CN114325658A - Lidar anti-jamming method, device, equipment and storage medium - Google Patents
Lidar anti-jamming method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN114325658A CN114325658A CN202111666251.XA CN202111666251A CN114325658A CN 114325658 A CN114325658 A CN 114325658A CN 202111666251 A CN202111666251 A CN 202111666251A CN 114325658 A CN114325658 A CN 114325658A
- Authority
- CN
- China
- Prior art keywords
- interference
- waveform
- original waveform
- original
- data point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000001514 detection method Methods 0.000 claims abstract description 78
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims abstract description 20
- 230000008030 elimination Effects 0.000 claims abstract description 4
- 238000003379 elimination reaction Methods 0.000 claims abstract description 4
- 230000000630 rising effect Effects 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
技术领域technical field
本申请涉及激光雷达技术领域,具体而言,涉及一种激光雷达对抗干扰方法、装置、设备及存储介质。The present application relates to the technical field of laser radar, and in particular, to a method, device, device and storage medium for anti-interference of laser radar.
背景技术Background technique
激光雷达是一种通过发射激光光束来探测目标物的位置、速度等参数的系统,以其超高的距离分辨和空间分辨能力,被认为是自动驾驶的感知阶段最关键的组成部件。其中,测距范围、空间分辨率、点频是激光雷达最主要的性能指标。随着激光雷达的普及应用,不同激光雷达之间的干扰问题日趋严重。因此,所有的激光雷达需要能够有效地对抗各种可能的干扰,以解决干扰带来的影响。Lidar is a system that detects the position, speed and other parameters of a target by emitting a laser beam. With its ultra-high range resolution and spatial resolution, it is considered to be the most critical component in the perception stage of autonomous driving. Among them, ranging range, spatial resolution, and point frequency are the most important performance indicators of lidar. With the popularization and application of lidar, the problem of interference between different lidars is becoming more and more serious. Therefore, all lidars need to be able to effectively counteract all possible interferences in order to address the effects of interference.
目前,现有激光雷达的抗干扰方法,首先是发射端发出周期性的、强度和间隔时间由每个激光雷达的序列号控制的多个脉冲群;然后,收光模块根据码字表和处理器处理来鉴别有效激光脉冲和抛弃干扰激光脉冲。At present, the existing anti-jamming method of lidar is that the transmitter sends out periodic bursts whose intensity and interval are controlled by the serial number of each lidar; processor processing to identify valid laser pulses and discard interfering laser pulses.
但是,当同一场景存在其他激光雷达的干扰或‘人为故意’的干扰时,现有技术的编码后的发光方式会收到很多‘多余’脉冲,导致收光模块的码字表比对出错和识别出错,进而无法有效地对抗此类干扰,从而极大的降低激光雷达的测距的准确性。However, when there is interference from other lidars or 'intentional' interference in the same scene, the coded light-emitting method in the prior art will receive many 'excess' pulses, resulting in errors in the codeword table comparison of the light-receiving module. Errors in identification make it impossible to effectively counteract such interference, which greatly reduces the accuracy of lidar ranging.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于,针对上述现有技术中的不足,提供一种激光雷达对抗干扰方法、装置、设备及存储介质,以便解决当同一场景存在其他激光雷达的干扰或“人为故意”的干扰,从而提高激光雷达的测距的准确性。The purpose of the present invention is to provide a lidar anti-jamming method, device, equipment and storage medium in view of the above-mentioned deficiencies in the prior art, so as to solve the interference of other lidars or "intentional" interference in the same scene, Thereby, the accuracy of Lidar ranging is improved.
为实现上述目的,本申请实施例采用的技术方案如下:To achieve the above purpose, the technical solutions adopted in the embodiments of the present application are as follows:
第一方面,本申请实施例提供了一种激光雷达对抗干扰方法,应用于激光雷达,所述方法包括:In a first aspect, an embodiment of the present application provides a lidar anti-jamming method, which is applied to lidar, and the method includes:
截取干扰检测时间段内的原始波形的各数据点,所述干扰检测时间段是指从干扰检测使能信号的上升沿时刻与预设的暂停发波时长之和;Intercept each data point of the original waveform in the interference detection time period, where the interference detection time period refers to the sum of the rising edge time of the interference detection enable signal and the preset wave-transmission pause time;
根据所述原始波形的各数据点,确定所述原始波形中是否存在干扰波形;According to each data point of the original waveform, determine whether there is an interference waveform in the original waveform;
若是,则从所述原始波形的各数据点中提取所述干扰波形的参数值,所述干扰波形的参数值包括:干扰时刻、干扰周期、干扰时长;If so, extract the parameter value of the interference waveform from each data point of the original waveform, and the parameter value of the interference waveform includes: interference time, interference period, and interference duration;
根据所述干扰波形的参数值,从所述原始波形的各数据点中剔除所述干扰波形的数据点,得到目标发射波形数据;According to the parameter value of the interference waveform, remove the data point of the interference waveform from each data point of the original waveform to obtain the target transmission waveform data;
按照所述目标发射波形数据向探测区域发射激光脉冲序列。The laser pulse sequence is emitted to the detection area according to the target emission waveform data.
可选地,所述根据所述原始波形的各数据点,确定所述原始波形中是否存在干扰波形,包括:Optionally, the determining whether there is an interference waveform in the original waveform according to each data point of the original waveform includes:
对所述原始波形的各数据点进行自相关运算,得到所述原始波形对应的自相关序列;performing an autocorrelation operation on each data point of the original waveform to obtain an autocorrelation sequence corresponding to the original waveform;
分别确定所述原始波形的波峰值、以及所述自相关序列的波峰值;respectively determining the peak value of the original waveform and the peak value of the autocorrelation sequence;
根据所述原始波形的波峰值、以及所述自相关序列的波峰值,确定所述原始波形中是否存在所述干扰波形。According to the peak value of the original waveform and the peak value of the autocorrelation sequence, it is determined whether the interference waveform exists in the original waveform.
可选地,所述根据所述原始波形的波峰、以及所述自相关序列的波峰,确定所述原始波形中是否存在干扰波形,包括:Optionally, the determining whether there is an interference waveform in the original waveform according to the peak of the original waveform and the peak of the autocorrelation sequence includes:
若所述原始波形的波峰值小于预设的第一阈值,且所述自相关序列的波峰值小于预设的第二阈值,则确定所述原始波形内不存在干扰波形。If the peak value of the original waveform is less than a preset first threshold, and the peak value of the autocorrelation sequence is less than a preset second threshold, it is determined that there is no interference waveform in the original waveform.
可选地,所述从所述原始波形的各数据点中提取所述干扰波形的参数值,包括:Optionally, the extracting the parameter value of the interference waveform from each data point of the original waveform includes:
根据所述干扰检测使能信号的上升沿时刻、以及所述原始波形的波峰值对应的峰值时刻,得到所述干扰波形的干扰时刻;Obtain the interference time of the interference waveform according to the rising edge time of the interference detection enable signal and the peak time corresponding to the peak value of the original waveform;
将所述自相关序列的波峰值的峰值时刻作为所述干扰波形的干扰周期;Taking the peak moment of the wave peak value of the autocorrelation sequence as the interference period of the interference waveform;
将所述原始波形中大于所述第一阈值的数据点个数作为所述干扰波形的干扰时长。The number of data points in the original waveform that is greater than the first threshold is used as the interference duration of the interference waveform.
可选地,所述根据所述干扰波形的参数值,从所述原始波形的各数据点内剔除所述干扰波形的数据点,得到目标发射波形数据,包括:Optionally, according to the parameter value of the interference waveform, the data points of the interference waveform are removed from the data points of the original waveform to obtain target transmission waveform data, including:
根据所述干扰波形的干扰时刻、所述干扰周期以及所述干扰时长,从所述原始波形的各数据点中查找到所述干扰波形的数据点,并将所述干扰波形的数据点的值清零,得到目标发射波形数据。According to the interference time, the interference period and the interference duration of the interference waveform, the data point of the interference waveform is found from the data points of the original waveform, and the value of the data point of the interference waveform is calculated. Cleared to get the target transmit waveform data.
可选地,所述干扰波形的参数值还包括:干扰强度;Optionally, the parameter value of the interference waveform further includes: interference strength;
所述方法还包括:The method also includes:
对所述原始波形中大于第一阈值的各数据点的值进行求和,并将求和后的结果作为所述干扰波形的干扰强度。Summing the values of the data points in the original waveform that are greater than the first threshold, and using the summed result as the interference strength of the interference waveform.
可选地,所述截取干扰检测时间段内的原始波形的各数据点之前,还包括:Optionally, before the intercepting each data point of the original waveform within the interference detection time period, the method further includes:
根据所述干扰检测使能信号的上升沿时刻,停止向所述探测区域发射激光脉冲序列。According to the rising edge time of the interference detection enable signal, the laser pulse sequence is stopped to be emitted to the detection area.
第二方面,本申请实施例还提供了一种激光雷达对抗干扰装置,应用于激光雷达,所述装置包括:In a second aspect, an embodiment of the present application further provides a lidar anti-jamming device, which is applied to a lidar, and the device includes:
截取模块,用于截取干扰检测时间段内的原始波形的各数据点,所述干扰检测时间段是指从干扰检测使能信号的上升沿时刻与预设的暂停发波时长之和;The interception module is used for intercepting each data point of the original waveform in the interference detection time period, the interference detection time period refers to the sum of the rising edge time of the interference detection enable signal and the preset wave stop duration;
确定模块,用于根据所述原始波形的各数据点,确定所述原始波形中是否存在干扰波形;a determining module, configured to determine whether there is an interference waveform in the original waveform according to each data point of the original waveform;
提取模块,用于若是,则从所述原始波形的各数据点中提取所述干扰波形的参数值,所述干扰波形的参数值包括:干扰时刻、干扰周期、干扰时长;an extraction module, configured to extract the parameter value of the interference waveform from each data point of the original waveform, where the parameter value of the interference waveform includes: interference time, interference period, and interference duration;
剔除模块,用于根据所述干扰波形的参数值,从所述原始波形的各数据点中剔除所述干扰波形的数据点,得到目标发射波形数据;an elimination module, configured to eliminate the data points of the interference waveform from each data point of the original waveform according to the parameter value of the interference waveform, to obtain target transmission waveform data;
发射模块,用于按照所述目标发射波形数据向探测区域发射激光脉冲序列。The transmitting module is used for transmitting a laser pulse sequence to the detection area according to the target transmitting waveform data.
可选地,所述确定模块,还用于:Optionally, the determining module is also used for:
对所述原始波形的各数据点进行自相关运算,得到所述原始波形对应的自相关序列;performing an autocorrelation operation on each data point of the original waveform to obtain an autocorrelation sequence corresponding to the original waveform;
分别确定所述原始波形的波峰值、以及所述自相关序列的波峰值;respectively determining the peak value of the original waveform and the peak value of the autocorrelation sequence;
根据所述原始波形的波峰值、以及所述自相关序列的波峰值,确定所述原始波形中是否存在所述干扰波形。According to the peak value of the original waveform and the peak value of the autocorrelation sequence, it is determined whether the interference waveform exists in the original waveform.
可选地,确定模块,还用于:Optionally, the determining module is also used to:
若所述原始波形的波峰值小于预设的第一阈值,且所述自相关序列的波峰值小于预设的第二阈值,则确定所述原始波形内不存在干扰波形。If the peak value of the original waveform is less than a preset first threshold, and the peak value of the autocorrelation sequence is less than a preset second threshold, it is determined that there is no interference waveform in the original waveform.
可选地,所述提取模块,还用于:Optionally, the extraction module is also used for:
根据所述干扰检测使能信号的上升沿时刻、以及所述原始波形的波峰值对应的峰值时刻,得到所述干扰波形的干扰时刻;Obtain the interference time of the interference waveform according to the rising edge time of the interference detection enable signal and the peak time corresponding to the peak value of the original waveform;
将所述自相关序列的波峰值的峰值时刻作为所述干扰波形的干扰周期;Taking the peak moment of the wave peak value of the autocorrelation sequence as the interference period of the interference waveform;
将所述原始波形中大于所述第一阈值的数据点个数作为所述干扰波形的干扰时长。The number of data points in the original waveform that is greater than the first threshold is used as the interference duration of the interference waveform.
可选地,所述剔除模块,还用于:Optionally, the culling module is further used for:
根据所述干扰波形的干扰时刻、所述干扰周期以及所述干扰时长,从所述原始波形的各数据点中查找到所述干扰波形的数据点,并将所述干扰波形的数据点的值清零,得到目标发射波形数据。According to the interference time, the interference period and the interference duration of the interference waveform, the data point of the interference waveform is found from the data points of the original waveform, and the value of the data point of the interference waveform is calculated. Cleared to get the target transmit waveform data.
可选地,所述干扰波形的参数值还包括:干扰强度;Optionally, the parameter value of the interference waveform further includes: interference strength;
所述装置还包括:The device also includes:
处理模块,用于对所述原始波形中大于第一阈值的各数据点的值进行求和,并将求和后的结果作为所述干扰波形的干扰强度。A processing module, configured to sum the values of the data points in the original waveform that are greater than the first threshold, and use the summed result as the interference intensity of the interference waveform.
可选地,所述装置还包括:Optionally, the device further includes:
停止模块,用于根据所述干扰检测使能信号的上升沿时刻,停止向所述探测区域发射激光脉冲序列。A stop module, configured to stop emitting a laser pulse sequence to the detection area according to the rising edge time of the interference detection enable signal.
第三方面,本申请实施例还提供了一种电子设备,包括:处理器、存储介质和总线,所述存储介质存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储介质之间通过总线通信,所述处理器执行所述机器可读指令,以执行如第一方面提供的所述方法的步骤。In a third aspect, an embodiment of the present application further provides an electronic device, including: a processor, a storage medium, and a bus, where the storage medium stores machine-readable instructions executable by the processor, and when the electronic device runs, The processor communicates with the storage medium through a bus, and the processor executes the machine-readable instructions to perform the steps of the method provided by the first aspect.
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行如第一方面提供的所述方法的步骤。In a fourth aspect, an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored on the storage medium, and when the computer program is run by a processor, the steps of the method provided in the first aspect are executed .
本申请的有益效果是:The beneficial effects of this application are:
本申请实施例提供一种激光雷达对抗干扰方法、装置、设备及存储介质,应用于激光雷达,该方法包括:截取干扰检测时间段内的原始波形的各数据点,干扰检测时间段是指从干扰检测使能信号的上升沿时刻与预设的暂停发波时长之和;根据原始波形的各数据点,确定原始波形中是否存在干扰波形;若是,则从原始波形的各数据点中提取干扰波形的参数值,干扰波形的参数值包括:干扰时刻、干扰周期、干扰时长;根据干扰波形的参数值,从原始波形的各数据点中剔除干扰波形的数据点,得到目标发射波形数据;按照目标发射波形数据向探测区域发射激光脉冲序列。在本方案中,主要是通过截取到干扰检测时间段内的原始波形的各数据点,并判断当前发射的原始波形中是否存在干扰波形,若存在,则剔除干扰波形的数据点,得到目标发射波形数据,使得能够有效剔除当前存在的“多余”脉冲的干扰;然后,使得发光模块按照目标发射波形数据向探测区域发射激光脉冲序列,使得能够基于剔除干扰后的目标发射波形数据来进行激光雷达测距,有效确保了收光模块端也能够接受到目标物准确成像后的反射激光脉冲回波信号,有效解决了现有技术中存在的抗干扰能力弱的问题,从而极大的提高了激光雷达的测距的精确度。Embodiments of the present application provide a lidar anti-jamming method, device, device, and storage medium, which are applied to lidar. The method includes: intercepting each data point of an original waveform within a time period for interference detection, where the time period for interference detection refers to a period from The sum of the rising edge time of the interference detection enable signal and the preset duration of the pause; according to each data point of the original waveform, determine whether there is an interference waveform in the original waveform; if so, extract the interference from each data point of the original waveform The parameter value of the waveform, the parameter value of the interference waveform includes: interference time, interference period, and interference time; The target emission waveform data emits a laser pulse sequence to the detection area. In this scheme, each data point of the original waveform in the interference detection time period is intercepted, and it is judged whether there is an interference waveform in the currently transmitted original waveform. If so, the data points of the interference waveform are eliminated to obtain the target transmission Waveform data, so that the interference of the current "excessive" pulses can be effectively eliminated; then, the light-emitting module can emit a laser pulse sequence to the detection area according to the target emission waveform data, so that the laser radar can be carried out based on the target emission waveform data after the interference has been eliminated. Ranging effectively ensures that the light-receiving module can also receive the reflected laser pulse echo signal after the target is accurately imaged, effectively solves the problem of weak anti-interference ability in the existing technology, and greatly improves the laser The accuracy of radar ranging.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. It should be understood that the following drawings only show some embodiments of the present invention, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1为本申请实施例提供的一种激光雷达系统的结构示意图;FIG. 1 is a schematic structural diagram of a lidar system according to an embodiment of the present application;
图2为本申请实施例提供的一种激光雷达系统中控制处理模块的结构示意图;FIG. 2 is a schematic structural diagram of a control processing module in a lidar system provided by an embodiment of the present application;
图3为本申请实施例提供的一种激光雷达对抗干扰方法的流程示意图;FIG. 3 is a schematic flowchart of a method for anti-jamming of a lidar according to an embodiment of the present application;
图4为本申请实施例提供的另一种激光雷达对抗干扰方法的流程示意图;FIG. 4 is a schematic flowchart of another method for anti-jamming lidar provided by an embodiment of the present application;
图5为本申请实施例提供的一种激光雷达对抗干扰方法中原始波形和自相关序列的示意图;5 is a schematic diagram of an original waveform and an autocorrelation sequence in a lidar anti-jamming method provided by an embodiment of the present application;
图6为本申请实施例提供的又一种激光雷达对抗干扰方法的流程示意图;FIG. 6 is a schematic flowchart of yet another method for anti-jamming lidar provided by an embodiment of the present application;
图7为本申请实施例提供的一种激光雷达对抗干扰装置的结构示意图。FIG. 7 is a schematic structural diagram of a lidar anti-jamming device according to an embodiment of the present application.
图标:100-激光雷达系统,101-控制处理模块;102-发光模块;103-收光模块。Icons: 100 - lidar system, 101 - control processing module; 102 - light emitting module; 103 - light receiving module.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解,本申请中附图仅起到说明和描述的目的,并不用于限定本申请的保护范围。另外,应当理解,示意性的附图并未按实物比例绘制。本申请中使用的流程图示出了根据本申请的一些实施例实现的操作。应该理解,流程图的操作可以不按顺序实现,没有逻辑的上下文关系的步骤可以反转顺序或者同时实施。此外,本领域技术人员在本申请内容的指引下,可以向流程图添加一个或多个其他操作,也可以从流程图中移除一个或多个操作。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present application. The drawings are only for the purpose of illustration and description, and are not used to limit the protection scope of the present application. In addition, it should be understood that the schematic drawings are not drawn to scale. The flowcharts used in this application illustrate operations implemented in accordance with some embodiments of the application. It should be understood that the operations of the flowcharts may be performed out of order and that steps without logical context may be performed in reverse order or concurrently. In addition, those skilled in the art can add one or more other operations to the flowchart, and can also remove one or more operations from the flowchart under the guidance of the content of the present application.
另外,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In addition, the described embodiments are only some of the embodiments of the present application, but not all of the embodiments. The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations. Thus, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application. Based on the embodiments of the present application, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present application.
需要说明的是,本申请实施例中将会用到术语“包括”,用于指出其后所声明的特征的存在,但并不排除增加其它的特征。It should be noted that the term "comprising" will be used in the embodiments of the present application to indicate the existence of the features declared later, but does not exclude the addition of other features.
首先,在对本申请所提供的技术方案展开具体说明之前,先对本申请所涉及的相关背景进行简单说明。First, before the technical solutions provided by the present application are described in detail, the relevant background involved in the present application is briefly described.
激光雷达,一种通过激光来探测目标物的位置、速度等参数的系统,以其超高的距离分辨和空间分辨能力,被认为是自动驾驶的感知阶段最关键的组成部件。其中,测距范围、空间分辨率、点频是激光雷达最主要的性能指标。随着激光雷达的普及使用,不同激光雷达之间的干扰问题日趋严重。因此,为了保证自动驾驶的绝对严格安全,所有激光雷达需要能够有效地对抗各种可能的干扰,如其他的激光雷达、安防激光发射器等激光产品的‘无意’干扰以及可能的‘人为故意’干扰。Lidar, a system that uses lasers to detect the position, speed and other parameters of the target, is considered to be the most critical component in the perception stage of autonomous driving with its ultra-high range resolution and spatial resolution capabilities. Among them, ranging range, spatial resolution, and point frequency are the most important performance indicators of lidar. With the popular use of lidars, the problem of interference between different lidars is becoming more and more serious. Therefore, in order to ensure the absolute strict safety of autonomous driving, all lidars need to be able to effectively counteract various possible interferences, such as 'unintentional' interference from other laser products such as lidars, security laser transmitters, and possible 'intentional' interference.
在提出本申请方案之前,目前,现有激光雷达的抗干扰方法,首先是发射端发出周期性的、强度和间隔时间由每个激光雷达的序列号控制的多个脉冲群;然后,收光模块根据码字表和处理器处理来鉴别有效激光脉冲和抛弃干扰激光脉冲。Before the proposal of the present application, the current anti-jamming method of the existing lidar firstly sends out a plurality of pulse groups whose intensity and interval are controlled by the serial number of each lidar periodically at the transmitter end; then, receive light The module identifies valid laser pulses and discards interfering laser pulses according to the codeword table and processor processing.
但是,当同一场景存在其他激光雷达的周期性干扰或“人为故意”的干扰时,现有技术的编码后的发光方式会收到很多“多余”脉冲,导致收光模块的码字表比对出错和识别出错,进而无法有效地对抗此类干扰,从而极大的降低激光雷达的测距的准确性。However, when there is periodic interference or "intentional" interference from other lidars in the same scene, the coded light-emitting method of the prior art will receive many "excessive" pulses, resulting in the comparison of the codeword table of the light-receiving module. Errors and identification errors make it impossible to effectively counteract such interference, which greatly reduces the accuracy of lidar ranging.
为了解决上述现有技术中存在的技术问题,本申请提出一种激光雷达对抗干扰方法,主要是通过截取到干扰检测时间段内的原始波形的各数据点,并判断当前发射的原始波形中是否存在干扰波形,若存在,则剔除干扰波形的数据点,得到目标发射波形数据,使得能够有效剔除当前存在的“多余”干扰脉冲信号;然后,再按照目标发射波形数据向探测区域发射激光脉冲序列,使得能够基于剔除干扰后的目标发射波形数据来进行激光雷达测距,有效确保了接受端也能够接受到目标物准确成像后的反射激光脉冲回波信号,有效解决了现有技术中存在的抗干扰能力弱的问题,从而极大的提高了激光雷达的测距的精确度。In order to solve the above-mentioned technical problems in the prior art, the present application proposes a lidar anti-jamming method, mainly by intercepting each data point of the original waveform in the interference detection time period, and judging whether the original waveform currently transmitted is in the original waveform. If there is an interference waveform, if there is, remove the data points of the interference waveform to obtain the target emission waveform data, so that the current "excessive" interference pulse signal can be effectively eliminated; then, according to the target emission waveform data, the laser pulse sequence is emitted to the detection area. , so that the laser radar ranging can be measured based on the target emission waveform data after eliminating the interference, which effectively ensures that the receiving end can also receive the reflected laser pulse echo signal after the target is accurately imaged, effectively solving the existing problems in the prior art. The problem of weak anti-jamming ability greatly improves the accuracy of lidar ranging.
图1为本申请实施例提供的一种激光雷达系统的结构示意图;如图1所示,激光雷达系统100可以是安装在需要实现测距功能的设备中,如无人驾驶的车辆。FIG. 1 is a schematic structural diagram of a lidar system according to an embodiment of the present application; as shown in FIG. 1 , the
其中,激光雷达系统100包括:控制处理模块101、发光模块102、收光模块103。控制处理模块101分别与发光模块102及收光模块103通信连接。The
具体的,激光雷达系统100的工作原理为:控制处理模块101控制发光模块102何时向目标物发射激光雷达探测信号进行测距;当控制处理模块101控制发光模块102向目标物发射激光雷达信号后,收光模块103接收从目标物反射回来的激光脉冲回波信号,此时,控制处理模块101根据收光模块103接收到的激光脉冲回波信号,得到目标物的位置、速度、方位角等参数,从而对目标物进行探测、跟踪和识别等。Specifically, the working principle of the
可以理解,图1示出的结构仅为示意,激光雷达系统100还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。图1中所示的各组件可以采用硬件、软件或其组合实现。It can be understood that the structure shown in FIG. 1 is only for illustration, and the
图2为本申请实施例提供的一种激光雷达系统中控制处理模块的结构示意图;如图2所示,控制处理模块101包括:存储器201、处理器202。FIG. 2 is a schematic structural diagram of a control processing module in a lidar system provided by an embodiment of the present application; as shown in FIG. 2 , the
其中,存储器201、处理器202相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。Wherein, the
存储器201中存储有以软件或固件(firmware)的形式存储于存储器201中的软件功能模块,处理器202通过运行存储在存储器201内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现本申请实施例中的激光雷达对抗干扰方法。The
其中,存储器201可以是,但不限于,随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-OnlyMemory,PROM)、可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM)等。其中,存储器201用于存储程序,处理器202在接收到执行指令后,执行程序。Wherein, the
处理器202可能是一种集成电路芯片,具有信号的处理能力。上述的处理器202可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(NetworkProcessor,NP)等。The
如下将通过多个具体的实施例对本申请所提供的激光雷达对抗干扰方法和对应产生的有益效果进行说明。The method for anti-jamming of the laser radar provided by the present application and the corresponding beneficial effects will be described below through a plurality of specific embodiments.
可选地,该方法的执行主体可以是上述图1所示的激光雷达系统中的控制处理模块,具有数据处理功能。应当理解,在其它实施例中激光雷达对抗干扰方法其中部分步骤的顺序可以根据实际需要相互交换,或者其中的部分步骤也可以省略或删除。如图3所示,该方法包括:Optionally, the execution body of the method may be the control processing module in the above-mentioned lidar system shown in FIG. 1 , which has a data processing function. It should be understood that in other embodiments, the order of some steps in the lidar anti-jamming method may be exchanged according to actual needs, or some of the steps may be omitted or deleted. As shown in Figure 3, the method includes:
S301、截取干扰检测时间段内的原始波形的各数据点。S301. Intercept each data point of the original waveform in the interference detection time period.
其中,干扰检测时间段是指从干扰检测使能信号的上升沿时刻与预设的暂停发波时长之和。Wherein, the interference detection time period refers to the sum of the time from the rising edge of the interference detection enable signal and the preset time duration for suspending the wave emission.
值得说明的是,在本实施例中,干扰检测使能信号是用于检测当前是否存在“多余”脉冲干扰信号。当检测到“多余”脉冲干扰信号时,干扰检测使能信号进行翻转,即干扰检测使能信号从低电平翻转至高电平。因此,当接收到干扰检测使能信号的上升沿时刻n_enable(时刻用时钟周期的计数来表示,所以是n)的时候,开始检测干扰。It should be noted that, in this embodiment, the interference detection enable signal is used to detect whether there is currently an "excessive" pulse interference signal. When the "excessive" pulse interference signal is detected, the interference detection enable signal is inverted, that is, the interference detection enable signal is inverted from a low level to a high level. Therefore, when the rising edge time n_enable of the interference detection enable signal is received (the time is represented by the count of clock cycles, so it is n), the interference detection starts.
另外,干扰检测使能信号可以是一个周期信号。为了尽可能小地影响激光雷达的正常测距,同时又保证对干扰的检测效果,干扰检测使能信号的预设的周期比较大,一般是激光脉冲发光周期的百倍以上,例如100倍或500倍。Additionally, the jammer detection enable signal may be a periodic signal. In order to affect the normal ranging of the lidar as little as possible, and at the same time ensure the detection effect of interference, the preset period of the interference detection enable signal is relatively large, generally more than 100 times the emitting period of the laser pulse, such as 100 times or 500 times. times.
同样地,为了尽可能小地影响激光雷达的正常测距,同时又保证对干扰的检测效果。因此,预设的暂停发波时长的推荐值是大于激光雷达系统中发光模块向目标物发射的激光发光周期,小于激光发光周期的10倍。Similarly, in order to affect the normal ranging of the lidar as little as possible, while ensuring the detection effect of interference. Therefore, the recommended value of the preset wavelength pause time is greater than the period of the laser light emitted by the light-emitting module in the lidar system to the target, and less than 10 times the period of the laser light.
在本实施例中,可以根据干扰检测使能信号的上升沿时刻n_enable和预设的暂停发波时长N,截取这一时段内对应的原始波形的各数据点,以便于后续检测原始波形中是否存在干扰波形。In this embodiment, each data point of the original waveform corresponding to this period can be intercepted according to the rising edge time n_enable of the interference detection enable signal and the preset wave-transmission duration N, so as to facilitate the subsequent detection of whether the original waveform is in the original waveform. Interfering waveforms are present.
示例性地,例如,截取到的原始波形的各数据点记为s(n),n是时刻,在n是1和N之间,N是预设的暂停发波时长。Exemplarily, for example, each data point of the intercepted original waveform is denoted as s(n), where n is the time instant, and n is between 1 and N, where N is the preset duration of wave pause.
值得说明的是,原始波形的各数据点是原始波形经过模拟数字转换器转换后得到的原始波形对应的离散数字信号的数据,且这个数字信号的时刻用自然数序号n来表示,数字信号的幅度跟量化位数有关,例如,模拟数字转换器的量化位数是8bit,那么,一个波形上的点的幅度值就是0~255(8bit二进制能表示的所有整数)范围内的整数。It is worth noting that each data point of the original waveform is the data of the discrete digital signal corresponding to the original waveform obtained after the original waveform is converted by an analog-to-digital converter, and the time of the digital signal is represented by a natural number n, and the amplitude of the digital signal is It is related to the number of quantization bits. For example, the number of quantization bits of an analog-to-digital converter is 8 bits. Then, the amplitude value of a point on a waveform is an integer in the range of 0 to 255 (all integers that can be represented by 8 bits binary).
S302、根据原始波形的各数据点,确定原始波形中是否存在干扰波形。S302 , according to each data point of the original waveform, determine whether there is an interference waveform in the original waveform.
S303、若是,则从原始波形的各数据点中提取干扰波形的参数值。S303. If yes, extract the parameter value of the interference waveform from each data point of the original waveform.
其中,干扰波形的参数值包括:干扰时刻、干扰周期、干扰时长。干扰时刻用于表征“多余”脉冲具体是从哪一个时刻开始对激光雷达发射的激光脉冲序列进行干扰的;干扰周期用于表征“多余”脉冲多久干扰一次;干扰时长用于表征在整个干扰过程中多余”脉冲持续干扰时间长度。The parameter values of the interference waveform include: interference time, interference period, and interference duration. The interference time is used to characterize when the “excessive” pulse starts to interfere with the laser pulse sequence emitted by the lidar; the interference period is used to characterize how often the “excessive” pulse interferes; the interference duration is used to characterize the entire interference process. "Excessive" pulses last for the duration of the disturbance.
S304、根据干扰波形的参数值,从原始波形的各数据点中剔除干扰波形的数据点,得到目标发射波形数据。S304 , according to the parameter value of the interference waveform, remove the data points of the interference waveform from the data points of the original waveform, and obtain the target transmission waveform data.
在本实施例中,可以根据截取到的原始波形的各数据点,来判断原始波形中是否存在“多余”干扰脉冲信号。若是,则从原始波形的各数据点中提取干扰波形的干扰时刻、干扰周期、干扰时长;并使用干扰波形的干扰时刻、干扰周期、干扰时长等参数值,从原始波形的各数据点中剔除干扰波形的数据点,得到目标发射波形数据。这样,使得能够有效剔除当前存在的“多余”干扰脉冲信号。In this embodiment, whether there is an "excessive" interference pulse signal in the original waveform can be determined according to each data point of the original waveform that has been intercepted. If yes, extract the interference time, interference period, and interference duration of the interference waveform from each data point of the original waveform; The data points of the interference waveform are obtained to obtain the target emission waveform data. In this way, the currently existing "superfluous" interfering pulse signals can be effectively eliminated.
S305、按照目标发射波形数据向探测区域发射激光脉冲序列。S305 , emit a laser pulse sequence to the detection area according to the target emission waveform data.
可选地,在上述实施例的基础上,可以按照目标发射波形数据向探测区域发射激光脉冲序列,使得能够基于剔除干扰后的目标发射波形数据来进行激光雷达测距,有效确保了接受端也能够接受到目标物准确成像后的反射激光脉冲回波信号,有效解决了现有技术中存在的抗干扰能力弱的问题,从而极大的提高了激光雷达的测距的精确度。Optionally, on the basis of the above embodiment, a laser pulse sequence can be transmitted to the detection area according to the target emission waveform data, so that the laser radar ranging can be performed based on the target emission waveform data after eliminating the interference, which effectively ensures that the receiving end is also The reflected laser pulse echo signal after accurate imaging of the target object can be received, which effectively solves the problem of weak anti-interference ability existing in the prior art, thereby greatly improving the ranging accuracy of the laser radar.
其次,本申请提供了激光雷达对抗干扰方法,是按照目标发射波形数据向探测区域发射激光脉冲序列。这样,使得激光雷达系统中的发光模块所发射的激光脉冲序列不存在激光脉冲能量被分散的问题,也不存在脉冲能量合并时的噪声叠加增强的问题。因此,相比现有技术,本申请提供的方案在对抗干扰性能更强,进而避免了现有技术中存在的测距范围变近的问题,从而改善了激光雷达的测距性能。Secondly, the present application provides a lidar anti-jamming method, which is to emit a laser pulse sequence to the detection area according to the target emission waveform data. In this way, the laser pulse sequence emitted by the light-emitting module in the lidar system does not have the problem of dispersing the laser pulse energy, nor does it have the problem of increasing the noise superposition when the pulse energy is combined. Therefore, compared with the prior art, the solution provided by the present application has stronger anti-jamming performance, thereby avoiding the problem of narrowing the ranging range existing in the prior art, thereby improving the ranging performance of the lidar.
综上所述,本申请实施例提供一种激光雷达对抗干扰方法,应用于激光雷达,该方法包括:截取干扰检测时间段内的原始波形的各数据点,干扰检测时间段是指从干扰检测使能信号的上升沿时刻与预设的暂停发波时长之和;根据原始波形的各数据点,确定原始波形中是否存在干扰波形;若是,则从原始波形的各数据点中提取干扰波形的参数值,干扰波形的参数值包括:干扰时刻、干扰周期、干扰时长;根据干扰波形的参数值,从原始波形的各数据点中剔除干扰波形的数据点,得到目标发射波形数据;按照目标发射波形数据向探测区域发射激光脉冲序列。在本方案中,主要是通过截取到干扰检测时间段内的原始波形的各数据点,并判断当前发射的原始波形中是否存在干扰波形,若存在,则剔除干扰波形的数据点,得到目标发射波形数据,使得能够有效剔除当前存在的“多余”干扰脉冲信号;然后,发光模块可以按照目标发射波形数据向探测区域发射激光脉冲序列,使得能够基于剔除干扰后的目标发射波形数据来进行激光雷达测距,有效确保了收光模块也能够接受到目标物准确成像后的反射激光脉冲回波信号,有效解决了现有技术中存在的抗干扰能力弱的问题,从而极大的提高了激光雷达的测距的精确度。To sum up, an embodiment of the present application provides a lidar anti-jamming method, which is applied to lidar. The method includes: intercepting each data point of an original waveform within a time period for interference detection, where the time period for interference detection refers to the time period from interference detection. The sum of the rising edge time of the enable signal and the preset duration of the pause; according to each data point of the original waveform, determine whether there is an interference waveform in the original waveform; if so, extract the interference waveform from each data point of the original waveform. Parameter value, the parameter value of the interference waveform includes: the interference time, the interference period, and the interference duration; according to the parameter value of the interference waveform, the data points of the interference waveform are removed from the data points of the original waveform to obtain the target transmission waveform data; according to the target transmission The waveform data transmits a sequence of laser pulses to the detection area. In this scheme, each data point of the original waveform in the interference detection time period is intercepted, and it is judged whether there is an interference waveform in the currently transmitted original waveform. If so, the data points of the interference waveform are eliminated to obtain the target transmission Waveform data, so that the existing "excessive" interference pulse signal can be effectively eliminated; then, the light-emitting module can transmit a laser pulse sequence to the detection area according to the target emission waveform data, so that the laser radar can be carried out based on the target emission waveform data after the interference has been eliminated. Ranging effectively ensures that the light receiving module can also receive the reflected laser pulse echo signal after the target is accurately imaged, effectively solves the problem of weak anti-interference ability in the existing technology, and greatly improves the laser radar. accuracy of ranging.
将通过如下实施例,具体讲解如何根据原始波形的各数据点,确定原始波形中是否存在干扰波形。The following embodiment will specifically explain how to determine whether there is an interference waveform in the original waveform according to each data point of the original waveform.
可选地,参考图4所示,上述步骤S302:根据原始波形的各数据点,确定原始波形中是否存在干扰波形,包括:Optionally, referring to FIG. 4 , the above step S302: determining whether there is an interference waveform in the original waveform according to each data point of the original waveform, including:
S401、对原始波形的各数据点进行自相关运算,得到原始波形对应的自相关序列。S401. Perform an autocorrelation operation on each data point of the original waveform to obtain an autocorrelation sequence corresponding to the original waveform.
应理解,自相关运算是用于找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基频的数学工具。It should be understood that the autocorrelation operation is a mathematical tool used to find repeating patterns (such as periodic signals masked by noise), or to identify fundamental frequencies that are implicitly lost in the harmonic frequencies of the signal.
在本实施例中,可以采用如下公式(1)对原始波形的各数据点s(n)进行自相关运算,以得到原始波形对应的自相关序列xcr(n),以便于根据自相关序列xcr(n)来判断原始波形是否存在同样具有周期性的干扰信号。其中,公式(1)如下所示:In this embodiment, the following formula (1) can be used to perform an autocorrelation operation on each data point s(n) of the original waveform to obtain the autocorrelation sequence xcr(n) corresponding to the original waveform, so that the autocorrelation sequence xcr(n) can be obtained according to the autocorrelation sequence xcr (n) to judge whether there is an interference signal with the same periodicity in the original waveform. Among them, formula (1) is as follows:
其中,公式(1)中的k为延迟阶数。Wherein, k in formula (1) is the delay order.
S402、分别确定原始波形的波峰值、以及自相关序列的波峰值。S402: Determine the wave peak value of the original waveform and the wave peak value of the autocorrelation sequence, respectively.
可选地,参考附图5,可以使用排序算法,从原始波形的各数据点s(n)中搜索到得到如图5(a)所示的原始波形的波峰值s_pk,并将波峰值在原始波形s(n)中的时刻编号记为n_s_pk。Optionally, referring to FIG. 5, a sorting algorithm can be used to search for the peak value s_pk of the original waveform as shown in FIG. 5(a) from each data point s(n) of the original waveform, and the peak value is The time number in the original waveform s(n) is denoted as n_s_pk.
同理,也可以从自相关序列的各数据点xcr(n)中搜索到得到如图5(b)所示的自相关序列的波峰值xcr_pk,将自相关序列的波峰值xcr_pk在自相关序列xcr(n)中的时刻编号记为n_xcr_pk。Similarly, the peak value xcr_pk of the autocorrelation sequence as shown in Figure 5(b) can also be searched from each data point xcr(n) of the autocorrelation sequence, and the peak value xcr_pk of the autocorrelation sequence The time number in xcr(n) is denoted as n_xcr_pk.
可选地,例如,以原始波形中的多个数据点为一组,如划分得到10个组,并分别找出各组中数据点的值为最大的数据点,并将最大的数据点作为可选数据点,如得到10个可选数据点;然后,再从这10个可选数据点中查找到数据点的值为最大的目标数据点,最后,将目标数据点作为原始波形的波峰值。Optionally, for example, take multiple data points in the original waveform as a group, such as dividing into 10 groups, and find the data point with the largest data point value in each group, and use the largest data point as the data point. Optional data points, such as getting 10 optional data points; then, find the target data point with the largest data point value from these 10 optional data points, and finally, use the target data point as the wave of the original waveform. peak.
同理,也可以采用上述方法,查找到自相关序列的波峰值。Similarly, the above method can also be used to find the peak value of the autocorrelation sequence.
S403、根据原始波形的波峰值、以及自相关序列的波峰值,确定原始波形中是否存在干扰波形。S403. Determine whether there is an interference waveform in the original waveform according to the peak value of the original waveform and the peak value of the autocorrelation sequence.
在一种可实现的方式中,若原始波形的波峰值小于预设的第一阈值,且自相关序列的波峰值小于预设的第二阈值,则确定原始波形内不存在干扰波形。In an achievable manner, if the peak value of the original waveform is less than the preset first threshold, and the peak value of the autocorrelation sequence is less than the preset second threshold, it is determined that there is no interference waveform in the original waveform.
其中,第一阈值与第二阈值可以是预先根据经验设定的值,或者,还可以是根据当前环境变化设定的值,在此不做具体限定。The first threshold and the second threshold may be values set in advance based on experience, or may also be values set according to current environmental changes, which are not specifically limited herein.
在本实施例中,可以将上一步找到的原始波形的波峰值、以及自相关序列的波峰值分别跟预设的阈值作比较,以用来原始波形中是否存在干扰波形,进而实现了对“多余”干扰脉冲信号的检测。In this embodiment, the peak value of the original waveform found in the previous step and the peak value of the autocorrelation sequence can be compared with the preset thresholds, respectively, to check whether there is an interference waveform in the original waveform, thereby realizing the detection of "" "Excessive" interferes with the detection of pulsed signals.
具体的,继续参考图5(a)与图5(b)所示,可以将第一阈值记作th_s_pk,第二阈值记作th_xcr_pk。Specifically, continuing to refer to FIG. 5( a ) and FIG. 5( b ), the first threshold may be denoted as th_s_pk, and the second threshold may be denoted as th_xcr_pk.
第一种情况、若原始波形的波峰值s_pk小于预设的第一阈值th_s_pk,即s_pk<th_s_pk,且自相关序列的波峰值xcr_pk小于预设的第二阈值th_xcr_pk,即xcr_pk<th_xcr_pk,则可以确定原始波形内不存在干扰波形,此时,控制发光模块正常恢复向目标物发射激光雷达和测距功能。In the first case, if the peak value s_pk of the original waveform is less than the preset first threshold th_s_pk, that is, s_pk<th_s_pk, and the peak value xcr_pk of the autocorrelation sequence is less than the preset second threshold th_xcr_pk, that is, xcr_pk<th_xcr_pk, then you can It is determined that there is no interference waveform in the original waveform. At this time, the light-emitting module is controlled to resume the function of transmitting lidar and ranging to the target normally.
另外,激光雷达系统中还包括:状态输出模块,状态输出模块用于更新和输出“未检测到干扰”的状态,以便于用户可以针对当前不存在的干扰波形的提示信息,及时了解到激光雷达系统的工作状态。In addition, the lidar system also includes: a status output module, which is used to update and output the status of "no interference detected", so that users can learn about the lidar in time for the prompt information of the interference waveform that does not currently exist. The working state of the system.
第二种情况、若原始波形的波峰值s_pk大于预设的第一阈值th_s_pk,即s_pk>th_s_pk;或者,自相关序列的波峰值xcr_pk大于预设的第二阈值th_xcr_pk,即xcr_pk>h_xcr_pk;又或者,原始波形的波峰值s_pk大于预设的第一阈值th_s_pk,且自相关序列的波峰值xcr_pk大于预设的第二阈值th_xcr_pk,即xcr_pk>h_xcr_pk。也即,上述两个阈值的判断结果是两个大于或其中一个大于,即至少有一个条件满足,则可以确定原始波形内存在干扰波形。In the second case, if the peak value s_pk of the original waveform is greater than the preset first threshold th_s_pk, that is, s_pk>th_s_pk; or, the peak value xcr_pk of the autocorrelation sequence is greater than the preset second threshold th_xcr_pk, that is, xcr_pk>h_xcr_pk; Alternatively, the peak value s_pk of the original waveform is greater than the preset first threshold th_s_pk, and the peak value xcr_pk of the autocorrelation sequence is greater than the second preset threshold th_xcr_pk, that is, xcr_pk>h_xcr_pk. That is, if the judgment result of the above two thresholds is that both of them are greater than or one of them is greater than one of them, that is, at least one condition is satisfied, it can be determined that there is an interference waveform in the original waveform.
在本实施例中,还可以基于上述步骤中得到原始波形对应的自相关序列,来确定原始波形内存在的干扰波形是否为周期性地信号,这样,使得有效解决了原始波形中存在的来自其他周期性的激光雷达的干扰,提高了激光雷达系统的对抗干扰性能。In this embodiment, it is also possible to determine whether the interference waveform existing in the original waveform is a periodic signal based on the autocorrelation sequence corresponding to the original waveform obtained in the above steps. Periodic interference of lidar improves the anti-interference performance of lidar system.
将通过如下实施例,具体讲解如何从原始波形的各数据点中提取干扰波形的参数值。The following embodiments will specifically explain how to extract the parameter values of the interference waveform from each data point of the original waveform.
可选地,参考图6所示,上述步骤S302:从原始波形的各数据点中提取干扰波形的参数值,包括:Optionally, as shown in FIG. 6, the above step S302: extracting parameter values of the interference waveform from each data point of the original waveform, including:
S601、根据干扰检测使能信号的上升沿时刻、以及原始波形的波峰值对应的峰值时刻,得到干扰波形的干扰时刻。S601. Obtain the interference time of the interference waveform according to the rising edge time of the interference detection enable signal and the peak time corresponding to the peak value of the original waveform.
在本实施例中,可以采用如下公式(2),可以提取得到干扰波形的干扰时刻。其中,公式(2)如下:In this embodiment, the following formula (2) can be used, and the interference moment at which the interference waveform can be obtained can be extracted. Among them, formula (2) is as follows:
n1=n_enable+n_s_pk(2)n1=n_enable+n_s_pk(2)
其中,n_enable是干扰检测使能信号的上升沿时刻,n_s_pk是原始波形的波峰值对应的峰值时刻。Among them, n_enable is the rising edge time of the interference detection enable signal, and n_s_pk is the peak time corresponding to the peak value of the original waveform.
S602、将自相关序列的波峰值的峰值时刻作为干扰波形的干扰周期。S602. Use the peak time of the wave peak value of the autocorrelation sequence as the interference period of the interference waveform.
在本实施例中,可以将自相关序列的波峰值的峰值时刻作为干扰波形的干扰周期,也即,n2=n_xcr_pk。其中,n2为干扰波形的干扰周期。In this embodiment, the peak time of the wave peak value of the autocorrelation sequence can be used as the interference period of the interference waveform, that is, n2=n_xcr_pk. Among them, n2 is the interference period of the interference waveform.
S603、将原始波形中大于第一阈值的数据点个数作为干扰波形的干扰时长。S603. Use the number of data points in the original waveform that is greater than the first threshold as the interference duration of the interference waveform.
在本实施例中,提取原始波形中大于第一阈值th_s_pk的数据点个数,并将大于第一阈值的数据点个数作为干扰波形的干扰时长。In this embodiment, the number of data points greater than the first threshold th_s_pk in the original waveform is extracted, and the number of data points greater than the first threshold is used as the interference duration of the interference waveform.
将通过如下实施例,具体讲解如何根据干扰波形的参数值,从原始波形的各数据点内剔除干扰波形的数据点,得到目标发射波形数据。The following embodiments will be used to specifically explain how to remove the data points of the interference waveform from the data points of the original waveform according to the parameter values of the interference waveform to obtain the target transmission waveform data.
可选地,根据干扰波形的参数值,从原始波形的各数据点内剔除干扰波形的数据点,得到目标发射波形数据,包括:Optionally, according to the parameter values of the interference waveform, the data points of the interference waveform are removed from the data points of the original waveform to obtain the target transmission waveform data, including:
根据干扰波形的干扰时刻、干扰周期以及干扰时长,从原始波形的各数据点中查找到干扰波形的数据点,并将干扰波形的数据点的值清零,得到目标发射波形数据。According to the interference time, interference period and interference duration of the interference waveform, the data points of the interference waveform are found from the data points of the original waveform, and the value of the data points of the interference waveform is cleared to obtain the target transmission waveform data.
在本实施例中,可以采用如下公式(3),结合干扰时刻n1、干扰周期n2、干扰时长n3,可以准确地从原始波形的各数据点中找到干扰波形的所有数据点,并把干扰波形的所有数据点的值都清零,使得能够将干扰波形从原始波形中剔除掉,以得到目标发射波形数据。其中,公式(3)具体如下:In this embodiment, the following formula (3) can be used, combined with the interference time n1, the interference period n2, and the interference duration n3, all the data points of the interference waveform can be accurately found from the data points of the original waveform, and the interference waveform The values of all data points of , are cleared to zero, so that the interference waveform can be eliminated from the original waveform to obtain the target transmit waveform data. Among them, formula (3) is as follows:
n干扰={n1+m1*n2+0,n1+m1*n2+1,n1+m1*n2+2,.....,n1+m1*n2+n3} (3)n interference ={n1+m1*n2+0,n1+m1*n2+1,n1+m1*n2+2,.....,n1+m1*n2+n3} (3)
其中,m1=0,1,2…是自然数,表示干扰周期的序号;干扰时刻n1,干扰周期n2、干扰时长n3。Among them, m1=0, 1, 2... are natural numbers, representing the sequence number of the interference period; the interference time n1, the interference period n2, and the interference duration n3.
在本申请提供的激光雷达对抗干扰方法中,除了得到干扰波形的干扰时刻、干扰周期、干扰时长等参数值之外,还可以得到干扰波形的干扰强度。In the lidar anti-jamming method provided by the present application, in addition to obtaining parameter values such as the interference time, the interference period, and the interference duration of the interference waveform, the interference intensity of the interference waveform can also be obtained.
将通过如下实施例,具体讲解如何得到干扰波形的干扰强度。The following embodiments will specifically explain how to obtain the interference intensity of the interference waveform.
可选地,对原始波形中大于第一阈值的各数据点的值进行求和,并将求和后的结果作为干扰波形的干扰强度。Optionally, the values of the data points in the original waveform that are greater than the first threshold are summed, and the summed result is used as the interference strength of the interference waveform.
在本实施例中,激光雷达系统中还包括:告警模块,告警模块可以用于更新和输出“激光雷达正在被干扰”的告警状态,同时输出当前存在的干扰波形的干扰时刻n1、干扰周期n2、干扰时长n3以及干扰强度s4等提示信息,以便于用户可以针对当前存在的干扰波形的参数值,及时制定相应的调整策略,以确保激光雷达的测距的准确性。In this embodiment, the lidar system further includes: an alarm module, the alarm module can be used to update and output the alarm state of "the lidar is being interfered", and at the same time output the interference time n1 and the interference period n2 of the currently existing interference waveform , interference duration n3, and interference intensity s4 and other prompt information, so that users can timely formulate corresponding adjustment strategies for the parameter values of the currently existing interference waveforms to ensure the accuracy of lidar ranging.
可选地,在上述步骤S301、截取干扰检测时间段内的原始波形的各数据点之前,还包括:Optionally, before the above step S301, before intercepting each data point of the original waveform in the interference detection time period, the method further includes:
根据干扰检测使能信号的上升沿时刻,停止向探测区域发射激光脉冲序列。According to the rising edge time of the interference detection enable signal, stop transmitting the laser pulse sequence to the detection area.
在本实施例中,当接收到干扰检测使能信号的上升沿时刻时,则立即停止当前发光模块向目标物发射激光雷达,即暂停激光雷达系统的测距功能,以开启对干扰波形的检测和剔除,进而有效确保激光雷达的测距的准确性。In this embodiment, when the rising edge of the interference detection enable signal is received, the current light-emitting module immediately stops transmitting lidar to the target, that is, the ranging function of the lidar system is suspended to enable detection of interference waveforms and culling, thereby effectively ensuring the accuracy of lidar ranging.
下述对用以执行本申请所提供的激光雷达对抗干扰方法对应的装置及存储介质等进行说明,其具体的实现过程以及技术效果参见上述,下述不再赘述。The following describes the corresponding device and storage medium for implementing the laser radar anti-jamming method provided by the present application, and the specific implementation process and technical effect thereof are referred to above, and will not be repeated below.
可选地,本申请实施例还提供了一种激光雷达对抗干扰装置,应用于激光雷达,如图7所示,该装置包括:Optionally, an embodiment of the present application further provides a lidar anti-jamming device, which is applied to lidar. As shown in FIG. 7 , the device includes:
截取模块701,用于截取干扰检测时间段内的原始波形的各数据点,干扰检测时间段是指从干扰检测使能信号的上升沿时刻与预设的暂停发波时长之和;The
确定模块702,用于根据原始波形的各数据点,确定原始波形中是否存在干扰波形;A
提取模块703,用于若是,则从原始波形的各数据点中提取干扰波形的参数值,干扰波形的参数值包括:干扰时刻、干扰周期、干扰时长;
剔除模块704,用于根据干扰波形的参数值,从原始波形的各数据点中剔除干扰波形的数据点,得到目标发射波形数据;The
发射模块705,用于按照目标发射波形数据向探测区域发射激光脉冲序列。The transmitting
可选地,确定模块702,还用于:Optionally, the determining
对原始波形的各数据点进行自相关运算,得到原始波形对应的自相关序列;Perform autocorrelation operation on each data point of the original waveform to obtain the autocorrelation sequence corresponding to the original waveform;
分别确定原始波形的波峰值、以及自相关序列的波峰值;Determine the peak value of the original waveform and the peak value of the autocorrelation sequence respectively;
根据原始波形的波峰值、以及自相关序列的波峰值,确定原始波形中是否存在干扰波形。According to the peak value of the original waveform and the peak value of the autocorrelation sequence, it is determined whether there is an interference waveform in the original waveform.
可选地,确定模块702,还用于:Optionally, the determining
若原始波形的波峰值小于预设的第一阈值,且自相关序列的波峰值小于预设的第二阈值,则确定原始波形内不存在干扰波形。If the peak value of the original waveform is less than the preset first threshold, and the peak value of the autocorrelation sequence is less than the preset second threshold, it is determined that there is no interference waveform in the original waveform.
可选地,提取模块703,还用于:Optionally, the
根据干扰检测使能信号的上升沿时刻、以及原始波形的波峰值对应的峰值时刻,得到干扰波形的干扰时刻;Obtain the interference time of the interference waveform according to the rising edge time of the interference detection enable signal and the peak time corresponding to the peak value of the original waveform;
将自相关序列的波峰值的峰值时刻作为干扰波形的干扰周期;The peak time of the wave peak value of the autocorrelation sequence is taken as the interference period of the interference waveform;
将原始波形中大于第一阈值的数据点个数作为干扰波形的干扰时长。The number of data points in the original waveform that is greater than the first threshold is used as the interference duration of the interference waveform.
可选地,剔除模块704,还用于:Optionally, the
根据干扰波形的干扰时刻、干扰周期以及干扰时长,从原始波形的各数据点中查找到干扰波形的数据点,并将干扰波形的数据点的值清零,得到目标发射波形数据。According to the interference time, interference period and interference duration of the interference waveform, the data points of the interference waveform are found from the data points of the original waveform, and the value of the data points of the interference waveform is cleared to obtain the target transmission waveform data.
可选地,干扰波形的参数值还包括:干扰强度;Optionally, the parameter value of the interference waveform further includes: interference strength;
该装置还包括:The device also includes:
处理模块,用于对原始波形中大于第一阈值的各数据点的值进行求和,并将求和后的结果作为干扰波形的干扰强度。The processing module is configured to sum the values of the data points in the original waveform that are greater than the first threshold, and use the summed result as the interference intensity of the interference waveform.
可选地,该装置还包括:Optionally, the device also includes:
停止模块,用于根据干扰检测使能信号的上升沿时刻,停止向探测区域发射激光脉冲序列。The stop module is used to stop emitting the laser pulse sequence to the detection area according to the rising edge time of the interference detection enable signal.
上述装置用于执行前述实施例提供的方法,其实现原理和技术效果类似,在此不再赘述。The foregoing apparatus is used to execute the method provided by the foregoing embodiment, and the implementation principle and technical effect thereof are similar, which will not be repeated here.
以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital singnal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(CentralProcessing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。The above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), or one or more microprocessors (digital singnal) processor, DSP for short), or one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA for short), etc. For another example, when one of the above modules is implemented in the form of a processing element scheduling program code, the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU for short) or other processors that can call program codes. For another example, these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC for short).
可选地,本发明还提供一种程序产品,例如计算机可读存储介质,包括程序,该程序在被处理器执行时用于执行上述方法实施例。Optionally, the present invention further provides a program product, such as a computer-readable storage medium, including a program, which is used to execute the foregoing method embodiments when executed by a processor.
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed apparatus and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium. The above-mentioned software functional unit is stored in a storage medium, and includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the various embodiments of the present invention. part of the method. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (English: Read-Only Memory, referred to as: ROM), random access memory (English: Random Access Memory, referred to as: RAM), magnetic disk or optical disk, etc. Various media that can store program code.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111666251.XA CN114325658A (en) | 2021-12-31 | 2021-12-31 | Lidar anti-jamming method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111666251.XA CN114325658A (en) | 2021-12-31 | 2021-12-31 | Lidar anti-jamming method, device, equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114325658A true CN114325658A (en) | 2022-04-12 |
Family
ID=81020277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111666251.XA Pending CN114325658A (en) | 2021-12-31 | 2021-12-31 | Lidar anti-jamming method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114325658A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115189763A (en) * | 2022-07-12 | 2022-10-14 | 安徽问天量子科技股份有限公司 | TDC (time-to-digital converter) -based quantum pulse interception method and quantum key distribution system |
CN116033068A (en) * | 2022-12-28 | 2023-04-28 | 维沃移动通信有限公司 | False touch prevention method, device, electronic equipment and readable storage medium |
CN116520286A (en) * | 2023-03-09 | 2023-08-01 | 南京理工大学 | A Backscatter Filtering Method for Underwater Laser |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010286268A (en) * | 2009-06-09 | 2010-12-24 | Kyushu Univ | Signal peak measurement system |
CN109639318A (en) * | 2019-01-17 | 2019-04-16 | 北京航空航天大学 | Method, device, equipment and storage medium for eliminating interference pulse of aviation communication |
US20190129009A1 (en) * | 2017-11-01 | 2019-05-02 | Luminar Technologies, Inc. | Detection of crosstalk and jamming pulses with lidar system |
CN109884611A (en) * | 2019-03-22 | 2019-06-14 | 北京未感科技有限公司 | A kind of laser radar anti-interference method and device |
CN110780306A (en) * | 2019-11-19 | 2020-02-11 | 深圳市镭神智能系统有限公司 | Anti-interference method for laser radar and laser radar |
CN111221001A (en) * | 2020-01-16 | 2020-06-02 | 宁波飞芯电子科技有限公司 | Detection method, device, equipment and storage medium |
WO2021147978A1 (en) * | 2020-01-22 | 2021-07-29 | 苏州一径科技有限公司 | Method for decoupling multi-source crosstalk in fmcw lidar, fmcw lidar, and radar system |
WO2021168866A1 (en) * | 2020-02-29 | 2021-09-02 | 华为技术有限公司 | Anti-interference distance measuring device and method |
-
2021
- 2021-12-31 CN CN202111666251.XA patent/CN114325658A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010286268A (en) * | 2009-06-09 | 2010-12-24 | Kyushu Univ | Signal peak measurement system |
US20190129009A1 (en) * | 2017-11-01 | 2019-05-02 | Luminar Technologies, Inc. | Detection of crosstalk and jamming pulses with lidar system |
CN109639318A (en) * | 2019-01-17 | 2019-04-16 | 北京航空航天大学 | Method, device, equipment and storage medium for eliminating interference pulse of aviation communication |
CN109884611A (en) * | 2019-03-22 | 2019-06-14 | 北京未感科技有限公司 | A kind of laser radar anti-interference method and device |
CN110780306A (en) * | 2019-11-19 | 2020-02-11 | 深圳市镭神智能系统有限公司 | Anti-interference method for laser radar and laser radar |
CN111221001A (en) * | 2020-01-16 | 2020-06-02 | 宁波飞芯电子科技有限公司 | Detection method, device, equipment and storage medium |
WO2021147978A1 (en) * | 2020-01-22 | 2021-07-29 | 苏州一径科技有限公司 | Method for decoupling multi-source crosstalk in fmcw lidar, fmcw lidar, and radar system |
WO2021168866A1 (en) * | 2020-02-29 | 2021-09-02 | 华为技术有限公司 | Anti-interference distance measuring device and method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115189763A (en) * | 2022-07-12 | 2022-10-14 | 安徽问天量子科技股份有限公司 | TDC (time-to-digital converter) -based quantum pulse interception method and quantum key distribution system |
CN115189763B (en) * | 2022-07-12 | 2023-12-01 | 安徽问天量子科技股份有限公司 | Quantum pulse interception method based on TDC and quantum key distribution system |
CN116033068A (en) * | 2022-12-28 | 2023-04-28 | 维沃移动通信有限公司 | False touch prevention method, device, electronic equipment and readable storage medium |
CN116520286A (en) * | 2023-03-09 | 2023-08-01 | 南京理工大学 | A Backscatter Filtering Method for Underwater Laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114325658A (en) | Lidar anti-jamming method, device, equipment and storage medium | |
CN110780306B (en) | Anti-interference method for laser radar and laser radar | |
CN109164420B (en) | A Realization Method of Phased Array Radar Searching and Tracking Mode | |
CN107064882B (en) | Radar networking resource control method based on radio frequency stealth under passive cooperation | |
CN102866398A (en) | Method and system for performing moving-target identification by using frequency-modulated continuous-wave radar | |
JP2009250616A (en) | Radar signal processing device | |
WO2023125322A2 (en) | Lidar echo signal processing method and apparatus, and computer device | |
US20150355319A1 (en) | Method, device and system for processing radar signals | |
CN115097420A (en) | Laser rangefinder signal calibration method, device and electronic equipment based on AD data | |
US20230341529A1 (en) | Target detection method, lidar and storage medium | |
CN112014824A (en) | Multi-pulse anti-interference signal processing method and device | |
CN112105950B (en) | Detection method, detection equipment and millimeter wave radar of detection object | |
CN110764097A (en) | Anti-interference method and device for laser radar, laser radar and storage medium | |
KR102146156B1 (en) | Method and apparatus for detecting object | |
CN115015875A (en) | Point cloud data processing method and device and electronic equipment | |
CN113009432B (en) | Method, device and equipment for improving measurement accuracy and target detection accuracy | |
KR101045347B1 (en) | Pulse signal tracking method and apparatus | |
CN112462379A (en) | Distance measuring method, device, system and storage medium | |
JPS6254189A (en) | On-vehicle random modulation radar equipment | |
JP2012107925A (en) | Radar device | |
CN113109796A (en) | Target detection method and device | |
CN119179072B (en) | A millimeter wave radar velocity deambiguation method and system | |
CN115113684A (en) | Coding laser and laser decoding device | |
CN116520342A (en) | A ranging method for a laser radar high-precision ranging system | |
RU2774060C1 (en) | Method for receiving and processing signals of the air traffic control system under the influence of noise and pulse interference |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |