[go: up one dir, main page]

CN114307899A - Rotational flow pulse cavitation device - Google Patents

Rotational flow pulse cavitation device Download PDF

Info

Publication number
CN114307899A
CN114307899A CN202111644057.1A CN202111644057A CN114307899A CN 114307899 A CN114307899 A CN 114307899A CN 202111644057 A CN202111644057 A CN 202111644057A CN 114307899 A CN114307899 A CN 114307899A
Authority
CN
China
Prior art keywords
cavity
cavitation
guide section
spiral guide
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111644057.1A
Other languages
Chinese (zh)
Other versions
CN114307899B (en
Inventor
苟如意
康晨晨
罗训
叶鑫
钟思鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202111644057.1A priority Critical patent/CN114307899B/en
Publication of CN114307899A publication Critical patent/CN114307899A/en
Application granted granted Critical
Publication of CN114307899B publication Critical patent/CN114307899B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明涉及一种旋流脉冲空化装置,包括螺旋导流段、空心螺旋导流段、进气腔、自振空化腔、扩散管。所述螺旋导流段和空心螺旋导流段的旋流叶片角度为30°~50°,螺旋导流段位于空心螺旋导流段下方;所述空心螺旋导流段轴心开有空心通道,空心螺旋导流段上方与进气腔相连;所述进气腔壁面开有进气孔;进气腔上方与自振空化腔相连;所述自振空化腔的腔壁开有切向吸入口,切向吸入口处设有导流板;所述导流板切向夹角为10°~20°;所述扩散管下端与自振空化腔上端相连接。本发明结构简单,高效率,能将常规流体形成强螺旋流,强螺旋流体在离心力的作用下产生气液分离,分相流动有益于提高流动速度,更有效促进自振空化腔内空化泡的生成,并将形成的空化泡加速喷出,从而进一步提高了空化效率。

Figure 202111644057

The invention relates to a swirl pulse cavitation device, which comprises a spiral guide section, a hollow spiral guide section, an air intake cavity, a self-vibration cavitation cavity and a diffusion tube. The angle of the swirl blades of the spiral guide section and the hollow spiral guide section is 30° to 50°, and the spiral guide section is located below the hollow spiral guide section; the hollow spiral guide section has a hollow channel in the axis, The upper part of the hollow spiral guide section is connected with the air inlet cavity; the wall surface of the air inlet cavity is provided with air inlet holes; the upper part of the air inlet cavity is connected with the self-vibration cavitation cavity; the cavity wall of the self-vibration cavitation cavity has a tangential direction The suction port is provided with a guide plate at the tangential suction port; the tangential included angle of the guide plate is 10°-20°; the lower end of the diffuser pipe is connected with the upper end of the self-vibration cavitation cavity. The invention has simple structure and high efficiency, and can form a strong helical flow from conventional fluids. The strong helical fluid can separate gas and liquid under the action of centrifugal force, and the phase-separated flow is beneficial to improve the flow speed and more effectively promote the cavitation in the self-vibrating cavitation cavity. The formation of bubbles, and the formed cavitation bubbles are accelerated to eject, thereby further improving the cavitation efficiency.

Figure 202111644057

Description

一种旋流脉冲空化装置A swirl pulse cavitation device

技术领域technical field

本发明属于水力空化技术领域,具体涉及一种旋流脉冲空化装置,适用于油田钻井开采。The invention belongs to the technical field of hydraulic cavitation, and in particular relates to a swirling flow pulse cavitation device, which is suitable for oilfield drilling and exploitation.

背景技术Background technique

水力空化效应是指液体受到气体分子运动的影响,在气体冲击进入到液体后,液体中就会有一批被称为“气核”的悬浮气相微泡。当液体中的压力降至空气分离压之下时,这些溶解于液体中的气核便迅速地从中分离而生成大量的气泡。当这些气体随液流进入高压区时,伴随着气泡溃灭,流体质点向空腔中心高速运动而产生强烈冲击,结果使瞬时局部压力急剧上升,这种现象被称为空化效应。自该现象被发现后,工业领域基本都被空化效应负面效果所困扰,因此人们一直在寻找如何将此效应正面的为人们所用,利用空化效应所带来的能量,运动到工业领域。现如今空化效应已经被广泛应用于各个行业领域,如石油化工、页岩开采、工业清洗等领域,且有多种空化发生装置。The hydrodynamic cavitation effect means that the liquid is affected by the movement of gas molecules. After the gas impacts into the liquid, there will be a group of suspended gas-phase microbubbles called "gas nuclei" in the liquid. When the pressure in the liquid drops below the air separation pressure, the gas nuclei dissolved in the liquid are rapidly separated from it to generate a large number of air bubbles. When these gases enter the high pressure area with the liquid flow, along with the collapse of the bubbles, the fluid particles move at high speed to the center of the cavity and produce a strong impact, resulting in a sharp rise in the instantaneous local pressure, which is called the cavitation effect. Since the discovery of this phenomenon, the industrial field is basically plagued by the negative effects of cavitation effect, so people have been looking for how to use this effect positively, and use the energy brought by the cavitation effect to move to the industrial field. Nowadays, cavitation effect has been widely used in various industries, such as petrochemical, shale mining, industrial cleaning and other fields, and there are various cavitation generating devices.

随着对空化技术的研究的深入,运用的领域越来广泛,空化装置的结构样式繁多,然而如何利用简单的结构提高空化效应,以及增加空化能量及空化气泡的产生一直是人们研究的重点。With the deepening of research on cavitation technology, the fields of application are becoming more and more extensive, and the structure of cavitation devices is various. However, how to use a simple structure to improve the cavitation effect, as well as increase the cavitation energy and the generation of cavitation bubbles has always been a problem. focus of research.

发明内容SUMMARY OF THE INVENTION

本发明针对现有技术的上述不足,提供一种结构简单、高效率、提高空化气泡产生和空化效率的旋流脉冲空化装置。Aiming at the above shortcomings of the prior art, the present invention provides a swirl pulse cavitation device with simple structure, high efficiency, and improved cavitation bubble generation and cavitation efficiency.

本发明的技术方案如下:The technical scheme of the present invention is as follows:

一种旋流脉冲空化装置,包括螺旋导流段,空心螺旋导流段,进气腔,自振空化腔,扩散管。所述螺旋导流段和空心螺旋导流段的旋流叶片角度为30°~50°,螺旋导流段位于空心螺旋导流段下方;所述空心螺旋导流段轴心开有空心通道,空心螺旋导流段上方与进气腔相连;所述进气腔壁面开有进气孔,进气腔上方与自振空化腔相连;所述自振空化腔的腔壁面开有切向吸入口,吸入口处设有导流板;所述导流板切向夹角为10°~20°;所述扩散管下端与振空化腔上端相连接。A swirl pulse cavitation device comprises a spiral guide section, a hollow spiral guide section, an air intake cavity, a self-vibration cavitation cavity, and a diffusion tube. The angle of the swirl blades of the spiral guide section and the hollow spiral guide section is 30° to 50°, and the spiral guide section is located below the hollow spiral guide section; the hollow spiral guide section has a hollow channel in the axis, The upper part of the hollow spiral guide section is connected with the air intake cavity; the wall surface of the air intake cavity is provided with air intake holes, and the upper part of the air intake cavity is connected with the self-vibration cavitation cavity; the cavity wall surface of the self-vibration cavitation cavity has a tangential direction The suction port is provided with a baffle plate; the tangential angle of the baffle plate is 10°-20°; the lower end of the diffusion pipe is connected with the upper end of the cavitation cavity.

所述的旋流脉冲空化发生装置的作用机理如下:The action mechanism of the swirl pulse cavitation generating device is as follows:

S1:流体在一定的压力下进入到螺旋导流段后,在40°旋流叶片的作用下形成螺旋流,螺旋流在上升过程中在离心力的作用,初次进行气液分离;S1: After the fluid enters the spiral guide section under a certain pressure, a spiral flow is formed under the action of the 40° swirl blades, and the spiral flow is subjected to the centrifugal force during the ascending process, and the gas-liquid separation is performed for the first time;

S2:螺旋流体产生气液分离后,液相沿着井筒壁面运动,气相沿着井筒中心运动,延井筒中心上升的气相流体经过空心螺旋导流段的空心通道和进气腔后进入到自振空化腔内;S2: After the spiral fluid produces gas-liquid separation, the liquid phase moves along the wall of the wellbore, and the gas phase moves along the center of the wellbore. The gas-phase fluid rising along the center of the wellbore passes through the hollow channel and the air inlet cavity of the hollow spiral diversion section and enters the natural vibration in the cavity;

S3:沿着井筒壁面上升的液相经过空心螺旋导流段的40°旋流叶片再次进行气液分离,液相继续沿着井筒壁面上升,气相经过进气腔进入到自振空化腔内;S3: The liquid phase rising along the wellbore wall passes through the 40° swirl vanes of the hollow spiral guide section for gas-liquid separation again, the liquid phase continues to rise along the wellbore wall, and the gas phase enters the self-vibrating cavitation cavity through the air inlet cavity ;

S4:高速上升气流进入到自振空化腔内形成高速剪切气流。自振空化腔壁开有切向吸入口,高速气流经过自振空化腔后,腔内产生负压,沿着井筒壁面的液相通过吸入口后在15°导流板的作用下切向被吸入自振空化腔内,切向旋转的液相在高速剪切气流作用下在腔室内产生空化效应,更容易产生更多的空化气泡,自振空化腔可以将连续射流变成脉冲射流,进而将产生的空化泡通过扩散管加速喷出,进一步提高流体速度,从而提高了空化效果。S4: The high-speed updraft enters the self-vibrating cavitation cavity to form a high-speed shear airflow. There is a tangential suction port on the wall of the self-vibrating cavitation cavity. After the high-speed airflow passes through the self-vibrating cavitation cavity, a negative pressure is generated in the cavity. Inhaled into the self-vibrating cavitation chamber, the tangentially rotating liquid phase produces a cavitation effect in the chamber under the action of high-speed shearing airflow, which makes it easier to generate more cavitation bubbles. A pulsed jet is formed, and the generated cavitation bubbles are accelerated and ejected through the diffuser tube to further increase the fluid velocity, thereby improving the cavitation effect.

相对于现有技术,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:

1.通过双螺旋段的结构设计,使得常规流体形成强螺旋流,强螺旋流体在离心力的作用下产生气液分离,分相流动有益于提高流动速度,高速气流更有利于空化泡的生成。1. Through the structural design of the double helical section, the conventional fluid forms a strong helical flow, and the strong helical fluid produces gas-liquid separation under the action of centrifugal force. .

2.自振空化腔的腔壁开有切向吸入口和导流板,高速气流经过自振空化腔后,腔内产生负压,沿着壁面的液相通过吸入口在经过导流板后被吸入自振空化腔内,切向运动的液相流体在高速气流的剪切作用下,更容易在腔室内产生大量空化泡。2. The cavity wall of the self-vibrating cavitation cavity is provided with a tangential suction port and a guide plate. After the high-speed airflow passes through the self-vibrating cavitation cavity, a negative pressure is generated in the cavity, and the liquid phase along the wall surface passes through the suction port and passes through the guide plate. After the plate is sucked into the self-vibrating cavitation chamber, the tangentially moving liquid phase fluid is more likely to generate a large number of cavitation bubbles in the chamber under the shearing action of the high-speed airflow.

3.自振空化腔将连续射流变为脉冲射流,进一步提高空化速度和空化泡的产生。外吸式的自振空化腔有利于形成空化泡,提高空化效率,从而进一步提高了空化效率。3. The self-oscillating cavitation cavity turns the continuous jet into a pulsed jet, which further improves the cavitation speed and the generation of cavitation bubbles. The external suction type self-vibration cavitation cavity is conducive to the formation of cavitation bubbles and improves the cavitation efficiency, thereby further improving the cavitation efficiency.

4.本发明结构简单,成本低,适用钻采范围更广。4. The present invention has simple structure, low cost, and is applicable to a wider range of drilling and production.

附图说明Description of drawings

图1为本发明一种旋流脉冲空化装置的半剖结构示意图;1 is a schematic view of a half-section structure of a swirl pulse cavitation device of the present invention;

图2为本发明自振空化腔的结构示意图;Fig. 2 is the structural representation of the self-vibration cavitation cavity of the present invention;

图3为图2中的A-A剖面示意图;Fig. 3 is A-A cross-sectional schematic diagram in Fig. 2;

其中,其中,1、螺旋导流段;2、空心螺旋导流段;3、进气腔;4、自振空化腔;401导流板;5、扩散管。Among them, 1. helical guide section; 2. hollow helical guide section; 3. air inlet cavity; 4. self-vibration cavitation cavity; 401 guide plate; 5. diffuser tube.

具体实施方式Detailed ways

下面结合附图,对本发明的具体实施方式进行详细阐述,但本发明不限于该实施例。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention is not limited to this embodiment.

如图1、图2、图3所示,本发明一种旋流脉冲空化装置,本发明的作用机理为:As shown in Figure 1, Figure 2, Figure 3, a swirl pulse cavitation device of the present invention, the mechanism of action of the present invention is:

1:流体在一定的压力下进入到螺旋导流段1后,在40°旋流叶片的作用下形成螺旋流,螺旋流在上升过程中在离心力的作用,初次进行气液分离;2:螺旋流体产生气液分离后,液相沿着井筒壁面运动,气相沿着井筒中心运动,延井筒中心上升的气相流体经过空心螺旋导流段2的空心通道和进气腔3后进入到自振空化腔4内;3:沿着井筒壁面上升的液相经过空心螺旋导流段2的40°旋流叶片再次进行气液分离,液相继续沿着井筒壁面上升,气相经过进气腔3进入到自振空化腔4内;4:高速上升气流进入到自振空化腔4内形成高速剪切气流。自振空化腔4的腔壁开有切向吸入口,高速气流经过自振空化腔4后,腔内产生负压,沿着井筒壁面的液相通过吸入口后在15°导流板401的作用下被切向吸入自振空化腔4内,切向旋转的液相流体在高速剪切气流作用下在腔室内产生空化效应,更容易产生更多的空化气泡,自振空化腔4可以将连续射流变成脉冲射流,进而将产生的空化泡通过扩散管5加速喷出,进一步提高流体速度,从而提高了空化效果。1: After the fluid enters the spiral guide section 1 under a certain pressure, a spiral flow is formed under the action of the 40° swirl blades, and the spiral flow acts on the centrifugal force during the ascending process, and the gas-liquid separation is performed for the first time; 2: Spiral After the fluid produces gas-liquid separation, the liquid phase moves along the wall of the wellbore, and the gas phase moves along the center of the wellbore. The gas-phase fluid rising along the center of the wellbore passes through the hollow channel of the hollow spiral diversion section 2 and the air inlet cavity 3 and then enters the self-vibrating air cavity. 3: The liquid phase rising along the wellbore wall passes through the 40° swirl vanes of the hollow helical diversion section 2 for gas-liquid separation again, the liquid phase continues to rise along the wellbore wall, and the gas phase enters through the air inlet cavity 3 into the self-vibration cavitation cavity 4; 4: the high-speed ascending airflow enters the self-vibration cavitation cavity 4 to form a high-speed shear airflow. The cavity wall of the self-vibrating cavitation cavity 4 is provided with a tangential suction port. After the high-speed airflow passes through the self-vibrating cavitation cavity 4, a negative pressure is generated in the cavity. Under the action of 401, it is tangentially inhaled into the self-vibrating cavitation chamber 4, and the tangentially rotating liquid phase fluid produces a cavitation effect in the chamber under the action of high-speed shearing airflow, which is more likely to generate more cavitation bubbles and self-vibration. The cavitation chamber 4 can turn the continuous jet into a pulse jet, and then accelerate the ejection of the generated cavitation bubbles through the diffusion pipe 5, further increasing the fluid velocity, thereby improving the cavitation effect.

Claims (1)

1.一种旋流脉冲空化装置,其特征在于,该工具主要由螺旋导流段(1)、空心螺旋导流段(2)、进气腔(3)、自振空化腔(4)和扩散管(5)组成,所述螺旋导流段(1)和空心螺旋导流段(2)的旋流叶片角度为30°~50°,螺旋导流段(1)位于空心螺旋导流段(2)下方;所述空心螺旋导流段(2)轴心开有空心通道,空心螺旋导流段(2)上方与进气腔(3)相连;所述进气腔(3)壁面开有进气孔,进气腔(3)上方与自振空化腔(4)相连;所述自振空化腔(4)的腔壁开有切向吸入口,切向吸入口处设有导流板(401);所述导流板(401)切向夹角为10°~20°;所述扩散管(5)下端与自振空化腔(4)上端相连接。1. A swirl pulse cavitation device, characterized in that the tool is mainly composed of a spiral guide section (1), a hollow spiral guide section (2), an air intake cavity (3), and a self-vibration cavitation cavity (4). ) and a diffuser (5), the angle of the swirl blades of the spiral guide section (1) and the hollow spiral guide section (2) is 30° to 50°, and the spiral guide section (1) is located in the hollow spiral guide section (2). Below the flow section (2); the hollow spiral guide section (2) is provided with a hollow channel in the axis, and the upper part of the hollow spiral guide section (2) is connected with the air intake cavity (3); the air intake cavity (3) The wall is provided with an air inlet hole, and the upper part of the air inlet cavity (3) is connected with the self-vibration cavitation cavity (4); the cavity wall of the self-vibration cavitation cavity (4) is provided with a tangential suction port, and the tangential suction port is located A deflector (401) is provided; the tangential angle of the deflector (401) is 10°-20°; the lower end of the diffusion pipe (5) is connected with the upper end of the self-vibrating cavitation cavity (4).
CN202111644057.1A 2021-12-30 2021-12-30 Rotational flow pulse cavitation device Expired - Fee Related CN114307899B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111644057.1A CN114307899B (en) 2021-12-30 2021-12-30 Rotational flow pulse cavitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111644057.1A CN114307899B (en) 2021-12-30 2021-12-30 Rotational flow pulse cavitation device

Publications (2)

Publication Number Publication Date
CN114307899A true CN114307899A (en) 2022-04-12
CN114307899B CN114307899B (en) 2023-05-26

Family

ID=81016117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111644057.1A Expired - Fee Related CN114307899B (en) 2021-12-30 2021-12-30 Rotational flow pulse cavitation device

Country Status (1)

Country Link
CN (1) CN114307899B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074518A (en) * 2022-06-28 2022-09-20 江苏大学 Cavitation spiral jet flow blind hole inner surface post-treatment device and method
CN116446810A (en) * 2023-06-16 2023-07-18 西南石油大学 Intermittent type formula oscillation cavitation device
WO2024174485A1 (en) * 2023-02-24 2024-08-29 上海飞象健康科技有限公司 Shear-type cavitation nozzle and application thereof, and shear cavitation type oral irrigator
CN119056328A (en) * 2024-11-04 2024-12-03 安徽亳药千草中药科技有限公司 Homogenization equipment for plant beverage production

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127332A (en) * 1976-11-19 1978-11-28 Daedalean Associates, Inc. Homogenizing method and apparatus
GB2096911A (en) * 1981-04-21 1982-10-27 Simpkins David Rogers Price Atomizer
US5542486A (en) * 1990-09-04 1996-08-06 Ccore Technology & Licensing Limited Method of and apparatus for single plenum jet cutting
RU2143314C1 (en) * 1998-02-03 1999-12-27 Общество с ограниченной ответственностью "Лукойл-Пермнефтеоргсинтез" Gas-liquid reactor
JP2002085949A (en) * 2000-09-13 2002-03-26 Asupu:Kk Device for generating superfine air bubble
WO2007040423A1 (en) * 2005-10-05 2007-04-12 Indus Kashipovich Shamatov Method for realising energy by means o a reciprocating motion and a device for converting and releasing energy in liquid media
US20110073306A1 (en) * 2009-09-28 2011-03-31 Guy Morrison Downhole gas and liquid separation
JP2012045537A (en) * 2010-08-28 2012-03-08 Anemosu:Kk Jet nozzle
US20120222744A1 (en) * 2009-07-28 2012-09-06 Technische Universitat Munchen Cavitation reactor
CN207017988U (en) * 2017-06-01 2018-02-16 中石化石油工程技术服务有限公司 A kind of multistage self-excited pulse cavitation pressure break matches somebody with somebody liquid rifle
WO2018091059A1 (en) * 2016-11-16 2018-05-24 Schulze Isfort, Alfons Method for sterilizing and purifying liquid media and method for separating solid and liquid constituents of a solid-liquid mixture and device for implementing the methods
CN108671876A (en) * 2018-07-16 2018-10-19 山东绿色自由基科技研究中心 A kind of multiphase flow heterogeneous catalytic reaction device
CN109529738A (en) * 2018-11-19 2019-03-29 常州大学 A kind of eddy flow cavitation apparatus
CN109974355A (en) * 2019-04-16 2019-07-05 西北工业大学 A gas-liquid separator
RU2736287C1 (en) * 2019-11-01 2020-11-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" Microreactor with swirled reagent solution streams
CN111977774A (en) * 2020-08-17 2020-11-24 青岛净天环保科技有限公司 Multiphase flow rotational flow cavitation reaction device, sewage treatment system and method
WO2021126068A1 (en) * 2019-12-17 2021-06-24 Kujtim Hyseni Gas generator and cavitator for gas generation
CN113236214A (en) * 2021-06-05 2021-08-10 西南石油大学 Self-excitation type pulse type vortex underground discharging and extracting tool

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127332A (en) * 1976-11-19 1978-11-28 Daedalean Associates, Inc. Homogenizing method and apparatus
GB2096911A (en) * 1981-04-21 1982-10-27 Simpkins David Rogers Price Atomizer
US5542486A (en) * 1990-09-04 1996-08-06 Ccore Technology & Licensing Limited Method of and apparatus for single plenum jet cutting
RU2143314C1 (en) * 1998-02-03 1999-12-27 Общество с ограниченной ответственностью "Лукойл-Пермнефтеоргсинтез" Gas-liquid reactor
JP2002085949A (en) * 2000-09-13 2002-03-26 Asupu:Kk Device for generating superfine air bubble
WO2007040423A1 (en) * 2005-10-05 2007-04-12 Indus Kashipovich Shamatov Method for realising energy by means o a reciprocating motion and a device for converting and releasing energy in liquid media
US20120222744A1 (en) * 2009-07-28 2012-09-06 Technische Universitat Munchen Cavitation reactor
US20110073306A1 (en) * 2009-09-28 2011-03-31 Guy Morrison Downhole gas and liquid separation
JP2012045537A (en) * 2010-08-28 2012-03-08 Anemosu:Kk Jet nozzle
WO2018091059A1 (en) * 2016-11-16 2018-05-24 Schulze Isfort, Alfons Method for sterilizing and purifying liquid media and method for separating solid and liquid constituents of a solid-liquid mixture and device for implementing the methods
CN207017988U (en) * 2017-06-01 2018-02-16 中石化石油工程技术服务有限公司 A kind of multistage self-excited pulse cavitation pressure break matches somebody with somebody liquid rifle
CN108671876A (en) * 2018-07-16 2018-10-19 山东绿色自由基科技研究中心 A kind of multiphase flow heterogeneous catalytic reaction device
CN109529738A (en) * 2018-11-19 2019-03-29 常州大学 A kind of eddy flow cavitation apparatus
CN109974355A (en) * 2019-04-16 2019-07-05 西北工业大学 A gas-liquid separator
RU2736287C1 (en) * 2019-11-01 2020-11-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" Microreactor with swirled reagent solution streams
WO2021126068A1 (en) * 2019-12-17 2021-06-24 Kujtim Hyseni Gas generator and cavitator for gas generation
CN111977774A (en) * 2020-08-17 2020-11-24 青岛净天环保科技有限公司 Multiphase flow rotational flow cavitation reaction device, sewage treatment system and method
CN113236214A (en) * 2021-06-05 2021-08-10 西南石油大学 Self-excitation type pulse type vortex underground discharging and extracting tool

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
卢晓江,李辉: "自激振动空化射流喷嘴的设计与实验研究", 天津科技大学学报 *
易灿等: "围压下自振空化射流冲蚀性能实验研究", 实验力学 *
汪朝晖;潘正江;曾立;高全杰;邓晓刚;: "气液同轴自激振荡式雾化喷嘴设计与流场分析", 机械设计与研究 *
汪朝晖;胡亚男;廖振方;高全杰;陈思;: "基于自激振荡脉冲效应的雾化喷嘴出口流道空化特性研究", 机械工程学报 *
管金发;邓松圣;雷飞东;武建军;张攀锋;: "空化水射流理论和应用研究", 石油化工应用 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074518A (en) * 2022-06-28 2022-09-20 江苏大学 Cavitation spiral jet flow blind hole inner surface post-treatment device and method
CN115074518B (en) * 2022-06-28 2023-09-22 江苏大学 Cavitation spiral jet blind hole inner surface post-treatment device and method
WO2024174485A1 (en) * 2023-02-24 2024-08-29 上海飞象健康科技有限公司 Shear-type cavitation nozzle and application thereof, and shear cavitation type oral irrigator
CN116446810A (en) * 2023-06-16 2023-07-18 西南石油大学 Intermittent type formula oscillation cavitation device
CN116446810B (en) * 2023-06-16 2024-01-26 西南石油大学 Intermittent type formula oscillation cavitation device
CN119056328A (en) * 2024-11-04 2024-12-03 安徽亳药千草中药科技有限公司 Homogenization equipment for plant beverage production

Also Published As

Publication number Publication date
CN114307899B (en) 2023-05-26

Similar Documents

Publication Publication Date Title
CN114307899B (en) Rotational flow pulse cavitation device
CN103071318B (en) Device for liquid degassing through swirling flow field or centrifugal field and pressure gradient field coupling
CN200989162Y (en) Hydraulic pulse cavitation jet-flow well drilling device and drill bit
CN110479127A (en) A kind of micro-nano bubble generating device and the method for generating micro-nano bubble
CN104405292B (en) Double-wall drill pipe countercirculation well drilling fixed guide impeller type rotational flow and jet flow pump drill bit
TWI694860B (en) Micro-bubble acquisition device
CN106285482A (en) Crusher drill in self-excited oscillation pulse enhanced
CN112096346B (en) Multistage composite rotational flow and turbulent flow sound wave ultra-strong viscosity reduction, paraffin control and oil increasing device
CN102069049A (en) Self-excitation aspiration pulse jet nozzle
TWI690364B (en) Progressive-perforation-type crushing and refining structure
CN109731494A (en) A kind of generating device and method of micro-nano bubble
CN108421756A (en) A kind of cavitation jet cleaning cavitation device
CN114733424A (en) A multi-stage accelerated swirl cavitation device
CN212285172U (en) A pipeline cleaning device based on actively induced cavitation effect
CN112827687B (en) Spiral pipeline oscillation atomizer based on bionic surface
CN206205787U (en) Crusher drill in self-excited oscillation pulse enhanced
CN206111094U (en) Tandem type pulse reinforcing formula internal grinding drill bit
CN211549996U (en) Pump-used gas-liquid separation device
CN204040915U (en) horizontal well safe and efficient gas drilling jet mill drill bit
WO2023070832A1 (en) Multi-channel venturi tube hydrodynamic cavitation generation device
CN110748504B (en) Hydraulic structure of side channel pump body
CN206111096U (en) Horizontal well pulse internal grinding drill bit
CN100467105C (en) Horizontal oscillating jet mixing integrated device
CN108786356A (en) A kind of separation of mixed material and device for reducing dust and its application
CN204386483U (en) A kind of double-wall drill pipe counterflush drilling fixed guide vane type swirl jet pump drill head

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230526

CF01 Termination of patent right due to non-payment of annual fee