CN114323664A - Method for detecting abnormal gas vibration of gas turbine - Google Patents
Method for detecting abnormal gas vibration of gas turbine Download PDFInfo
- Publication number
- CN114323664A CN114323664A CN202111518158.4A CN202111518158A CN114323664A CN 114323664 A CN114323664 A CN 114323664A CN 202111518158 A CN202111518158 A CN 202111518158A CN 114323664 A CN114323664 A CN 114323664A
- Authority
- CN
- China
- Prior art keywords
- vibration
- vibration amplitude
- gas turbine
- abnormal
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 238000003908 quality control method Methods 0.000 claims description 5
- 238000013480 data collection Methods 0.000 claims description 2
- 238000011897 real-time detection Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Landscapes
- Control Of Turbines (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明的目的在于提供一种燃气轮机燃气振动异常的检测方法,包括以下步骤:选取燃机运行时机组功率及振动幅值数据,使用历史数据构建正常的振动幅值模型,包括振动幅值的上边界和控制中心线;采集燃气轮机实际运行过程中功率参数构建待检测数列a,各个振动测点不同的振动幅值数据构建待检测数列b、c、d……;选取不同的SPC准则组合对数列a及数列b、c、d……等进行异常检测,判别机组振动系统状态。本发明能检测振动异常故障的发展趋势,是一种简单、高效、准确、实时的燃气轮机振动异常的检测方法。
The object of the present invention is to provide a method for detecting abnormal gas vibration of a gas turbine, comprising the following steps: selecting unit power and vibration amplitude data when the gas turbine is running, using historical data to construct a normal vibration amplitude model, including the upper limit of the vibration amplitude Boundary and control center line; collect the power parameters during the actual operation of the gas turbine to construct the sequence a to be detected, and the different vibration amplitude data of each vibration measurement point to construct the sequence to be detected b, c, d...; select different SPC criteria to combine the logarithmic sequence a and number sequences b, c, d...etc. to perform abnormal detection to determine the vibration system status of the unit. The invention can detect the development trend of abnormal vibration failure, and is a simple, efficient, accurate and real-time detection method for abnormal vibration of gas turbine.
Description
技术领域technical field
本发明涉及的是一种燃气轮机检测方法,具体地说是燃气轮机振动检测方法。The invention relates to a gas turbine detection method, in particular to a gas turbine vibration detection method.
背景技术Background technique
由于燃气轮机转子是高速旋转件,长期处于高频振动下,机组的转子偏心、叶片削顶、轴承磨损等类故障均会造成机组振动产生异常。由此燃气轮机振动异常监测对于机组稳定可靠运行具有重要意义。Because the gas turbine rotor is a high-speed rotating part, it is subjected to high-frequency vibration for a long time, and faults such as rotor eccentricity, blade tipping, and bearing wear of the unit will cause abnormal vibration of the unit. Therefore, the monitoring of abnormal vibration of gas turbine is of great significance for the stable and reliable operation of the unit.
一般燃气轮机的振动是通过安装在轴承座上的加速度振动传感器测得的,也有部分机组振动传感器安装于机匣或壳体上。采集到的振动信号主要负责对机组进行安全保护。一旦超过设定阈值给出报警或停机指令。而实际机组运行过程中,随机组工况(负荷),润滑系统状态等因素的变化,机组振动的安全运行值和限制值实际上是一个变化值。而且如果能通过这些数值的变化过程发现异常,便可提前发现慢变类故障的产生趋势,提前预防相关故障的发生。Generally, the vibration of the gas turbine is measured by the acceleration vibration sensor installed on the bearing seat, and some unit vibration sensors are also installed on the casing or casing. The collected vibration signals are mainly responsible for the safety protection of the unit. Once the set threshold is exceeded, an alarm or stop command is given. However, during the actual operation of the unit, the safe operation value and limit value of the unit vibration are actually a change value due to changes in factors such as random unit operating conditions (load) and lubrication system status. Moreover, if anomalies can be found through the change process of these values, the trend of slow-changing faults can be found in advance, and the occurrence of related faults can be prevented in advance.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供能有效检测振动异常故障发展趋势的一种燃气轮机燃气振动异常的检测方法。The purpose of the present invention is to provide a detection method for abnormal gas vibration of a gas turbine which can effectively detect the development trend of abnormal vibration failure.
本发明的目的是这样实现的:The object of the present invention is achieved in this way:
本发明一种燃气轮机燃气振动异常的检测方法,其特征是:A method for detecting abnormal gas vibration of a gas turbine of the present invention is characterized in that:
(1)通过机组历史运行数据计算燃气轮机在不同工况下的振动幅值模型;(1) Calculate the vibration amplitude model of the gas turbine under different working conditions through the historical operation data of the unit;
(2)构建振动幅值数列A、B、C……,分别计算不同工况下的振动幅值标准差D以及均值S;(2) Construct the vibration amplitude series A, B, C..., and calculate the standard deviation D and mean value S of the vibration amplitude under different working conditions;
(3)取步骤(2)计算得到的标准差D的倍数n·D构建振动幅值模型的上边界;(3) taking the multiple n·D of the standard deviation D calculated in step (2) to construct the upper boundary of the vibration amplitude model;
(4)取步骤(2)计算得到均值S作为振动幅值模型的控制中心线;(4) take step (2) to calculate and obtain the mean value S as the control center line of the vibration amplitude model;
(5)采集燃气轮机实际运行过程中功率及各位置振动幅值;(5) Collect the power and vibration amplitude of each position during the actual operation of the gas turbine;
(6)基于质量控制图理论选取相应的一条或一条以上的检测规则,对功率及振动幅值进行异常检测;(6) Select one or more corresponding detection rules based on the theory of quality control charts to perform abnormal detection on power and vibration amplitude;
(7)若功率检测结果为稳定且振动幅值检测结果为异常变化时,给出相应报警,跳转步骤(9);(7) If the power detection result is stable and the vibration amplitude detection result is an abnormal change, a corresponding alarm is given, and step (9) is skipped;
(8)若振动幅值检测结果为正常,转到步骤(5)重新进行数据采集与检测;(8) If the vibration amplitude detection result is normal, go to step (5) to perform data collection and detection again;
(9)给出报警,检测完成。(9) An alarm is given, and the detection is completed.
本发明还可以包括:The present invention can also include:
1、所述质量控制图理论依据以下准则:1. The quality control chart is theoretically based on the following criteria:
本发明的优势在于:本发明能检测振动异常故障的发展趋势,是一种简单、高效、准确、实时的燃气轮机振动异常的检测方法。The advantage of the present invention is that the present invention can detect the development trend of abnormal vibration failure, and is a simple, efficient, accurate and real-time detection method for abnormal vibration of a gas turbine.
附图说明Description of drawings
图1为燃气轮机运行正常时的振动功率模型示例;Figure 1 is an example of the vibration power model when the gas turbine is operating normally;
图2为燃气轮机运行过程中振动状态标识流程图;Fig. 2 is the flow chart of vibration state identification during the operation of the gas turbine;
图3为燃气轮机振动异常检测的流程图。FIG. 3 is a flowchart of abnormal vibration detection of a gas turbine.
具体实施方式Detailed ways
下面结合附图举例对本发明做更详细地描述:The present invention will be described in more detail below in conjunction with the accompanying drawings:
结合图1-3,本发明的实施包括以下步骤:1-3, the implementation of the present invention includes the following steps:
建立机组正常状态下各工况的振动幅值模型。The vibration amplitude model of each working condition under the normal state of the unit is established.
选取燃机不同工况运行时机组振动幅值u的历史数据,建立正常的振动幅值u——功率P关系模型,包括幅值上边界和控制中心线。Select the historical data of the vibration amplitude u of the unit when the gas turbine is running under different operating conditions, and establish a normal vibration amplitude u-power P relationship model, including the upper boundary of the amplitude and the control center line.
控制中心线为历史正常运行过程曲线的平均值,上边界为控制中心线加上根据历史数据统计的n倍标准差。其中,n的取值根据实际数据进行调整。此过程可以离线进行。The control center line is the average value of the historical normal operation process curve, and the upper boundary is the control center line plus n times the standard deviation based on historical data statistics. Among them, the value of n is adjusted according to the actual data. This process can be done offline.
检测燃气轮机功率及对应的振动幅值的实时状态。Detect the real-time status of gas turbine power and corresponding vibration amplitude.
(1)采集机组实际运行过程中功率及各振动测点的振动幅值时间序列;(1) Collect the power and vibration amplitude time series of each vibration measuring point during the actual operation of the unit;
(2)将功率数据输入步骤一得到的历史数据模型,计算振动幅值理论值时间序列;(2) Input the power data into the historical data model obtained in step 1, and calculate the time series of the theoretical value of vibration amplitude;
(3)根据历史经验,选取质量控制图理论(SPC准则)中的数据状态检测规则,监测机组振动幅值与理论模型计算值之间的差异状态。根据历史经验,机组振动检测选取R1,R2,R3,R5,R11及R13,对应详细规则见本发明的SPC准则列表。(3) According to historical experience, the data state detection rule in the theory of quality control chart (SPC criterion) is selected to monitor the difference state between the vibration amplitude of the unit and the calculated value of the theoretical model. According to historical experience, R1, R2, R3, R5, R11 and R13 are selected for vibration detection of the unit, and the corresponding detailed rules are shown in the SPC criteria list of the present invention.
本发明的SPC准则列表:List of SPC criteria for the present invention:
判定燃气轮机振动异常。It is determined that the gas turbine vibration is abnormal.
基于机组振动状态标识,构建燃气轮机振动异常综合判定条件规则。当且仅当机组功率稳定情况下,所有振动幅值时间序列有一个以上状态标识为异常时,判定机组振动出现异常。Based on the vibration state identification of the unit, a comprehensive judgment condition rule for gas turbine vibration abnormality is constructed. If and only when the power of the unit is stable, more than one state of all vibration amplitude time series is marked as abnormal, it is determined that the vibration of the unit is abnormal.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111518158.4A CN114323664A (en) | 2021-12-13 | 2021-12-13 | Method for detecting abnormal gas vibration of gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111518158.4A CN114323664A (en) | 2021-12-13 | 2021-12-13 | Method for detecting abnormal gas vibration of gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114323664A true CN114323664A (en) | 2022-04-12 |
Family
ID=81051633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111518158.4A Pending CN114323664A (en) | 2021-12-13 | 2021-12-13 | Method for detecting abnormal gas vibration of gas turbine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114323664A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199585A (en) * | 2021-12-13 | 2022-03-18 | 中国船舶重工集团公司第七0三研究所 | Online early warning method for blockage of gas inlet filter of gas turbine |
CN114235424A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel filter of gas turbine |
CN114252272A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | A detection method for abnormal heat dissipation of gas turbine bearings |
CN114252216A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | Method for detecting leakage of lubricating oil of gas turbine |
CN114323665A (en) * | 2021-12-13 | 2022-04-12 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel supply system of gas turbine |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0763659A (en) * | 1993-08-30 | 1995-03-10 | Kawasaki Heavy Ind Ltd | Vibration spectrum monitoring device, and health monitoring method and device |
KR20000022198A (en) * | 1996-06-24 | 2000-04-25 | 아세릭 에이. 에스 | Model based fault detection system for electric motors |
CN1910434A (en) * | 2004-01-14 | 2007-02-07 | Abb公司 | Method and apparatus to diagnose mechanical problems in machinery |
JP2007192138A (en) * | 2006-01-19 | 2007-08-02 | Mitsubishi Heavy Ind Ltd | Method and device for monitoring anomaly in gas turbine |
US7403850B1 (en) * | 2005-09-29 | 2008-07-22 | Dynalco Controls Corporation | Automated fault diagnosis method and system for engine-compressor sets |
US20110276247A1 (en) * | 2009-01-13 | 2011-11-10 | Snecma | Method and a system for monitoring vibratory phenomena that occur in an aviation gas turbine engine in operation |
WO2014032875A2 (en) * | 2012-08-30 | 2014-03-06 | Siemens Aktiengesellschaft | Method for monitoring the operation of a gas turbine |
WO2014123443A1 (en) * | 2013-02-06 | 2014-08-14 | Ivanov Alexandr Vladimirovich | Method and device for vibration diagnosis and forecasting sudden engine failure |
US20150168264A1 (en) * | 2013-12-13 | 2015-06-18 | Rolls-Royce Controls And Data Services Limited | System abnormalities |
CN106599271A (en) * | 2016-12-22 | 2017-04-26 | 江苏方天电力技术有限公司 | Emission monitoring time series data abnormal value detection method for coal-fired unit |
CN109238727A (en) * | 2018-09-26 | 2019-01-18 | 广州文搏科技有限公司 | A kind of engine failure monitoring and warning system |
CN111076808A (en) * | 2019-12-20 | 2020-04-28 | 中国北方发动机研究所(天津) | Real-time vibration monitoring and early warning system for diesel engine bench test |
CN112287552A (en) * | 2020-10-30 | 2021-01-29 | 中国航空工业集团公司西安航空计算技术研究所 | Aero-engine vibration trend analysis method |
CN112798290A (en) * | 2020-12-25 | 2021-05-14 | 北京化工大学 | Monitoring method for abnormal state of gas turbine based on spectral reconstruction error |
CN114239708A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | Combustion engine abnormity detection method based on quality control chart theory |
CN114235423A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | A kind of detection method of gas turbine lubricating oil supply system failure |
CN114235424A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel filter of gas turbine |
CN114252216A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | Method for detecting leakage of lubricating oil of gas turbine |
CN114252272A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | A detection method for abnormal heat dissipation of gas turbine bearings |
CN114323665A (en) * | 2021-12-13 | 2022-04-12 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel supply system of gas turbine |
-
2021
- 2021-12-13 CN CN202111518158.4A patent/CN114323664A/en active Pending
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0763659A (en) * | 1993-08-30 | 1995-03-10 | Kawasaki Heavy Ind Ltd | Vibration spectrum monitoring device, and health monitoring method and device |
KR20000022198A (en) * | 1996-06-24 | 2000-04-25 | 아세릭 에이. 에스 | Model based fault detection system for electric motors |
CN1910434A (en) * | 2004-01-14 | 2007-02-07 | Abb公司 | Method and apparatus to diagnose mechanical problems in machinery |
US7403850B1 (en) * | 2005-09-29 | 2008-07-22 | Dynalco Controls Corporation | Automated fault diagnosis method and system for engine-compressor sets |
JP2007192138A (en) * | 2006-01-19 | 2007-08-02 | Mitsubishi Heavy Ind Ltd | Method and device for monitoring anomaly in gas turbine |
US20110276247A1 (en) * | 2009-01-13 | 2011-11-10 | Snecma | Method and a system for monitoring vibratory phenomena that occur in an aviation gas turbine engine in operation |
CN102282450A (en) * | 2009-01-13 | 2011-12-14 | 斯奈克玛 | Method and system for monitoring vibratory phenomena occurring in an aircraft's gas turbine engine in operation |
WO2014032875A2 (en) * | 2012-08-30 | 2014-03-06 | Siemens Aktiengesellschaft | Method for monitoring the operation of a gas turbine |
WO2014123443A1 (en) * | 2013-02-06 | 2014-08-14 | Ivanov Alexandr Vladimirovich | Method and device for vibration diagnosis and forecasting sudden engine failure |
US20150168264A1 (en) * | 2013-12-13 | 2015-06-18 | Rolls-Royce Controls And Data Services Limited | System abnormalities |
CN106599271A (en) * | 2016-12-22 | 2017-04-26 | 江苏方天电力技术有限公司 | Emission monitoring time series data abnormal value detection method for coal-fired unit |
CN109238727A (en) * | 2018-09-26 | 2019-01-18 | 广州文搏科技有限公司 | A kind of engine failure monitoring and warning system |
CN111076808A (en) * | 2019-12-20 | 2020-04-28 | 中国北方发动机研究所(天津) | Real-time vibration monitoring and early warning system for diesel engine bench test |
CN112287552A (en) * | 2020-10-30 | 2021-01-29 | 中国航空工业集团公司西安航空计算技术研究所 | Aero-engine vibration trend analysis method |
CN112798290A (en) * | 2020-12-25 | 2021-05-14 | 北京化工大学 | Monitoring method for abnormal state of gas turbine based on spectral reconstruction error |
CN114239708A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | Combustion engine abnormity detection method based on quality control chart theory |
CN114235423A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | A kind of detection method of gas turbine lubricating oil supply system failure |
CN114235424A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel filter of gas turbine |
CN114252216A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | Method for detecting leakage of lubricating oil of gas turbine |
CN114252272A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | A detection method for abnormal heat dissipation of gas turbine bearings |
CN114323665A (en) * | 2021-12-13 | 2022-04-12 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel supply system of gas turbine |
Non-Patent Citations (4)
Title |
---|
何泽夏;: "SSME实时振动监测系统在先进发动机健康管理中的应用", 火箭推进, vol. 27, no. 06 * |
姚晓山;张卫东;周平;朱子梁: "基于油液监测的船舶柴油机故障预测与健康管理技术研究", 武汉理工大学学报(交通科学与工程版), vol. 2014, no. 38, 15 August 2014 (2014-08-15), pages 874 - 877 * |
姚晓山;张卫东;周平;朱子梁: "基于油液监测的船舶柴油机故障预测与健康管理技术研究", 武汉理工大学学报(交通科学与工程版),, vol. 2014, no. 38, 15 August 2014 (2014-08-15), pages 874 - 877 * |
曹昳劼: "基于压力、振动、声音信号的压气机喘振故障诊断和监测" * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199585A (en) * | 2021-12-13 | 2022-03-18 | 中国船舶重工集团公司第七0三研究所 | Online early warning method for blockage of gas inlet filter of gas turbine |
CN114235424A (en) * | 2021-12-13 | 2022-03-25 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel filter of gas turbine |
CN114252272A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | A detection method for abnormal heat dissipation of gas turbine bearings |
CN114252216A (en) * | 2021-12-13 | 2022-03-29 | 中国船舶重工集团公司第七0三研究所 | Method for detecting leakage of lubricating oil of gas turbine |
CN114323665A (en) * | 2021-12-13 | 2022-04-12 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel supply system of gas turbine |
CN114252216B (en) * | 2021-12-13 | 2024-02-20 | 中国船舶重工集团公司第七0三研究所 | Detection method for lubricating oil leakage of gas turbine |
CN114323665B (en) * | 2021-12-13 | 2024-06-28 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel supply system of gas turbine |
CN114235424B (en) * | 2021-12-13 | 2024-06-28 | 中国船舶重工集团公司第七0三研究所 | Method for detecting faults of fuel filter of gas turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114323664A (en) | Method for detecting abnormal gas vibration of gas turbine | |
US6587737B2 (en) | Method for the monitoring of a plant | |
EP2665925B1 (en) | A method for diagnostic monitoring of a wind turbine generator system | |
CN103454113B (en) | A kind of rotating machinery health monitor method be applicable in working conditions change situation | |
KR102040179B1 (en) | Method for sensing and diagnosing abnormality of manufacture equipment | |
US20090037121A1 (en) | System and method for detection of rotor eccentricity baseline shift | |
CN108475053A (en) | Complete set of equipments anomaly monitoring method and computer program for monitoring complete set of equipments exception | |
CN106017729B (en) | A Motor Temperature Monitoring Method Based on Statistical Process Control | |
JP2012254499A (en) | Device and method for detecting abnormal machining of machine tool | |
CN112257943A (en) | Power plant induced draft fan fault early warning method based on MSET and deviation degree | |
CN107630793A (en) | Method, device and system for detecting fatigue state of fan toothed belt or variable-pitch bearing | |
JP2008132558A (en) | Abnormality detection method and machining abnormality detection device in cutting | |
CN108700491B (en) | Bearing Carbonation Fault Detection in Turbine Systems | |
CN116304848B (en) | Rolling bearing fault diagnosis system and method | |
CN114235424A (en) | Method for detecting faults of fuel filter of gas turbine | |
CN113176081B (en) | Historical data-based turbine blade wear monitoring method | |
CN109085375B (en) | Key phase pulse signal monitoring method and device for rotary machine | |
TWI745912B (en) | Blast furnace abnormality determination device, blast furnace abnormality determination method and blast furnace operation method | |
JP2022084435A5 (en) | ||
EP2881549B1 (en) | System and method for preventing an emergency over-speed condition in a rotating machine | |
EP3589843B1 (en) | Method and device to detect an indicator for the prediction of an instability in a compressor, and corresponding use | |
EP3861415B1 (en) | Method and control system for detecting condition of plurality of process equipment in industrial plant | |
EP2469098A1 (en) | Method and device for predicting the instability of an axial compressor | |
KR102289405B1 (en) | Emergency generator including function for preventing and maintaining abnormal symptoms | |
CN112964470A (en) | Method for detecting early failure of rolling bearing based on bearing health index |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |