CN114320854B - A throwable electromagnetic peristaltic pump - Google Patents
A throwable electromagnetic peristaltic pump Download PDFInfo
- Publication number
- CN114320854B CN114320854B CN202111567472.1A CN202111567472A CN114320854B CN 114320854 B CN114320854 B CN 114320854B CN 202111567472 A CN202111567472 A CN 202111567472A CN 114320854 B CN114320854 B CN 114320854B
- Authority
- CN
- China
- Prior art keywords
- magnet
- pump body
- cover plate
- electromagnetic
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002572 peristaltic effect Effects 0.000 title claims abstract description 25
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000012528 membrane Substances 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
本发明公开了一种可抛式电磁蠕动泵,属于微泵领域,包括驱动电机、多级环形磁铁和泵体,所述驱动电机与多级环形磁铁之间安装有托盘,所述多级环形磁铁与泵体之间安装有盖板和弹性薄膜,所述盖板位于弹性薄膜的上方,所述盖板的内部开设有多个磁铁孔,所述盖板的内侧通过磁铁孔安装有圆柱磁铁,所述泵体的内部安装有两个导管,所述泵体的底部安装有两个螺栓螺母,所述托盘的中心位置开设有D型槽,所述托盘的外侧设有端面。本发明所述的一种可抛式电磁蠕动泵,只需要驱动电机旋转就可以带动整个装置运转,能耗相对较低,解决了传统电磁泵受电磁线圈通电频率限制而频率不高的问题,改变驱动电机的转动方向,即可完成该泵进口与出口的调换。
The invention discloses a throwable electromagnetic peristaltic pump, belonging to the field of micropumps, comprising a drive motor, a multi-stage ring magnet and a pump body, a tray is installed between the drive motor and the multi-stage ring magnet, and the multi-stage ring magnet A cover plate and an elastic film are installed between the magnet and the pump body, the cover plate is located above the elastic film, a plurality of magnet holes are opened inside the cover plate, and cylindrical magnets are installed on the inside of the cover plate through the magnet holes , two conduits are installed inside the pump body, two bolts and nuts are installed at the bottom of the pump body, a D-shaped groove is opened in the center of the tray, and an end surface is arranged on the outside of the tray. The disposable electromagnetic peristaltic pump described in the present invention only needs to drive the motor to rotate to drive the whole device to operate, and the energy consumption is relatively low, which solves the problem that the traditional electromagnetic pump is limited by the frequency of the electromagnetic coil and the frequency is not high. Changing the rotation direction of the drive motor can complete the exchange of the pump inlet and outlet.
Description
技术领域technical field
本发明涉及微泵领域,具体涉及一种可抛式电磁蠕动泵。The invention relates to the field of micropumps, in particular to a throwable electromagnetic peristaltic pump.
背景技术Background technique
微流控系统已被证明能够具有细胞培养监测、细胞裂解、蛋白质/DNA分离、DNA/试剂混合和DNA扩增等生物样本的能力,而适当的微泵和微阀装置则是系统中控制流体输送的重要方式;Microfluidic systems have been proven to be capable of biological samples such as cell culture monitoring, cell lysis, protein/DNA separation, DNA/reagent mixing, and DNA amplification, while appropriate micropumps and microvalve devices are the control fluids in the system. important means of delivery;
目前已经开发出电流体动力和磁流体动力微型泵,同时基于膜的往复和非周期位移的微型泵也得到了广泛的探索。在这些微型泵中,膜的偏转使腔室容积发生变化,从而驱动流体流动。通过这种蠕动运动,蠕动泵通常可以承受较高的背压。现有的膜驱动方法包括压电材料、静电、热气动、电磁和压缩空气驱动。在以上众多驱动方式中,相比起其他驱动方式,电磁驱动具有驱动电压低、控制简单、制造成本低等优点;Electrohydrodynamic and magnetohydrodynamic micropumps have been developed, while membrane-based reciprocating and non-periodic displacement micropumps have also been extensively explored. In these micropumps, the deflection of the membrane changes the volume of the chamber, which drives fluid flow. Through this peristaltic motion, peristaltic pumps can usually withstand high back pressure. Existing membrane actuation methods include piezoelectric materials, electrostatic, thermopneumatic, electromagnetic, and compressed air actuation. Among the many driving methods above, compared with other driving methods, electromagnetic driving has the advantages of low driving voltage, simple control, and low manufacturing cost;
但是现有的可抛式电磁蠕动泵在使用时存在着一定的不足之处有待改善,现有的电磁泵多为衔铁式电磁泵,采用机械弹簧作为恢复机构,在线圈励磁时压缩弹簧, 断磁时靠弹簧复位。机械弹簧带来了两个主要缺陷,其一,随着使用次数的增加,机械弹簧不可避免地会发生失效,其二,能量消耗大。线圈励磁时压缩弹簧,在很多场合,泵的使用时间较长,能耗的缺点更为显著,其三,不易实现高频,因为这种电磁泵的驱动频率取决于电磁线圈的通断电频率,而多匝线圈自感系数较大,其频率因此受到较大的限制。However, the existing throwable electromagnetic peristaltic pumps have certain deficiencies in use and need to be improved. Most of the existing electromagnetic pumps are armature electromagnetic pumps, which use mechanical springs as the recovery mechanism. When the coil is excited, the spring is compressed and broken. When magnetic, it is reset by spring. The mechanical spring brings two main defects. First, with the increase of the number of uses, the mechanical spring will inevitably fail, and second, the energy consumption is large. When the coil is excited, the spring is compressed. In many occasions, the pump has a long service time and the disadvantage of energy consumption is more significant. Third, it is not easy to achieve high frequency, because the driving frequency of this electromagnetic pump depends on the on-off frequency of the electromagnetic coil. , and the self-inductance coefficient of the multi-turn coil is relatively large, and its frequency is therefore greatly limited.
发明内容Contents of the invention
本发明的目的在于提供一种可抛式电磁蠕动泵,可以解决现有的问题。The object of the present invention is to provide a throwable electromagnetic peristaltic pump, which can solve the existing problems.
本发明的目的可以通过以下技术方案实现:The purpose of the present invention can be achieved through the following technical solutions:
一种可抛式电磁蠕动泵,包括驱动电机、多级环形磁铁和泵体,所述驱动电机与多级环形磁铁之间安装有托盘,所述多级环形磁铁与泵体之间安装有盖板和弹性薄膜,所述盖板位于弹性薄膜的上方,所述盖板的内部开设有多个磁铁孔,所述盖板的内侧通过磁铁孔安装有圆柱磁铁,所述泵体的内部安装有两个导管,所述泵体的底部安装有两个螺栓螺母。A throwable electromagnetic peristaltic pump, including a drive motor, a multi-stage ring magnet and a pump body, a tray is installed between the drive motor and the multi-stage ring magnet, and a cover is installed between the multi-stage ring magnet and the pump body plate and an elastic film, the cover plate is located above the elastic film, a plurality of magnet holes are opened inside the cover plate, cylindrical magnets are installed on the inside of the cover plate through the magnet holes, and a cylinder magnet is installed inside the pump body. Two conduits, two bolts and nuts are installed on the bottom of the pump body.
作为本发明的进一步技术方案,所述托盘的中心位置开设有D型槽,所述托盘的外侧设有端面。As a further technical solution of the present invention, a D-shaped groove is opened at the center of the tray, and an end surface is provided at the outer side of the tray.
作为本发明的进一步技术方案,所述托盘的下端插入至多级环形磁铁的中间孔内与其相连,托盘的上方通过D型槽与驱动电机相连。As a further technical solution of the present invention, the lower end of the tray is inserted into the middle hole of the multi-stage ring magnet and connected with it, and the upper part of the tray is connected with the driving motor through a D-shaped groove.
作为本发明的进一步技术方案,所述泵体的内部开设有通孔A,泵体的内部位于通孔A的外侧开设有多个圆柱腔和环形槽,所述盖板的内部开设有通孔B,螺栓螺母穿过通孔A和通孔B与盖板和弹性薄膜连接,泵体通过螺栓螺母与弹性薄膜和盖板相连接,弹性薄膜位于泵体与盖板的中间。As a further technical solution of the present invention, the inside of the pump body is provided with a through hole A, and the inside of the pump body is provided with a plurality of cylindrical cavities and annular grooves on the outside of the through hole A, and the inside of the cover plate is provided with a through hole B. The bolts and nuts are connected to the cover plate and the elastic film through the through hole A and the through hole B. The pump body is connected to the elastic film and the cover plate through the bolts and nuts. The elastic film is located in the middle of the pump body and the cover plate.
作为本发明的进一步技术方案,所述多个圆柱腔呈圆形排列,环形槽与圆柱腔贯通连接,导管与环形槽相同。As a further technical solution of the present invention, the plurality of cylindrical cavities are arranged in a circle, the annular groove is connected through the cylindrical cavity, and the conduit is the same as the annular groove.
作为本发明的进一步技术方案,所述导管包括有进流管和出流管,进流管和出流管均安装在泵体内,所述进流管位于出流管的一侧。As a further technical solution of the present invention, the conduit includes an inlet pipe and an outlet pipe, both of which are installed in the pump body, and the inlet pipe is located on one side of the outlet pipe.
作为本发明的进一步技术方案,所述圆柱磁铁穿过磁铁孔,圆柱磁铁的底部与弹性薄膜的上端固定连接。As a further technical solution of the present invention, the cylindrical magnet passes through the magnet hole, and the bottom of the cylindrical magnet is fixedly connected with the upper end of the elastic film.
作为本发明的进一步技术方案,所述圆柱磁铁包括有磁铁A、磁铁B、磁铁C、磁铁D、磁铁E和磁铁F,磁铁A、磁铁B、磁铁C、磁铁D、磁铁E和磁铁F分别安装在多个磁铁孔中,多个磁铁孔呈圆形排列。As a further technical solution of the present invention, the cylindrical magnet includes magnet A, magnet B, magnet C, magnet D, magnet E and magnet F, magnet A, magnet B, magnet C, magnet D, magnet E and magnet F respectively Installed in a plurality of magnet holes arranged in a circular shape.
本发明的有益效果:Beneficial effects of the present invention:
通过设置的驱动电机、多级环形磁铁、泵体、圆柱磁铁、盖板、弹性薄膜和导管,采用了一个带有圆柱磁铁的可抛泵体、一个多级环形磁铁和一个驱动电机,圆柱磁铁安装在泵体内腔弹性薄膜中,当驱动电机驱动多级环形磁铁旋转并且靠近泵体时,就会由于磁力作用引起圆柱磁铁的上下运动,从而带动弹性薄膜振动使得腔体发生体积变化,从而实现流体的吸入与泵出,泵体与驱动部分是分离的,因而泵体的本身体积可以很小,不受到驱动部分的限制,同时由于泵体与驱动分离,在一些流体会产生污染的使用场合下,泵体可抛而驱动部分能够得以回收,而且本发明在使用时只需要驱动电机旋转就可以带动整个装置运转,能耗相对较低,此外,该泵的工作频率取决于驱动电机带动多级环形磁铁转动的频率,解决了传统电磁泵受电磁线圈通电频率限制而频率不高的问题,最后,由于本发明是完全对称的结构,因而泵体的两个管道任意一个都可以与进流管相连,剩下一个与出流管相连,即本电磁泵是双向的,改变驱动电机的转动方向,即可完成该泵进口与出口的调换。By setting the drive motor, multi-stage ring magnet, pump body, cylindrical magnet, cover plate, elastic film and conduit, a throwable pump body with cylindrical magnet, a multi-stage ring magnet and a drive motor, cylindrical magnet Installed in the elastic film of the inner cavity of the pump, when the drive motor drives the multi-stage ring magnet to rotate and close to the pump body, the cylindrical magnet will move up and down due to the magnetic force, which will drive the elastic film to vibrate and cause the volume of the cavity to change, thus realizing The suction and pumping of the fluid, the pump body and the driving part are separated, so the volume of the pump body itself can be small and not limited by the driving part. At the same time, because the pump body is separated from the driving part, it is used in some occasions where the fluid will pollute In this way, the pump body can be thrown away and the drive part can be recovered, and the present invention only needs to drive the motor to rotate to drive the whole device to run, and the energy consumption is relatively low. In addition, the working frequency of the pump depends on how much the drive motor drives. The rotation frequency of the first-stage ring magnet solves the problem that the traditional electromagnetic pump is limited by the frequency of the electromagnetic coil and the frequency is not high. Finally, because the invention is a completely symmetrical structure, any one of the two pipelines of the pump body can be connected with the incoming flow. The remaining one is connected with the outlet pipe, that is, the electromagnetic pump is bidirectional, changing the rotation direction of the driving motor can complete the exchange of the pump inlet and outlet.
附图说明Description of drawings
下面结合附图对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.
图1是本发明一种可抛式电磁蠕动泵的整体结构示意图;Fig. 1 is a schematic diagram of the overall structure of a throwable electromagnetic peristaltic pump of the present invention;
图2是本发明一种可抛式电磁蠕动泵的拆分图;Fig. 2 is a split view of a throwable electromagnetic peristaltic pump of the present invention;
图3是本发明一种可抛式电磁蠕动泵的多级环形磁铁的三种磁极结构图;Fig. 3 is three kinds of magnetic pole structure diagrams of the multistage ring magnet of a throwable electromagnetic peristaltic pump of the present invention;
图4是本发明一种可抛式电磁蠕动泵的泵体的结构图;Fig. 4 is a structural diagram of a pump body of a throwable electromagnetic peristaltic pump of the present invention;
图5是本发明一种可抛式电磁蠕动泵的泵体的剖析图;Fig. 5 is the dissection diagram of the pump body of a throwable electromagnetic peristaltic pump of the present invention;
图6是本发明一种可抛式电磁蠕动泵的托盘的结构图;Fig. 6 is a structural diagram of a tray of a throwable electromagnetic peristaltic pump of the present invention;
图7是本发明一种可抛式电磁蠕动泵的托盘的剖析图;Fig. 7 is an exploded view of a tray of a throwable electromagnetic peristaltic pump of the present invention;
图8是本发明一种可抛式电磁蠕动泵的盖板的结构图;Fig. 8 is a structural diagram of a cover plate of a throwable electromagnetic peristaltic pump of the present invention;
图9是本发明一种可抛式电磁蠕动泵的流体吸入过程图;Fig. 9 is a fluid suction process diagram of a throwable electromagnetic peristaltic pump of the present invention;
图10是本发明一种可抛式电磁蠕动泵的流体泵送过程图;Fig. 10 is a fluid pumping process diagram of a throwable electromagnetic peristaltic pump of the present invention;
图11是本发明一种可抛式电磁蠕动泵的圆柱磁铁的工作流程图。Fig. 11 is a working flowchart of a cylindrical magnet of a throwable electromagnetic peristaltic pump according to the present invention.
图中:1、驱动电机;2、多级环形磁铁;3、泵体;4、托盘;5、圆柱磁铁;6、盖板;7、弹性薄膜;8、导管;9、螺栓螺母;81、进流管;82、出流管;31、环形槽;32、圆柱腔;33、通孔A;41、D型槽;42、端面;61、磁铁孔;62、通孔B;51、磁铁A;52、磁铁B;53、磁铁C;54、磁铁D;55、磁铁E;56、磁铁F。In the figure: 1. Drive motor; 2. Multi-stage ring magnet; 3. Pump body; 4. Tray; 5. Cylindrical magnet; 6. Cover plate; 7. Elastic film; 8. Conduit; 9. Bolt and nut; Inlet pipe; 82, outflow pipe; 31, annular groove; 32, cylindrical cavity; 33, through hole A; 41, D-shaped groove; 42, end face; 61, magnet hole; 62, through hole B; 51, magnet A; 52, magnet B; 53, magnet C; 54, magnet D; 55, magnet E; 56, magnet F.
具体实施方式Detailed ways
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。In order to further explain the technical means and effects of the present invention to achieve the intended purpose of the invention, the specific implementation, structure, features and effects of the present invention will be described in detail below in conjunction with the accompanying drawings and preferred embodiments.
如图1-11所示,一种可抛式电磁蠕动泵,包括驱动电机1、多级环形磁铁2和泵体3,驱动电机1与多级环形磁铁2之间安装有托盘4,多级环形磁铁2与泵体3之间安装有盖板6和弹性薄膜7,盖板6位于弹性薄膜7的上方,盖板6的内部开设有多个磁铁孔61,盖板6的内侧通过磁铁孔61安装有圆柱磁铁5,泵体3的内部安装有两个导管8,泵体3的底部安装有两个螺栓螺母9。As shown in Figure 1-11, a throwable electromagnetic peristaltic pump includes a
托盘4的中心位置开设有D型槽41,托盘4的外侧设有端面42。A D-shaped
托盘4的下端插入至多级环形磁铁2的中间孔内与其相连,托盘4的上方通过D型槽41与驱动电机1相连,使多级环形磁铁2可以随着驱动电机1旋转。The lower end of the tray 4 is inserted into the middle hole of the
泵体3的内部开设有通孔A33,泵体3的内部位于通孔A33的外侧开设有多个圆柱腔32和环形槽31,盖板6的内部开设有通孔B62,螺栓螺母9穿过通孔A33和通孔B62与盖板6和弹性薄膜7连接,泵体3通过螺栓螺母9与弹性薄膜7和盖板6相连接,弹性薄膜7位于泵体3与盖板6的中间。The inside of the
多个圆柱腔32呈圆形排列,环形槽31与圆柱腔32贯通连接,导管8与环形槽31相同,圆柱腔32直径大于圆柱磁铁5直径加上两倍弹性薄膜7厚度,因此圆柱磁铁5能够在磁力作用下与弹性薄膜7一起被压入圆柱腔32。A plurality of
导管8包括有进流管81和出流管82,进流管81和出流管82均安装在泵体3内,进流管81位于出流管82的一侧,进流管81和出流管82两者随着实际流体流向可互相转化设在泵体3的一端。The
圆柱磁铁5穿过磁铁孔61,圆柱磁铁5的底部与弹性薄膜7的上端固定连接。The
圆柱磁铁5包括有磁铁A51、磁铁B52、磁铁C53、磁铁D54、磁铁E55和磁铁F56,磁铁A51、磁铁B52、磁铁C53、磁铁D54、磁铁E55和磁铁F56分别安装在多个磁铁孔61中,多个磁铁孔61呈圆形排列,圆柱磁铁5数量等于多级环形磁铁2的磁极对数乘二。
该可抛式电磁蠕动泵,在使用时,所有圆柱磁铁5均为N级在上、S级在下布置,由俯视图自进流管81开始逆时针将磁铁分别编号磁铁A51-磁铁F56,当泵处于非工作状态的未受到磁力作用时,所有圆柱磁铁5仅在重力作用下下垂,泵未开启,当受到多级环形磁铁2斥力作用时,磁铁A51、磁铁C53、磁铁E55首先带着弹性薄膜7被压下,腔体体积减小,随着驱动电机1带动多级环形磁铁2转动,磁铁A51、磁铁C53、磁铁E55受到吸力作用被吸起,腔体体积增大,形成负压,使得流体被吸入,再随着多级磁铁转动,磁铁A51、磁铁C53、磁铁E55又受到斥力作用被压下,而磁铁B52、磁铁D54、磁铁F56受到吸力被吸起,从而使得磁铁A51、磁铁C53、磁铁E55对应腔内的流体得以进入到磁铁B52、磁铁D54、磁铁F56对应的腔内,完成泵液过程。In this throwable electromagnetic peristaltic pump, when in use, all the
如图11所示为电磁蠕动泵完成的一个工作流程,图8为流体泵入磁铁A51所对应圆柱腔32的过程,以及流体从磁铁A51所对应圆柱腔32泵出到磁铁B52所对应腔过程,剩下的过程同理可得,流体就会像“蠕动”一样从进流管81到出流管82,当改变进流管81和出流管82位置时,蠕动泵的工作原理与上述相同,只不过流动方向是从进流管81到磁铁F56所对应的圆柱腔32,依次途径剩下的腔后,经过磁铁A51所对应的圆柱腔32,再从出流管82流出。Figure 11 shows a working process completed by the electromagnetic peristaltic pump, Figure 8 shows the process of pumping fluid into the
通过设置的驱动电机1、多级环形磁铁2、泵体3、圆柱磁铁5、盖板6、弹性薄膜7和导管8,采用了一个带有圆柱磁铁5的可抛泵体3、一个多级环形磁铁2和一个驱动电机1,圆柱磁铁5安装在泵体3内腔弹性薄膜7中,当驱动电机1驱动多级环形磁铁2旋转并且靠近泵体3时,就会由于磁力作用引起圆柱磁铁5的上下运动,从而带动弹性薄膜7振动使得腔体发生体积变化,从而实现流体的吸入与泵出,泵体3与驱动部分是分离的,因而泵体3的本身体积可以很小,不受到驱动部分的限制,同时由于泵体3与驱动分离,在一些流体会产生污染的使用场合下,泵体3可抛而驱动部分能够得以回收,而且本发明在使用时只需要驱动电机1旋转就可以带动整个装置运转,能耗相对较低,此外,该泵的工作频率取决于驱动电机1带动多级环形磁铁2转动的频率,解决了传统电磁泵受电磁线圈通电频率限制而频率不高的问题,最后,由于本发明是完全对称的结构,因而泵体3的两个管道任意一个都可以与进流管81相连,剩下一个与出流管82相连,即本电磁泵是双向的,改变驱动电机1的转动方向,即可完成该泵进口与出口的调换。A
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone skilled in the art , without departing from the scope of the technical solution of the present invention, when the technical content disclosed above can be used to make some changes or be modified into equivalent embodiments with equivalent changes, but as long as it does not depart from the technical solution of the present invention, the technical content of the present invention In essence, any brief modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the technical solution of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111567472.1A CN114320854B (en) | 2021-12-21 | 2021-12-21 | A throwable electromagnetic peristaltic pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111567472.1A CN114320854B (en) | 2021-12-21 | 2021-12-21 | A throwable electromagnetic peristaltic pump |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114320854A CN114320854A (en) | 2022-04-12 |
CN114320854B true CN114320854B (en) | 2023-06-20 |
Family
ID=81053786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111567472.1A Active CN114320854B (en) | 2021-12-21 | 2021-12-21 | A throwable electromagnetic peristaltic pump |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114320854B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101749219B (en) * | 2008-12-11 | 2012-06-20 | 清华大学 | Miniature peristaltic pump |
JP5916231B2 (en) * | 2013-03-14 | 2016-05-11 | 株式会社アクアテック | Electromagnetic rotation mechanism and tube pump provided with the same |
CN203925955U (en) * | 2014-07-10 | 2014-11-05 | 大连海事大学 | An electromagnetic micropump based on a microfluidic chip |
CN106964007B (en) * | 2017-04-14 | 2023-07-18 | 福州大学 | An electromagnetically driven maglev nutating heart pump and method of use thereof |
JP2019190335A (en) * | 2018-04-23 | 2019-10-31 | 住友ゴム工業株式会社 | Peristaltic pump |
FR3100846B1 (en) * | 2019-09-17 | 2022-11-11 | Inst Polytechnique Grenoble | Pumping system in the field of labs on a chip |
CN112915310A (en) * | 2021-01-26 | 2021-06-08 | 浙江清华柔性电子技术研究院 | In-vivo implantable peristaltic pump, peristaltic pump controller and body fluid transfer system |
-
2021
- 2021-12-21 CN CN202111567472.1A patent/CN114320854B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114320854A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1232728C (en) | Valve less thin film driving micro pump | |
CN204402805U (en) | A kind of mode of resonance piezoelectricity diaphragm pump | |
CN103195694B (en) | A kind of Valveless piezoelectric micro pump | |
SE529284C2 (en) | diaphragm Pump | |
CN203925955U (en) | An electromagnetic micropump based on a microfluidic chip | |
CN106194676B (en) | valveless piezoelectric pump with filtering function | |
US20220186172A1 (en) | Cell separation apparatus for bioreactor | |
Yokota | A review on micropumps from the viewpoint of volumetric power density | |
CN102691647B (en) | Valveless piezoelectric pump with, axially symmetric elliptic tubes | |
CN107605713A (en) | A kind of valve free pump of big flow | |
CN1908431A (en) | Over-magnetostriction rod drive membrane pump | |
CN114320854B (en) | A throwable electromagnetic peristaltic pump | |
CN109723628B (en) | A piezoelectric stack pump | |
CN100540896C (en) | A new self-priming micropump | |
Kumar et al. | Development of a solenoid actuated planar valveless micropump with single and multiple inlet–outlet arrangements | |
TWI719373B (en) | Power driver of unmanned aerial vehicle | |
CN102562540A (en) | Diaphragm compressed valve-less micropump | |
CN203175814U (en) | Valveless piezoelectric micro pump | |
CN202707437U (en) | Micro pump based on GMF (Giant Magnetostrictive Thin Film) driver | |
CN206111498U (en) | Valveless piezoelectric pump with filtering capability | |
CN209938968U (en) | Power drives for unmanned aerial vehicles | |
CN116428180A (en) | A magnetic fluid driven pump and its driving system | |
CN116591926A (en) | A multi-piston ferrofluid driven pump with backflow suppression and no ferrofluid separation | |
CN113464410B (en) | Pressure stepless adjustable large-flow piezoelectric pump | |
CN105089993B (en) | Piezoelectric pump based on secondary resonance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |