limited to, materials with good conductive properties such as diamond, graphite, Si, and SiC.
在一些实施方式中,所述GaN基垂直腔面发射激光器包括沿指定方向依次设置的导电衬底、第二DBR结构、第二半导体层、有源层、第一半导体层和第一DBR结构,所述第一半导体层与第一电极电性结合。在这些实施方式中,所述GaN基垂直腔面发射激光器可以被认为是倒装结构的。In some embodiments, the GaN-based vertical cavity surface emitting laser includes a conductive substrate, a second DBR structure, a second semiconductor layer, an active layer, a first semiconductor layer and a first DBR structure arranged in sequence along a specified direction, and the first semiconductor layer is electrically combined with a first electrode. In these embodiments, the GaN-based vertical cavity surface emitting laser can be considered as a flip-chip structure.
进一步的,所述第一半导体层与第一电极形成欧姆接触。Furthermore, the first semiconductor layer forms an ohmic contact with the first electrode.
进一步的,所述第二DBR结构远离第二半导体层的一端面整面与导电衬底键合。Furthermore, the entire surface of one end surface of the second DBR structure away from the second semiconductor layer is bonded to the conductive substrate.
在前述的实施方式中,所述第一DBR结构可以采用本领域已知的多种类型的DBR,例如氮化物DBR、氧化物DBR等。In the aforementioned embodiment, the first DBR structure may adopt various types of DBRs known in the art, such as nitride DBR, oxide DBR, etc.
进一步的,所述氮化物DBR的材质包括AlN、GaN、InGaN、AlGaN中的任意一种或多种组合,且不限于此。Furthermore, the material of the nitride DBR includes any one or more combinations of AlN, GaN, InGaN, and AlGaN, but is not limited thereto.
进一步的,所述氧化物DBR的材质包括SiO2、HfO2、TiO2、ZnO中的任意一种或多种的组合,且不限于此。Furthermore, the material of the oxide DBR includes any one or more combinations of SiO 2 , HfO 2 , TiO 2 , and ZnO, but is not limited thereto.
在一些实施方式中,所述GaN基垂直腔面发射激光器包括沿指定方向依次设置的衬底、第一DBR结构、第一半导体层、有源层、第二半导体层和第二DBR结构,所述第一半导体层、第二DBR结构分别与第一电极、第二电极电性结合。在这些实施方式中,所述GaN基垂直腔面发射激光器可以被认为是正装结构的。In some embodiments, the GaN-based vertical cavity surface emitting laser includes a substrate, a first DBR structure, a first semiconductor layer, an active layer, a second semiconductor layer, and a second DBR structure arranged in sequence along a specified direction, and the first semiconductor layer and the second DBR structure are electrically combined with a first electrode and a second electrode, respectively. In these embodiments, the GaN-based vertical cavity surface emitting laser can be considered to be a front-mounted structure.
进一步的,所述第一半导体层与第一电极形成欧姆接触。Furthermore, the first semiconductor layer forms an ohmic contact with the first electrode.
进一步的,所述衬底可以是蓝宝石衬底、Si衬底、SiC衬底、GaN衬底等,且不限于此。Furthermore, the substrate may be a sapphire substrate, a Si substrate, a SiC substrate, a GaN substrate, etc., but is not limited thereto.
进一步的,所述第二电极的注入面积为所述第二DBR结构远离第二半导体层的一端面的整个面积。Furthermore, the injection area of the second electrode is the entire area of an end surface of the second DBR structure away from the second semiconductor layer.
进一步的,所述第二电极直接将电流注入到光学限制孔内。Furthermore, the second electrode directly injects current into the optical confinement hole.
在这些实施方式中,所述第一DBR结构采用氮化物DBR,其材质包括但不限于AlN、GaN、InGaN、AlGaN等氮化物中的任意一种或多种组合。In these embodiments, the first DBR structure adopts a nitride DBR, and its material includes but is not limited to any one or more combinations of nitrides such as AlN, GaN, InGaN, and AlGaN.
在本说明书中,前述的指定方向可以是从上到下、从下到上、从左到右、从右到左、从前到后或从后到前,等等。In this specification, the aforementioned designated direction may be from top to bottom, from bottom to top, from left to right, from right to left, from front to back or from back to front, and so on.
在一些实施方式中,所述有源层为量子阱有源区,其材质可以是本领域已知的类型,例如InGaN/GaN多量子阱等,但不限于此。In some embodiments, the active layer is a quantum well active region, and its material can be a type known in the art, such as InGaN/GaN multiple quantum wells, etc., but is not limited thereto.
在一些实施方式中,用于形成所述第二DBR结构的介质DBR结构包括氧化物DBR,其材质包括但不限于SiO2、HfO2、TiO2、ZnO等氧化物中的任意一种或多种的组合。In some embodiments, the dielectric DBR structure used to form the second DBR structure includes an oxide DBR, and its material includes but is not limited to any one or more combinations of oxides such as SiO 2 , HfO 2 , TiO 2 , and ZnO.
在一些实施方式中,所述第一半导体层为n型半导体层,所述第二半导体层为p型半导体层。In some embodiments, the first semiconductor layer is an n-type semiconductor layer, and the second semiconductor layer is a p-type semiconductor layer.
在一些实施方式中,所述第一电极可以被定义为n型接触电极或n型金属接触电极,所述第二电极可以被定义为p型接触电极或p型金属接触电极。In some embodiments, the first electrode may be defined as an n-type contact electrode or an n-type metal contact electrode, and the second electrode may be defined as a p-type contact electrode or a p-type metal contact electrode.
此外,依据实际应用的需求,本申请以上实施例提供的GaN基垂直腔面发射激光器还可以包含本领域常用的其它结构层,例如电子阻挡层、电流限制层、电流扩展层等。In addition, according to the needs of actual applications, the GaN-based vertical cavity surface emitting laser provided in the above embodiments of the present application may also include other structural layers commonly used in the art, such as an electron blocking layer, a current limiting layer, a current spreading layer, etc.
对于GaN基VCSEL器件来说,其较之其它VCSEL器件,工作电流密度更大,电流拥堵效应对其性能影响更大。本申请以上的一些实施例直接将导电DBR结构制备于导电衬底上,可以避免横向结构的等离子体台面刻蚀这一步骤,省去底电极的制备过程,在保证介质DBR高反射率的同时,大大简化了器件的工艺步骤,此外还大幅增加了电流注入面积,有效缓解了环形电极导致的电流拥堵效应,提高电流注入效率。For GaN-based VCSEL devices, compared with other VCSEL devices, the operating current density is higher, and the current congestion effect has a greater impact on its performance. Some of the above embodiments of the present application directly prepare the conductive DBR structure on the conductive substrate, which can avoid the plasma table etching step of the lateral structure and save the preparation process of the bottom electrode. While ensuring the high reflectivity of the dielectric DBR, the process steps of the device are greatly simplified. In addition, the current injection area is greatly increased, the current congestion effect caused by the ring electrode is effectively alleviated, and the current injection efficiency is improved.
本申请实施例的另一个方面提供的一种制作所述GaN基垂直腔面发射激光器的方法包括:Another aspect of an embodiment of the present application provides a method for manufacturing the GaN-based vertical cavity surface emitting laser, comprising:
依次生长形成第一半导体层、有源层和第二半导体层;sequentially growing and forming a first semiconductor layer, an active layer, and a second semiconductor layer;
在所述第二半导体层上生长介质DBR结构,并通过电学击穿工艺在该介质DBR结构中形成导电通道,获得导电的第二DBR结构,以及,将所述第二DBR结构与导电衬底键合,所述导电衬底至少用作第二电极;Growing a dielectric DBR structure on the second semiconductor layer, and forming a conductive channel in the dielectric DBR structure by an electrical breakdown process to obtain a conductive second DBR structure, and bonding the second DBR structure to a conductive substrate, wherein the conductive substrate is at least used as a second electrode;
在第一半导体层上生长第一DBR结构,以及,在所述第一半导体层上设置第一电极。A first DBR structure is grown on a first semiconductor layer, and a first electrode is disposed on the first semiconductor layer.
进一步的,所述第一DBR结构可以采用本领域已知的多种类型的DBR,例如氮化物DBR、氧化物DBR等。其中典型氮化物DBR的材质包括但不限于AlN、GaN、InGaN、AlGaN中的任意一种或多种组合。其中典型氧化物DBR的材质包括但不限于SiO2、HfO2、TiO2、ZnO中的任意一种或多种的组合。Furthermore, the first DBR structure may adopt various types of DBRs known in the art, such as nitride DBR, oxide DBR, etc. Typical nitride DBR materials include but are not limited to any one or more combinations of AlN, GaN, InGaN, AlGaN. Typical oxide DBR materials include but are not limited to any one or more combinations of SiO 2 , HfO 2 , TiO 2 , ZnO.
进一步的,用于形成第二DBR结构的所述介质DBR结构包括氧化物DBR,其材质包括但不限于SiO2、HfO2、TiO2、ZnO等氧化物中的任意一种或多种的组合。Furthermore, the dielectric DBR structure used to form the second DBR structure includes an oxide DBR, and its material includes but is not limited to any one or more combinations of oxides such as SiO 2 , HfO 2 , TiO 2 , and ZnO.
本申请实施例的另一个方面提供的一种制作所述GaN基垂直腔面发射激光器的方法包括:Another aspect of an embodiment of the present application provides a method for manufacturing the GaN-based vertical cavity surface emitting laser, comprising:
依次生长形成氮化物DBR结构、第一半导体层、有源层、第二半导体层和介质DBR结构,所述氮化物DBR结构用作第一DBR结构;Growing a nitride DBR structure, a first semiconductor layer, an active layer, a second semiconductor layer and a dielectric DBR structure in sequence, wherein the nitride DBR structure is used as a first DBR structure;
通过电学击穿工艺在介质DBR结构中形成导电通道,获得导电的第二DBR结构;在所述第一半导体层、第二DBR结构上分别设置第一电极、第二电极。A conductive channel is formed in the dielectric DBR structure through an electrical breakdown process to obtain a conductive second DBR structure; a first electrode and a second electrode are respectively arranged on the first semiconductor layer and the second DBR structure.
进一步的,所述氮化物DBR结构的材质包括但不限于AlN、GaN、InGaN、AlGaN中的任意一种或多种组合。Furthermore, the material of the nitride DBR structure includes but is not limited to any one or more combinations of AlN, GaN, InGaN, and AlGaN.
进一步的,所述介质DBR结构的材质包括但不限于SiO2、HfO2、TiO2、ZnO等氧化物中的任意一种或多种的组合。Furthermore, the material of the dielectric DBR structure includes but is not limited to any one or more combinations of oxides such as SiO 2 , HfO 2 , TiO 2 , and ZnO.
在一些实施方式中,所述电学击穿工艺包括:在所述介质DBR结构上沉积一个以上金属点,之后在所述一个以上金属点与第二半导体层之间施加击穿电压,使所述介质DBR结构内形成导电通道,从而获得导电的第二DBR结构。In some embodiments, the electrical breakdown process includes: depositing one or more metal dots on the dielectric DBR structure, and then applying a breakdown voltage between the one or more metal dots and the second semiconductor layer to form a conductive channel in the dielectric DBR structure, thereby obtaining a conductive second DBR structure.
进一步的,所述电学击穿工艺的条件包括:电场采用正负交变电场,振幅从5V至50V逐渐增大,正负电压施加的频率为1Hz-100Hz,电压振幅的增大速率为0.1V/s-10V/s之间。Furthermore, the conditions of the electrical breakdown process include: the electric field adopts a positive and negative alternating electric field, the amplitude gradually increases from 5V to 50V, the frequency of applying positive and negative voltages is 1Hz-100Hz, and the rate of increase of the voltage amplitude is between 0.1V/s-10V/s.
在一些实施方式中,所述金属点的材质包括但不仅限于Cr/Al、Cr/Ni、Al、Ni、Ag、Ti/Al/Ni/Au等金属体系。In some embodiments, the material of the metal dots includes but is not limited to metal systems such as Cr/Al, Cr/Ni, Al, Ni, Ag, Ti/Al/Ni/Au, etc.
在一些实施方式中,所述金属点为多个,并在所述介质DBR结构上有序排列。In some embodiments, the metal dots are in plurality and are arranged in order on the dielectric DBR structure.
在本申请的以上实施方式中,介质DBR,特别是氧化物DBR的可导通特性是通过在介质DBR上制备有序排列的金属点,施加一定电压使介质层实现电击穿,在局部击穿过程中,负极附近的金属离子被还原为金属导电细丝,和/或,正极附近的氧化物中的阴离子被氧化从而留下阴离子空位,形成贯穿介质DBR的导电通道,从而使介质DBR被转化为导电DBR。In the above embodiments of the present application, the conductive property of the dielectric DBR, especially the oxide DBR, is achieved by preparing orderly arranged metal dots on the dielectric DBR, applying a certain voltage to achieve electrical breakdown of the dielectric layer, and in the local breakdown process, the metal ions near the negative electrode are reduced to metal conductive filaments, and/or the anions in the oxide near the positive electrode are oxidized to leave anion vacancies, forming a conductive channel running through the dielectric DBR, thereby converting the dielectric DBR into a conductive DBR.
通过采用本申请实施例提供的前述方案,不仅可以提高GaN基VCSEL器件的光子提取效率,尤为重要的是,通过导电DBR形成垂直结构VCSEL,可以很好的消除电流拥堵效应,避免第二DBR结构与电极接触处出现电流崩塌,以及,可以使第二电极的注入面积为第二DBR结构远离第二半导体层的一端面的整个面积,因此电极面积远大于现有VCSEL器件中的相应电极,更容易达到VCSEL器件的受激辐射阈值。By adopting the above-mentioned scheme provided in the embodiment of the present application, not only the photon extraction efficiency of the GaN-based VCSEL device can be improved, but more importantly, by forming a vertical structure VCSEL through a conductive DBR, the current congestion effect can be well eliminated, and the current collapse at the contact between the second DBR structure and the electrode can be avoided. In addition, the injection area of the second electrode can be the entire area of the end surface of the second DBR structure away from the second semiconductor layer. Therefore, the electrode area is much larger than the corresponding electrode in the existing VCSEL device, and it is easier to reach the stimulated emission threshold of the VCSEL device.
下面将结合附图,对本申请若干实施例中的技术方案进行详细的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will describe in detail the technical solutions in several embodiments of the present application in conjunction with the accompanying drawings. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.
请参阅图1,现有的一种GaN基VCSEL器件包括衬底1、下DBR结构2、n掺杂-GaN层3(n-GaN层)、量子阱有源区4、p掺杂-GaN层5(p-GaN层)、SiO2电流限制层6、ITO电流扩展层7、上DBR结构8、n型接触电极9、p型接触电极10等。其中,下DBR结构2是外延生长形成的氮化物DBR,上DBR结构8为介质DBR。该GaN基VCSEL器件的缺陷包括:Referring to FIG. 1 , an existing GaN-based VCSEL device includes a substrate 1, a lower DBR structure 2, an n-doped-GaN layer 3 (n-GaN layer), a quantum well active region 4, a p-doped-GaN layer 5 (p-GaN layer), a SiO 2 current limiting layer 6, an ITO current spreading layer 7, an upper DBR structure 8, an n-type contact electrode 9, a p-type contact electrode 10, etc. Among them, the lower DBR structure 2 is a nitride DBR formed by epitaxial growth, and the upper DBR structure 8 is a dielectric DBR. The defects of the GaN-based VCSEL device include:
(1)器件为平面结构,易产生电流拥堵效应,电流输入不均匀;(1) The device has a planar structure, which is prone to current congestion and uneven current input;
(2)电极注入面积有限,器件局部产生过多的焦耳热,不能有效散热,器件结温升高,稳定性下降;(2) The electrode injection area is limited, and excessive Joule heat is generated locally in the device, which cannot effectively dissipate heat, causing the junction temperature of the device to increase and the stability to decrease;
(3)制备工艺复杂,需要沉积SiO2电流限制层、ITO电流扩展层等,降低良率,提高制备成本;(3) The preparation process is complicated and requires the deposition of SiO2 current limiting layer, ITO current expansion layer, etc., which reduces the yield and increases the preparation cost;
(4)局部电流密度大,金属的电迁移在台面边缘处比较严重,加速器件退化。(4) The local current density is large, and the electromigration of metal is more serious at the edge of the mesa, which accelerates device degradation.
针对现有GaN VCSEL器件中因介质DBR的绝缘特性,使金属电极必须沉积在谐振腔以外,导致电流拥堵等问题,本申请实施例提供了一类具有导电介质DBR的VCSEL器件。In view of the problem that in existing GaN VCSEL devices, due to the insulating characteristics of the dielectric DBR, the metal electrode must be deposited outside the resonant cavity, resulting in current congestion and other problems, the embodiments of the present application provide a type of VCSEL device with a conductive dielectric DBR.
请参阅图2,本申请一个实施例中提供的一种具有导电DBR结构的GaN基垂直腔面发射激光器是倒装结构的,其包括从下向上依次设置的导电衬底108、第二DBR结构105(导电DBR)、第二半导体层104、有源层(量子阱有源区103)、第一半导体层102和第一DBR结构101(介质DBR)。Please refer to Figure 2. A GaN-based vertical cavity surface emitting laser with a conductive DBR structure provided in one embodiment of the present application is a flip-chip structure, which includes a conductive substrate 108, a second DBR structure 105 (conductive DBR), a second semiconductor layer 104, an active layer (quantum well active region 103), a first semiconductor layer 102 and a first DBR structure 101 (dielectric DBR) arranged in sequence from bottom to top.
其中,第一半导体层102、第二半导体层104可以分别为n掺杂-GaN层、p掺杂-GaN层。The first semiconductor layer 102 and the second semiconductor layer 104 may be an n-doped GaN layer and a p-doped GaN layer, respectively.
其中,第二DBR结构105远离第二半导体层104的一端面整面通过键合用金属107与导电衬底108键合,该导电衬底108可以视为p型接触电极。The entire surface of one end face of the second DBR structure 105 away from the second semiconductor layer 104 is bonded to a conductive substrate 108 via a bonding metal 107 , and the conductive substrate 108 can be regarded as a p-type contact electrode.
其中,第一半导体层102上设置有n型接触电极109,其与第一半导体层102形成欧姆接触。An n-type contact electrode 109 is disposed on the first semiconductor layer 102 , and forms an ohmic contact with the first semiconductor layer 102 .
该实施例提供的倒装结构VCSEL器件中,通过金属键合工艺,将倒装结构外延层及导电DBR键合到导电衬底上,导电衬底包括表面镜面抛光的Cu、Al、Ag片或底部沉积有欧姆电极的高掺杂浓度Si片。由于采用了垂直芯片结构,不仅可以增大电流注入面积,实现大电流下的电流注入,降低器件激射阈值,还可以缓解传统工艺中电极位于谐振腔之外导致的电流拥堵效应,减轻局部焦耳过热,延长器件寿命。In the flip-chip structure VCSEL device provided in this embodiment, the flip-chip structure epitaxial layer and the conductive DBR are bonded to the conductive substrate through a metal bonding process, and the conductive substrate includes a Cu, Al, Ag sheet with a mirror-polished surface or a high-doping concentration Si sheet with an ohmic electrode deposited on the bottom. Due to the use of a vertical chip structure, not only can the current injection area be increased, current injection under large currents can be achieved, and the device lasing threshold can be reduced, but also the current congestion effect caused by the electrode being located outside the resonant cavity in the traditional process can be alleviated, local Joule overheating can be reduced, and the device life can be extended.
请参阅图3所示,一种制备该倒装结构VCSEL器件的方法包括如下步骤:Referring to FIG. 3 , a method for preparing the flip-chip structure VCSEL device includes the following steps:
(a)首先在衬底100(如蓝宝石、Si、SiC衬底)上外延n-GaN层102、有源层103及p-GaN层104,并在p-GaN层104上生长介质DBR结构105’(可以采用但不限于SiO2、HfO2、TiO2、ZnO等氧化物DBR);(a) First, an n-GaN layer 102, an active layer 103 and a p-GaN layer 104 are epitaxially grown on a substrate 100 (such as a sapphire, Si, or SiC substrate), and a dielectric DBR structure 105' (oxide DBRs such as SiO2 , HfO2 , TiO2 , or ZnO may be used but are not limited thereto) is grown on the p-GaN layer 104;
(b)在介质DBR结构105’上沉积金属点106;(b) depositing metal dots 106 on the dielectric DBR structure 105';
(c)通过电学击穿工艺,将电压施加在p-GaN层104和金属点106之间,使介质DBR结构105’内部形成导电通道,构成导电DBR(可以认为是p-DBR,即,前述第二DBR结构),该电学击穿工艺中,电场采用正负交变电场,振幅从5V至50V逐渐增大,正负电压施加的频率为1Hz-100Hz,电压振幅的增大速率为0.1V/s-10V/s之间;(c) applying voltage between the p-GaN layer 104 and the metal dot 106 through an electrical breakdown process, so that a conductive channel is formed inside the dielectric DBR structure 105' to form a conductive DBR (which can be considered as a p-DBR, that is, the aforementioned second DBR structure). In the electrical breakdown process, the electric field adopts a positive and negative alternating electric field, and the amplitude gradually increases from 5V to 50V. The frequency of applying positive and negative voltages is 1Hz-100Hz, and the rate of increase of the voltage amplitude is between 0.1V/s-10V/s;
(d)去除金属点106;(d) removing the metal point 106;
(e)利用金属键合工艺,在p-DBR表面沉积键合金属107后,将外延层键合到导电衬底8如Cu、Al或Ag片或高掺Si衬底上,导电衬底8作为p型金属接触电极(即前述p型接触电极)的同时,还作为外延层的支撑衬底,再利用衬底激光剥离工艺去除衬底100,或利用研磨抛光或湿法刻蚀工艺去除衬底100;(e) using a metal bonding process, after depositing a bonding metal 107 on the surface of the p-DBR, the epitaxial layer is bonded to a conductive substrate 8 such as a Cu, Al or Ag sheet or a highly doped Si substrate. The conductive substrate 8 serves as a p-type metal contact electrode (i.e., the aforementioned p-type contact electrode) and also as a supporting substrate for the epitaxial layer. The substrate 100 is then removed by a substrate laser lift-off process, or by a grinding, polishing or wet etching process;
(f)在剥离之后的外延层表面即n-GaN层102表面生长上介质DBR结构101(即前述第一DBR结构,可以采用但不限于SiO2、HfO2、TiO2、ZnO等氧化物DBR),并制备n型金属接触电极109(即前述n型接触电极)。(f) A dielectric DBR structure 101 (i.e., the aforementioned first DBR structure, which may be, but not limited to, oxide DBRs such as SiO2 , HfO2 , TiO2 , and ZnO) is grown on the surface of the epitaxial layer after stripping, i.e., the surface of the n-GaN layer 102, and an n-type metal contact electrode 109 (i.e., the aforementioned n-type contact electrode) is prepared.
请参阅图4,本申请另一个实施例中提供的一种具有导电DBR结构的GaN基垂直腔面发射激光器是正装结构的,其包括从下向上依次设置的衬底201、第一DBR结构202(外延的氮化物DBR)、第一半导体层203、有源层204(量子阱有源区)、第二半导体层205和第二DBR结构206(导电DBR)。Please refer to Figure 4. A GaN-based vertical cavity surface emitting laser with a conductive DBR structure provided in another embodiment of the present application is a face-up structure, which includes a substrate 201, a first DBR structure 202 (epitaxial nitride DBR), a first semiconductor layer 203, an active layer 204 (quantum well active region), a second semiconductor layer 205 and a second DBR structure 206 (conductive DBR) arranged in sequence from bottom to top.
其中,第一半导体层203、第二半导体层205可以分别为n掺杂-GaN层(n-GaN层)、p掺杂-GaN层(p-GaN层)。The first semiconductor layer 203 and the second semiconductor layer 205 may be an n-doped GaN layer (n-GaN layer) and a p-doped GaN layer (p-GaN layer), respectively.
其中,第二DBR结构206远离第二半导体层205的一端面整面与p型金属接触电极209(p型接触电极,亦可定义为第二电极)结合。The entire surface of one end of the second DBR structure 206 away from the second semiconductor layer 205 is combined with a p-type metal contact electrode 209 (p-type contact electrode, also defined as a second electrode).
其中,第一半导体层203上设置有n型金属接触电极208(n型接触电极,亦可定义为第一电极),两者形成欧姆接触。An n-type metal contact electrode 208 (n-type contact electrode, also defined as a first electrode) is disposed on the first semiconductor layer 203 , and the two form an ohmic contact.
该实施例提供的正装结构VCSEL器件中,外延的氮化物DBR结构(即前述第一DBR结构)可采用MOCVD法外延的AlN/GaN DBR,而导电DBR结构(即前述第二DBR结构)则采用电学击穿工艺制备形成,p型接触电极可直接加在导电DBR结构之上,同样也可以实现大面积电流注入,解决了环形电极和p-GaN的电流拥堵问题,并且电流直接注入到限制孔中,提高了电流注入效率。In the upright structure VCSEL device provided in this embodiment, the epitaxial nitride DBR structure (i.e., the aforementioned first DBR structure) can adopt an AlN/GaN DBR epitaxially grown by the MOCVD method, while the conductive DBR structure (i.e., the aforementioned second DBR structure) is prepared by an electrical breakdown process, and the p-type contact electrode can be directly added on the conductive DBR structure, and large-area current injection can also be achieved, thereby solving the current congestion problem of the ring electrode and p-GaN, and the current is directly injected into the limiting hole, thereby improving the current injection efficiency.
请参阅图5所示,一种制备该正装结构VCSEL器件的方法包括如下步骤:Referring to FIG. 5 , a method for preparing the upright structure VCSEL device includes the following steps:
(a)首先在衬底201(如蓝宝石、Si、SiC衬底)上外延生长氮化物DBR结构202(即前述第一DBR结构,如III族氮化物DBR结构)、n-GaN层203、量子阱204及p-GaN层205,并在p-GaN层205上生长介质DBR结构206’;(a) First, a nitride DBR structure 202 (i.e., the aforementioned first DBR structure, such as a group III nitride DBR structure), an n-GaN layer 203, a quantum well 204, and a p-GaN layer 205 are epitaxially grown on a substrate 201 (such as a sapphire, Si, or SiC substrate), and a dielectric DBR structure 206′ is grown on the p-GaN layer 205;
(b)在介质DBR结构206’上沉积金属点207;(b) depositing metal dots 207 on the dielectric DBR structure 206';
(c)通过电学击穿工艺,将电压施加在p-GaN层205和金属点207之间,使介质DBR结构206’内部形成导电通道,构成导电DBR结构206(即前述第二DBR结构),该电学击穿工艺中,电场采用正负交变电场,振幅从5V至50V逐渐增大,正负电压施加的频率为1Hz-100Hz,电压振幅的增大速率为0.1V/s-10V/s之间;(c) applying voltage between the p-GaN layer 205 and the metal dot 207 through an electrical breakdown process, so that a conductive channel is formed inside the dielectric DBR structure 206' to form a conductive DBR structure 206 (i.e., the aforementioned second DBR structure). In the electrical breakdown process, the electric field adopts a positive and negative alternating electric field, and the amplitude gradually increases from 5V to 50V. The frequency of applying positive and negative voltages is 1Hz-100Hz, and the rate of increase of the voltage amplitude is between 0.1V/s-10V/s.
(d)去除金属点,并刻蚀形成n型接触电极台面;(d) removing the metal dots and etching to form an n-type contact electrode mesa;
(e)分别在n型接触电极台面、导电DBR结构206上沉积n型接触电极208、p型接触电极209。(e) Depositing an n-type contact electrode 208 and a p-type contact electrode 209 on the n-type contact electrode terrace and the conductive DBR structure 206 respectively.
更为具体的,本申请实施例1提供的一种GaN基垂直腔面发射激光器的制作方法包括:More specifically, a method for manufacturing a GaN-based vertical cavity surface emitting laser provided in Example 1 of the present application includes:
a.基于金属有机化学气相沉积(MOCVD)在蓝宝石衬底上外a延生长蓝光激光器外延薄膜,包括厚度约为531nm的n-GaN(掺杂浓度5×1018cm-3),5对量子阱有源区(In0.21Ga0.79N 3nm/GaN 4nm)、厚度约为20nm的p型Al0.18Ga0.82N电子阻挡层、厚度约为180nm的p-GaN(掺杂浓度8×1017cm-3)。a. Based on metal organic chemical vapor deposition (MOCVD), a blue laser epitaxial film is grown on a sapphire substrate, including n-GaN with a thickness of about 531nm (doping concentration 5×10 18 cm -3 ), 5 pairs of quantum well active regions (In 0.21 Ga 0.79 N 3nm/GaN 4nm), a p-type Al 0.18 Ga 0.82 N electron blocking layer with a thickness of about 20nm, and p-GaN with a thickness of about 180nm (doping concentration 8×10 17 cm -3 ).
b.采用电子束沉积设备(e-beam)交替生长SiO2/HfO2(76nm/53nm)p-氧化物DBR,基于光刻工艺刻蚀出所需的光学限制孔尺寸,同时在p-氧化物DBR和p型GaN表面形成台阶,便于进行电学击穿。b. SiO 2 /HfO 2 (76nm/53nm) p-oxide DBRs are alternately grown using an electron beam deposition device (e-beam), and the required optical confinement hole size is etched based on a photolithography process. At the same time, steps are formed on the surface of the p-oxide DBR and p-type GaN to facilitate electrical breakdown.
c.基于光刻工艺,以光刻胶作掩膜,利用e-beam在p-氧化物上沉积若干金属点Cr/Al,直径约10μm,并用电化学工作站在金属点和p型GaN之间施加电压至该p-氧化物DBR被击穿(其中的电场采用正负交变电场,振幅从5V至50V逐渐增大,正负电压施加的频率为1Hz-100Hz,电压振幅的增大速率为0.1V/s-10V/s之间),之后用HCl溶液去除p-氧化物DBR上方的金属点。其中,该p-氧化物DBR在被击穿前后的电压-电流曲线如图6所示。c. Based on the photolithography process, using photoresist as a mask, using e-beam to deposit several metal dots Cr/Al on the p-oxide, with a diameter of about 10μm, and using an electrochemical workstation to apply voltage between the metal dots and the p-type GaN until the p-oxide DBR is broken down (the electric field uses a positive and negative alternating electric field, the amplitude gradually increases from 5V to 50V, the frequency of positive and negative voltage application is 1Hz-100Hz, and the rate of increase of the voltage amplitude is between 0.1V/s-10V/s), and then HCl solution is used to remove the metal dots above the p-oxide DBR. The voltage-current curve of the p-oxide DBR before and after breakdown is shown in Figure 6.
d.在p-氧化物DBR及衬底上沉积金属(Cr/Ni/Au),并基于键合工艺将p-氧化物DBR与金属完成键合,之后利用激光剥离技术将蓝宝石衬底剥离。d. Deposit metal (Cr/Ni/Au) on the p-oxide DBR and the substrate, and bond the p-oxide DBR to the metal based on a bonding process, and then use laser lift-off technology to lift off the sapphire substrate.
e.利用电子束蒸镀生长氧化物DBR(SiO2/HfO2,76nm/53nm),采用光刻和干法刻蚀相结合,刻穿SiO2/HfO2 DBR,使DBR与n-GaN之间形成台阶结构。用电子束蒸镀设备生长n型金属接触电极Ni/Au,厚度为20nm/100nm。e. Use electron beam evaporation to grow oxide DBR (SiO 2 /HfO 2 , 76nm/53nm), use photolithography and dry etching to etch through the SiO 2 /HfO 2 DBR to form a step structure between the DBR and n-GaN. Use electron beam evaporation equipment to grow n-type metal contact electrodes Ni/Au with a thickness of 20nm/100nm.
更为具体的,本申请实施例2提供的一种GaN基垂直腔面发射激光器的制作方法包括:More specifically, a method for manufacturing a GaN-based vertical cavity surface emitting laser provided in Example 2 of the present application includes:
a.基于金属有机化学气相沉积(MOCVD)在蓝宝石衬底上外延生长蓝光激光器外延薄膜,包括25对AlN/GaN(52nm/46nm)外延DBR、厚度约为890nm的n-GaN(掺杂浓度5×1018cm-3),5对量子阱有源区(In0.21Ga0.79N 3nm/GaN 4nm)、厚度约为20nm的p型Al0.18Ga0.82N电子阻挡层、厚度约为250nm的p-GaN(掺杂浓度8×1017cm-3)。a. Blue laser epitaxial thin films were grown epitaxially on sapphire substrates by metal organic chemical vapor deposition (MOCVD), including 25 pairs of AlN/GaN (52nm/46nm) epitaxial DBRs, n-GaN with a thickness of about 890nm (doping concentration 5×10 18 cm -3 ), 5 pairs of quantum well active regions (In 0.21 Ga 0.79 N 3nm/GaN 4nm), a p-type Al 0.18 Ga 0.82 N electron blocking layer with a thickness of about 20nm, and p-GaN with a thickness of about 250nm (doping concentration 8×10 17 cm -3 ).
b.采用电子束沉积设备(e-beam)交替生长TiO2/ZnO(76nm/53nm)p-氧化物DBR,基于光刻工艺,刻蚀出所需的光学限制孔尺寸,同时在p-氧化物DBR和p型GaN表面形成台阶,便于进行电学击穿。b. TiO 2 /ZnO (76nm/53nm) p-oxide DBRs are alternately grown using an electron beam deposition device (e-beam). Based on the photolithography process, the required optical confinement hole size is etched out, and steps are formed on the surface of the p-oxide DBR and p-type GaN to facilitate electrical breakdown.
c.基于光刻工艺,以光刻胶作掩膜,利用e-beam在p-氧化物上沉积若干金属点Ag,直径10μm。并利用直流电源在金属点和p型GaN之间施加电压至氧化物被击穿(其中的电场采用正负交变电场,振幅从5V至50V逐渐增大,正负电压施加的频率为1Hz-100Hz,电压振幅的增大速率为0.1V/s-10V/s之间,最终使电流突增),之后用HCl溶液去除p-氧化物DBR上方的金属点。c. Based on the photolithography process, using photoresist as a mask, use e-beam to deposit several metal dots Ag on the p-oxide with a diameter of 10μm. Use a DC power supply to apply voltage between the metal dots and the p-type GaN until the oxide is broken down (the electric field uses a positive and negative alternating electric field, the amplitude gradually increases from 5V to 50V, the frequency of positive and negative voltage application is 1Hz-100Hz, and the rate of increase of the voltage amplitude is between 0.1V/s-10V/s, which eventually causes a sudden increase in current), and then use HCl solution to remove the metal dots above the p-oxide DBR.
d.基于光刻及干法刻蚀工艺刻蚀台面到n型GaN区,便于制备n型金属接触电极。d. Etching the mesa to the n-type GaN region based on photolithography and dry etching processes facilitates the preparation of n-type metal contact electrodes.
e.用e-beam设备生长n型金属接触电极Ni/Au,厚度为20nm/100nm,之后用e-beam设备生长p型金属接触点极Ti/Al/Ni/Au,厚度为10nm/100nm/20nm/50nm。e. Use e-beam equipment to grow n-type metal contact electrodes Ni/Au with a thickness of 20nm/100nm, and then use e-beam equipment to grow p-type metal contact electrodes Ti/Al/Ni/Au with a thickness of 10nm/100nm/20nm/50nm.
本申请以上实施例提供的GaN基垂直腔面发射激光器因包含了前述导电DBR结构,至少具有如下优点:The GaN-based vertical cavity surface emitting laser provided in the above embodiments of the present application has at least the following advantages due to the inclusion of the aforementioned conductive DBR structure:
(1)可缓解因介质DBR不导电而导致的GaN基VCSEL器件电极分布在谐振腔以外,p型GaN层和p型接触电极的接触面有限,从而产生的电流拥堵效应.具体而言,本申请以上实施例利用电学击穿工艺得到导电DBR,电极和导电DBR直接接触,形成的垂直电路结构避免了p-GaN和电极之间存在的电流拥堵效应,提高电极注入效率,缓解p-GaN的局部焦耳过热,延长器件寿命。(1) It can alleviate the current congestion effect caused by the distribution of electrodes of GaN-based VCSEL devices outside the resonant cavity and the limited contact area between the p-type GaN layer and the p-type contact electrode due to the non-conductivity of the dielectric DBR. Specifically, the above embodiments of the present application use an electrical breakdown process to obtain a conductive DBR. The electrode and the conductive DBR are in direct contact. The vertical circuit structure formed avoids the current congestion effect between p-GaN and the electrode, improves the electrode injection efficiency, alleviates the local Joule overheating of p-GaN, and prolongs the device life.
(2)可显著增大电流注入面积。本申请以上实施例中,p型金属接触电极的注入面积为导电DBR的整个面积,注入面积增大,有利于器件在较大电流下工作。(2) The current injection area can be significantly increased. In the above embodiments of the present application, the injection area of the p-type metal contact electrode is the entire area of the conductive DBR. The increase in the injection area is conducive to the device operating at a larger current.
(3)有利于器件散热。本申请以上实施例中,倒装结构的器件在工作过程中产生的热量可以从导电衬底散出,较之蓝宝石衬底等散热能力大幅增强。(3) It is beneficial to the heat dissipation of the device. In the above embodiments of the present application, the heat generated by the flip-chip device during operation can be dissipated from the conductive substrate, which greatly enhances the heat dissipation capacity compared with sapphire substrates.
(4)双介质布拉格反射器具有较高的反射率。本申请以上实施例中,倒装结构的器件中上、下布拉格反射器均采用氧化物DBR,介质膜之间折射率差较大,可以实现较高反射率。(4) Dual-medium Bragg reflectors have a high reflectivity. In the above embodiments of the present application, both the upper and lower Bragg reflectors in the flip-chip device use oxide DBRs, and the refractive index difference between the dielectric films is large, which can achieve a high reflectivity.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "include", "comprise" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, the elements defined by the sentence "comprise a ..." do not exclude the presence of other identical elements in the process, method, article or device including the elements.
以上所述仅是本申请的具体实施方案,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。The above is only a specific implementation scheme of the present application. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principles of the present application. These improvements and modifications should also be regarded as the scope of protection of the present application.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011078799.8A CN114336282B (en) | 2020-10-10 | 2020-10-10 | GaN-based vertical cavity surface emitting laser with conductive DBR structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011078799.8A CN114336282B (en) | 2020-10-10 | 2020-10-10 | GaN-based vertical cavity surface emitting laser with conductive DBR structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114336282A CN114336282A (en) | 2022-04-12 |
CN114336282B true CN114336282B (en) | 2024-08-06 |
Family
ID=81031774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011078799.8A Active CN114336282B (en) | 2020-10-10 | 2020-10-10 | GaN-based vertical cavity surface emitting laser with conductive DBR structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114336282B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107645123A (en) * | 2017-09-27 | 2018-01-30 | 华东师范大学 | A kind of active area structure design of multi-wavelength GaN base vertical cavity surface emitting laser |
CN109873297A (en) * | 2019-04-26 | 2019-06-11 | 山东大学 | A GaN-based vertical cavity surface emitting laser and its preparation method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11095096B2 (en) * | 2014-04-16 | 2021-08-17 | Yale University | Method for a GaN vertical microcavity surface emitting laser (VCSEL) |
CN106848016B (en) * | 2017-04-06 | 2019-12-03 | 中国科学院半导体研究所 | Preparation method of GaN-based porous DBR |
CN106848838B (en) * | 2017-04-06 | 2019-11-29 | 中国科学院半导体研究所 | GaN base VCSEL chip and preparation method based on porous DBR |
-
2020
- 2020-10-10 CN CN202011078799.8A patent/CN114336282B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107645123A (en) * | 2017-09-27 | 2018-01-30 | 华东师范大学 | A kind of active area structure design of multi-wavelength GaN base vertical cavity surface emitting laser |
CN109873297A (en) * | 2019-04-26 | 2019-06-11 | 山东大学 | A GaN-based vertical cavity surface emitting laser and its preparation method |
Non-Patent Citations (1)
Title |
---|
Fabrication of HfO2/TiO2-based conductive distributed Bragg reflectors: Its application to GaN-based near-ultraviolet micro-light-emitting diodes;S. H. Oh et al.;Journal of Alloys and Compounds;第773卷;490-495 * |
Also Published As
Publication number | Publication date |
---|---|
CN114336282A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11258231B2 (en) | GaN-based VCSEL chip based on porous DBR and manufacturing method of the same | |
JP4928866B2 (en) | Nitride semiconductor vertical cavity surface emitting laser | |
JP4860024B2 (en) | InXAlYGaZN light emitting device and manufacturing method thereof | |
CN101807650B (en) | Gallium nitride-based high-brightness light-emitting diode and its manufacture craft with distributed Bragg reflecting layer | |
JP6152848B2 (en) | Semiconductor light emitting device | |
CN109873297B (en) | GaN-based vertical cavity surface emitting laser and preparation method thereof | |
JP2010537408A (en) | Micropixel ultraviolet light emitting diode | |
EP2675024B1 (en) | Electron beam pumped vertical cavity surface emitting laser | |
JP2017168811A (en) | Light-emitting diode | |
CN108305918A (en) | Nitride semiconductor photogenerator and preparation method thereof | |
CN108336642A (en) | A kind of nitride-based semiconductor micro-cavity laser structure of electrical pumping lasing and preparation method thereof | |
CN107404066A (en) | The preparation method of all dielectric film dbr structure gallium nitride surface emitting laser | |
CN113206446A (en) | Method for manufacturing nitride vertical cavity surface emitting laser based on conductive oxide DBR | |
CN113471814B (en) | Nitride semiconductor vertical cavity surface emitting laser, and manufacturing method and application thereof | |
CN114336282B (en) | GaN-based vertical cavity surface emitting laser with conductive DBR structure and manufacturing method thereof | |
CN105762236A (en) | Nitride super luminescent diode and preparation method thereof | |
CN105679904B (en) | Optical pumping luminescent device and preparation method of monolithic integrated optical pumping luminescent device | |
CN116799617A (en) | VCSEL chip of porous DBR and preparation method thereof | |
JP2011258843A (en) | Nitride semiconductor light-emitting element and method of manufacturing the same | |
CN108718030A (en) | A kind of low resistance, nitride-based semiconductor micro-cavity laser structure of low thermal resistance and preparation method thereof | |
KR101124470B1 (en) | Semiconductor light emitting device | |
CN220456887U (en) | Resonant cavity light-emitting device based on nitride semiconductor | |
CN113745967B (en) | Semiconductor laser and preparation method thereof | |
US20230109404A1 (en) | Semiconductor Light-Emitting Device And Preparation Method Thereof | |
CN118783240A (en) | III-nitride semiconductor laser structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |