CN114325606A - Multi-system agile radar radio frequency echo signal simulation method - Google Patents
Multi-system agile radar radio frequency echo signal simulation method Download PDFInfo
- Publication number
- CN114325606A CN114325606A CN202111364832.8A CN202111364832A CN114325606A CN 114325606 A CN114325606 A CN 114325606A CN 202111364832 A CN202111364832 A CN 202111364832A CN 114325606 A CN114325606 A CN 114325606A
- Authority
- CN
- China
- Prior art keywords
- echo
- radar
- prt
- data
- fpga
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000005070 sampling Methods 0.000 claims abstract description 38
- 238000012545 processing Methods 0.000 claims description 25
- 238000004891 communication Methods 0.000 claims description 12
- 238000013139 quantization Methods 0.000 claims description 8
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 6
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 abstract description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 10
- 239000013598 vector Substances 0.000 description 9
- 101100328518 Caenorhabditis elegans cnt-1 gene Proteins 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明提供了一种多体制捷变的雷达射频回波信号模拟方法,该方法可实现利用较少的软硬件资源完成多体制的雷达回波信号的模拟,大大降低雷达回波信号模拟系统的成本和体积。并且,本发明可利用上位机界面捷变切换,在同一次连续回波采集试验中完成多种体制雷达回波信号的模拟,操作具有很强的灵活性。同时本发明采用乒乓操作实现雷达回波信号产生方法,当FPGA端收到一组新PRT回波数据时,将回波数据放到刚输出的一组PRT回波数据所在的RAM地址上,以实时更新原有的一个PRT回波数据,并更新PRT的起始距离及数据的采样点数等参数,实现乒乓操作,能够节省FPGA逻辑资源,提高时间利用率。
The invention provides a multi-system agile radar radio frequency echo signal simulation method, which can realize the simulation of the multi-system radar echo signal by using less software and hardware resources, and greatly reduces the time of the radar echo signal simulation system. cost and volume. In addition, the present invention can utilize the agile switching of the host computer interface to complete the simulation of radar echo signals of various systems in the same continuous echo acquisition test, and the operation has strong flexibility. At the same time, the present invention adopts the ping-pong operation to realize the radar echo signal generation method. When the FPGA end receives a new set of PRT echo data, the echo data is placed on the RAM address where the newly output set of PRT echo data is located, so as to The original PRT echo data is updated in real time, and the parameters such as the starting distance of the PRT and the number of sampling points of the data are updated to realize the ping-pong operation, which can save the FPGA logic resources and improve the time utilization rate.
Description
技术领域technical field
本发明属于雷达数字信号处理技术领域,具体涉及一种多体制捷变的雷达射频回波信号模拟方法。The invention belongs to the technical field of radar digital signal processing, and in particular relates to a multi-system agile radar radio frequency echo signal simulation method.
背景技术Background technique
目前,雷达导引头软硬件的功能和性能测试经常依赖于外场实验测试,而外场实验测试对测试条件,包括靶标目标、场地环境等有很高的要求,但是实际情况下并不常常具备理想的外场测试环境,这对雷达导引头软硬件的功能和性能测试验证是一个很大的挑战。At present, the function and performance test of the software and hardware of the radar seeker often relies on the field experiment test, and the field experiment test has high requirements on the test conditions, including the target target and the site environment, but it is not always ideal in actual situations. This is a big challenge for the function and performance test verification of the radar seeker software and hardware.
雷达中频回波模拟系统可根据雷达回波波形设计方法,借助软硬件实现外场实验场景的目标特征模拟,通过和微波组合模块配合输出符合实际应用解决了雷达导引头软硬件的功能和性能测试必须依赖外场实验测试的问题。目前较为成熟的雷达回波模拟系统的设计方法大致分为以下两类:The radar intermediate frequency echo simulation system can realize the target feature simulation of the field experiment scene with the help of software and hardware according to the radar echo waveform design method. Must rely on field test problems. At present, the design methods of the more mature radar echo simulation system are roughly divided into the following two categories:
1)一种基于计算机开发设计的纯软件化雷达回波模拟系统,这种设计方法采用计算机生成目标回波信息、干扰信息等。但由于计算机本身的局限性,数据生成的速度较慢,无法实现实时的目标回波模拟以及干扰信号模拟。1) A pure software radar echo simulation system based on computer development and design. This design method uses computer to generate target echo information and interference information. However, due to the limitations of the computer itself, the speed of data generation is slow, and real-time target echo simulation and interference signal simulation cannot be realized.
2)另外一种是基于硬件信号处理板卡实现雷达回波模拟系统的设计,这种设计方法会受限于硬件信号处理板卡的内存容量,导致产生的雷达回波种类很少,应用场景较为单一。2) The other is to design a radar echo simulation system based on a hardware signal processing board. This design method will be limited by the memory capacity of the hardware signal processing board, resulting in few types of radar echoes and application scenarios. more singular.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种多体制捷变的雷达射频回波信号模拟方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a multi-system agile radar radio frequency echo signal simulation method. The technical problem to be solved by the present invention is realized by the following technical solutions:
本发明提供的一种多体制捷变的雷达射频回波信号模拟方法,应用于通信服务器以及雷达信号处理板卡,所述通信服务器与所述雷达信号处理板卡通信连接,所述雷达信号处理板卡由一个DSP、一个FPGA芯片、射频模块、DA模块以及外围电路组成;所述模拟方法包括:The invention provides a multi-system agile radar radio frequency echo signal simulation method, which is applied to a communication server and a radar signal processing board, wherein the communication server is communicatively connected to the radar signal processing board, and the radar signal processing The board is composed of a DSP, an FPGA chip, a radio frequency module, a DA module and a peripheral circuit; the simulation method includes:
在所述通信服务器上建立用于向雷达信号处理板卡发送雷达相关参数的上位机软件;Establish the host computer software for sending radar-related parameters to the radar signal processing board on the communication server;
其中,所述上位机软件包括软件界面,所述软件界面包括:雷达相关参数编辑框以及功能按钮,所述雷达相关参数编辑框包括用于回波选择X、回波量化幅度Amp、一个CPI内的PRT个数kk、一个脉宽Tp内的时宽采样点数nTp、目标距离范围R_range、回波起始距离R、目标速度Vr、回波脉冲重复周期PRT、载频序列fm、回波波束俯仰角fai0以及回波波束方位角theta0参数的输入框;所述功能按钮包括生成回波数据按钮、开启TCP服务按钮、开始发送数据按钮、复位按钮以及衰减使能按钮;Wherein, the host computer software includes a software interface, the software interface includes: a radar-related parameter editing box and function buttons, and the radar-related parameter editing box includes an echo selection X, an echo quantization amplitude Amp, a CPI internal The number of PRTs kk, the number of time-width sampling points nTp within a pulse width Tp , the target distance range R_range, the echo starting distance R, the target speed V r , the echo pulse repetition period PRT, the carrier frequency sequence f m , the echo pulse Beam pitch angle fai0 and the input box of echo beam azimuth angle theta0 parameter; Described function button includes generate echo data button, open TCP service button, start sending data button, reset button and attenuation enable button;
在所述上位机软件的软件界面通过回波模式选择按钮捷变切换回波模式,以及通过编辑框在不同回波模式下通过生成雷达相关参数,当接收到生成回波数据按钮的操作指令时,根据所述雷达相关参数生成原始回波脉冲数据,并将所述雷达相关参数以及所述原始回波脉冲数据组成数据帧;In the software interface of the host computer software, the echo mode is switched agilely through the echo mode selection button, and the radar-related parameters are generated in different echo modes through the edit box. When receiving the operation instruction of the button to generate echo data , generating original echo pulse data according to the radar-related parameters, and forming a data frame with the radar-related parameters and the original echo pulse data;
选择开始发送数据按钮,将所述数据帧下发至雷达信号处理板卡中的DSP;Select the button to start sending data, and send the data frame to the DSP in the radar signal processing board;
所述DSP,根据数据帧的雷达相关参数确定目标信息,并基于所述目标信息以及原始回波脉冲数据持续构建PRT回波脉冲信号模型,并第N个PRT回波脉冲信号模型下发至FPGA,统计已下发至FPGA的PRT回波脉冲信号模型总数;根据该总数以及雷达相关参数,计算N+1PRT回波脉冲的起始距离和数据采样点数,构建第N+1个PRT回波脉冲信号模型,当接收到FPGA发送的请求发送指令时,将第N+1个PRT回波脉冲信号模型发送至FPGA;The DSP determines target information according to the radar-related parameters of the data frame, continuously constructs a PRT echo pulse signal model based on the target information and the original echo pulse data, and sends the Nth PRT echo pulse signal model to the FPGA , count the total number of PRT echo pulse signal models that have been sent to the FPGA; according to the total number and radar-related parameters, calculate the starting distance of N+1 PRT echo pulses and the number of data sampling points, and construct the N+1th PRT echo pulse Signal model, when receiving the request to send command sent by FPGA, send the N+1th PRT echo pulse signal model to FPGA;
其中,N为从1开始的正整数;Among them, N is a positive integer starting from 1;
所述FPGA,将第N个PRT回波脉冲信号模型进行存储,并根据自身产生的回波模拟输出指令,将第N个PRT回波脉冲信号模型输出DA模块;The FPGA stores the Nth PRT echo pulse signal model, and outputs the Nth PRT echo pulse signal model to the DA module according to the echo simulation output instruction generated by itself;
所述DA模块,根据所述第N个PRT回波脉冲信号模型产生模拟的雷达中频回波信号,将所述雷达中频回波信号输出至射频模块;The DA module generates a simulated radar intermediate frequency echo signal according to the Nth PRT echo pulse signal model, and outputs the radar intermediate frequency echo signal to the radio frequency module;
所述射频模块,将雷达中频回波信号转换为雷达射频回波信号。The radio frequency module converts the radar intermediate frequency echo signal into the radar radio frequency echo signal.
可选的,在通过编辑框在不同回波模式下通过生成雷达相关参数之前,所述多体制捷变的雷达射频回波信号模拟方法还包括:Optionally, before generating radar-related parameters in different echo modes through an edit box, the multi-system agile radar RF echo signal simulation method further includes:
检测所述开启TCP服务按钮是否启动,如果是,则建立与所述雷达信号处理板卡的TCP协议的通信链路。Detect whether the open TCP service button is activated, and if so, establish a communication link with the TCP protocol of the radar signal processing board.
可选的,所述DSP,根据数据帧的雷达相关参数确定目标信息,并基于所述目标信息以及原始回波脉冲数据持续构建PRT回波脉冲信号模型,并第N个PRT回波脉冲信号模型下发至FPGA,统计已下发至FPGA的PRT回波脉冲信号模型总数;根据该总数以及雷达相关参数,计算N+1PRT回波脉冲的起始距离和数据采样点数,构建第N+1个PRT回波脉冲信号模型,当接收到FPGA发送的请求发送指令时,将第N+1个PRT回波脉冲信号模型发送至FPGA包括:Optionally, the DSP determines target information according to radar-related parameters of the data frame, and continuously constructs a PRT echo pulse signal model based on the target information and the original echo pulse data, and generates the Nth PRT echo pulse signal model. Delivered to the FPGA, count the total number of PRT echo pulse signal models that have been delivered to the FPGA; according to the total number and radar-related parameters, calculate the starting distance and data sampling points of N+1 PRT echo pulses, and construct the N+1th PRT echo pulse signal model, when receiving the request to send command sent by the FPGA, sending the N+1th PRT echo pulse signal model to the FPGA includes:
步骤a:基于所述目标信息以及原始回波脉冲数据,构建第一个PRT的回波脉冲信号模型,将第一个PRT的回波脉冲信号模型发送至FPGA;Step a: based on the target information and the original echo pulse data, construct the echo pulse signal model of the first PRT, and send the echo pulse signal model of the first PRT to the FPGA;
步骤b:统计已下发至FPGA的PRT回波脉冲信号模型总数;Step b: Count the total number of PRT echo pulse signal models that have been sent to the FPGA;
步骤c:根据所述总数以及雷达相关参数,计算第2个PRT回波脉冲信号模型的起始距离和数据采样点数;Step c: Calculate the starting distance and the number of data sampling points of the second PRT echo pulse signal model according to the total number and radar-related parameters;
步骤d:根据第2个PRT回波脉冲信号模型的起始距离和数据采样点数,构建第2个PRT回波脉冲信号模型;Step d: construct the second PRT echo pulse signal model according to the starting distance and the number of data sampling points of the second PRT echo pulse signal model;
步骤e:当接收到FPGA发送的请求发送指令时,将第2个PRT回波脉冲信号模型发送至FPGA;Step e: sending the second PRT echo pulse signal model to the FPGA when receiving the request to send instruction sent by the FPGA;
步骤f:根据N+1的统计总数以及雷达相关参数,计算第N+2个PRT回波脉冲信号模型的起始距离和数据采样点数;Step f: Calculate the starting distance and the number of data sampling points of the N+2th PRT echo pulse signal model according to the total number of statistics of N+1 and radar-related parameters;
步骤g:根据第N+2个PRT回波脉冲信号模型的起始距离和数据采样点数,构建第N+2个PRT回波脉冲信号模型;Step g: construct the N+2th PRT echo pulse signal model according to the starting distance and the number of data sampling points of the N+2th PRT echo pulse signal model;
步骤h:当接收到FPGA发送的请求发送指令时,将第N+2个PRT回波脉冲信号模型发送至FPGA,返回步骤f。Step h: when receiving the request to send instruction sent by the FPGA, send the N+2th PRT echo pulse signal model to the FPGA, and return to step f.
可选的,回波模式选择框,用于捷变切换输出射频回波信号的体制类型;Optionally, the echo mode selection box, used to switch the system type of the output RF echo signal agilely;
其中,体制类型包括:MIMO模式、捷变频模式、相控阵模式。The system types include: MIMO mode, frequency agile mode, and phased array mode.
可选的,在所述捷变频模式下,所述载频序列fm是依据跳频码字随机生成的;根据数据帧的雷达相关参数确定目标信息包括:Optionally, in the frequency agile mode, the carrier frequency sequence f m is randomly generated according to the frequency hopping codeword; determining the target information according to the radar-related parameters of the data frame includes:
所述DSP,在捷变频模式下,根据雷达相关参数中的载频序列fm,模拟捷变频体制的回波脉冲信号因脉间载频捷变引起的相位参数不连续的特征;The DSP, in the frequency agile mode, simulates the discontinuous phase parameter characteristic of the echo pulse signal of the frequency agility system caused by the carrier frequency agility between pulses according to the carrier frequency sequence f m in the radar related parameters;
将所述特征作为目标的特征,以确定目标信息。The feature is used as the feature of the target to determine target information.
可选的,在根据所述雷达相关参数生成原始回波脉冲数据之后,Optionally, after generating the original echo pulse data according to the radar-related parameters,
所述上位机软件将自身的编辑框设置成不可编辑状态。The host computer software sets its own edit box to a non-editable state.
可选的,在射频模块,将雷达中频回波信号转换为雷达射频回波信号之后,所述多体制捷变的雷达射频回波信号的模拟方法还包括:Optionally, after the radio frequency module converts the radar intermediate frequency echo signal into the radar radio frequency echo signal, the method for simulating the multi-system agile radar radio frequency echo signal further includes:
所述上位机软件,检测复位按钮是否产生复位指令,如果检测到所述复位指令,将所述复位指令下发至DSP,并将自身的编辑框设置成可编辑状态;The host computer software detects whether the reset button generates a reset command, and if the reset command is detected, the reset command is sent to the DSP, and its own edit box is set to an editable state;
所述DSP对自身所存储数据帧以及PRT回波脉冲信号模型进行复位清除。The DSP resets and clears the stored data frame and the PRT echo pulse signal model.
可选的,在射频模块将雷达中频回波信号转换为雷达射频回波信号之后,所述多体制捷变的雷达射频回波信号模拟方法还包括:Optionally, after the radio frequency module converts the radar intermediate frequency echo signal into the radar radio frequency echo signal, the multi-system agile radar radio frequency echo signal simulation method further includes:
上位机软件,当检测到衰减使能按钮产生的衰减指令时,通过DSP向FPGA发送衰减指令;The host computer software, when detecting the attenuation command generated by the attenuation enable button, sends the attenuation command to the FPGA through the DSP;
所述FPGA通过串口向所述射频模块发送衰减指令;The FPGA sends an attenuation instruction to the radio frequency module through the serial port;
所述射频模块,用于调节射频回波信号的输出功率。The radio frequency module is used to adjust the output power of the radio frequency echo signal.
本发明的有益效果:Beneficial effects of the present invention:
1)本发明提供了一种多体制捷变的雷达射频回波信号模拟方法,该方法可实现利用较少的软硬件资源完成多体制的雷达回波实时模拟系统设计,大大降低雷达回波信号模拟系统的成本和体积。1) The present invention provides a multi-system agile radar radio frequency echo signal simulation method, which can realize the use of less software and hardware resources to complete the multi-system radar echo real-time simulation system design, and greatly reduce the radar echo signal. Simulate the cost and size of the system.
2)本发明可以实现多种体制雷达回波信号模拟软件的集成,可利用上位机界面实时捷变切换,在同一次连续回波采集试验中完成多种体制雷达回波信号的模拟,并且操作具有很强的灵活性。2) The present invention can realize the integration of radar echo signal simulation software of various systems, and can use the host computer interface to switch in real-time agility to complete the simulation of radar echo signals of various systems in the same continuous echo acquisition test, and operate the system. Has great flexibility.
3)本发明采用乒乓操作实现雷达回波信号产生方法,当FPGA端收到一组新PRT回波数据时,将回波数据放到刚输出的一组PRT回波数据所在的RAM地址上,以实时更新原有的一个PRT回波数据,并更新PRT的起始距离及数据的采样点数等参数,实现乒乓操作,能够节省FPGA逻辑资源,提高时间利用率。3) The present invention adopts the ping-pong operation to realize the radar echo signal generation method, when the FPGA end receives a group of new PRT echo data, the echo data is placed on the RAM address where the just output group of PRT echo data is located, By updating the original PRT echo data in real time, and updating the parameters such as the starting distance of the PRT and the number of data sampling points, the ping-pong operation can be realized, which can save FPGA logic resources and improve time utilization.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1是本发明实施例提供的一种多体制捷变的雷达射频回波信号模拟方法流程图;1 is a flowchart of a method for simulating a multi-system agile radar radio frequency echo signal provided by an embodiment of the present invention;
图2是本发明的一种多体制捷变的雷达回波实时模拟系统设计流程框图;Fig. 2 is a kind of multi-system agile radar echo real-time simulation system design flow chart of the present invention;
图3是本发明设计的雷达回波实时模拟系统上位机操作界面;Fig. 3 is the radar echo real-time simulation system upper computer operation interface designed by the present invention;
图4是本发明多体制捷变的雷达回波实时模拟系统实时信号处理方法的流水状态图。FIG. 4 is a flow state diagram of the real-time signal processing method of the multi-system agile radar echo real-time simulation system of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.
本发明针对现有雷达回波模拟器系统信号处理实时性差、应用场景单一等问题,提供的一种多体制捷变的雷达射频回波信号模拟方法,主要应用于相控阵体制/MIMO体制/频率捷变体制雷达射频回波信号的实时模拟。本发明的模拟方法应用于通信服务器以及雷达信号处理板卡,所述通信服务器与所述雷达信号处理板卡通信连接,其特征在于,所述雷达信号处理板卡由一个DSP、一个FPGA芯片、DA模块、射频模块以及外围电路组成。Aiming at the problems of poor real-time signal processing and single application scenario of the existing radar echo simulator system, the invention provides a multi-system agile radar radio frequency echo signal simulation method, which is mainly applied to the phased array system/MIMO system/ Real-time simulation of the RF echo signal of a frequency-agile system radar. The simulation method of the present invention is applied to a communication server and a radar signal processing board, wherein the communication server is communicatively connected to the radar signal processing board, and is characterized in that the radar signal processing board consists of a DSP, an FPGA chip, It is composed of DA module, radio frequency module and peripheral circuit.
如图1所示,本发明提供的一种多体制捷变的雷达射频回波信号模拟方法包括:As shown in FIG. 1, a multi-system agile radar radio frequency echo signal simulation method provided by the present invention includes:
步骤1:在通信服务器上建立用于向雷达信号处理板卡发送雷达相关参数的上位机软件;Step 1: Establish the host computer software on the communication server for sending radar-related parameters to the radar signal processing board;
其中,上位机软件包括软件界面,软件界面包括:雷达相关参数编辑框以及功能按钮,雷达相关参数编辑框包括用于回波模式选择X、回波量化幅度Amp、一个CPI内的PRT个数kk、一个脉宽Tp内的时宽采样点数nTp、目标距离范围R_range、回波起始距离R、目标速度Vr、回波脉冲重复周期PRT、载频序列fm、回波波束俯仰角fai0以及回波波束方位角theta0参数的输入框;功能按钮包括生成回波数据按钮、开启TCP服务按钮、开始发送数据按钮、复位按钮以及衰减使能按钮;Among them, the host computer software includes a software interface, the software interface includes: radar-related parameter editing box and function buttons, and the radar-related parameter editing box includes X for echo mode selection, echo quantization amplitude Amp, and the number of PRTs in a CPI kk , the number of time-width sampling points nTp within a pulse width Tp , the target distance range R_range, the echo starting distance R, the target speed V r , the echo pulse repetition period PRT, the carrier frequency sequence f m , the echo beam pitch angle fai0 And the input box of the echo beam azimuth theta0 parameter; the function buttons include the button to generate echo data, the button to start the TCP service, the button to start sending data, the button to reset and the button to enable attenuation;
值得说明的是:上位机软件基于计算机系统运行,上位机操作控制界面基于MATLAB软件编写,在该界面中设计雷达体制选择等相关参数编辑框,具体包括回波模式选择X、回波量化幅度Amp、一个CPI内的PRT个数kk、一个Tp(脉宽)内的时宽采样点数nTp、目标距离范围R_range、回波起始距离R、目标速度Vr、回波脉冲重复周期PRT、计算依据跳频码字生成的载频序列fm、回波波束俯仰角fai0、回波波束方位角theta0等参数,另外设计功能按钮,功能按钮包括生成回波数据按钮、开启TCP服务按钮、开始发送数据按钮、复位按钮以及衰减使能按钮,开发各体制下的原始回波脉冲数据产生程序及数据组帧程序。It is worth noting that the upper computer software runs on a computer system, and the upper computer operation control interface is written based on MATLAB software. In this interface, an editing box for related parameters such as radar system selection is designed, including echo mode selection X, echo quantization amplitude Amp , the number of PRTs kk in one CPI, the number of time-width sampling points nTp in one Tp (pulse width), the target distance range R_range, the echo starting distance R, the target speed V r , the echo pulse repetition period PRT, calculation According to the parameters such as carrier frequency sequence f m , echo beam pitch angle fai0 , echo beam azimuth angle theta0 generated by frequency hopping codeword, and design function buttons, the function buttons include generate echo data button, open TCP service button, start sending Data button, reset button and attenuation enable button, develop the original echo pulse data generation program and data framing program under each system.
步骤2:在上位机软件的软件界面通过回波模式选择按钮捷变切换不同的回波模式,以及通过编辑框在不同回波模式下通过生成雷达相关参数,当接收到生成回波数据按钮的操作指令时,根据雷达相关参数生成原始回波脉冲数据,并将雷达相关参数以及原始回波脉冲数据组成数据帧;Step 2: On the software interface of the host computer software, use the echo mode selection button to switch between different echo modes, and use the edit box to generate radar-related parameters in different echo modes. When operating the command, the original echo pulse data is generated according to the radar-related parameters, and the radar-related parameters and the original echo pulse data are formed into a data frame;
其中,回波模式选择框,用于捷变切换在射频回波模拟过程中模拟输出的射频回波信号的体制类型;Among them, the echo mode selection box is used to agilely switch the system type of the RF echo signal output by the simulation during the RF echo simulation process;
其中,体制类型包括:MIMO模式、捷变频模式、相控阵模式。The system types include: MIMO mode, frequency agile mode, and phased array mode.
可以理解的是:本发明通过回波模式可以捷变切换。即同一次雷达回波模拟过程中,若需要切换当前模拟的回波类型,可在上位机预设置雷达参数,点击回波模式按钮切换雷达体制模式后,上位机会快速改变当前体制的雷达回波模拟模块,进入到对应体制的雷达回波模拟模块,并通过以太网下发至DSP,当DSP收到数据后,会快速响应指令,在下一个脉冲重复周期下发更新后的回波数据至FPGA,完成雷达波形类型切换,从下发指令到完成切换,整体时间不超过一个脉冲重复周期。It can be understood that the present invention can switch agilely through the echo mode. That is, during the same radar echo simulation process, if you need to switch the current simulated echo type, you can preset the radar parameters on the host computer, click the echo mode button to switch the radar system mode, and the host computer can quickly change the current system radar echo. The simulation module enters the radar echo simulation module of the corresponding system, and sends it to the DSP through the Ethernet. When the DSP receives the data, it will quickly respond to the command and send the updated echo data to the FPGA in the next pulse repetition cycle. , to complete the radar waveform type switching, the overall time from issuing the command to completing the switching does not exceed one pulse repetition period.
其中,在根据雷达相关参数生成原始回波脉冲数据之后,上位机软件将自身的编辑框设置成不可编辑状态。Among them, after generating the original echo pulse data according to the radar-related parameters, the host computer software sets its own edit box to an uneditable state.
步骤3:选择开始发送数据按钮,将数据帧下发至雷达信号处理板卡中的DSP;Step 3: Select the button to start sending data, and send the data frame to the DSP in the radar signal processing board;
参见图2,上位机通过以太网向DSP端下发组帧完成的帧头、指令参数及原始回波脉冲数据及帧尾:参数设置完毕后,点击上位机操作界面上回波信号发送按钮,上位机向信号处理板卡的DSP端通过以太网口下发数据帧,当DSP识别数据帧的帧头帧尾后将有效的数据指令信息缓存到DDR3芯片中;Referring to Figure 2, the host computer sends the completed frame header, command parameters, original echo pulse data and frame tail to the DSP through Ethernet: After the parameters are set, click the echo signal send button on the host computer operation interface, The host computer sends the data frame to the DSP side of the signal processing board through the Ethernet port, and when the DSP identifies the frame header and frame end of the data frame, the valid data instruction information is cached in the DDR3 chip;
步骤4:DSP,根据数据帧的雷达相关参数确定目标信息,并基于目标信息以及原始回波脉冲数据持续构建PRT回波脉冲信号模型,并第N个PRT回波脉冲信号模型下发至FPGA,统计已下发至FPGA的PRT回波脉冲信号模型总数;根据该总数以及雷达相关参数,计算N+1PRT回波脉冲的起始距离和数据采样点数,构建第N+1个PRT回波脉冲信号模型,当接收到FPGA发送的请求发送指令时,将第N+1个PRT回波脉冲信号模型发送至FPGA;Step 4: The DSP determines the target information according to the radar-related parameters of the data frame, and continuously constructs the PRT echo pulse signal model based on the target information and the original echo pulse data, and sends the Nth PRT echo pulse signal model to the FPGA, Count the total number of PRT echo pulse signal models that have been sent to the FPGA; according to the total number and radar-related parameters, calculate the starting distance and data sampling points of N+1 PRT echo pulses, and construct the N+1 th PRT echo pulse signal Model, when receiving the request to send command sent by FPGA, send the N+1th PRT echo pulse signal model to FPGA;
其中,N为从1开始的正整数;Among them, N is a positive integer starting from 1;
参考图2,DSP根据协议解析上位机下发的数据指令信息,开始构建第1个PRT回波脉冲信号模型,加载目标信息,生成回波脉冲数据。并计算PRT回波脉冲的起始距离的起始距离和数据采样点数,按照数据格式协议通过SRIO数据链路将数据包发送给FPGA,同时对已发送的PRT个数计数,开始产生第2个PRT的回波脉冲数据,计算第2个PRT的回波脉冲起始距离和数据采样点数,等待FPGA发送请求指令码B,请求DSP发送第1个PRT的回波脉冲数据;Referring to Figure 2, the DSP parses the data instruction information sent by the host computer according to the protocol, starts to construct the first PRT echo pulse signal model, loads the target information, and generates echo pulse data. And calculate the starting distance of the starting distance of the PRT echo pulse and the number of data sampling points, send the data packet to the FPGA through the SRIO data link according to the data format protocol, and count the number of sent PRTs at the same time, and start to generate the second one. The echo pulse data of the PRT, calculate the echo pulse starting distance and data sampling points of the second PRT, wait for the FPGA to send the request command code B, and request the DSP to send the echo pulse data of the first PRT;
步骤5:FPGA,将第N个PRT回波脉冲信号模型进行存储,并根据自身产生的回波模拟输出指令,将第N个PRT回波脉冲信号模型输出DA模块;Step 5: FPGA, store the Nth PRT echo pulse signal model, and output the Nth PRT echo pulse signal model to the DA module according to the echo simulation output command generated by itself;
参考图2,FPGA接收解析SRIO传输的数据包:FPGA端把第1次DSP传过来的回波脉冲数据锁存,解析出起始距离值,数据采样点数值和第1个PRT的回波脉冲数据,将收到的第1个PRT回波脉冲数据缓存到RAM中,该RAM用于存储不同体制下的1个PRT的回波脉冲数据,每种体制雷达的数据量有所不同,FPGA需根据不同体制进行数据接收模块切换。当RAM内已缓存完一个PRT的回波脉冲数据时,产生一个状态信号,以表示可以从RAM中取数。Referring to Figure 2, the FPGA receives and analyzes the data packets transmitted by SRIO: the FPGA side latches the echo pulse data transmitted by the first DSP, and parses out the starting distance value, the data sampling point value and the echo pulse of the first PRT. data, cache the received first PRT echo pulse data in RAM, which is used to store the echo pulse data of one PRT under different systems. The data receiving module is switched according to different systems. When the echo pulse data of a PRT has been buffered in the RAM, a status signal is generated to indicate that the data can be fetched from the RAM.
在FPGA端设计发数状态机,由DA芯片输出模拟的雷达回波信号:DA芯片上电后默认输出幅值为0的非回波信号,在发数状态机中,默认状态为00,在此状态等待第1次PRT使能信号拉高后,开始计时并跳到状态01,在状态1一直计时到目标回波的起始位置值时发数状态机跳到状态02。PRT使能信号是控制整个回波的PRT周期信号,PRT使能一次,代表启动一次PRT周期的回波输出。在状态02开始读取RAM缓存的回波脉冲数据,将数据下发至DA芯片,使能DA芯片输出回波脉冲信号,直至读完。发数状态机的状态跳到03;在03状态产生请求指令码B,发送请求指令码B给DSP,请求DSP发送第2个PRT的回波脉冲数据,同时状态跳转到状态00,等待PRT使能信号,准备输出第2个PRT的回波信号。Design the sending state machine on the FPGA side, and the DA chip outputs the simulated radar echo signal: after the DA chip is powered on, it outputs a non-echo signal with an amplitude of 0 by default. In the sending state machine, the default state is 00. This state waits for the first time the PRT enable signal is pulled high, starts timing and jumps to state 01, and when state 1 keeps timing to the starting position value of the target echo, the sending state machine jumps to state 02. The PRT enable signal is a PRT cycle signal that controls the entire echo. When PRT is enabled once, it means that the echo output of one PRT cycle is started. In state 02, the echo pulse data in the RAM buffer is read, the data is sent to the DA chip, and the DA chip is enabled to output the echo pulse signal until the reading is completed. The state of the sending state machine jumps to 03; in the 03 state, the request command code B is generated, and the request command code B is sent to the DSP, and the DSP is requested to send the echo pulse data of the second PRT, and the state jumps to the state 00, waiting for the PRT Enable signal, ready to output the echo signal of the second PRT.
DSP收到FPGA发送的请求指令码B,清除DDR3缓存的数组内容,按照数据格式协议通过SRIO数据链路将数据包发送给FPGA,同时对已发送的PRT个数计数,开始产生第3个PRT的回波脉冲数据,计算第3个PRT回波脉冲的起始距离和数据采样点数,等待FPGA发送请求指令码B,请求DSP发送第2个PRT的回波脉冲数据,在满足参数要求的条件下,依照本发明描述的实时信号处理方式,在信号处理板卡上完成多体制雷达实时的中频回波脉冲信号模拟。The DSP receives the request instruction code B sent by the FPGA, clears the array contents in the DDR3 cache, sends the data packet to the FPGA through the SRIO data link according to the data format protocol, and counts the number of sent PRTs, and starts to generate the third PRT The echo pulse data, calculate the starting distance and data sampling points of the third PRT echo pulse, wait for the FPGA to send the request command code B, and request the DSP to send the echo pulse data of the second PRT. Next, according to the real-time signal processing method described in the present invention, the real-time IF echo pulse signal simulation of the multi-system radar is completed on the signal processing board.
步骤6:DA模块,根据第N个PRT回波脉冲信号模型产生模拟的雷达中频回波信号,将雷达中频回波信号输出至射频模块;Step 6: the DA module generates a simulated radar intermediate frequency echo signal according to the Nth PRT echo pulse signal model, and outputs the radar intermediate frequency echo signal to the radio frequency module;
步骤7:射频模块,将雷达中频回波信号转换为雷达射频回波信号。Step 7: the radio frequency module converts the radar intermediate frequency echo signal into the radar radio frequency echo signal.
参考图2,实时生成的中频回波模拟信号输入到射频组合模块,将中频信号上变频至射频,完成实时雷达射频回波信号模拟。在上位机操作界面设置射频功率衰减值,可实时控制输出射频回波的功率。Referring to Figure 2, the IF echo analog signal generated in real time is input to the radio frequency combination module, and the intermediate frequency signal is up-converted to the radio frequency to complete the real-time radar RF echo signal simulation. By setting the RF power attenuation value on the upper computer operation interface, the power of the output RF echo can be controlled in real time.
本发明提供了一种多体制捷变的雷达射频回波信号的模拟方法,通过软硬件结合,编写雷达回波实时模拟系统上位机软件;通过向DSP下发数据帧;DSP根据数据帧开始构建回波脉冲信号模型,加载目标信息,生成回波脉冲数据;DSP收到FPGA发送的请求指令码B,清除DDR3缓存的数组内容,发送数据包;FPGA接收解析SRIO传输的数据包并设计发数状态机,由DA芯片输出模拟的雷达回波信号;实时生成的中频回波模拟信号输入到微波射频组合模块,将中频信号上变频至射频,完成实时雷达射频回波信号模拟。因此本发明的模拟方法可以实现多体制捷变、实时性更好雷达射频信号回波模拟。The invention provides a multi-system agile radar radio frequency echo signal simulation method. The software and hardware are combined to write the upper computer software of the radar echo real-time simulation system; the data frame is sent to the DSP; the DSP starts to construct according to the data frame. Echo pulse signal model, load target information, and generate echo pulse data; DSP receives the request instruction code B sent by FPGA, clears the array content of DDR3 cache, and sends data packets; FPGA receives and analyzes the data packets transmitted by SRIO and designs the data packets The state machine outputs the simulated radar echo signal from the DA chip; the real-time generated intermediate frequency echo analog signal is input to the microwave radio frequency combination module, and the intermediate frequency signal is up-converted to the radio frequency to complete the real-time radar radio frequency echo signal simulation. Therefore, the simulation method of the present invention can realize multi-system agility and better real-time radar RF signal echo simulation.
作为本发明一种可选的实施方式,在通过编辑框在不同回波模式下通过生成雷达相关参数之前,多体制捷变的雷达射频回波信号的模拟方法还包括:As an optional implementation manner of the present invention, before generating radar-related parameters in different echo modes through an edit box, the method for simulating a multi-system agile radar radio frequency echo signal further includes:
检测开启TCP服务按钮是否启动,如果是,则建立与雷达信号处理板卡的TCP协议的通信链路。Detect whether the Open TCP service button is activated, if so, establish a communication link with the TCP protocol of the radar signal processing board.
作为本发明一种可选的实施方式,步骤4包括:As an optional embodiment of the present invention, step 4 includes:
步骤a:基于目标信息以及原始回波脉冲数据,构建第一个PRT的回波脉冲信号模型,将第一个PRT的回波脉冲信号模型发送至FPGA;Step a: Based on the target information and the original echo pulse data, construct the echo pulse signal model of the first PRT, and send the echo pulse signal model of the first PRT to the FPGA;
步骤b:统计已下发至FPGA的PRT回波脉冲信号模型总数;Step b: Count the total number of PRT echo pulse signal models that have been sent to the FPGA;
步骤c:根据总数以及雷达相关参数,计算第2个PRT回波脉冲信号模型的起始距离和数据采样点数;Step c: Calculate the starting distance and the number of data sampling points of the second PRT echo pulse signal model according to the total number and radar-related parameters;
步骤d:根据第2个PRT回波脉冲信号模型的起始距离和数据采样点数,构建第2个PRT回波脉冲信号模型;Step d: construct the second PRT echo pulse signal model according to the starting distance and the number of data sampling points of the second PRT echo pulse signal model;
步骤e:当接收到FPGA发送的请求发送指令时,将第2个PRT回波脉冲信号模型发送至FPGA;Step e: sending the second PRT echo pulse signal model to the FPGA when receiving the request to send instruction sent by the FPGA;
步骤f:根据N+1的统计总数以及雷达相关参数,计算第N+2个PRT回波脉冲信号模型的起始距离和数据采样点数;Step f: Calculate the starting distance and the number of data sampling points of the N+2th PRT echo pulse signal model according to the total number of statistics of N+1 and radar-related parameters;
步骤g:根据第N+2个PRT回波脉冲信号模型的起始距离和数据采样点数,构建第N+2个PRT回波脉冲信号模型;Step g: construct the N+2th PRT echo pulse signal model according to the starting distance and the number of data sampling points of the N+2th PRT echo pulse signal model;
步骤h:当接收到FPGA发送的请求发送指令时,将第N+2个PRT回波脉冲信号模型发送至FPGA,返回步骤f。Step h: when receiving the request to send instruction sent by the FPGA, send the N+2th PRT echo pulse signal model to the FPGA, and return to step f.
作为本发明一种可选的实施方式,在捷变频模式下,载频序列fm是依据跳频码字随机生成的;根据数据帧的雷达相关参数确定目标信息包括:As an optional implementation manner of the present invention, in the frequency agile mode, the carrier frequency sequence f m is randomly generated according to the frequency hopping codeword; determining the target information according to the radar-related parameters of the data frame includes:
DSP,在捷变频模式下,根据雷达相关参数中的载频序列fm,模拟捷变频体制的回波脉冲信号因脉间载频捷变引起的相位参数不连续的特征;DSP, in the frequency agile mode, according to the carrier frequency sequence f m in the radar related parameters, simulate the discontinuous phase parameters of the echo pulse signal of the frequency agile system caused by the carrier frequency agility between pulses;
将特征作为目标的特征,以确定目标信息。The feature is used as the feature of the target to determine the target information.
作为本发明一种可选的实施方式,在射频模块,将雷达中频回波信号转换为雷达射频回波信号之后,多体制捷变的雷达射频回波信号的模拟方法还包括:As an optional embodiment of the present invention, after the radio frequency module converts the radar intermediate frequency echo signal into the radar radio frequency echo signal, the method for simulating the radar radio frequency echo signal of multi-system agility further includes:
上位机软件,检测复位按钮是否产生复位指令,如果检测到复位指令,将复位指令下发至DSP,并将自身的编辑框设置成可编辑状态;The host computer software detects whether the reset button generates a reset command. If a reset command is detected, the reset command is sent to the DSP, and its own edit box is set to an editable state;
DSP对自身所存储数据帧以及PRT回波脉冲信号模型进行复位清除。The DSP resets and clears the data frame stored by itself and the PRT echo pulse signal model.
作为本发明一种可选的实施方式,在射频模块将雷达中频回波信号转换为雷达射频回波信号之后,多体制捷变的雷达射频回波信号的模拟方法还包括:As an optional embodiment of the present invention, after the radio frequency module converts the radar intermediate frequency echo signal into the radar radio frequency echo signal, the method for simulating the radar radio frequency echo signal of multi-system agility further includes:
上位机软件,当检测到衰减使能按钮产生的衰减指令时,通过DSP向FPGA发送衰减指令;The host computer software, when detecting the attenuation command generated by the attenuation enable button, sends the attenuation command to the FPGA through the DSP;
FPGA通过串口向射频模块发送衰减指令;The FPGA sends the attenuation command to the RF module through the serial port;
射频模块,用于将中频信号上变频至射频信号以及调节射频回波信号的输出功率。The radio frequency module is used to up-convert the intermediate frequency signal to the radio frequency signal and adjust the output power of the radio frequency echo signal.
下面通过实施例来说明本发明一种多体制捷变的雷达射频回波信号模拟方法的具体过程。The specific process of a method for simulating a multi-system agile radar radio frequency echo signal of the present invention is described below by means of an embodiment.
实施例1Example 1
本发明编写雷达回波实时模拟系统上位机软件,参考图3,在该软件中设计雷达体制选择等参数编辑窗口以及功能按钮,功能按钮包括生成回波数据按钮、开启TCP服务按钮、开始发送数据按钮、复位按钮以及衰减使能按钮,设计各体制下的原始回波数据产生程序及数据组帧程序,具体包括以下步骤:The present invention compiles the host computer software of the radar echo real-time simulation system. Referring to FIG. 3 , the parameter editing window such as radar system selection and function buttons are designed in the software. The function buttons include a button to generate echo data, a button to open a TCP service, and a button to start sending data. button, reset button and attenuation enable button, design the original echo data generation program and data framing program under each system, including the following steps:
(1a)设置雷达体制:相控阵模式X=1、MIMO模式X=2、捷变频模式X=3;(1a) Set the radar system: phased array mode X=1, MIMO mode X=2, frequency agile mode X=3;
(1b)设置目标距离范围R_range:由设置的雷达系统参数决定,计算公式如下:(1b) Set the target distance range R_range: It is determined by the set radar system parameters, and the calculation formula is as follows:
最大作用距离:Maximum working distance:
Rmax=Unambi_Range=PRT*C/2 (1)Rmax=Unambi_Range=PRT*C/2 (1)
最小作用距离:Minimum action distance:
Rmin=Tp*C/2 (2)R min =T p *C/2 (2)
根据不同模式,可以算出雷达回波的最大作用距离及最小作用距离,得到目标可运动的距离范围R_range=[Rmax Rmin]。According to different modes, the maximum operating distance and the minimum operating distance of the radar echo can be calculated, and the movable distance range R_range=[R max R min ] of the target can be obtained.
(1c)设置回波起始距离R:不同体制及参数下,目标可运动的距离范围不同,可根据具体模式设置;(1c) Set the echo starting distance R: under different systems and parameters, the range of the distance that the target can move is different, which can be set according to the specific mode;
(1d)设置目标速度Vr:目标速度可正可负;规定速度为正表示与目标距离越来越近,反之表示与目标距离越来越远;(1d) Set the target speed V r : the target speed can be positive or negative; if the specified speed is positive, it means that the distance to the target is getting closer, and vice versa, it means that the distance to the target is getting farther and farther;
(1e)设置脉冲重复周期PRT:用于计算速度相位项、PRT的起始距离等信息;(1e) Set the pulse repetition period PRT: used to calculate the speed phase term, the starting distance of PRT and other information;
(1f)设置载频序列fm及一个CPI内PRT个数kk:不同模式下对模拟雷达回波的载频频率要求不同,该模拟器设置载频序列的长度为256,分别对应一个CPI内的256个PRT的载频频率。可根据选择的不同模式调整一个CPI内的PRT个数kk,以及对应的载频序列。相控阵模式下,设置一个CPI内的PRT个数kk为64,前64个载频序列为一固定值,其余设为0;MIMO模式下,设置一个CPI内的PRT个数kk为256,256个载频序列为一固定值;捷变频模式下,设置一个CPI内的PRT个数kk为64,前64个载频序列为随机跳变的载频序列,其余设为0;(1f) Set the carrier frequency sequence f m and the number of PRTs in a CPI kk: Different modes have different requirements for the carrier frequency of the simulated radar echo. The simulator sets the length of the carrier frequency sequence to 256, corresponding to one CPI The carrier frequency of the 256 PRTs. The number of PRTs kk in a CPI and the corresponding carrier frequency sequence can be adjusted according to the different modes selected. In phased array mode, set the number kk of PRTs in a CPI to 64, the first 64 carrier frequency sequences are a fixed value, and the rest are set to 0; in MIMO mode, set the number of PRTs kk in a CPI to 256, 256 carrier frequency sequences are a fixed value; in frequency agile mode, set the number of PRTs kk in a CPI to 64, the first 64 carrier frequency sequences are randomly hopping carrier frequency sequences, and the rest are set to 0;
(1g)设置回波量化幅度Amp(1g) Set the echo quantization amplitude Amp
回波量化的幅度按照需求来定。The amplitude of echo quantization is determined according to the demand.
(1h)一个Tp内的原始回波数据及采样点数nTp (1h) The original echo data and the number of sampling points nT p in one Tp
采样点数的计算公式如下:The formula for calculating the number of sampling points is as follows:
nTp=Tp*Fs (3)nT p =T p *F s (3)
原始回波模拟的是中频的线性调频波,由于三种模式下的雷达参数的不同,其模拟的雷达回波数据以及采样点数nTp有所不同,相控阵模式及捷变频模式下一个脉宽内的原始中频回波数据的表达式如式(4)所示。The original echo simulates an intermediate frequency linear frequency modulation wave. Due to the different radar parameters in the three modes, the simulated radar echo data and the number of sampling points nT p are different. The expression of the original intermediate frequency echo data within the width is shown in formula (4).
Slfm=(exp(j*pi*u*t.^2).exp(j*2*pi*Fi*t)) (4)Slfm=(exp(j*pi*u*t.^2).exp(j*2*pi*Fi*t)) (4)
u=B/Tp是调频斜率,Fi是中频频率,统一规定中频信号回波的幅值是归一化的模值1。最终信号幅值由幅度量化值Amp决定。u=B/T p is the frequency modulation slope, F i is the intermediate frequency frequency, it is uniformly stipulated that the amplitude of the intermediate frequency signal echo is the normalized modulus value 1. The final signal amplitude is determined by the amplitude quantization value Amp.
MIMO模式需要设计12路正交的中频回波波形,通过确定发射接收导向矢量、构造基带信号、上变频至中频、根据导向矢量进行原始回波模拟,得到原始回波数据。其发射接收的导向矢量计算方法如式(5)(6)(7)所示。In MIMO mode, 12 orthogonal intermediate frequency echo waveforms need to be designed. The original echo data is obtained by determining the transmitting and receiving steering vector, constructing the baseband signal, up-converting the frequency to the intermediate frequency, and simulating the original echo according to the steering vector. The calculation method of the steering vector of its transmission and reception is shown in formula (5) (6) (7).
az0=exp(-j*2*pi*d_lambda*[-1.5 -0.5 0.5 1.5]'*sin(θ)) (6)az0=exp(-j*2*pi*d_lambda*[-1.5 -0.5 0.5 1.5]'*sin(θ)) (6)
aa0=kron(ay0,az0) (7)aa0=kron(ay0,az0) (7)
d_lambda是子阵间距与波长的比值,为俯仰角,θ为方位角及θ均在上位机操作界面设置。d_lambda is the ratio of subarray spacing to wavelength, is the pitch angle, θ is the azimuth angle and θ are set in the upper computer operation interface.
挑选导向矢量,拼成向量形式aat,分别为雷达相控阵天线的12个子阵的导向矢量,将12个子阵的导向矢量分别与原始正交回波模型相乘,将得到合成的回波波束。12路原始正交中频回波波形表达式如式(8)所示。Select the steering vectors and form them into the vector form aat, which are the steering vectors of the 12 sub-arrays of the radar phased array antenna, respectively. Multiply the steering vectors of the 12 sub-arrays with the original orthogonal echo model, and the synthesized echo beam will be obtained. . The 12-channel original quadrature intermediate frequency echo waveform expression is shown in formula (8).
u=B/Tp是调频斜率,Fi是中频频率,统一规定中频信号回波的幅值是归一化的模值1。相邻两路正交的信号中频频率间隔为B,最终信号幅值由幅度量化值Amp决定。将12路正交中频回波信号拼成向量形式。u=B/T p is the frequency modulation slope, F i is the intermediate frequency frequency, it is uniformly stipulated that the amplitude of the intermediate frequency signal echo is the normalized modulus value 1. The IF frequency interval of the adjacent two orthogonal signals is B, and the final signal amplitude is determined by the amplitude quantization value Amp. The 12-channel quadrature IF echo signals are assembled into a vector form.
12路正交的雷达回波波形数据乘以导向矢量,最终得到合成的MIMO波形合成波束的原始信号回波数据。如式(9)所示。The 12-channel orthogonal radar echo waveform data is multiplied by the steering vector, and finally the original signal echo data of the synthesized MIMO waveform synthesized beam is obtained. As shown in formula (9).
Slfm=(aat).'*Signal (9)Slfm=(aat).'*Signal (9)
1i)设置开始发送数据按钮1i) Set the button to start sending data
参数设置完毕之后,点击开始发送数据按钮,将参数数据组帧。After the parameters are set, click the Start Sending Data button to frame the parameter data.
1j)设置复位按钮1j) Set the reset button
该按钮可以复位雷达回波实时模拟系统当前所有模块状态。This button can reset the current state of all modules of the radar echo real-time simulation system.
1k)设置衰减使能按钮1k) Set the attenuation enable button
输入衰减指令值,点击衰减控制按钮即可控制射频输出功率。衰减指令值与实际衰减值关系如下,默认衰减值为最大衰减。Input the attenuation command value and click the attenuation control button to control the RF output power. The relationship between the attenuation command value and the actual attenuation value is as follows, the default attenuation value is the maximum attenuation.
实施例2Example 2
同实施例1,本发明DSP根据协议解析上位机下发的数据指令信息,开始构建每个PRT的回波脉冲信号模型,具体包括以下步骤:With Embodiment 1, the DSP of the present invention parses the data instruction information issued by the host computer according to the protocol, and starts to construct the echo pulse signal model of each PRT, which specifically includes the following steps:
1a)识别上位机下发的雷达体制模式指令,根据不同模式进入到不同的回波构建模块,从DDR3上取出所有的指令并按照采样点数从DDR3取出原始回波数据;1a) Identify the radar system mode command issued by the host computer, enter different echo building modules according to different modes, retrieve all commands from DDR3, and retrieve the original echo data from DDR3 according to the number of sampling points;
1b)加载回波信息1b) Load echo information
向目标回波原始数据中加载目标信息,不同模式下的回波目标信息加载方式略有不同。Load the target information into the target echo raw data, and the echo target information loading methods in different modes are slightly different.
相控阵模式Phased Array Mode
其中PRT是由上位机下发的脉冲重复周期,Vr是目标速度,kk代表第几个PRT,一个CPI内的PRT个数为64,根据下发的固定载频值的载频序列,对每个PRT的脉宽内调制目标信息,并根据下发的目标回波起始距离来计算每个PRT的起始距离,计算完一个PRT的回波数据之后将结果以及这个PRT对应的起始距离发送至FPGA的RAM端。计算回波的起始距离公式如下:Among them, PRT is the pulse repetition period sent by the host computer, V r is the target speed, kk represents the number of PRTs, and the number of PRTs in a CPI is 64. The target information is modulated within the pulse width of each PRT, and the starting distance of each PRT is calculated according to the sent target echo starting distance. After calculating the echo data of a PRT, the result and the corresponding starting distance of the PRT are calculated. The distance is sent to the RAM side of the FPGA. The formula for calculating the starting distance of the echo is as follows:
start_pos=fix((R-(kk-1)*Vr*PRT)/(C/(2*Fs))/2) (11)start_pos=fix((R-(kk-1)*V r *PRT)/(C/(2*F s ))/2) (11)
其中kk代表第kk个PRT,光速C=3×108m/s,Fs为采样频率。where kk represents the kkth PRT, the speed of light C=3×10 8 m/s, and F s is the sampling frequency.
MIMO模式MIMO mode
其中PRT是由上位机下发的脉冲重复周期,Vr是目标速度,kk代表第几个PRT,一个CPI内的PRT个数为256,根据下发的固定载频值的载频序列,对每个PRT的脉宽内调制目标信息,并根据下发的目标回波起始距离来计算每个PRT的起始距离,计算完一个PRT的回波数据之后将结果以及这个PRT对应的起始距离发送至FPGA的RAM端。计算回波的起始距离公式如下:Among them, PRT is the pulse repetition period sent by the host computer, V r is the target speed, kk represents the number of PRTs, and the number of PRTs in a CPI is 256. The target information is modulated within the pulse width of each PRT, and the starting distance of each PRT is calculated according to the sent target echo starting distance. After calculating the echo data of a PRT, the result and the corresponding starting distance of the PRT are calculated. The distance is sent to the RAM side of the FPGA. The formula for calculating the starting distance of the echo is as follows:
start_pos=fix((R-(k-1)*Vr*PRT)/(C/(2*Fs))/2) (13)start_pos=fix((R-(k-1)*V r *PRT)/(C/(2*F s ))/2) (13)
其中kk代表第kk个PRT,光速C=3×108m/s,Fs为采样频率。where kk represents the kkth PRT, the speed of light C=3×10 8 m/s, and F s is the sampling frequency.
捷变频模式Frequency Agile Mode
其中PRT是由上位机下发的脉冲重复周期,Vr是目标速度,kk代表第几个PRT,一个CPI内的PRT个数为64,根据下发的随机跳变的载频序列,对每个PRT的脉宽内调制目标信息,并根据下发的目标回波起始距离来计算每个PRT的起始距离,计算完一个PRT的回波数据之后将结果以及这个PRT对应的起始距离发送至FPGA的RAM端。计算回波的起始距离公式如下:Among them, PRT is the pulse repetition period sent by the host computer, V r is the target speed, kk represents the number of PRTs, and the number of PRTs in one CPI is 64. The target information is modulated within the pulse width of each PRT, and the starting distance of each PRT is calculated according to the sent target echo starting distance. After calculating the echo data of a PRT, the result and the starting distance corresponding to the PRT are calculated. Sent to the RAM side of the FPGA. The formula for calculating the starting distance of the echo is as follows:
start_pos=fix((R-(k-1)*Vr*PRT)/(C/(2*Fs))/2) (15)start_pos=fix((R-(k-1)*V r *PRT)/(C/(2*F s ))/2) (15)
其中kk代表第kk个PRT,光速C=3×108m/s,Fs为采样频率。where kk represents the kkth PRT, the speed of light C=3×10 8 m/s, and F s is the sampling frequency.
1c)将数据按照帧头+回波脉冲的起始距离+数据采样点数+加载目标信息的回波脉冲数据+帧尾的数据包协议组帧,等待FPGA发送数据请求指令。1c) Frame the data according to the frame header + the starting distance of the echo pulse + the number of data sampling points + the echo pulse data loaded with the target information + the data packet protocol at the end of the frame, and wait for the FPGA to send a data request command.
实施例3Example 3
参见图4,同实施例1相同,Referring to Figure 4, the same as in Embodiment 1,
1a)FPGA向DSP发送数据请求指令码B,接收解析SRIO传输的数据包:FPGA端把第1次DSP传过来的数据锁存,解析出起始距离start_point,数据采样点数memory_depth和第1个PRT的回波脉冲数据,将收到的第1个PRT回波脉冲数据缓存到RAM中,该RAM用于存储不同体制下的1个PRT的回波脉冲数据,每种体制雷达的数据量有所不同,FPGA需根据不同体制进行数据接收模块切换。当RAM内已缓存完一个PRT的回波数据时,产生一个状态信号,以表示可以从RAM中取数;1a) The FPGA sends the data request instruction code B to the DSP, and receives and analyzes the data packets transmitted by the SRIO: the FPGA side latches the data transmitted by the first DSP, and parses out the starting distance start_point, the number of data sampling points memory_depth and the first PRT The echo pulse data of the first PRT received is cached in the RAM, which is used to store the echo pulse data of one PRT under different systems. The data volume of each radar system varies. Different, FPGA needs to switch the data receiving module according to different systems. When the echo data of a PRT has been buffered in the RAM, a status signal is generated to indicate that the data can be fetched from the RAM;
1b)在FPGA端设计发数状态机,由DA芯片输出模拟的雷达回波信号:在发数状态机中,默认状态为00,在此状态等待第1次PRT使能信号拉高后,DA芯片开始使能,开始输出非脉冲信号其幅值为0,cnt_1开始计数并跳到状态01,cnt_1计数器在状态01一直计数至目标回波的起始位置值。PRT使能信号是控制整个回波的PRT周期信号,PRT使能一次,代表启动一次PRT周期的回波输出;1b) Design the sending state machine on the FPGA side, and the DA chip outputs the simulated radar echo signal: In the sending state machine, the default state is 00. In this state, after the first PRT enable signal is pulled high, the DA The chip starts to be enabled, starts to output non-pulse signal whose amplitude is 0, cnt_1 starts counting and jumps to state 01, cnt_1 counter in state 01 has been counting to the starting position value of the target echo. The PRT enable signal is a PRT cycle signal that controls the entire echo. Once PRT is enabled, it means that the echo output of a PRT cycle is started;
1c)等cnt_1计数值到达起始位置值时,发数状态机跳到状态02,此时开始读取RAM里的回波脉冲数据,addrb开始依次加1直至达到此次PRT的回波脉冲数据采样点数。同时DA芯片开始输出模拟的雷达回波脉冲信号;1c) When the count value of cnt_1 reaches the starting position value, the sending state machine jumps to state 02. At this time, it starts to read the echo pulse data in the RAM, and addrb starts to increment by 1 until it reaches the echo pulse data of this PRT. Sampling points. At the same time, the DA chip starts to output the simulated radar echo pulse signal;
1d)当RAM的B端口addrb计数到memory_depth-1时,DA芯片放完这个PRT的回波数据,发数状态机的状态跳到03;在03状态将srio_cmd_tx拉高10个200MHz时钟周期,产生srio_cmd_tx_pos脉冲,发送请求指令码B给DSP,请求DSP发送第2个PRT的数据,同时状态跳转到状态00,等待PRT使能信号,准备输出第2个PRT的回波信号;1d) When the RAM's B port addrb counts to memory_depth-1, the DA chip finishes the echo data of this PRT, and the state of the sending state machine jumps to 03; in the 03 state, pull up srio_cmd_tx for 10 200MHz clock cycles, resulting in srio_cmd_tx_pos pulse, send the request command code B to the DSP, request the DSP to send the data of the second PRT, at the same time the state jumps to state 00, wait for the PRT enable signal, and prepare to output the echo signal of the second PRT;
1e)DSP收到FPGA发送的请求指令码B,清除DDR3缓存的数组内容,按照数据格式协议通过SRIO数据链路将数据包发送给FPGA,同时对已发送的PRT个数计数,开始产生第3个PRT的回波数据,计算第3个PRT的起始距离和数据采样点数,等待FPGA发送请求指令码B,请求DSP发送第3个PRT的回波数据...,在满足参数要求的条件下,依照本发明描述的实时信号处理方式,在信号处理板卡上完成多体制雷达实时的射频回波信号模拟。1e) The DSP receives the request instruction code B sent by the FPGA, clears the array content in the DDR3 cache, sends the data packet to the FPGA through the SRIO data link according to the data format protocol, and counts the number of PRTs that have been sent, and starts to generate the third The echo data of each PRT, calculate the starting distance and the number of data sampling points of the third PRT, wait for the FPGA to send the request command code B, and request the DSP to send the echo data of the third PRT. Next, according to the real-time signal processing method described in the present invention, the real-time RF echo signal simulation of the multi-system radar is completed on the signal processing board.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111364832.8A CN114325606B (en) | 2021-11-17 | 2021-11-17 | Multi-system agile radar radio frequency echo signal simulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111364832.8A CN114325606B (en) | 2021-11-17 | 2021-11-17 | Multi-system agile radar radio frequency echo signal simulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114325606A true CN114325606A (en) | 2022-04-12 |
CN114325606B CN114325606B (en) | 2024-06-25 |
Family
ID=81047095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111364832.8A Active CN114325606B (en) | 2021-11-17 | 2021-11-17 | Multi-system agile radar radio frequency echo signal simulation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114325606B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116204039A (en) * | 2023-05-06 | 2023-06-02 | 西安电子科技大学 | Real-time generation method and device of discontinuous phase-agile waveform |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6498583B1 (en) * | 2001-12-27 | 2002-12-24 | Chung-Shan Institute Of Science And Technology | Real time multiple simulated targets generator for mono pulse radar |
RU2586966C1 (en) * | 2015-03-10 | 2016-06-10 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Method of simulating radar signals of radar systems for aircraft navigation |
CN109471080A (en) * | 2018-11-09 | 2019-03-15 | 西安电子科技大学 | High-speed platform radar echo signal simulation system based on simulink |
RU189247U1 (en) * | 2019-02-21 | 2019-05-17 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | SIMULATOR OF REFLECTED RADAR SIGNALS |
CN109975772A (en) * | 2018-12-28 | 2019-07-05 | 北京航天测控技术有限公司 | A kind of more radar jamming performance detection systems |
US20210055382A1 (en) * | 2019-08-20 | 2021-02-25 | Keysight Technologies, Inc. | Multiple input multiple output (mimo) target emulation system and method for testing mmwave radar sensor |
CN112782654A (en) * | 2019-11-08 | 2021-05-11 | 北京振兴计量测试研究所 | Phased array radar target echo signal simulation system |
-
2021
- 2021-11-17 CN CN202111364832.8A patent/CN114325606B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6498583B1 (en) * | 2001-12-27 | 2002-12-24 | Chung-Shan Institute Of Science And Technology | Real time multiple simulated targets generator for mono pulse radar |
RU2586966C1 (en) * | 2015-03-10 | 2016-06-10 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Method of simulating radar signals of radar systems for aircraft navigation |
CN109471080A (en) * | 2018-11-09 | 2019-03-15 | 西安电子科技大学 | High-speed platform radar echo signal simulation system based on simulink |
CN109975772A (en) * | 2018-12-28 | 2019-07-05 | 北京航天测控技术有限公司 | A kind of more radar jamming performance detection systems |
RU189247U1 (en) * | 2019-02-21 | 2019-05-17 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | SIMULATOR OF REFLECTED RADAR SIGNALS |
US20210055382A1 (en) * | 2019-08-20 | 2021-02-25 | Keysight Technologies, Inc. | Multiple input multiple output (mimo) target emulation system and method for testing mmwave radar sensor |
CN112782654A (en) * | 2019-11-08 | 2021-05-11 | 北京振兴计量测试研究所 | Phased array radar target echo signal simulation system |
Non-Patent Citations (2)
Title |
---|
USMAN SHAHID 等: ""Design and Implementation of Multi Mode Radar Target Simulator using Direct Digital Synthesizer"", 《PROCEEDINGS OF INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES & TECHNOLOGY》, 31 December 2009 (2009-12-31), pages 155 - 158 * |
刘智星 等: ""基于PRI捷变的雷达通信一体化共享信号设计方法"", 《系统工程与电子技术》, 30 June 2021 (2021-06-30), pages 2836 - 2842 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116204039A (en) * | 2023-05-06 | 2023-06-02 | 西安电子科技大学 | Real-time generation method and device of discontinuous phase-agile waveform |
CN116204039B (en) * | 2023-05-06 | 2023-07-21 | 西安电子科技大学 | Real-time generation method and device of discontinuous phase-agile waveform |
Also Published As
Publication number | Publication date |
---|---|
CN114325606B (en) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105629207A (en) | Radar signal processing system based on DRFM (Digital Radio-Frequency Memory) technology and dense target jamming generation method | |
CN112578346B (en) | Broadband radar target echo signal simulation system and simulation method | |
CN208672795U (en) | A kind of radar semi-matter simulating system | |
CN112415482B (en) | Radio frequency injection type digital signal synthesis simulation test system | |
CN104833962B (en) | Radar echo simulator test system | |
CN112799023A (en) | Multi-false-target interference method for fast forwarding | |
CN107168098B (en) | Electronic countermeasure simulation system | |
CN106680805A (en) | Method for tracing target with self-adaptive variable waveform | |
CN104777457A (en) | Time sequence control device and method for frequency scanning beam | |
CN104215945A (en) | Dual-polarized passive jamming pulse signal precise generation method | |
CN104808186A (en) | Portable universal radar signal simulator | |
CN104597440A (en) | Intelligent radar based on target motion matching | |
CN114325606A (en) | Multi-system agile radar radio frequency echo signal simulation method | |
CN117176267B (en) | Phased array antenna channel rapid calibration method based on FPGA software | |
CN111090093A (en) | PD radar emission waveform configuration method and device based on FPGA | |
CN113238196A (en) | Radar echo simulation method based on radio frequency scene storage | |
CN116413654B (en) | Ultra-wideband radio fuze target simulation device and method based on DRFM | |
CN103760535A (en) | High-resolution radar target echo signal generating method | |
CN114624658A (en) | Software reconfigurable jammer system and signal generation method | |
CN108051788A (en) | The signal source system and method for low coverage analogue echo are realized using opto-electronic conversion | |
CN114676080B (en) | A radar signal simulation generation method based on SOC platform | |
CN106324589B (en) | A kind of measurement method of parameters and electronic equipment of mobile target | |
CN116125397A (en) | Agile frequency multi-radar cooperative anti-interference method based on reinforcement learning | |
CN115128559A (en) | Real-time signal level echo simulation method and device for airborne phased array radar | |
CN116774174B (en) | Complex radar signal system and method based on software defined framework |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |