[go: up one dir, main page]

CN114323664A - Method for detecting abnormal gas vibration of gas turbine - Google Patents

Method for detecting abnormal gas vibration of gas turbine Download PDF

Info

Publication number
CN114323664A
CN114323664A CN202111518158.4A CN202111518158A CN114323664A CN 114323664 A CN114323664 A CN 114323664A CN 202111518158 A CN202111518158 A CN 202111518158A CN 114323664 A CN114323664 A CN 114323664A
Authority
CN
China
Prior art keywords
vibration
vibration amplitude
gas turbine
abnormal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111518158.4A
Other languages
Chinese (zh)
Inventor
林枫
唐瑞
胡汀
孙鹏
栾永军
康文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
703th Research Institute of CSIC
Original Assignee
703th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 703th Research Institute of CSIC filed Critical 703th Research Institute of CSIC
Priority to CN202111518158.4A priority Critical patent/CN114323664A/en
Publication of CN114323664A publication Critical patent/CN114323664A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明的目的在于提供一种燃气轮机燃气振动异常的检测方法,包括以下步骤:选取燃机运行时机组功率及振动幅值数据,使用历史数据构建正常的振动幅值模型,包括振动幅值的上边界和控制中心线;采集燃气轮机实际运行过程中功率参数构建待检测数列a,各个振动测点不同的振动幅值数据构建待检测数列b、c、d……;选取不同的SPC准则组合对数列a及数列b、c、d……等进行异常检测,判别机组振动系统状态。本发明能检测振动异常故障的发展趋势,是一种简单、高效、准确、实时的燃气轮机振动异常的检测方法。

Figure 202111518158

The object of the present invention is to provide a method for detecting abnormal gas vibration of a gas turbine, comprising the following steps: selecting unit power and vibration amplitude data when the gas turbine is running, using historical data to construct a normal vibration amplitude model, including the upper limit of the vibration amplitude Boundary and control center line; collect the power parameters during the actual operation of the gas turbine to construct the sequence a to be detected, and the different vibration amplitude data of each vibration measurement point to construct the sequence to be detected b, c, d...; select different SPC criteria to combine the logarithmic sequence a and number sequences b, c, d...etc. to perform abnormal detection to determine the vibration system status of the unit. The invention can detect the development trend of abnormal vibration failure, and is a simple, efficient, accurate and real-time detection method for abnormal vibration of gas turbine.

Figure 202111518158

Description

一种燃气轮机燃气振动异常的检测方法A detection method for abnormal gas vibration of gas turbine

技术领域technical field

本发明涉及的是一种燃气轮机检测方法,具体地说是燃气轮机振动检测方法。The invention relates to a gas turbine detection method, in particular to a gas turbine vibration detection method.

背景技术Background technique

由于燃气轮机转子是高速旋转件,长期处于高频振动下,机组的转子偏心、叶片削顶、轴承磨损等类故障均会造成机组振动产生异常。由此燃气轮机振动异常监测对于机组稳定可靠运行具有重要意义。Because the gas turbine rotor is a high-speed rotating part, it is subjected to high-frequency vibration for a long time, and faults such as rotor eccentricity, blade tipping, and bearing wear of the unit will cause abnormal vibration of the unit. Therefore, the monitoring of abnormal vibration of gas turbine is of great significance for the stable and reliable operation of the unit.

一般燃气轮机的振动是通过安装在轴承座上的加速度振动传感器测得的,也有部分机组振动传感器安装于机匣或壳体上。采集到的振动信号主要负责对机组进行安全保护。一旦超过设定阈值给出报警或停机指令。而实际机组运行过程中,随机组工况(负荷),润滑系统状态等因素的变化,机组振动的安全运行值和限制值实际上是一个变化值。而且如果能通过这些数值的变化过程发现异常,便可提前发现慢变类故障的产生趋势,提前预防相关故障的发生。Generally, the vibration of the gas turbine is measured by the acceleration vibration sensor installed on the bearing seat, and some unit vibration sensors are also installed on the casing or casing. The collected vibration signals are mainly responsible for the safety protection of the unit. Once the set threshold is exceeded, an alarm or stop command is given. However, during the actual operation of the unit, the safe operation value and limit value of the unit vibration are actually a change value due to changes in factors such as random unit operating conditions (load) and lubrication system status. Moreover, if anomalies can be found through the change process of these values, the trend of slow-changing faults can be found in advance, and the occurrence of related faults can be prevented in advance.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供能有效检测振动异常故障发展趋势的一种燃气轮机燃气振动异常的检测方法。The purpose of the present invention is to provide a detection method for abnormal gas vibration of a gas turbine which can effectively detect the development trend of abnormal vibration failure.

本发明的目的是这样实现的:The object of the present invention is achieved in this way:

本发明一种燃气轮机燃气振动异常的检测方法,其特征是:A method for detecting abnormal gas vibration of a gas turbine of the present invention is characterized in that:

(1)通过机组历史运行数据计算燃气轮机在不同工况下的振动幅值模型;(1) Calculate the vibration amplitude model of the gas turbine under different working conditions through the historical operation data of the unit;

(2)构建振动幅值数列A、B、C……,分别计算不同工况下的振动幅值标准差D以及均值S;(2) Construct the vibration amplitude series A, B, C..., and calculate the standard deviation D and mean value S of the vibration amplitude under different working conditions;

(3)取步骤(2)计算得到的标准差D的倍数n·D构建振动幅值模型的上边界;(3) taking the multiple n·D of the standard deviation D calculated in step (2) to construct the upper boundary of the vibration amplitude model;

(4)取步骤(2)计算得到均值S作为振动幅值模型的控制中心线;(4) take step (2) to calculate and obtain the mean value S as the control center line of the vibration amplitude model;

(5)采集燃气轮机实际运行过程中功率及各位置振动幅值;(5) Collect the power and vibration amplitude of each position during the actual operation of the gas turbine;

(6)基于质量控制图理论选取相应的一条或一条以上的检测规则,对功率及振动幅值进行异常检测;(6) Select one or more corresponding detection rules based on the theory of quality control charts to perform abnormal detection on power and vibration amplitude;

(7)若功率检测结果为稳定且振动幅值检测结果为异常变化时,给出相应报警,跳转步骤(9);(7) If the power detection result is stable and the vibration amplitude detection result is an abnormal change, a corresponding alarm is given, and step (9) is skipped;

(8)若振动幅值检测结果为正常,转到步骤(5)重新进行数据采集与检测;(8) If the vibration amplitude detection result is normal, go to step (5) to perform data collection and detection again;

(9)给出报警,检测完成。(9) An alarm is given, and the detection is completed.

本发明还可以包括:The present invention can also include:

1、所述质量控制图理论依据以下准则:1. The quality control chart is theoretically based on the following criteria:

Figure BDA0003407629420000021
Figure BDA0003407629420000021

本发明的优势在于:本发明能检测振动异常故障的发展趋势,是一种简单、高效、准确、实时的燃气轮机振动异常的检测方法。The advantage of the present invention is that the present invention can detect the development trend of abnormal vibration failure, and is a simple, efficient, accurate and real-time detection method for abnormal vibration of a gas turbine.

附图说明Description of drawings

图1为燃气轮机运行正常时的振动功率模型示例;Figure 1 is an example of the vibration power model when the gas turbine is operating normally;

图2为燃气轮机运行过程中振动状态标识流程图;Fig. 2 is the flow chart of vibration state identification during the operation of the gas turbine;

图3为燃气轮机振动异常检测的流程图。FIG. 3 is a flowchart of abnormal vibration detection of a gas turbine.

具体实施方式Detailed ways

下面结合附图举例对本发明做更详细地描述:The present invention will be described in more detail below in conjunction with the accompanying drawings:

结合图1-3,本发明的实施包括以下步骤:1-3, the implementation of the present invention includes the following steps:

建立机组正常状态下各工况的振动幅值模型。The vibration amplitude model of each working condition under the normal state of the unit is established.

选取燃机不同工况运行时机组振动幅值u的历史数据,建立正常的振动幅值u——功率P关系模型,包括幅值上边界和控制中心线。Select the historical data of the vibration amplitude u of the unit when the gas turbine is running under different operating conditions, and establish a normal vibration amplitude u-power P relationship model, including the upper boundary of the amplitude and the control center line.

控制中心线为历史正常运行过程曲线的平均值,上边界为控制中心线加上根据历史数据统计的n倍标准差。其中,n的取值根据实际数据进行调整。此过程可以离线进行。The control center line is the average value of the historical normal operation process curve, and the upper boundary is the control center line plus n times the standard deviation based on historical data statistics. Among them, the value of n is adjusted according to the actual data. This process can be done offline.

检测燃气轮机功率及对应的振动幅值的实时状态。Detect the real-time status of gas turbine power and corresponding vibration amplitude.

(1)采集机组实际运行过程中功率及各振动测点的振动幅值时间序列;(1) Collect the power and vibration amplitude time series of each vibration measuring point during the actual operation of the unit;

(2)将功率数据输入步骤一得到的历史数据模型,计算振动幅值理论值时间序列;(2) Input the power data into the historical data model obtained in step 1, and calculate the time series of the theoretical value of vibration amplitude;

(3)根据历史经验,选取质量控制图理论(SPC准则)中的数据状态检测规则,监测机组振动幅值与理论模型计算值之间的差异状态。根据历史经验,机组振动检测选取R1,R2,R3,R5,R11及R13,对应详细规则见本发明的SPC准则列表。(3) According to historical experience, the data state detection rule in the theory of quality control chart (SPC criterion) is selected to monitor the difference state between the vibration amplitude of the unit and the calculated value of the theoretical model. According to historical experience, R1, R2, R3, R5, R11 and R13 are selected for vibration detection of the unit, and the corresponding detailed rules are shown in the SPC criteria list of the present invention.

本发明的SPC准则列表:List of SPC criteria for the present invention:

Figure BDA0003407629420000031
Figure BDA0003407629420000031

判定燃气轮机振动异常。It is determined that the gas turbine vibration is abnormal.

基于机组振动状态标识,构建燃气轮机振动异常综合判定条件规则。当且仅当机组功率稳定情况下,所有振动幅值时间序列有一个以上状态标识为异常时,判定机组振动出现异常。Based on the vibration state identification of the unit, a comprehensive judgment condition rule for gas turbine vibration abnormality is constructed. If and only when the power of the unit is stable, more than one state of all vibration amplitude time series is marked as abnormal, it is determined that the vibration of the unit is abnormal.

Claims (2)

1.一种燃气轮机燃气振动异常的检测方法,其特征是:1. a detection method for abnormal gas vibration of gas turbine, it is characterized in that: (1)通过机组历史运行数据计算燃气轮机在不同工况下的振动幅值模型;(1) Calculate the vibration amplitude model of the gas turbine under different working conditions through the historical operation data of the unit; (2)构建振动幅值数列A、B、C……,分别计算不同工况下的振动幅值标准差D以及均值S;(2) Construct the vibration amplitude series A, B, C..., and calculate the standard deviation D and mean value S of the vibration amplitude under different working conditions; (3)取步骤(2)计算得到的标准差D的倍数n·D构建振动幅值模型的上边界;(3) taking the multiple n·D of the standard deviation D calculated in step (2) to construct the upper boundary of the vibration amplitude model; (4)取步骤(2)计算得到均值S作为振动幅值模型的控制中心线;(4) take step (2) to calculate and obtain the mean value S as the control center line of the vibration amplitude model; (5)采集燃气轮机实际运行过程中功率及各位置振动幅值;(5) Collect the power and vibration amplitude of each position during the actual operation of the gas turbine; (6)基于质量控制图理论选取相应的一条或一条以上的检测规则,对功率及振动幅值进行异常检测;(6) Select one or more corresponding detection rules based on the theory of quality control charts to perform abnormal detection on power and vibration amplitude; (7)若功率检测结果为稳定且振动幅值检测结果为异常变化时,给出相应报警,跳转步骤(9);(7) If the power detection result is stable and the vibration amplitude detection result is an abnormal change, a corresponding alarm is given, and step (9) is skipped; (8)若振动幅值检测结果为正常,转到步骤(5)重新进行数据采集与检测;(8) If the vibration amplitude detection result is normal, go to step (5) to perform data collection and detection again; (9)给出报警,检测完成。(9) An alarm is given, and the detection is completed. 2.一种燃气轮机燃气振动异常的检测方法,其特征是:所述质量控制图理论依据以下准则:2. A detection method for abnormal gas vibration of a gas turbine, characterized in that: the quality control chart is theoretically based on the following criteria:
Figure FDA0003407629410000011
Figure FDA0003407629410000011
CN202111518158.4A 2021-12-13 2021-12-13 Method for detecting abnormal gas vibration of gas turbine Pending CN114323664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111518158.4A CN114323664A (en) 2021-12-13 2021-12-13 Method for detecting abnormal gas vibration of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111518158.4A CN114323664A (en) 2021-12-13 2021-12-13 Method for detecting abnormal gas vibration of gas turbine

Publications (1)

Publication Number Publication Date
CN114323664A true CN114323664A (en) 2022-04-12

Family

ID=81051633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111518158.4A Pending CN114323664A (en) 2021-12-13 2021-12-13 Method for detecting abnormal gas vibration of gas turbine

Country Status (1)

Country Link
CN (1) CN114323664A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199585A (en) * 2021-12-13 2022-03-18 中国船舶重工集团公司第七0三研究所 Online early warning method for blockage of gas inlet filter of gas turbine
CN114235424A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel filter of gas turbine
CN114252272A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 A detection method for abnormal heat dissipation of gas turbine bearings
CN114252216A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 Method for detecting leakage of lubricating oil of gas turbine
CN114323665A (en) * 2021-12-13 2022-04-12 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel supply system of gas turbine

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763659A (en) * 1993-08-30 1995-03-10 Kawasaki Heavy Ind Ltd Vibration spectrum monitoring device, and health monitoring method and device
KR20000022198A (en) * 1996-06-24 2000-04-25 아세릭 에이. 에스 Model based fault detection system for electric motors
CN1910434A (en) * 2004-01-14 2007-02-07 Abb公司 Method and apparatus to diagnose mechanical problems in machinery
JP2007192138A (en) * 2006-01-19 2007-08-02 Mitsubishi Heavy Ind Ltd Method and device for monitoring anomaly in gas turbine
US7403850B1 (en) * 2005-09-29 2008-07-22 Dynalco Controls Corporation Automated fault diagnosis method and system for engine-compressor sets
US20110276247A1 (en) * 2009-01-13 2011-11-10 Snecma Method and a system for monitoring vibratory phenomena that occur in an aviation gas turbine engine in operation
WO2014032875A2 (en) * 2012-08-30 2014-03-06 Siemens Aktiengesellschaft Method for monitoring the operation of a gas turbine
WO2014123443A1 (en) * 2013-02-06 2014-08-14 Ivanov Alexandr Vladimirovich Method and device for vibration diagnosis and forecasting sudden engine failure
US20150168264A1 (en) * 2013-12-13 2015-06-18 Rolls-Royce Controls And Data Services Limited System abnormalities
CN106599271A (en) * 2016-12-22 2017-04-26 江苏方天电力技术有限公司 Emission monitoring time series data abnormal value detection method for coal-fired unit
CN109238727A (en) * 2018-09-26 2019-01-18 广州文搏科技有限公司 A kind of engine failure monitoring and warning system
CN111076808A (en) * 2019-12-20 2020-04-28 中国北方发动机研究所(天津) Real-time vibration monitoring and early warning system for diesel engine bench test
CN112287552A (en) * 2020-10-30 2021-01-29 中国航空工业集团公司西安航空计算技术研究所 Aero-engine vibration trend analysis method
CN112798290A (en) * 2020-12-25 2021-05-14 北京化工大学 Monitoring method for abnormal state of gas turbine based on spectral reconstruction error
CN114239708A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 Combustion engine abnormity detection method based on quality control chart theory
CN114235423A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 A kind of detection method of gas turbine lubricating oil supply system failure
CN114235424A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel filter of gas turbine
CN114252216A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 Method for detecting leakage of lubricating oil of gas turbine
CN114252272A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 A detection method for abnormal heat dissipation of gas turbine bearings
CN114323665A (en) * 2021-12-13 2022-04-12 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel supply system of gas turbine

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763659A (en) * 1993-08-30 1995-03-10 Kawasaki Heavy Ind Ltd Vibration spectrum monitoring device, and health monitoring method and device
KR20000022198A (en) * 1996-06-24 2000-04-25 아세릭 에이. 에스 Model based fault detection system for electric motors
CN1910434A (en) * 2004-01-14 2007-02-07 Abb公司 Method and apparatus to diagnose mechanical problems in machinery
US7403850B1 (en) * 2005-09-29 2008-07-22 Dynalco Controls Corporation Automated fault diagnosis method and system for engine-compressor sets
JP2007192138A (en) * 2006-01-19 2007-08-02 Mitsubishi Heavy Ind Ltd Method and device for monitoring anomaly in gas turbine
US20110276247A1 (en) * 2009-01-13 2011-11-10 Snecma Method and a system for monitoring vibratory phenomena that occur in an aviation gas turbine engine in operation
CN102282450A (en) * 2009-01-13 2011-12-14 斯奈克玛 Method and system for monitoring vibratory phenomena occurring in an aircraft's gas turbine engine in operation
WO2014032875A2 (en) * 2012-08-30 2014-03-06 Siemens Aktiengesellschaft Method for monitoring the operation of a gas turbine
WO2014123443A1 (en) * 2013-02-06 2014-08-14 Ivanov Alexandr Vladimirovich Method and device for vibration diagnosis and forecasting sudden engine failure
US20150168264A1 (en) * 2013-12-13 2015-06-18 Rolls-Royce Controls And Data Services Limited System abnormalities
CN106599271A (en) * 2016-12-22 2017-04-26 江苏方天电力技术有限公司 Emission monitoring time series data abnormal value detection method for coal-fired unit
CN109238727A (en) * 2018-09-26 2019-01-18 广州文搏科技有限公司 A kind of engine failure monitoring and warning system
CN111076808A (en) * 2019-12-20 2020-04-28 中国北方发动机研究所(天津) Real-time vibration monitoring and early warning system for diesel engine bench test
CN112287552A (en) * 2020-10-30 2021-01-29 中国航空工业集团公司西安航空计算技术研究所 Aero-engine vibration trend analysis method
CN112798290A (en) * 2020-12-25 2021-05-14 北京化工大学 Monitoring method for abnormal state of gas turbine based on spectral reconstruction error
CN114239708A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 Combustion engine abnormity detection method based on quality control chart theory
CN114235423A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 A kind of detection method of gas turbine lubricating oil supply system failure
CN114235424A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel filter of gas turbine
CN114252216A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 Method for detecting leakage of lubricating oil of gas turbine
CN114252272A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 A detection method for abnormal heat dissipation of gas turbine bearings
CN114323665A (en) * 2021-12-13 2022-04-12 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel supply system of gas turbine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何泽夏;: "SSME实时振动监测系统在先进发动机健康管理中的应用", 火箭推进, vol. 27, no. 06 *
姚晓山;张卫东;周平;朱子梁: "基于油液监测的船舶柴油机故障预测与健康管理技术研究", 武汉理工大学学报(交通科学与工程版), vol. 2014, no. 38, 15 August 2014 (2014-08-15), pages 874 - 877 *
姚晓山;张卫东;周平;朱子梁: "基于油液监测的船舶柴油机故障预测与健康管理技术研究", 武汉理工大学学报(交通科学与工程版),, vol. 2014, no. 38, 15 August 2014 (2014-08-15), pages 874 - 877 *
曹昳劼: "基于压力、振动、声音信号的压气机喘振故障诊断和监测" *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199585A (en) * 2021-12-13 2022-03-18 中国船舶重工集团公司第七0三研究所 Online early warning method for blockage of gas inlet filter of gas turbine
CN114235424A (en) * 2021-12-13 2022-03-25 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel filter of gas turbine
CN114252272A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 A detection method for abnormal heat dissipation of gas turbine bearings
CN114252216A (en) * 2021-12-13 2022-03-29 中国船舶重工集团公司第七0三研究所 Method for detecting leakage of lubricating oil of gas turbine
CN114323665A (en) * 2021-12-13 2022-04-12 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel supply system of gas turbine
CN114252216B (en) * 2021-12-13 2024-02-20 中国船舶重工集团公司第七0三研究所 Detection method for lubricating oil leakage of gas turbine
CN114323665B (en) * 2021-12-13 2024-06-28 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel supply system of gas turbine
CN114235424B (en) * 2021-12-13 2024-06-28 中国船舶重工集团公司第七0三研究所 Method for detecting faults of fuel filter of gas turbine

Similar Documents

Publication Publication Date Title
CN114323664A (en) Method for detecting abnormal gas vibration of gas turbine
US6587737B2 (en) Method for the monitoring of a plant
EP2665925B1 (en) A method for diagnostic monitoring of a wind turbine generator system
CN103454113B (en) A kind of rotating machinery health monitor method be applicable in working conditions change situation
KR102040179B1 (en) Method for sensing and diagnosing abnormality of manufacture equipment
US20090037121A1 (en) System and method for detection of rotor eccentricity baseline shift
CN108475053A (en) Complete set of equipments anomaly monitoring method and computer program for monitoring complete set of equipments exception
CN106017729B (en) A Motor Temperature Monitoring Method Based on Statistical Process Control
JP2012254499A (en) Device and method for detecting abnormal machining of machine tool
CN112257943A (en) Power plant induced draft fan fault early warning method based on MSET and deviation degree
CN107630793A (en) Method, device and system for detecting fatigue state of fan toothed belt or variable-pitch bearing
JP2008132558A (en) Abnormality detection method and machining abnormality detection device in cutting
CN108700491B (en) Bearing Carbonation Fault Detection in Turbine Systems
CN116304848B (en) Rolling bearing fault diagnosis system and method
CN114235424A (en) Method for detecting faults of fuel filter of gas turbine
CN113176081B (en) Historical data-based turbine blade wear monitoring method
CN109085375B (en) Key phase pulse signal monitoring method and device for rotary machine
TWI745912B (en) Blast furnace abnormality determination device, blast furnace abnormality determination method and blast furnace operation method
JP2022084435A5 (en)
EP2881549B1 (en) System and method for preventing an emergency over-speed condition in a rotating machine
EP3589843B1 (en) Method and device to detect an indicator for the prediction of an instability in a compressor, and corresponding use
EP3861415B1 (en) Method and control system for detecting condition of plurality of process equipment in industrial plant
EP2469098A1 (en) Method and device for predicting the instability of an axial compressor
KR102289405B1 (en) Emergency generator including function for preventing and maintaining abnormal symptoms
CN112964470A (en) Method for detecting early failure of rolling bearing based on bearing health index

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination