CN114317538A - A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and its application - Google Patents
A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and its application Download PDFInfo
- Publication number
- CN114317538A CN114317538A CN202111663686.9A CN202111663686A CN114317538A CN 114317538 A CN114317538 A CN 114317538A CN 202111663686 A CN202111663686 A CN 202111663686A CN 114317538 A CN114317538 A CN 114317538A
- Authority
- CN
- China
- Prior art keywords
- ttha0571
- ptuf
- corynebacterium glutamicum
- heat
- resistant component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000186226 Corynebacterium glutamicum Species 0.000 title claims abstract description 94
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 24
- 101100096533 Drosophila melanogaster SelD gene Proteins 0.000 claims abstract description 18
- 241000589499 Thermus thermophilus Species 0.000 claims abstract description 6
- 239000013612 plasmid Substances 0.000 claims description 13
- 238000000855 fermentation Methods 0.000 abstract description 13
- 230000004151 fermentation Effects 0.000 abstract description 13
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 241000186216 Corynebacterium Species 0.000 abstract description 2
- 239000000498 cooling water Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 60
- 239000000306 component Substances 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 22
- 239000007788 liquid Substances 0.000 description 20
- 239000002609 medium Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 230000001580 bacterial effect Effects 0.000 description 14
- 238000012408 PCR amplification Methods 0.000 description 12
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 11
- 244000153158 Ammi visnaga Species 0.000 description 10
- 235000010585 Ammi visnaga Nutrition 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 238000011218 seed culture Methods 0.000 description 8
- 239000007853 buffer solution Substances 0.000 description 7
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 6
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000004925 denaturation Methods 0.000 description 6
- 230000036425 denaturation Effects 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 238000012257 pre-denaturation Methods 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 230000003698 anagen phase Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 235000013922 glutamic acid Nutrition 0.000 description 4
- 239000004220 glutamic acid Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 235000014121 butter Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 150000005693 branched-chain amino acids Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
一种谷氨酸棒杆菌耐热元器件Ptuf‑TTHA0571及其应用,所述谷氨酸棒杆菌耐热元器件Ptuf‑TTHA0571由谷氨酸棒杆菌启动子和耐热功能基因组成,所述谷氨酸棒杆菌启动子为强启动子Ptuf,所述耐热功能基因为来源于嗜热栖热菌CICC10647中的TTHA0571基因;所述TTHA0571基因序列如SEQ NO.1所示,所述强启动子Ptuf基因序列如SEQ NO.2所示。本发明中的谷氨酸棒杆菌耐热元器件Ptuf‑TTHA0571,可以使谷氨酸棒杆菌的热稳定性大大提高,增强菌株的耐热性,应用于工业化生产菌株中可以大大降低发酵过程中冷却水的能耗,降低生产成本,具有较好的工业应用前景。
A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and an application thereof, the Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 is composed of a Corynebacterium glutamicum promoter and a heat-resistant functional gene, and the The promoter of Corynebacterium acidophilus is a strong promoter Ptuf, and the thermostable function gene is the TTHA0571 gene derived from Thermus thermophilus CICC10647; the TTHA0571 gene sequence is shown in SEQ NO.1, and the strong promoter The Ptuf gene sequence is shown in SEQ NO.2. The heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum in the present invention can greatly improve the thermal stability of Corynebacterium glutamicum, enhance the heat resistance of the strain, and can be applied to industrialized production of strains, which can greatly reduce the amount of time in the fermentation process. The energy consumption of cooling water is reduced, and the production cost is reduced, and it has a good industrial application prospect.
Description
技术领域technical field
本发明涉及一种谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571及其应用,属于生物工程技术领域。The invention relates to a heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum and its application, belonging to the technical field of biological engineering.
背景技术Background technique
谷氨酸棒状杆菌(Corynebacterium glutamicum)目前被用于谷氨酸、赖氨酸、支链氨基酸、维生素D、有机酸等的生产,在食品、医药、农业等领域得到了广泛应用。谷氨酸棒状杆菌不仅是一种重要的工业微生物,其常被当作微生物细胞工厂,利用葡萄糖、蔗糖、木糖等碳源生产氨基酸、有机酸、维生素及燃料乙醇等,已经成为一种重要的生物平台。Corynebacterium glutamicum is currently used for the production of glutamic acid, lysine, branched-chain amino acids, vitamin D, organic acids, etc., and has been widely used in food, medicine, agriculture and other fields. Corynebacterium glutamicum is not only an important industrial microorganism, it is often used as a microbial cell factory, using carbon sources such as glucose, sucrose, xylose to produce amino acids, organic acids, vitamins and fuel ethanol, etc., has become an important biological platform.
谷氨酸棒杆菌最适宜的培养温度一般在26℃-37℃,正常发酵生产一般控制温度在32℃左右,要控制谷氨酸棒杆菌发酵温度为32℃,需采取一系列的降温措施,比如循环水冷却、冷冻水冷却等,尤其在夏季高温季节,环境温度普遍较高,谷氨酸棒杆菌发酵过程中需要消耗大量冷媒介质,往往还达不到冷却效果,造成发酵异常,不仅冷却系统增加大量成本,而且发酵异常会直接影响产量,无形中增加了生产经营成本。The most suitable culture temperature of Corynebacterium glutamicum is generally 26℃-37℃, and the normal fermentation production is generally controlled at about 32℃. To control the fermentation temperature of Corynebacterium glutamicum to 32℃, a series of cooling measures need to be taken. For example, circulating water cooling, freezing water cooling, etc., especially in the high temperature season in summer, the ambient temperature is generally high, and the fermentation process of Corynebacterium glutamicum needs to consume a large amount of cold medium, which often fails to achieve the cooling effect, resulting in abnormal fermentation, not only cooling The system increases a lot of costs, and abnormal fermentation will directly affect the yield, which will increase production and operation costs.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571及其应用。The purpose of the present invention is to provide a heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum and its application.
为实现上述目的及其他相关目的,本发明提供的技术方案是:一种谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571,所述谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571由谷氨酸棒杆菌启动子和耐热功能基因组成,所述谷氨酸棒杆菌启动子为强启动子Ptuf,所述耐热功能基因为来源于嗜热栖热菌CICC10647中的TTHA0571基因;所述TTHA0571基因序列如SEQ NO.1所示,所述强启动子Ptuf基因序列如SEQ NO.2所示。In order to achieve the above-mentioned purpose and other related purposes, the technical scheme provided by the present invention is: a heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum, the heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum is composed of glutamic acid. Corynebacterium promoter and heat-resistant functional gene are composed, the Corynebacterium glutamicum promoter is a strong promoter Ptuf, and the heat-resistant functional gene is the TTHA0571 gene derived from Thermus thermophilus CICC10647; the TTHA0571 gene The sequence is shown in SEQ NO.1, and the sequence of the strong promoter Ptuf gene is shown in SEQ NO.2.
为实现上述目的及其他相关目的,本发明提供的技术方案是:一种权利要求1所述的谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571的应用,所述谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571在提高谷氨酸棒杆菌耐热性中的应用。In order to realize the above-mentioned purpose and other related purposes, the technical scheme provided by the invention is: a kind of application of the Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 described in
优选的技术方案为:将谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571导入质粒然后在谷氨酸棒杆菌内表达。The preferred technical scheme is as follows: the heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum is introduced into a plasmid and then expressed in Corynebacterium glutamicum.
优选的技术方案为:将谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571整合到谷氨酸棒杆菌基因组上。The preferred technical solution is: integrating the heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum into the genome of Corynebacterium glutamicum.
优选的技术方案为:对带有谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571的谷氨酸棒杆菌进行高温驯化,提高谷氨酸棒杆菌的耐热性。The preferred technical scheme is as follows: high-temperature domestication of Corynebacterium glutamicum with heat-resistant components Ptuf-TTHA0571 of Corynebacterium glutamicum to improve the heat resistance of Corynebacterium glutamicum.
由于上述技术方案运用,本发明与现有技术相比具有的优点是:Due to the application of the above-mentioned technical solutions, the advantages of the present invention compared with the prior art are:
1、本发明通过构建大量谷氨酸棒杆菌耐热元器件,筛选到一种耐热性效果较好的谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571,并通过在谷氨酸棒杆菌中应用提高菌种的培养温度,可以降低能源消耗和生产成本,具有明显的生产实际应用价值,同时也为谷氨酸棒杆菌的抗逆性研究和抗逆元器件的构建设计提供很好的科学参考价值。1. The present invention selects a Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 with better heat-resistance effect by constructing a large number of heat-resistant components of Corynebacterium glutamicum. The application of raising the culture temperature of strains can reduce energy consumption and production costs, and has obvious practical application value in production. reference value.
2、本发明中的谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571,可以使谷氨酸棒杆菌的热稳定性大大提高,增强菌株的耐热性,应用于工业化生产菌株中可以大大降低发酵过程中冷却水的能耗,降低生产成本,具有较好的工业应用前景。2. The heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum in the present invention can greatly improve the thermal stability of Corynebacterium glutamicum, enhance the heat resistance of strains, and can greatly reduce fermentation when applied to industrialized production strains. The energy consumption of cooling water in the process is reduced, the production cost is reduced, and the invention has a good industrial application prospect.
附图说明Description of drawings
图1高温(42℃)培养后菌体生长情况对照状况一。Figure 1.
图2高温(42℃)培养后菌体生长情况对照状况二。Figure 2. Control condition 2 of bacterial growth after high temperature (42°C) culture.
具体实施方式Detailed ways
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。The embodiments of the present invention are described below by specific embodiments, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification.
请参阅图1-2。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。See Figure 1-2. It should be noted that the structures, proportions, sizes, etc. shown in the drawings in this specification are only used to cooperate with the contents disclosed in the specification, so as to be understood and read by those who are familiar with the technology, and are not used to limit the implementation of the present invention. Restricted conditions, it does not have technical substantive significance, any structural modification, proportional relationship change or size adjustment, without affecting the effect that the present invention can produce and the purpose that can be achieved, should still fall within the present invention. The disclosed technical content must be within the scope of coverage. At the same time, the terms such as "up", "down", "left", "right", "middle" and "one" quoted in this specification are only for the convenience of description and clarity, and are not used to limit this specification. The implementable scope of the invention, and the change or adjustment of the relative relationship thereof, shall also be regarded as the implementable scope of the present invention without substantially changing the technical content.
实施例1:一种谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571及其应用Example 1: A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and its application
谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571的构建方法,包括下列步骤:The construction method of the heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum includes the following steps:
步骤1:将嗜热栖热菌CICC10647活化后接种于液体培养基中,然后置于70-80℃的摇床中培养20-28h,得到种子培养液;将种子培养液接种于液体培养基中,取处于对数生长期的菌液提取基因组;Step 1: The Thermus thermophilus CICC10647 is activated and inoculated into a liquid medium, and then placed in a shaker at 70-80°C for 20-28 hours to obtain a seed culture solution; the seed culture solution is inoculated into the liquid culture medium , take the bacterial liquid in the logarithmic growth phase to extract the genome;
液体培养基成分:酵母粉4.0g;聚蛋白胨8.0g;NaCl2.0g;蒸馏水1L;调pH值到7.0。Liquid medium components: yeast powder 4.0g; polypeptone 8.0g; NaCl 2.0g; distilled water 1L; adjust pH to 7.0.
细菌基因组提取方法:Bacterial genome extraction method:
使用细菌基因组DNA提取试剂盒(Wizard Genomic DNA Purification KitA1120),按照以下步骤进行操作:Using the Bacterial Genomic DNA Purification Kit (Wizard Genomic DNA Purification KitA1120), follow these steps:
(1)从-80℃取出经过预处理好的谷氨酸棒杆菌细胞,向每管中加入600μL的细胞裂解液,并通过温柔的颠倒翻转或使用移液器吹打,使细胞均匀分散于裂解液中,将EP管置于80℃恒温水浴中孵育5min加速菌体裂解。(1) Take out the pretreated Corynebacterium glutamicum cells from -80°C, add 600 μL of cell lysate to each tube, and gently invert or use a pipette to evenly disperse the cells in the lysate. In the solution, the EP tube was placed in a constant temperature water bath at 80 °C and incubated for 5 min to accelerate the lysis of the cells.
(2)将裂解体系冷却到室温,向每管加入2μL RNA酶溶液(使用试剂盒提供的或自行配制浓度为50mg/mL的RNase溶液),37℃水浴孵育30-90min。(2) Cool the lysis system to room temperature, add 2 μL of RNase solution to each tube (use the RNase solution with a concentration of 50 mg/mL provided by the kit or prepared by yourself), and incubate in a water bath at 37°C for 30-90 min.
(3)向每管加入200μL蛋白质分离液,并迅速通过颠倒翻转使溶液得到充分混合,待出现明显的白色絮状沉淀后,将1.5mL EP管置于冰浴2-3min,在4℃条件下离心,时间10-20min,转速10000-13000r/min,将400-600μL上清液转移到一个新的1.5mL EP管中。(3) Add 200 μL of protein separation solution to each tube, and quickly invert the solution to fully mix the solution. After obvious white flocculent precipitation appears, place the 1.5 mL EP tube in an ice bath for 2-3 minutes, at 4°C Centrifuge for 10-20 min at 10,000-13,000 r/min, and transfer 400-600 μL of the supernatant to a new 1.5 mL EP tube.
(4)向1.5mL EP管中加入等体积的异丙醇或二倍体积的无水乙醇,温柔地颠倒翻转使溶液得到充分混合,此时基因组DNA会以肉眼可见的形式析出,通过观察可以直观地判断基因组DNA的提取是否成功。(4) Add an equal volume of isopropanol or twice the volume of absolute ethanol to the 1.5mL EP tube, and gently invert the solution to fully mix the solution. At this time, the genomic DNA will be precipitated in a form visible to the naked eye. Intuitively judge whether the extraction of genomic DNA is successful.
(5)将1.5mL EP管在4℃条件下离心1min,转速12000r/min,弃上清液。(5) Centrifuge the 1.5 mL EP tube at 4°C for 1 min, with a rotating speed of 12000 r/min, and discard the supernatant.
(6)向1.5mL EP管中加入700μL浓度为70%的乙醇溶液(-20℃),温柔地颠倒翻转,使基因组DNA充分地接触乙醇溶液,在4℃条件下离心,时间1min,转速12000r/min,弃上清液,并重复本步骤的操作2-3次。(6) Add 700 μL of 70% ethanol solution (-20°C) to a 1.5mL EP tube, invert gently to make the genomic DNA fully contact the ethanol solution, and centrifuge at 4°C for 1 min at 12000 r /min, discard the supernatant, and repeat this step 2-3 times.
(7)小心地用移液器将残留的乙醇溶液尽可能地吸取干净,将1.5mL EP管敞口静置1-2h使乙醇充分挥发。(7) Carefully suck up the residual ethanol solution as much as possible with a pipette, and leave the 1.5mL EP tube open for 1-2 hours to fully evaporate the ethanol.
(8)向1.5mL EP管中加入40-100μL缓冲溶液(pH 7.0-8.0)或ddH2O,室温静置1h或4℃静置12h,使基因组DNA充分溶解。(8) Add 40-100 μL buffer solution (pH 7.0-8.0) or ddH 2 O to a 1.5 mL EP tube, and let stand for 1 h at room temperature or 12 h at 4° C. to fully dissolve the genomic DNA.
(9)用移液器将10μL基因组DNA溶液转移到一个新的1.5mL EP管中用于质控分析,剩余的溶液置于-80℃保存。(9) Transfer 10 μL of genomic DNA solution to a new 1.5 mL EP tube with a pipette for quality control analysis, and store the remaining solution at -80°C.
步骤2:以步骤1提取得到的基因组为模板,以上引物TTHA0571-1和下引物TTHA0571-2进行PCR扩增;Step 2: Using the genome extracted in
上引物TTHA0571-1:On primer TTHA0571-1:
5’-CGAAGTCCAGGAGGAAAGCTT ATGCTGGAGCGCCACGAC-3’;5'-CGAAGTCCAGGAGGAAAGCTT ATGCTGGAGCGCCACGAC-3';
下引物TTHA0571-2:Under primer TTHA0571-2:
5’-TATCATCACAGAGTGCAACCAGATC CTACGCCTCCTTTAGGGGAAG-3’。5'-TATCATCACAGAGTGCAACCAGATCCTACGCCTCCTTTAGGGGAAG-3'.
步骤3:将谷氨酸棒杆菌ATCC 13032活化后接种于液体LB培养基中置于30-34℃摇床中培养20-28h,得到种子培养液;将种子培养液接种于液体LB培养基中,取处于对数生长期的菌液提取基因组;基因组提取方法同上。Step 3: Inoculate the activated Corynebacterium glutamicum ATCC 13032 into a liquid LB medium, place it in a shaker at 30-34°C for 20-28 hours, and obtain a seed culture solution; inoculate the seed culture solution into the liquid LB medium , take the bacterial liquid in the logarithmic growth phase to extract the genome; the genome extraction method is the same as above.
步骤4:以步骤3提取得到的基因组为模板,以上引物Ptuf-1、下引物Ptuf-2进行PCR扩增;Step 4: using the genome extracted in step 3 as a template, the above primer Ptuf-1 and the lower primer Ptuf-2 are used for PCR amplification;
上引物Ptuf-1:On primer Ptuf-1:
5’-TGTTGACCTCAAATATCGGAAGTACAAGCGCGTGCCCTCTTTGCTGCAG-3’;5'-TGTTGACCTCAAATATCGGAAGTACAAGCGCGTGCCCTCTTTGCTGCAG-3';
下引物Ptuf-2:5’-GTCGTGGCGCTCCAGCAT AAGCTTTCCTCCTGGACTTCG-3’。Lower primer Ptuf-2: 5'-GTCGTGCGCTCCAGCAT AAGCTTTCCTCCTGGACTTCG-3'.
步骤5:启动子Ptuf与耐热功能基因TTHA0571的DNA片段连接;使用的引物对为:上引物up-1、下引物down-2;Step 5: The promoter Ptuf is connected to the DNA fragment of the heat-resistant functional gene TTHA0571; the primer pairs used are: upper primer up-1, lower primer down-2;
上引物up-1:5'-ACCACGTCGATGTCTTTTACCTG-3';Upper primer up-1: 5'-ACCACGTCGATGTCTTTTACCTG-3';
下引物down-2:5'-GAGAAGTTAGCAAAGCCACGAGTAG-3'。Lower primer down-2: 5'-GAGAAGTTAGCAAAGCCACGAGTAG-3'.
步骤6:谷氨酸棒杆菌结合转化。Step 6: C. glutamicum conjugation transformation.
步骤2中,耐热功能基因TTHA0571的PCR扩增体系:配制50μL酶切反应体系,首先向0.2mL的PCR管中加入20的μL ddH2O;加入10μL的5×PrimeSTAR Buffer溶液;加入4μL的dNTP溶液;加入上引物TTHA0571-1、下引物TTHA0571-2溶液各2μL;加入总DNA不超过200ng的模板;加入0.5μL PrimeSTAR HS DNA Polymerase溶液;用ddH2O将反应体系补足50μL并用移液器反复吹吸混匀;耐热功能基因TTHA0571的PCR扩增参数为:95℃预变性5min;30个循环包括98℃变性10s、55℃退火5s和72℃延伸30s;72℃延伸10min。In step 2, the PCR amplification system of the heat-resistant functional gene TTHA0571: to prepare a 50 μL enzyme digestion reaction system, first add 20 μL ddH 2 O to a 0.2 mL PCR tube; add 10 μL of 5× PrimeSTAR Buffer solution; add 4 μL of dNTP solution; add 2 μL of upper primer TTHA0571-1 and lower primer TTHA0571-2 solution; add template with total DNA not exceeding 200 ng; add 0.5 μL PrimeSTAR HS DNA Polymerase solution; add 50 μL of ddH 2 O to the reaction system and pipette Repeated pipetting and mixing; PCR amplification parameters of the heat-resistant functional gene TTHA0571 were: 95°C pre-denaturation for 5 min; 30 cycles including 98°C denaturation for 10s, 55°C annealing for 5s and 72°C extension for 30s; 72°C extension for 10 min.
步骤4中,启动子Ptuf的PCR扩增体系:配制50μL酶切反应体系,首先向0.2mL的PCR管中加入20μL的ddH2O;加入10μL的5×PrimeSTAR Buffer溶液;加入4μL的dNTP溶液;加入上引物Ptuf-1、下引物Ptuf-2溶液各2μL;加入总DNA不超过200ng的模板;加入0.5μL的PrimeSTAR HS DNA Polymerase溶液;用ddH2O将反应体系补足50μL并用移液器反复吹吸混匀;启动子Ptuf的PCR扩增参数为:95℃预变性5min;30个循环包括98℃变性10s、55℃退火5s和72℃延伸30s;72℃延伸10min。In step 4, the PCR amplification system of the promoter Ptuf: to prepare a 50 μL enzyme digestion reaction system, first add 20 μL of ddH 2 O to a 0.2 mL PCR tube; add 10 μL of 5× PrimeSTAR Buffer solution; add 4 μL of dNTP solution; Add 2 μL each of the upper primer Ptuf-1 and the lower primer Ptuf-2 solution; add a template with a total DNA not exceeding 200 ng; add 0.5 μL PrimeSTAR HS DNA Polymerase solution; add 50 μL of ddH 2 O to the reaction system and blow it repeatedly with a pipette Aspirate and mix well; the PCR amplification parameters of the promoter Ptuf are: pre-denaturation at 95°C for 5 min; 30 cycles including denaturation at 98°C for 10s, annealing at 55°C for 5s and extension at 72°C for 30s; extension at 72°C for 10 min.
步骤5中,配制50μL酶切反应体系,首先向0.2mL的PCR管中加入20μL的ddH2O;加入10μL的5×PrimeSTAR Buffer溶液;加入4μL的dNTP溶液;加入上引物up-1、下引物down-2溶液各2μL;加入1μL的up模板、2.5μL的Ptuf模板(步骤4的扩增产物)、0.9μL的TTHA0571模板(步骤2的扩增产物)、1.7μL的down模板;加入0.5μL PrimeSTAR HS DNA Polymerase溶液;用ddH2O将反应体系补足50μL并用移液器反复吹吸混匀;PCR仪参数设置为:95℃预变性5min;30个循环包括98℃变性10s、55℃退火5s和72℃延伸2min;72℃延伸10min。In step 5, prepare a 50 μL digestion reaction system, first add 20 μL ddH 2 O to a 0.2 mL PCR tube; add 10 μL 5× PrimeSTAR Buffer solution; add 4 μL dNTP solution; add upper primer up-1 and lower primer 2 μL of each down-2 solution; add 1 μL of up template, 2.5 μL of Ptuf template (amplification product of step 4), 0.9 μL of TTHA0571 template (amplified product of step 2), and 1.7 μL of down template; add 0.5 μL PrimeSTAR HS DNA Polymerase solution; add 50 μL of ddH 2 O to the reaction system and mix by pipetting repeatedly; the parameters of the PCR instrument are set as: 95°C pre-denaturation for 5 min; 30 cycles include 98°C denaturation for 10s and 55°C annealing for 5s and 72°C for 2 min; 72°C for 10 min.
up模板序列:up template sequence:
ACCACGTCGATGTCTTTTACCTGCTCGATCACACAACCAGCCCTCAGATCACGGTGCTGCCGCACTCAATGGATTATTTCGATCAAACGCGCAGCGATGCTGTTATGGCTGCCATCATTGAGCAAAACCCTGCGTTCGCAGAAATTAAAGGCTCACCCATTACAACCGCAGATGTAGCCCTCCACAATCTCGGTGACACCAACGCCAACCGACGCTGGCAGTCTAACGTGCTGCTTGCCCGGCTACTCGGGGGTATTAGTGTGCGCGGAGAGGTACCTGAGCACCAGAGCCACAACCATCTCGCCAAGCAGTTTGCCGAGGCAACCTTGGTCACCAGGGACTTCGATGTGAATTATGATCCAACAAGCGCTCACCCTTTTACTGCTGGCTTCAACTCGATCAACTATGACACCACCTTGCTCAGCCTGTACTTCGCAATGTTGACCTCAAATATCGGAAGTAC。ACCACGTCGATGTCTTTTACCTGCTCGATCACACAACCAGCCCTCAGATCACGGTGCTGCCGCACTCAATGGATTATTTCGATCAAACGCGCAGCGATGCTGTTATGGCTGCCATCATTGAGCAAAACCCTGCGTTCGCAGAAATTAAAGGCTCACCCATTACAACCGCAGATGTAGCCCTCCACAATCTCGGTGACACCAACGCCAACCGACGCTGGCAGTCTAACGTGCTGCTTGCCCGGCTACTCGGGGGTATTAGTGTGCGCGGAGAGGTACCTGAGCACCAGAGCCACAACCATCTCGCCAAGCAGTTTGCCGAGGCAACCTTGGTCACCAGGGACTTCGATGTGAATTATGATCCAACAAGCGCTCACCCTTTTACTGCTGGCTTCAACTCGATCAACTATGACACCACCTTGCTCAGCCTGTACTTCGCAATGTTGACCTCAAATATCGGAAGTAC。
down模板序列:down template sequence:
GATCTGGTTGCACTCTGTGATGATATTCGCGGTGTACTTGATCGAGGTTTAGAGATCTCATCTCCGAATCATCATGAGATGGTGGATGCTATGCGCAAGCAGCTGCACTATATTCAGGCATTTTACCGTGCCTGGGGACCCATTCAACGCCGCTTCAATGACGCTGACCCAGCGGTGACCCATCCGCATCTCACAGTGATCTACCCACCGCTCACCCCTGCATCCGCAGAGAAATTCAACAAGATCACCTCAGTCGCTGCTGTGAGCAAGCGCCCAACCACCCTGCCGTATTTCCGTGCAGATGGTTCACCTACTCGTGGCTTTGCTAACTTCTC。GATCTGGTTGCACTCTGTGATGATATTCGCGGTGTACTTGATCGAGGTTTAGAGATCTCATCTCCGAATCATCATGAGATGGTGGATGCTATGCGCAAGCAGCTGCACTATATTCAGGCATTTTACCGTGCCTGGGGACCCATTCAACGCCGCTTCAATGACGCTGACCCAGCGGTGACCCATCCGCATCTCACAGTGATCTACCCACCGCTCACCCCTGCATCCGCAGAGAAATTCAACAAGATCACCTCAGTCGCTGCTGTGAGCAAGCGCCCAACCACCCTGCCGTATTTCCGTGCAGATGGTTCACCTACTCGTGGCTTTGCTAACTTCTC。
步骤6具体包括:配制20μL体外连接体系,首先向0.2mL PCR管中加入5μL的ddH2O;加入4μL的5×CE butter溶液;加入pk18mobrpsL质粒50~200ng;加入步骤5得到的连接好的目的DNA片段20~200ng;加入ExnaseTMII 2μL;用ddH2O将反应体系补足20μL;37℃水浴30min;加入E.coli DH5α感受态细胞,冰浴20min;置于42℃水浴锅,热激60s,冰浴2min;在无菌EP管中加入900μL预热的SOC复苏液,37℃、220r/min,培养1h;取100μL菌液,涂布于卡那霉素抗性平板,37℃培养12h;随机挑选平板中的单菌落,进行菌落PCR鉴定,筛选正确的目的菌株,命名为大肠杆菌DH5α-pk18mobrpsL-Ptuf-TTHA0571,将平板置于37℃培养过夜;将鉴定正确的菌株接种于带卡那霉素的LB液体培养基中,培养10h,离心菌体提取质粒;将2mm电转杯在冰上预冷约20min,待冷冻的谷氨酸棒杆菌ATCC13032感受态细胞融化和质粒加入其中,都加入电转杯,冰浴20min;电转后,用900μL预热的BHIS复苏液重悬电转杯中的菌体,转入EP管内,46℃热击6min,在32℃、220r/min条件下复苏2h,涂布含有卡那霉素抗性的BHI平板,32℃培养24h;用牙签随机挑选平板中的单菌落,先划于固体培养基平板中,再将该牙签上的菌落溶于配制好的菌落PCR反应体系中,将反应体系进行菌落PCR扩增,通过PCR鉴定结果筛选正确目的菌株,命名为谷氨酸棒杆菌ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571,将平板置于32℃培养过夜;将鉴定正确的菌株接种于带卡那霉素的BHI液体培养基中,培养10~12h;吸3~5μL菌液至900μL BHI复苏液中,吸取100μL上述复苏液至链霉素抗性平板涂布,32℃培养24h;用牙签随机挑选平板中的单菌落,先划于固体培养基平板中,再将该牙签上的菌落溶于配制好的菌落PCR反应体系中,将反应体系进行菌落PCR扩增,通过PCR鉴定结果筛选正确目的菌株,将鉴定正确的菌株保存,命名为谷氨酸棒杆菌ATCC13032-Ptuf-TTHA0571。Step 6 specifically includes: preparing a 20 μL in vitro ligation system, first adding 5 μL of ddH 2 O to a 0.2 mL PCR tube; adding 4 μL of 5×CE butter solution; adding 50-200 ng of pk18mobrpsL plasmid; adding the ligated purpose obtained in step 5 DNA fragment 20~200ng; add ExnaseTMII 2μL; make up the reaction system with ddH 2 O to 20μL; 37℃ water bath for 30min; add E.coli DH5α competent cells, ice bath for 20min; put in 42℃ water bath, heat shock 60s, ice Bath for 2 min; add 900 μL of pre-warmed SOC resuscitation solution to a sterile EP tube, incubate for 1 h at 37 °C, 220 r/min; take 100 μL of bacterial solution, spread it on kanamycin-resistant plates, and incubate at 37 °C for 12 h; randomly Select a single colony in the plate, carry out colony PCR identification, screen the correct target strain, name it Escherichia coli DH5α-pk18mobrpsL-Ptuf-TTHA0571, and place the plate at 37 °C for overnight cultivation; In the LB liquid medium of glutamic acid, cultured for 10h, centrifuged the cells to extract plasmids; pre-cooled the 2mm electroporation cup on ice for about 20min, thawed the competent cells of Corynebacterium glutamicum ATCC13032 to be frozen, added the plasmids, and added electroporation. After electroporation, resuspend the bacteria in the electroporation cup with 900 μL of preheated BHIS recovery solution, transfer it into an EP tube, heat shock at 46 °C for 6 min, recover at 32 °C and 220 r/min for 2 h, apply Cloth the BHI plate containing kanamycin resistance and incubate at 32°C for 24h; randomly select a single colony on the plate with a toothpick, first put it on the solid medium plate, and then dissolve the colony on the toothpick in the prepared colony PCR In the reaction system, the reaction system was subjected to colony PCR amplification, and the correct target strain was screened by the PCR identification results, named Corynebacterium glutamicum ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571, and the plate was placed at 32 °C for overnight cultivation; the identification was correct. The bacterial strains were inoculated into the BHI liquid medium with kanamycin, and cultivated for 10-12 h; suck 3-5 μL of the bacterial solution into 900 μL of BHI recovery solution, and suck 100 μL of the above-mentioned recovery solution to streptomycin-resistant plate coating, 32 Cultivated at ℃ for 24h; randomly select single colonies on the plate with toothpicks, first put them on the solid medium plate, then dissolve the colonies on the toothpick in the prepared colony PCR reaction system, and perform colony PCR amplification on the reaction system. The correct target strains were screened by PCR identification results, and the correctly identified strains were saved and named as Corynebacterium glutamicum ATCC13032-Ptuf-TTHA0571.
质粒提取方法:Plasmid extraction method:
根据质粒提取试剂盒(Plasmid Mini Kit I)提供的说明书进行操作,主要流程如下:According to the instructions provided by the plasmid extraction kit (Plasmid Mini Kit I), the main process is as follows:
(1)取1.5-5mL菌液在1.5mL EP管中离心收集菌体细胞,离心条件为12000r/min,3min;(1) Take 1.5-5 mL of bacterial liquid and centrifuge it in a 1.5 mL EP tube to collect bacterial cells, and the centrifugation conditions are 12000 r/min for 3 min;
(2)去掉上清液,加入250μL试剂盒提供的Solution I溶液(含RNase A),通过反复吹吸或漩涡震荡对菌体细胞进行重悬;(2) Remove the supernatant, add 250 μL of the Solution I solution (containing RNase A) provided by the kit, and resuspend the bacterial cells by repeated pipetting or vortexing;
(3)加入250μL Solution II溶液,温柔地颠倒混匀3-5次,室温静置2min;(3) Add 250 μL of Solution II solution, gently invert and mix 3-5 times, and let stand for 2 min at room temperature;
(4)加入250μL Solution III溶液,温柔地颠倒混匀至产生白色沉淀,冰浴2min,在12000r/min条件下离心15min;(4) Add 250 μL of Solution III solution, invert and mix gently until a white precipitate is formed, ice bath for 2 min, and centrifuge at 12000 r/min for 15 min;
(5)将600μL上清液转移到吸附柱中,在12000r/min条件下离心1min,弃掉滤液;(5) Transfer 600 μL of the supernatant to the adsorption column, centrifuge for 1 min at 12000 r/min, and discard the filtrate;
(6)加入500μL Buffer HB,在12000r/min条件下离心1min,弃掉滤液;(6) Add 500 μL of Buffer HB, centrifuge at 12000 r/min for 1 min, and discard the filtrate;
(7)加入700μL Buffer WB(经乙醇稀释过),在12000r/min条件下离心1min,弃掉滤液,重复本步骤一次;(7) Add 700 μL of Buffer WB (diluted with ethanol), centrifuge at 12000 r/min for 1 min, discard the filtrate, and repeat this step once;
(8)将吸附柱在12000r/min条件下离心2min,并将收集管更换为干净的1.5mL EP管;(8) Centrifuge the adsorption column at 12000r/min for 2min, and replace the collection tube with a clean 1.5mL EP tube;
(9)向吸附柱中加入50-100μL Buffer EB或ddw,在12000r/min条件下离心1min。(9) Add 50-100 μL of Buffer EB or ddw to the adsorption column, and centrifuge at 12000 r/min for 1 min.
谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571耐热性能验证:Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571 heat resistance verification:
谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571为谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571整合到谷氨酸棒杆菌ATCC 13032基因组上的菌株。Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571 is a strain of Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 integrated into the genome of Corynebacterium glutamicum
将谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571、谷氨酸棒杆菌ATCC 13032从甘油管划线至平板,32℃培养24h,从平板中挑取单菌落接种于3mL液体培养基,32℃培养16h,检测OD600,按OD600=10,接种200μL体积的接种量接种于装有20mL液体培养基的500mL发酵摇瓶中,置于200rpm摇床42℃培养24h,测定其OD600值。如图1所示,从图1果中可以看出,谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571和谷氨酸棒杆菌ATCC 13032经过高温(42℃)培养24h后,ATCC 13032-Ptuf-TTHA0571的菌体OD600比ATCC 13032提高了19.32%,ATCC 13032-Ptuf-TTHA0571菌体在高温下(42℃)的生长情况明显优于ATCC 13032。Streak Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571 and
谷氨酸棒杆菌ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571耐热性能验证:Corynebacterium glutamicum ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571 heat resistance verification:
谷氨酸棒杆菌ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571为谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571导入质粒pk18mobrpsL载体中然后在谷氨酸棒杆菌ATCC 13032内表达的菌株。Corynebacterium glutamicum ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571 is a strain of Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 introduced into the plasmid pk18mobrpsL vector and then expressed in
将谷氨酸棒杆菌ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571、谷氨酸棒杆菌ATCC13032从甘油管划线至平板,32℃培养24h,从平板中挑取单菌落接种于3mL液体培养基,32℃培养16h,检测OD600,按OD600=10,接种200μL体积的接种量接种于装有20mL液体培养基的500mL发酵摇瓶中,置于200rpm摇床42℃培养24h,测定其OD600值。如图2所示,由结果可以看出,谷氨酸棒杆菌ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571和谷氨酸棒杆菌ATCC 13032经过高温(42℃)培养24h后,ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571的菌体OD600比ATCC13032提高了18.72%,ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571菌体在高温下(42℃)的生长情况明显优于ATCC 13032。Streak Corynebacterium glutamicum ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571 and Corynebacterium glutamicum ATCC13032 from a glycerol tube to a plate, incubate at 32°C for 24h, pick a single colony from the plate and inoculate it in 3mL liquid medium at 32°C Incubate for 16h, detect OD600 , according to OD600 =10, inoculate 200μL volume of inoculum in 500mL fermentation shake flask with 20mL liquid medium, place in 200rpm shaker for 24h at 42°C, and measure its OD600 value. As shown in Fig. 2, it can be seen from the results that after C. glutamicum ATCC 13032-pk18mobrpsL-Ptuf-TTHA0571 and
谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571高温驯化High temperature acclimation of Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571
将谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571从甘油管划线至平板活化,32℃培养24h,经过多次高温(42℃)培养驯化后,将培养后的发酵液进行梯度稀释,吸取50μL梯度稀释后的发酵液涂布平板,32℃培养16h,从平板中挑选菌体形态和生长良好的单菌落进行保藏。将经过高温驯化后的菌株命名为谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571变种。将谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571变种、谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571、谷氨酸棒杆菌ATCC 13032在42℃相同条件下进行培养对照试验,培养24h后检测OD600值,OD600值的结果显示ATCC 13032-Ptuf-TTHA0571变种>ATCC 13032-Ptuf-TTHA0571>ATCC13032,表明经过高温驯化后,谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571变种的耐热性得到进一步加强。Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571 was streaked from a glycerol tube to activated on a plate, cultured at 32°C for 24 hours, and after multiple high temperature (42°C) cultivation and acclimation, the cultured fermentation broth was serially diluted, and 50 μL was drawn. The serially diluted fermentation broth was coated on a plate, cultured at 32°C for 16 hours, and a single colony with a cell morphology and good growth was selected from the plate for preservation. The strain after high temperature acclimation was named as Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571 variant. The Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571 variant, Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571, and
本发明所述的谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571及其在谷氨酸棒杆菌中的应用,可以显著提高谷氨酸棒杆菌在高温培养条件下的耐热性。一方面可以提高谷氨酸棒杆菌的培养问题,加快菌体的生长繁殖,降低发酵培养过程中冷却所需的能源消耗;另一方面在谷氨酸棒杆菌发酵培养过程中遭遇夏季高温或冷却系统故障的突发状况下,具有该耐热元器件的菌株可以大大提高菌株的稳定性,使异常高温条件下对菌体生长产生的影响降到最低,有利于谷氨酸棒杆菌发酵的稳定生产。该谷氨酸棒杆菌耐热元器件可以广泛应用于以谷氨酸棒杆菌为生物技术平台的氨基酸、有机酸、维生素及燃料乙醇等产品的生产,本发明技术适合进行工业化生产推广,具有显著的先进性和较好的应用前景。The Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and its application in Corynebacterium glutamicum according to the invention can significantly improve the heat resistance of Corynebacterium glutamicum under high temperature culture conditions. On the one hand, it can improve the cultivation problem of Corynebacterium glutamicum, accelerate the growth and reproduction of bacteria, and reduce the energy consumption required for cooling in the fermentation and cultivation process; In the event of a system failure, the strain with the heat-resistant components can greatly improve the stability of the strain, minimize the impact on the growth of the bacteria under abnormally high temperature conditions, and is conducive to the stability of the fermentation of Corynebacterium glutamicum. Production. The Corynebacterium glutamicum heat-resistant component can be widely used in the production of amino acids, organic acids, vitamins, fuel ethanol and other products using Corynebacterium glutamicum as a biotechnology platform. The technology of the invention is suitable for industrialized production and promotion, and has significant advantages. advanced nature and better application prospects.
SEQ NO.1:TTHA0571基因序列:SEQ NO.1: TTHA0571 gene sequence:
ATGCTGGAGC GCCACGACCG CCTGGAAACC CTGAGAAAGC TGAAGGAACT GCAGGAGCGCATCGCCGAGC TCGCCTACCT CCTCACCGGG GAGGAGCCCG CCGCCTGGAC CCCCAGGGTG GACCTTCTGGAAACCGAGGA GCACTACGTC CTCCTCGTGG ACCTTCCCGG GGTGCGCCCC GAGGACCTGG AGCTTCTGGAGGAGGGGCAG CGGGTGACCC TGGCCGGGGT GCGCCACCCC CTGCCCGGCA CCTACCTCTT GGAGGAGAGGCCCATGGGCA CCTTCCGCCG CACCCTGGAC CTCCCCGGGC CCATTGAGGA GGGGACGGCC CAGGCCACCCTGCGGAACGG GGTCTTGGAG GTCCGCTTCC GCAAGAGGCC GGCCACGGCC CTTCCCCTAA AGGAGGCGTAG。ATGCTGGAGC GCCACGACCG CCTGGAAACC CTGAGAAAGC TGAAGGAACT GCAGGAGCGCATCGCCGAGC TCGCCTACCT CCTCACCGGG GAGGAGCCCG CCGCCTGGAC CCCCAGGGTG GACCTTCTGGAAACCGAGGA GCACTACGTC CTCCTCGTGG ACCTTCCCGG GGTGCGCCCC GAGGACCTGG AGCTTCTGGAGGAGGGGCAG CGGGTGACCC TGGCCGGGGT GCGCCACCCC CTGCCCGGCA CCTACCTCTT GGAGGAGAGGCCCATGGGCA CCTTCCGCCG CACCCTGGAC CTCCCCGGGC CCATTGAGGA GGGGACGGCC CAGGCCACCCTGCGGAACGG GGTCTTGGAG GTCCGCTTCC GCAAGAGGCC GGCCACGGCC CTTCCCCTAA AGGAGGCGTAG。
SEQ NO.2:启动子Ptuf基因序列SEQ NO.2: promoter Ptuf gene sequence
GTTAACAGAT CGTTTAGATC CGAAGGAAAA CGTCGAAAAG CAATTTGCTT TTCGACGCCCCACCCCGCGC GTTTTAGCGT GTCAGTAGGC GCGTAGGGTA AGTGGGGTAG CGGCTTGTTA GATATCTTGAAATCGGCTTT CAACAGCATT GATTTCGATG TATTTAGCTG GCCGTTACCC TGCGAATGTC CACAGGGTAGCTGGTAGTTT GAAAATCAAC GCCGTTGCCC TTAGGATTCA GTAACTGGCA CATTTTGTAA TGCGCTAGATCTGTGTGCTC AGTCTTCCAG GCTGCTTATC ACAGTGAAAG CAAAACCAAT TCGTGGCTGC GAAAGTCGTAGCCACCACGA AGTCCAGGAG GAAAGCTT。GTTAACAGAT CGTTTAGATC CGAAGGAAAA CGTCGAAAAG CAATTTGCTT TTCGACGCCCCACCCCGCGC GTTTTAGCGT GTCAGTAGGC GCGTAGGGTA AGTGGGGTAG CGGCTTGTTA GATATCTTGAAATCGGCTTT CAACAGCATT GATTTCGATG TATTTAGCTG GCCGTTACCC TGCGAATGTC CACAGGGTAGCTGGTAGTTT GAAAATCAAC GCCGTTGCCC TTAGGATTCA GTAACTGGCA CATTTTGTAA TGCGCTAGATCTGTGTGCTC AGTCTTCCAG GCTGCTTATC ACAGTGAAAG CAAAACCAAT TCGTGGCTGC GAAAGTCGTAGCCACCACGA AGTCCAGGAG GAAAGCTT。
实施例2:一种谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571及其应用Example 2: A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and its application
使用的引物和材料同实施例1。The primers and materials used were the same as those in Example 1.
一种谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571,所述谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571由谷氨酸棒杆菌启动子和耐热功能基因组成,所述谷氨酸棒杆菌启动子为强启动子Ptuf,所述耐热功能基因为来源于嗜热栖热菌CICC10647中的TTHA0571基因;所述TTHA0571基因序列如SEQ NO.1所示,所述强启动子Ptuf基因序列如SEQ NO.2所示。A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571, the Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 is composed of a Corynebacterium glutamicum promoter and a heat-resistant functional gene, and the glutamic acid stick The Bacillus promoter is a strong promoter Ptuf, and the thermostable function gene is the TTHA0571 gene derived from Thermus thermophilus CICC10647; the TTHA0571 gene sequence is shown in SEQ NO.1, and the strong promoter Ptuf gene sequence As shown in SEQ NO.2.
所述谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571在提高谷氨酸棒杆菌耐热性中的应用。The application of the Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 in improving the heat resistance of Corynebacterium glutamicum.
将谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571导入质粒然后在谷氨酸棒杆菌内表达。The heat-resistant component Ptuf-TTHA0571 of C. glutamicum was introduced into the plasmid and then expressed in C. glutamicum.
将谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571整合到谷氨酸棒杆菌基因组上。The thermostable component Ptuf-TTHA0571 of Corynebacterium glutamicum was integrated into the genome of Corynebacterium glutamicum.
对带有谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571的谷氨酸棒杆菌进行高温驯化,提高谷氨酸棒杆菌的耐热性。The high temperature acclimation of Corynebacterium glutamicum with the heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum improves the heat resistance of Corynebacterium glutamicum.
将嗜热栖热菌CICC 10647活化接种于液体LB培养基中置于75℃摇床中培养24h,得到种子培养液;将种子培养液接种于液体培养基中,取处于对数生长期的菌液提取基因组。Thermus thermophilus CICC 10647 was activated and inoculated into liquid LB medium and cultured in a shaker at 75°C for 24 hours to obtain a seed culture solution; the seed culture solution was inoculated into the liquid culture medium, and the bacteria in the logarithmic growth phase were taken. Liquid extracted genome.
谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571的构建方法包括:The construction method of the heat-resistant component Ptuf-TTHA0571 of Corynebacterium glutamicum includes:
耐热功能基因TTHA0571的PCR扩增:配制50μL酶切反应体系,首先向0.2mL PCR管中加入20μL ddH2O;加入10μL 5×PrimeSTAR Buffer溶液;加入4μL dNTP溶液;加入上引物TTHA0571-1、下引物TTHA0571-2溶液各2μL;加入总DNA不超过200ng的模板;加入0.5μLPrimeSTAR HS DNA Polymerase溶液;用ddH2O将反应体系补足50μL并用移液器反复吹吸混匀;PCR仪参数设置为:95℃预变性5min;30个循环包括98℃变性10s、55℃退火5s和72℃延伸30s;72℃延伸10min。PCR amplification of heat-resistant functional gene TTHA0571: To prepare a 50 μL digestion reaction system, first add 20 μL ddH 2 O to a 0.2 mL PCR tube; add 10 μL 5×PrimeSTAR Buffer solution; add 4 μL dNTP solution; add primers TTHA0571-1, Add 2 μL of primer TTHA0571-2 solution each; add template with total DNA not exceeding 200 ng; add 0.5 μL PrimeSTAR HS DNA Polymerase solution; add 50 μL of ddH 2 O to the reaction system and mix by pipette repeatedly; the parameters of the PCR instrument are set to : Pre-denaturation at 95°C for 5 min; 30 cycles including denaturation at 98°C for 10s, annealing at 55°C for 5s and extension at 72°C for 30s; extension at 72°C for 10 min.
将谷氨酸棒杆菌ATCC 13032活化接种于液体LB培养基中置于32℃摇床中培养24h,得到种子培养液;将种子培养液接种于液体培养基中,取处于对数生长期的菌液提取基因组。
启动子Ptuf的PCR扩增:配制50μL酶切反应体系,首先向0.2mL PCR管中加入20μLddH2O;加入10μL 5×PrimeSTAR Buffer溶液;加入4μL dNTP溶液;加入上引物Ptuf-1、下引物Ptuf-2溶液各2μL;加入总DNA不超过200ng的模板;加入0.5μL PrimeSTAR HS DNAPolymerase溶液;用ddH2O将反应体系补足50μL并用移液器反复吹吸混匀;PCR仪参数设置为:95℃预变性5min;30个循环包括98℃变性10s、55℃退火5s和72℃延伸30s;72℃延伸10min。PCR amplification of promoter Ptuf: To prepare a 50 μL digestion reaction system, first add 20 μL ddH 2 O to a 0.2 mL PCR tube; add 10 μL 5× PrimeSTAR Buffer solution; add 4 μL dNTP solution; add upper primer Ptuf-1 and lower primer Ptuf -2 solution of 2 μL each; add template with total DNA not exceeding 200 ng; add 0.5 μL PrimeSTAR HS DNAPolymerase solution; add 50 μL of ddH 2 O to the reaction system and mix by pipette repeatedly; the parameters of the PCR instrument are set to: 95°C Pre-denaturation for 5 min; 30 cycles including denaturation at 98 °C for 10 s, annealing at 55 °C for 5 s and extension at 72 °C for 30 s; extension at 72 °C for 10 min.
启动子Ptuf与耐热功能基因TTHA0571的DNA片段连接:配制50μL酶切反应体系,首先向0.2mL PCR管中加入20μL ddH2O;加入10μL 5×PrimeSTAR Buffer溶液;加入4μL dNTP溶液;加入上引物up-1、下引物down-2溶液各2μL;加入1μL的up模板、2.5μL的Ptuf模板、0.9μL的TTHA0571模板、1.7μL的down模板;加入0.5μL PrimeSTAR HS DNA Polymerase溶液;用ddH2O将反应体系补足50μL并用移液器反复吹吸混匀;PCR仪参数设置为:95℃预变性5min;30个循环包括98℃变性10s、55℃退火5s和72℃延伸2min;72℃延伸10min。Ligation of the promoter Ptuf and the DNA fragment of the thermostable gene TTHA0571: To prepare a 50 μL digestion reaction system, first add 20 μL ddH 2 O to a 0.2 mL PCR tube; add 10 μL 5×PrimeSTAR Buffer solution; add 4 μL dNTP solution; add primers 2 μL each of up-1 and down-2 primers; add 1 μL up template, 2.5 μL Ptuf template, 0.9 μL TTHA0571 template, 1.7 μL down template; add 0.5 μL PrimeSTAR HS DNA Polymerase solution; add ddH 2 O The reaction system was supplemented with 50 μL and mixed with a pipette repeatedly; the parameters of the PCR instrument were set as: 95°C pre-denaturation for 5 min; 30 cycles including 98°C denaturation for 10s, 55°C annealing for 5s and 72°C extension for 2min; 72°C extension for 10min .
谷氨酸棒杆菌结合转化:配制20μL体外连接体系,首先向0.2mL PCR管中加入5μLddH2O;加入4μL的5×CE butter溶液;加入pk18mobrpsL质粒50~200ng;加入上述连接好的目的DNA片段20~200ng;加入ExnaseTMII 2μL;用ddH2O将反应体系补足20μL;37℃水浴30min;加入E.coli DH5α感受态细胞,冰浴20min;置于42℃水浴锅,热激60s,冰浴2min;在无菌EP管中加入900μL预热的SOC复苏液,37℃、220r/min,培养1h;取100μL菌液,涂布于卡那霉素抗性平板,37℃培养12h;用牙签随机挑选平板中的单菌落,先划于固体培养基平板中,再将该牙签上的菌落溶于配制好的菌落PCR反应体系中,将反应体系进行菌落PCR扩增,通过PCR鉴定结果筛选正确目的菌株,命名为大肠杆菌DH5α-pk18mobrpsL-Ptuf-TTHA0571,将平板置于37℃培养过夜;将鉴定正确的菌株接种于带卡那霉素的LB液体培养基中,培养10h,离心菌体提取质粒;将2mm电转杯在冰上预冷约20min,待冷冻的谷氨酸棒杆菌ATCC13032感受态细胞融化和质粒加入其中,都加入电转杯,冰浴20min。电转后,用900μL预热的BHIS复苏液重悬电转杯中的菌体,转入EP管内,46℃热击6min,在32℃、220r/min条件下复苏2h,涂布含有卡那霉素抗性的BHI平板,32℃培养24h;用牙签随机挑选平板中的单菌落,先划于固体培养基平板中,再将该牙签上的菌落溶于配制好的菌落PCR反应体系中,将反应体系进行菌落PCR扩增,通过PCR鉴定结果筛选正确目的菌株,命名为谷氨酸棒杆菌ATCC13032-pk18mobrpsL-Ptuf-TTHA0571,将平板置于32℃培养过夜;将鉴定正确的菌株接种于带卡那霉素的BHI液体培养基中,培养10~12h;吸3~5μL菌液至900μL BHI复苏液中,吸取100μL上述复苏液至链霉素抗性平板涂布,32℃培养24h;用牙签随机挑选平板中的单菌落,先划于固体培养基平板中,再将该牙签上的菌落溶于配制好的菌落PCR反应体系中,将反应体系进行菌落PCR扩增,通过PCR鉴定结果筛选正确目的菌株,将鉴定正确的菌株保存,命名为谷氨酸棒杆菌ATCC 13032-Ptuf-TTHA0571。Combined transformation of Corynebacterium glutamicum: To prepare 20 μL of in vitro ligation system, first add 5 μL of ddH 2 O to a 0.2 mL PCR tube; add 4 μL of 5×CE butter solution; add 50-200 ng of pk18mobrpsL plasmid; add the above ligated target DNA fragment 20~200ng; add Exnase TM II 2μL; make up the reaction system with ddH 2 O to 20μL; 37°C water bath for 30min; add E.coli DH5α competent cells, ice bath for 20min; place in 42°C water bath, heat shock for 60s, ice Bath for 2 min; add 900 μL of pre-warmed SOC resuscitation solution to a sterile EP tube, incubate for 1 h at 37 °C, 220 r/min; take 100 μL of bacterial solution, spread it on kanamycin-resistant plates, and incubate at 37 °C for 12 h; The toothpick randomly selects a single colony in the plate, firstly draws it on the solid medium plate, and then dissolves the colony on the toothpick in the prepared colony PCR reaction system. The correct target strain was named Escherichia coli DH5α-pk18mobrpsL-Ptuf-TTHA0571, and the plate was cultured at 37°C overnight; the correctly identified strain was inoculated into LB liquid medium with kanamycin, cultured for 10 hours, and centrifuged. Extract the plasmid; pre-cool the 2mm electric rotor cup on ice for about 20 minutes, thaw the competent cells of Corynebacterium glutamicum ATCC13032 to be frozen and add the plasmid to the rotor cup, and ice bath for 20 minutes. After electroporation, the cells in the electroporation cup were resuspended with 900 μL of preheated BHIS recovery solution, transferred to EP tubes, heat-shocked at 46°C for 6 min, recovered at 32°C and 220 r/min for 2 h, and coated with kanamycin. Resistant BHI plates were incubated at 32°C for 24 hours; single colonies on the plate were randomly selected with toothpicks, firstly placed on solid medium plates, and then the colonies on the toothpicks were dissolved in the prepared colony PCR reaction system, and the reaction Colony PCR amplification was carried out in the system, and the correct target strain was screened according to the PCR identification results, which was named as Corynebacterium glutamicum ATCC13032-pk18mobrpsL-Ptuf-TTHA0571, and the plate was placed at 32 °C for overnight cultivation; the correctly identified strain was inoculated with kana In the BHI liquid medium of BHI, culture for 10-12 h; suck 3-5 μL of bacterial solution into 900 μL of BHI resuscitation solution, draw 100 μL of the above-mentioned resuscitation solution to streptomycin-resistant plate coating, and incubate at 32 °C for 24 h; randomize with toothpicks Pick a single colony on the plate, first put it on the solid medium plate, then dissolve the colony on the toothpick in the prepared colony PCR reaction system, carry out the colony PCR amplification of the reaction system, and screen the correct purpose according to the PCR identification result. The strains identified correctly were saved and named as Corynebacterium glutamicum ATCC 13032-Ptuf-TTHA0571.
以上所述者仅为用以解释本发明之较佳实施例,并非企图具以对本发明做任何形式上之限制,是以,凡有在相同之发明精神下所作有关本发明之任何修饰或变更,皆仍应包括在本发明意图保护之范畴。The above descriptions are only used to explain the preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Therefore, any modification or change of the present invention should be made within the same spirit of the invention. , all should still be included in the scope of the intended protection of the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 江苏澳创生物科技有限公司<110> Jiangsu Aochuang Biotechnology Co., Ltd.
<120> 一种谷氨酸棒杆菌耐热元器件Ptuf-TTHA0571及其应用<120> A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and its application
<160> 10<160> 10
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 411<211> 411
<212> DNA<212> DNA
<213> TTHA0571基因序列<213> TTHA0571 gene sequence
<400> 1<400> 1
atgctggagc gccacgaccg cctggaaacc ctgagaaagc tgaaggaact gcaggagcgc 60atgctggagc gccacgaccg cctggaaacc ctgagaaagc tgaaggaact gcaggagcgc 60
atcgccgagc tcgcctacct cctcaccggg gaggagcccg ccgcctggac ccccagggtg 120atcgccgagc tcgcctacct cctcaccggg gaggagcccg ccgcctggac ccccagggtg 120
gaccttctgg aaaccgagga gcactacgtc ctcctcgtgg accttcccgg ggtgcgcccc 180gaccttctgg aaaccgagga gcactacgtc ctcctcgtgg accttcccgg ggtgcgcccc 180
gaggacctgg agcttctgga ggaggggcag cgggtgaccc tggccggggt gcgccacccc 240gaggacctgg agcttctgga ggaggggcag cgggtgaccc tggccggggt gcgccacccc 240
ctgcccggca cctacctctt ggaggagagg cccatgggca ccttccgccg caccctggac 300ctgcccggca cctacctctt ggaggagagg cccatgggca ccttccgccg caccctggac 300
ctccccgggc ccattgagga ggggacggcc caggccaccc tgcggaacgg ggtcttggag 360ctccccgggc ccattgagga ggggacggcc caggccaccc tgcggaacgg ggtcttggag 360
gtccgcttcc gcaagaggcc ggccacggcc cttcccctaa aggaggcgta g 411gtccgcttcc gcaagaggcc ggccacggcc cttcccctaa aggaggcgta g 411
<210> 2<210> 2
<211> 368<211> 368
<212> DNA<212> DNA
<213> 启动子Ptuf基因序列<213> Promoter Ptuf gene sequence
<400> 2<400> 2
gttaacagat cgtttagatc cgaaggaaaa cgtcgaaaag caatttgctt ttcgacgccc 60gttaacagat cgtttagatc cgaaggaaaa cgtcgaaaag caatttgctt ttcgacgccc 60
caccccgcgc gttttagcgt gtcagtaggc gcgtagggta agtggggtag cggcttgtta 120caccccgcgc gttttagcgt gtcagtaggc gcgtagggta agtggggtag cggcttgtta 120
gatatcttga aatcggcttt caacagcatt gatttcgatg tatttagctg gccgttaccc 180gatatcttga aatcggcttt caacagcatt gatttcgatg tatttagctg gccgttaccc 180
tgcgaatgtc cacagggtag ctggtagttt gaaaatcaac gccgttgccc ttaggattca 240tgcgaatgtc cacagggtag ctggtagttt gaaaatcaac gccgttgccc ttaggattca 240
gtaactggca cattttgtaa tgcgctagat ctgtgtgctc agtcttccag gctgcttatc 300gtaactggca cattttgtaa tgcgctagat ctgtgtgctc agtcttccag gctgcttatc 300
acagtgaaag caaaaccaat tcgtggctgc gaaagtcgta gccaccacga agtccaggag 360acagtgaaag caaaaccaat tcgtggctgc gaaagtcgta gccaccacga agtccaggag 360
gaaagctt 368gaaagctt 368
<210> 3<210> 3
<211> 39<211> 39
<212> DNA<212> DNA
<213> 上引物TTHA0571-1<213> Primer TTHA0571-1
<400> 3<400> 3
cgaagtccag gaggaaagct tatgctggag cgccacgac 39cgaagtccag gaggaaagct tatgctggag cgccacgac 39
<210> 4<210> 4
<211> 46<211> 46
<212> DNA<212> DNA
<213> 下引物TTHA0571-2<213> Lower primer TTHA0571-2
<400> 4<400> 4
tatcatcaca gagtgcaacc agatcctacg cctcctttag gggaag 46tatcatcaca gagtgcaacc agatcctacg cctcctttag gggaag 46
<210> 5<210> 5
<211> 49<211> 49
<212> DNA<212> DNA
<213> 上引物Ptuf-1<213> Primer Ptuf-1
<400> 5<400> 5
tgttgacctc aaatatcgga agtacaagcg cgtgccctct ttgctgcag 49tgttgacctc aaatatcgga agtacaagcg cgtgccctct ttgctgcag 49
<210> 6<210> 6
<211> 39<211> 39
<212> DNA<212> DNA
<213> 下引物Ptuf-2<213> Lower primer Ptuf-2
<400> 6<400> 6
gtcgtggcgc tccagcataa gctttcctcc tggacttcg 39gtcgtggcgc tccagcataa gctttcctcc tggacttcg 39
<210> 7<210> 7
<211> 23<211> 23
<212> DNA<212> DNA
<213> 上引物up-1<213> primer up-1
<400> 7<400> 7
accacgtcga tgtcttttac ctg 23accacgtcga tgtcttttac ctg 23
<210> 8<210> 8
<211> 25<211> 25
<212> DNA<212> DNA
<213> 下引物down-2<213> down primer down-2
<400> 8<400> 8
gagaagttag caaagccacg agtag 25gagaagttag caaagccacg agtag 25
<210> 9<210> 9
<211> 463<211> 463
<212> DNA<212> DNA
<213> up模板序列<213> up template sequence
<400> 9<400> 9
accacgtcga tgtcttttac ctgctcgatc acacaaccag ccctcagatc acggtgctgc 60accacgtcga tgtcttttac ctgctcgatc acacaaccag ccctcagatc acggtgctgc 60
cgcactcaat ggattatttc gatcaaacgc gcagcgatgc tgttatggct gccatcattg 120cgcactcaat ggattatttc gatcaaacgc gcagcgatgc tgttatggct gccatcattg 120
agcaaaaccc tgcgttcgca gaaattaaag gctcacccat tacaaccgca gatgtagccc 180agcaaaaccc tgcgttcgca gaaattaaag gctcacccat tacaaccgca gatgtagccc 180
tccacaatct cggtgacacc aacgccaacc gacgctggca gtctaacgtg ctgcttgccc 240tccacaatct cggtgacacc aacgccaacc gacgctggca gtctaacgtg ctgcttgccc 240
ggctactcgg gggtattagt gtgcgcggag aggtacctga gcaccagagc cacaaccatc 300ggctactcgg gggtattagt gtgcgcggag aggtacctga gcaccagagc cacaaccatc 300
tcgccaagca gtttgccgag gcaaccttgg tcaccaggga cttcgatgtg aattatgatc 360tcgccaagca gtttgccgag gcaaccttgg tcaccaggga cttcgatgtg aattatgatc 360
caacaagcgc tcaccctttt actgctggct tcaactcgat caactatgac accaccttgc 420caacaagcgc tcaccctttt actgctggct tcaactcgat caactatgac accaccttgc 420
tcagcctgta cttcgcaatg ttgacctcaa atatcggaag tac 463tcagcctgta cttcgcaatg ttgacctcaa atatcggaag tac 463
<210> 10<210> 10
<211> 335<211> 335
<212> DNA<212> DNA
<213> down模板序列<213> down template sequence
<400> 10<400> 10
gatctggttg cactctgtga tgatattcgc ggtgtacttg atcgaggttt agagatctca 60gatctggttg cactctgtga tgatattcgc ggtgtacttg atcgaggttt agagatctca 60
tctccgaatc atcatgagat ggtggatgct atgcgcaagc agctgcacta tattcaggca 120tctccgaatc atcatgagat ggtggatgct atgcgcaagc agctgcacta tattcaggca 120
ttttaccgtg cctggggacc cattcaacgc cgcttcaatg acgctgaccc agcggtgacc 180ttttaccgtg cctggggacc cattcaacgc cgcttcaatg acgctgaccc agcggtgacc 180
catccgcatc tcacagtgat ctacccaccg ctcacccctg catccgcaga gaaattcaac 240catccgcatc tcacagtgat ctacccaccg ctcacccctg catccgcaga gaaattcaac 240
aagatcacct cagtcgctgc tgtgagcaag cgcccaacca ccctgccgta tttccgtgca 300aagatcacct cagtcgctgc tgtgagcaag cgcccaacca ccctgccgta tttccgtgca 300
gatggttcac ctactcgtgg ctttgctaac ttctc 335gatggttcac ctactcgtgg ctttgctaac ttctc 335
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111663686.9A CN114317538B (en) | 2021-12-30 | 2021-12-30 | Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111663686.9A CN114317538B (en) | 2021-12-30 | 2021-12-30 | Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114317538A true CN114317538A (en) | 2022-04-12 |
CN114317538B CN114317538B (en) | 2024-02-13 |
Family
ID=81021245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111663686.9A Active CN114317538B (en) | 2021-12-30 | 2021-12-30 | Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114317538B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002325574A (en) * | 2001-02-23 | 2002-11-12 | Inst Of Physical & Chemical Res | Extremely thermophilic proteins and genes encoding the same |
CA2996728A1 (en) * | 2015-08-28 | 2017-03-09 | Universitaet Des Saarlandes | Means and methods for production of organic compounds |
CN106868033A (en) * | 2017-04-03 | 2017-06-20 | 天津大学 | The Corynebacterium glutamicum strain of high yield chiral D () 3-hydroxy-2-butanone and structure and application |
CN108359669A (en) * | 2018-02-13 | 2018-08-03 | 江南大学 | A kind of bar bacterium promoter and its application |
CN113462623A (en) * | 2021-05-25 | 2021-10-01 | 天津科技大学 | Method for preparing D-alanine by microbial fermentation method |
CN113604412A (en) * | 2021-07-16 | 2021-11-05 | 天津科技大学 | High-yield strain with sub-appropriate amount of L-glutamic acid, construction method thereof and NH4+Staged control of fermentation process |
CN116355941A (en) * | 2023-05-30 | 2023-06-30 | 吉林大学 | Corynebacterium glutamicum heat-resistant component Ptuf-TTH_RS07495, construction method and application thereof |
-
2021
- 2021-12-30 CN CN202111663686.9A patent/CN114317538B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002325574A (en) * | 2001-02-23 | 2002-11-12 | Inst Of Physical & Chemical Res | Extremely thermophilic proteins and genes encoding the same |
CA2996728A1 (en) * | 2015-08-28 | 2017-03-09 | Universitaet Des Saarlandes | Means and methods for production of organic compounds |
CN106868033A (en) * | 2017-04-03 | 2017-06-20 | 天津大学 | The Corynebacterium glutamicum strain of high yield chiral D () 3-hydroxy-2-butanone and structure and application |
CN108359669A (en) * | 2018-02-13 | 2018-08-03 | 江南大学 | A kind of bar bacterium promoter and its application |
CN113462623A (en) * | 2021-05-25 | 2021-10-01 | 天津科技大学 | Method for preparing D-alanine by microbial fermentation method |
CN113604412A (en) * | 2021-07-16 | 2021-11-05 | 天津科技大学 | High-yield strain with sub-appropriate amount of L-glutamic acid, construction method thereof and NH4+Staged control of fermentation process |
CN116355941A (en) * | 2023-05-30 | 2023-06-30 | 吉林大学 | Corynebacterium glutamicum heat-resistant component Ptuf-TTH_RS07495, construction method and application thereof |
Non-Patent Citations (7)
Title |
---|
HUAN SUN等: "Rational synthetic combination genetic devices boosting high temperature ethanol fermentation", 《SYNTHETIC AND SYSTEMS BIOTECHNOLOGY》, vol. 2, no. 2, pages 124 * |
MASUI R等: "Thermus thermophilus HB8 genomic DNA, complete genome", 《NCBI GENBANK DATABASE》, pages 008226 * |
MEE-JUNG HAN等: "Microbial small heat shock proteins and their use in biotechnology", 《BIOTECHNOLOGY ADVANVES》, vol. 26, no. 6, pages 591 - 609 * |
PONGPAN LAKSANALAMAI等: "Stabilization of Taq DNA Polymerase at High Temperature by Protein Folding Pathways From a Hyperthermophilic Archaeon, Pyrococcus furiosus", 《BIOTECHNOLOGY & BIOENGINEERING》, vol. 93, no. 1, pages 1 - 5 * |
TIAN HT等: "Cloning and heterologous expression of the plasmid-encoded shsp gene of Streptococcus thermophilus isolated from Chinese dairy", 《AFRICAN JOURNAL OF BIOTECHNOLOGY》, vol. 10, no. 7, 14 February 2011 (2011-02-14), pages 1233 - 1245 * |
王婷;蔡柠匀;张德志;赵桂红;徐庆阳;陈宁;: "高产L-精氨酸谷氨酸棒状杆菌的构建", 中国酿造, no. 05 * |
王崇慧;韩武洋;陆浩;赵一;刘金雷;王丽丽;李天明;: "Corynebacterium glutamicum组成型启动子及核糖体结合位点的研究", 基因组学与应用生物学, no. 05 * |
Also Published As
Publication number | Publication date |
---|---|
CN114317538B (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102212501B (en) | Recombinant escherichia coli and method for applying same to produce poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) by utilizing single carbon source | |
CN102260659A (en) | 1,4-beta-D-xylanase mutant | |
CN105821071A (en) | Unmarked gene knock-out method of pediococcus acidilactici DQ2 based on homologous recombination | |
CN113881586B (en) | High-temperature-resistant, high-sugar-resistant and high-salt-resistant saccharomyces cerevisiae strain as well as construction method and application thereof | |
WO2017186026A1 (en) | Method for constructing engineered corynebacterium glutamicum bacteria having high production of l-lysine | |
CN117645967A (en) | Bacillus subtilis chassis cell suitable for high-density fermentation enzyme production | |
CN102382790B (en) | A kind of recombined bacillus subtilis of high yield catalase and its construction method and application | |
CN106047829B (en) | A kind of catalase and its high-yielding genetically engineered bacteria | |
CN103881951B (en) | SCO6974 gene-deleted Streptomyces coelicolor and its application in improving the production of antibiotics | |
CN114317538A (en) | A Corynebacterium glutamicum heat-resistant component Ptuf-TTHA0571 and its application | |
CN116355941A (en) | Corynebacterium glutamicum heat-resistant component Ptuf-TTH_RS07495, construction method and application thereof | |
CN110551648A (en) | Corynebacterium glutamicum for producing succinic acid by fermenting xylose and application thereof | |
CN101993850B (en) | Genetic engineering bacteria for producing D-lactic acid and constructon method and application thereof | |
CN102649967A (en) | Method for transforming wild-type bacillus subtilis | |
CN116555156B (en) | Method for improving L-valine yield and recombinant bacterium used by same | |
CN103194414B (en) | Streptococcus oomangi DP03 from the sea and method for producing dextranase | |
CN118345107A (en) | Food-grade bacillus subtilis 168 expression system and application of heterologous expression epsilon-polylysine | |
CN116536236A (en) | Recombinant bacterium and application thereof in production of L-valine | |
CN114806990A (en) | Heat-resistant nattokinase recombinant gene engineering bacterium and construction method and application thereof | |
CN115927432A (en) | Construction method and application of corynebacterium glutamicum engineering bacteria producing L-amino acid | |
CN110846331B (en) | Construction method and application of wine coccus engineering bacteria | |
CN107746855A (en) | A kind of construction method for the plasmid expression vector for improving hydrogenlike silicon ion carotenoid output | |
CN101096668A (en) | A kind of construction method of nisin gene engineering bacterium MELgad | |
CN118599753B (en) | Gene recombinant pediococcus acidilactici and application thereof in kitchen waste recycling treatment | |
CN116333944B (en) | Application of a kind of Arthrobacter C2 and its recombinant Arthrobacter in degrading lignin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |