[go: up one dir, main page]

CN114302138A - Determination of Combined Predictor in Video Codec - Google Patents

Determination of Combined Predictor in Video Codec Download PDF

Info

Publication number
CN114302138A
CN114302138A CN202210040502.1A CN202210040502A CN114302138A CN 114302138 A CN114302138 A CN 114302138A CN 202210040502 A CN202210040502 A CN 202210040502A CN 114302138 A CN114302138 A CN 114302138A
Authority
CN
China
Prior art keywords
prediction
intra
mode
inter
frame prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210040502.1A
Other languages
Chinese (zh)
Other versions
CN114302138B (en
Inventor
刘志
张萌萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Technology
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN202210040502.1A priority Critical patent/CN114302138B/en
Publication of CN114302138A publication Critical patent/CN114302138A/en
Application granted granted Critical
Publication of CN114302138B publication Critical patent/CN114302138B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A method for video decoding, comprising: for each CU: obtaining an optimal intra prediction mode, wherein the optimal intra prediction mode comprises one of the following 6 intra prediction modes: a planar mode, a DC mode, an upper block angle mode, a left block angle mode, a vertical mode, and a horizontal mode; determining an intra prediction value corresponding to the optimal intra prediction mode; obtaining partition information for the CU, wherein the partition information comprises angle parameters and prediction modes (intra-frame prediction and inter-frame prediction), the partition information partitions the CU to obtain two partition areas, one of the two partition areas adopts intra-frame prediction, and the other partition area adopts inter-frame prediction; determining a first combined prediction value based on the prediction mode for the two divided areas; determining a second combined prediction value based on the intra prediction value and the first combined prediction value; and taking the second combined predicted value as the predicted value of the CU.

Description

视频编解码中组合预测值确定Determination of Combined Predictor in Video Codec

技术领域technical field

本发明涉及图像与视频处理领域,更具体而言,涉及基于组合预测值确定的方法、设备和介质。The present invention relates to the field of image and video processing, and more particularly, to a method, apparatus and medium for determination based on combined prediction values.

背景技术Background technique

数字视频功能可以结合到各种设备中,包括数字电视、数字直接广播系统、无线广播系统、个人数字助理(PDA)、膝上型电脑或台式计算机、平板电脑、电子书阅读器、数码相机、数字记录设备、数字媒体播放器、视频游戏设备、视频游戏机、蜂窝或卫星无线电电话、所谓的“智能电话”、视频电话会议设备、视频流设备等。Digital video capabilities can be incorporated into a variety of devices, including digital televisions, digital direct broadcasting systems, wireless broadcasting systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, e-book readers, digital cameras, Digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radio telephones, so-called "smart phones", video teleconferencing devices, video streaming devices, etc.

数字视频设备实施视频编码(coding)技术,诸如由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4,第10部分,高级视频编码(AVC)、高效视频编码(HEVC)标准、ITU-TH.265/高效视频编码(HEVC)、多功能视频编码(Versatile Video Coding)VVC(H.266)、以及此类标准的扩展定义的标准中描述的那些技术。通过实施这样的视频编码技术,视频设备可以更有效地发送、接收、编码、解码和/或存储数字视频信息。Digital video equipment implements video coding techniques such as those provided by MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), Those described in the High Efficiency Video Coding (HEVC) standard, ITU-TH.265/High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC) (H.266), and standards defined by extensions of such standards technology. By implementing such video encoding techniques, video devices can transmit, receive, encode, decode and/or store digital video information more efficiently.

2010年4月,两大国际视频编码标准组织VCEG和MPEG成立视频压缩联合小组JCT-VC(Joint collaborative Team on Video Coding),一同开发高效视频编码标准。In April 2010, two major international video coding standards organizations, VCEG and MPEG, established a joint video compression group, JCT-VC (Joint collaborative Team on Video Coding), to jointly develop high-efficiency video coding standards.

在2013年,JCT-VC完成了对HEVC(High efficiency video coding)标准(也称为H.265)开发,并且随后陆续发布了多个版本。In 2013, JCT-VC completed the development of the HEVC (High efficiency video coding) standard (also known as H.265), and subsequently released several versions.

HEVC提出了全新的语法单元:编码单元(CU)是进行预测、变换、量化和熵编码的基本单元,预测单元(PU)是进行帧内帧间预测的基本单元,变换单元(TU)是进行变换和量化的基本单元。另外,每个CU定义了共享相同预测模式(帧内或帧间)的区域。HEVC proposes a new syntax unit: coding unit (CU) is the basic unit for prediction, transform, quantization and entropy coding, prediction unit (PU) is the basic unit for intra-frame and inter-frame prediction, and transform unit (TU) is for performing The basic unit of transform and quantization. Additionally, each CU defines regions that share the same prediction mode (intra or inter).

如图1所示,在HEVC中,可以进行帧内预测模式和帧间预测模式的切换。在帧内预测模式和帧间预测模式中,HEVC都采用编码树单元(CTU)的编码结构,CTU是HEVC编解码的基本处理单元。CTU由1个亮度CTB、2个色度CTB和相应的语法元素组成。图2显示了在一个LCU(最大编码单元)编码后的CTU结构。在HEVC中,LCU可以只包含一个编码单元(CU),也可以使用CTU四叉树结构划分出为不同大小的CU。As shown in FIG. 1 , in HEVC, switching between intra prediction mode and inter prediction mode can be performed. In the intra-frame prediction mode and the inter-frame prediction mode, HEVC adopts the coding structure of the coding tree unit (CTU), and the CTU is the basic processing unit of HEVC coding and decoding. A CTU consists of 1 luma CTB, 2 chroma CTBs and corresponding syntax elements. Figure 2 shows the CTU structure after one LCU (largest coding unit) encoding. In HEVC, the LCU may contain only one coding unit (CU), or may be divided into CUs of different sizes using the CTU quad-tree structure.

HEVC中有四种大小CU,大小分别为:64x64、32x32、16x16和8x8。CU块越小,其在CTU树中位置越深。当CU为64x64、32x32和16x16时称为2Nx2N模式(表示可以划分为更小的CU),当CU为8x8时称为NxN模式(表示不可以进行进一步划分)。对于帧内预测,CU被分成两个PartMode(2Nx2N和NxN),这取决于它是否可以被分成更小的CU。尺寸为64x64、32x32和16x16的CU属于2N×2N,尺寸为8×8的CU属于N×N。There are four size CUs in HEVC, the sizes are: 64x64, 32x32, 16x16 and 8x8. The smaller the CU block, the deeper it is in the CTU tree. When the CU is 64x64, 32x32 and 16x16, it is called 2Nx2N mode (indicating that it can be divided into smaller CUs), and when the CU is 8x8, it is called NxN mode (indicating that no further division is possible). For intra prediction, a CU is split into two PartModes (2Nx2N and NxN), depending on whether it can be split into smaller CUs. CUs of size 64x64, 32x32 and 16x16 belong to 2Nx2N, and CUs of size 8x8 belong to NxN.

在HEVC中,PU进行帧内帧间预测的基本单元,PU的划分是以CU为基础的,具有五种规则大小64x64、32x32、16x16、8x8和4x4。更具体地,PU尺寸基于PartMode:对于2N×2N的PartMode PU尺寸与CU相同,对于N×N的PartMode CU可以被划分为四个4×4子PU。对于2N*2N的CU模式,帧内预测PU的可选模式包括2N*2N和N*N,帧间预测PU的可选模式有8种,包括4种对称模式(2N*2N,N*2N,2N*N,N*N)和4种非对称模式(2N*nU,2N*nD,nL*2N,nR*2N),其中,2N*nU和2N*nD分别以上下1:3、3:1的比例划分,nL*2N和nR*2N分别以左右1:3、3:1的比例划分。In HEVC, PU is the basic unit for intra-frame and inter-frame prediction. The division of PU is based on CU and has five regular sizes of 64x64, 32x32, 16x16, 8x8 and 4x4. More specifically, the PU size is based on PartMode: the PU size is the same as the CU for a 2Nx2N PartMode, and for an NxN PartMode a CU can be divided into four 4x4 sub-PUs. For the 2N*2N CU mode, the optional modes for intra-frame prediction PU include 2N*2N and N*N, and there are 8 optional modes for inter-frame prediction PU, including 4 symmetric modes (2N*2N, N*2N , 2N*N, N*N) and 4 asymmetric modes (2N*nU, 2N*nD, nL*2N, nR*2N), where 2N*nU and 2N*nD are 1:3 and 3 above and below respectively :1 ratio, nL*2N and nR*2N are divided in the ratio of 1:3 and 3:1 respectively.

在HEVC中,仍然继续使用H.264/AVC的拉格朗日率失真优化(RDO)进行模式选择,为每一个帧内模式计算其RDO:In HEVC, the Lagrangian rate-distortion optimization (RDO) of H.264/AVC is still used for mode selection, and its RDO is calculated for each intra mode:

J=D+λR (1)J=D+λR (1)

其中,J为拉格朗日代价(亦即RD-cost),D表示当前帧内模式的失真,R表示编码当前预测模式下所有信息所需的比特数,λ为拉格朗日因子。其中D通常使用绝对哈达玛变换差之和(SATD)来实现。Among them, J is the Lagrangian cost (ie RD-cost), D is the distortion of the current intra mode, R is the number of bits required to encode all the information in the current prediction mode, and λ is the Lagrangian factor. where D is usually implemented using the sum of absolute Hadamard transform differences (SATD).

处理一帧视频图像需要首先将其划分成多个LCU(64x64),然后依次编码每个LCU。每个LCU依次递归划分,其通过计算当前深度的RD-cost判定是否继续划分。一个LCU最小可划分至8x8大小的单元,如图2所示。编码器通过比较深度的RD-cost值判定是否继续划分,如果当前深度内的4个子CU的编码代价总和大于当前CU,则不继续划分;反之则继续划分,直至划分结束。Processing a frame of video image requires first dividing it into multiple LCUs (64x64), and then encoding each LCU in turn. Each LCU is recursively divided in turn, and it determines whether to continue dividing by calculating the RD-cost of the current depth. An LCU can be divided into 8x8 units at least, as shown in Figure 2. The encoder determines whether to continue the division by comparing the RD-cost value of the depth. If the sum of the coding costs of the four sub-CUs in the current depth is greater than the current CU, the division is not continued; otherwise, the division continues until the division ends.

本领域技术人员容易理解,由于CTU是对LCU进行CU划分的树状编码结构,CTU中的CU划分方式是以LCU开始的,因此在本领域中这两个名词经常可交换地使用。Those skilled in the art can easily understand that since CTU is a tree-like coding structure that divides LCUs into CUs, the CU division method in CTUs starts with LCUs, so these two terms are often used interchangeably in the art.

在帧内预测中,每个PU使用总共35种预测模式。使用粗略模式决策(RMD),我们可以获得64x64、32x32和16x16块的三种候选模式以及8x8和4x4块的八种候选模式。通过合并来自相邻块的最可能模式(MPM)来获得每个PU大小的最佳候选列表。然后,通过RDO来选择当前PU的最佳帧内预测模式。当完成当前CU中包括的所有PU的帧内预测时,完成当前CU的帧内预测。通过当前CU的RD-cost与当前CU及其4个子CU的四个子CU的总RD-cost之间的比较来选择具有较小RD-cost的次优CU内部预测完成。当完成所有CU分区时,完成当前CTU帧内预测。对于HEVC,当对LCU进行编码时,应当执行85个CU(一个64×64CU,四个32×32CU,十六个16×16CU和六十四个8×8CU)的帧内预测。当CU被编码时,应当执行一个PU或四个子PU的帧内预测。大量CU和PU导致帧内预测的高复杂性。In intra prediction, each PU uses a total of 35 prediction modes. Using Rough Mode Decision (RMD), we can obtain three candidate modes for 64x64, 32x32 and 16x16 blocks and eight candidate modes for 8x8 and 4x4 blocks. The best candidate list for each PU size is obtained by merging the most probable modes (MPMs) from neighboring blocks. Then, the best intra prediction mode for the current PU is selected by RDO. When the intra prediction of all PUs included in the current CU is completed, the intra prediction of the current CU is completed. Selecting the sub-optimal CU intra-prediction with the smaller RD-cost is done by comparing the RD-cost of the current CU and the total RD-cost of the current CU and its four sub-CUs of its four sub-CUs. When all CU partitions are completed, the current CTU intra prediction is completed. For HEVC, when encoding the LCU, intra prediction of 85 CUs (one 64x64 CU, four 32x32 CUs, sixteen 16x16 CUs and sixty-four 8x8 CUs) should be performed. When a CU is encoded, intra prediction of one PU or four sub-PUs should be performed. A large number of CUs and PUs lead to high complexity of intra prediction.

为了开发超越HEVC的新技术,2015年成立的一个新的组织,联合视频探索组(Joint Video Exploration Term),并在2018年更名为联合视频专家组(Joint VideoExperts Term,JVET)。在HEVC的基础上,多功能视频编码(Versatile Video Coding)VVC(H.266)的研究由JVET组织于2018年4月10美国圣地亚哥会议上提出,在H.265/HEVC基础上改进的新一代视频编码技术,其主要目标是改进现有HEVC,提供更高的压缩性能,同时会针对新兴应用(360°全景视频和高动态范围(HDR)视频)进行优化。VVC的第一版在2020年8月完成,在ITU-T网站上以H.266标准正式发布。In order to develop new technologies beyond HEVC, a new organization, the Joint Video Exploration Term (Joint Video Exploration Term), was established in 2015 and renamed the Joint Video Experts Term (JVET) in 2018. On the basis of HEVC, the research on Versatile Video Coding VVC (H.266) was proposed by JVET at the San Diego Conference in the United States on April 10, 2018. A new generation of improved H.265/HEVC Video coding technology whose main goal is to improve existing HEVC to provide higher compression performance while optimizing for emerging applications (360° panoramic video and High Dynamic Range (HDR) video). The first version of VVC was completed in August 2020 and officially released as the H.266 standard on the ITU-T website.

有关HEVC和VVC的相关文件和测试平台可以从https://jvet.hhi.fraunhofer.de/获得,并且VVC的相关提案可以从http://phenix.it-sudparis.eu/jvet/获得。Relevant documents and testbeds for HEVC and VVC are available at https://jvet.hhi.fraunhofer.de/ and relevant proposals for VVC are available at http://phenix.it-sudparis.eu/jvet/.

VVC依然沿用H.264就开始采用的混合编码框架,其VTM8编码器的一般性方框图如图1所示。帧间和帧内预测编码:消除时间域和空间域的相关性。变换编码:对残差进行变换编码以消除空间相关性。熵编码:消除统计上的冗余度。VVC将在混合编码框架内,着力研究新的编码工具或技术,提高视频压缩效率。VVC still uses the hybrid coding framework adopted by H.264, and the general block diagram of its VTM8 encoder is shown in Figure 1. Inter and Intra Predictive Coding: De-correlation between temporal and spatial domains. Transform coding: Transform coding the residuals to remove spatial correlations. Entropy coding: Eliminate statistical redundancy. Within the framework of hybrid coding, VVC will focus on researching new coding tools or techniques to improve video compression efficiency.

虽然VVC和HEVC中都采用树结构来进行CTU划分,但是在VVC采用了与HEVC不同的树结构CTU划分方式。并且,与HEVC相比,VVC中的CTU的最大大小达到了128x128。Although both VVC and HEVC use a tree structure for CTU division, VVC uses a different tree structure CTU division method from HEVC. And, compared with HEVC, the maximum size of CTU in VVC reaches 128x128.

如上所述地,在HEVC中,使用四叉树结构将CTU划分为CU(即编码树)。关于帧内编码和帧间编码的决策是在叶节点CU处做出的。换言之,一个叶节点CU定义了共享相同预测模式(例如帧内预测或帧间预测)的一个区域。然后,根据PU划分类型,每个叶CU可以进一步划分为1、2或4个预测单元PU。在每个PU内,使用相同的预测过程,并将相关信息以PU为基础发送到解码器段。在基于PU的预测过程获得了残差块后,可以根据类似于CU的编码树的另一类似四叉树结构将叶CU划分为TU。As described above, in HEVC, a quad-tree structure is used to divide a CTU into CUs (ie, coding trees). Decisions about intra-coding and inter-coding are made at the leaf node CU. In other words, one leaf node CU defines a region that shares the same prediction mode (eg, intra prediction or inter prediction). Then, each leaf-CU can be further divided into 1, 2 or 4 prediction unit PUs according to the PU partition type. Within each PU, the same prediction process is used and relevant information is sent to the decoder section on a PU basis. After the PU-based prediction process has obtained the residual block, the leaf CU may be divided into TUs according to another quadtree-like structure similar to the coding tree of the CU.

而在VVC中,则采用了具有嵌套的多类型树的四叉树分割结构,其中嵌套的多类型树使用二叉树和三叉树。VVC的这种嵌套的多类型树的一个实例是四叉树-二叉树(QTBT)结构。QTBT结构包括两个级别:根据四叉树划分而划分的第一级,以及根据二叉树划分而划分的第二级。QTBT结构的根节点对应于CTU。二叉树的叶节点对应于编码单元(CU)。在VVC中删除了CU、PU和TU的不同形式。一个CTU首先通过四叉树进行划分,然后再通过多类型树进行进一步划分。如图3所示,VVC规定了4种多类型树划分模式:水平二叉树划分、垂直二叉树划分、水平三叉树划分、垂直三叉树划分。多类型树的叶节点被称为编码单元(CU),并且除非CU对于最大变换长度而言过大,否则该CU分割就会用于预测和变换处理而不进行进一步分割。这就意味着在大多数情况下,CU、PU和TU在该具有嵌套的多类型树的四叉树分割结构是具有相同的块大小的。其中的例外是所支持的最大变换长度小于CU的颜色分量的宽度或高度。图4示出了VVC的具有嵌套的多类型树的四叉树分割结构的CTU到CU的分割的一个具体实施例,其中,粗体框表示四叉树分割,剩余的边表示多类型树分割。In VVC, a quadtree partition structure with nested multi-type trees is adopted, wherein the nested multi-type trees use binary trees and ternary trees. An example of such a nested multi-type tree for VVC is the quadtree-binary tree (QTBT) structure. The QTBT structure includes two levels: a first level divided according to quadtree division, and a second level divided according to binary tree division. The root node of the QTBT structure corresponds to the CTU. The leaf nodes of the binary tree correspond to coding units (CUs). The different forms of CU, PU and TU are removed in VVC. A CTU is first divided by a quadtree, and then further divided by a multi-type tree. As shown in FIG. 3 , VVC specifies four multi-type tree division modes: horizontal binary tree division, vertical binary tree division, horizontal ternary tree division, and vertical ternary tree division. The leaf nodes of the multi-type tree are called coding units (CUs), and unless the CU is too large for the maximum transform length, the CU partition is used for prediction and transform processing without further partitioning. This means that in most cases, CUs, PUs and TUs have the same block size in this quadtree partition structure with nested multi-type trees. The exception to this is when the maximum supported transform length is less than the width or height of the color components of the CU. FIG. 4 shows a specific embodiment of a CTU-to-CU partition with a quad-tree partition structure of nested multi-type trees in VVC, wherein the bold box represents the quad-tree partition, and the remaining edges represent the multi-type tree segmentation.

在CU分割后,对表示预测和/或残差信息以及其他信息的CU的视频数据进行编码。预测信息指示将如何预测CU以便形成CU的预测块。残差信息通常表示编码之前的CU的样本与预测块的样本之间的逐样本差。After CU partitioning, the video data of the CU representing prediction and/or residual information and other information is encoded. The prediction information indicates how the CU is to be predicted in order to form the prediction block of the CU. Residual information typically represents the sample-by-sample differences between the samples of the CU before encoding and the samples of the prediction block.

为了预测CU,通常可通过帧间预测或帧内预测来形成CU的预测块。帧间预测通常是指根据先前译码的图片的数据来预测CU,而帧内预测通常是指根据同一图片的先前译码的数据来预测CU。为了执行帧间预测,可使用一个或多个运动向量来生成预测块。通常可以例如按照CU与参考块之间的差来执行运动搜索,以识别与CU紧密匹配的参考块。可使用绝对差之和(SAD)、平方差之和(SSD)、平均绝对差(MAD)、均方差(MSD)或其他此类差值计算来计算差值度量,以确定参考块是否与当前CU紧密匹配。在一些示例中,可使用单向预测或双向预测来预测当前CU。To predict a CU, a prediction block of the CU may typically be formed through inter prediction or intra prediction. Inter prediction generally refers to predicting a CU from data of a previously coded picture, while intra prediction generally refers to predicting a CU from previously coded data of the same picture. To perform inter prediction, a prediction block may be generated using one or more motion vectors. A motion search may typically be performed, eg, as a difference between a CU and a reference block, to identify reference blocks that closely match the CU. The difference metric may be calculated using sum of absolute differences (SAD), sum of squared differences (SSD), mean absolute difference (MAD), mean square error (MSD), or other such difference calculations to determine whether a reference block is different from the current CUs are closely matched. In some examples, the current CU may be predicted using uni-directional prediction or bi-directional prediction.

VVC还提供了仿射运动补偿模式,可以将其视为帧间预测模式。在仿射运动补偿模式中,可以确定表示非平移运动(诸如,放大或缩小、旋转、透视运动或其他不规则运动类型)的两个或更多个运动向量。VVC also provides an affine motion compensation mode, which can be thought of as an inter prediction mode. In the affine motion compensation mode, two or more motion vectors can be determined that represent non-translational motion, such as zoom-in or zoom-out, rotation, perspective motion, or other types of irregular motion.

为了执行帧内预测,可以选择用于生成预测块的帧内预测模式。VVC提供了67种帧内预测模式,包括各种方向模式,以及平面模式和DC模式。通常,选择帧内预测模式,该帧内预测模式描述到当前块(例如,CU的块)的相邻样本,其中从所述相邻样本预测当前块的样本。假设以光栅扫描顺序(从左到右、从上到下的译码顺序或从右到左、从上到下的译码顺序)对CTU和CU进行译码,则这些样本通常可以在与当前块相同的图片中当前块的上方、上方及左侧或左侧。In order to perform intra prediction, an intra prediction mode for generating a prediction block may be selected. VVC provides 67 intra prediction modes, including various directional modes, as well as plane mode and DC mode. Typically, an intra-prediction mode is selected that describes neighboring samples to the current block (eg, a block of a CU) from which the samples of the current block are predicted. Assuming the CTUs and CUs are decoded in raster scan order (left-to-right, top-to-bottom decoding order or right-to-left, top-to-bottom decoding order), these samples can typically be Above, above and to the left or to the left of the current block in the same picture.

对表示当前块的预测模式的数据进行编码。例如,对于帧间预测模式,视频编码器200可以对表示使用各种可用帧间预测模式中的哪一种帧间预测模式的数据以及用于对应模式的运动信息进行编码。对于单向或双向帧间预测,例如,可以使用高级运动向量预测(AMVP)或合并模式来对运动向量进行编码。可以使用类似模式来编码用于仿射运动补偿模式的运动向量。Data representing the prediction mode of the current block is encoded. For example, for an inter prediction mode, the video encoder 200 may encode data indicating which of various available inter prediction modes to use and motion information for the corresponding mode. For uni-directional or bi-directional inter prediction, for example, advanced motion vector prediction (AMVP) or merge mode may be used to encode motion vectors. Similar modes can be used to encode motion vectors for affine motion compensation modes.

在诸如块的帧内预测或帧间预测之类的预测之后,可以计算块的残差数据。残差数据(诸如残差块)表示该块与使用相应预测模式形成的该块的预测块之间的逐样本差。可将一个或多个变换应用于残差块,以产生在变换域而非样本域中的经变换的数据。例如,可将离散余弦变换(DCT)、整数变换、小波变换或概念上类似的变换应用于残差视频数据。另外,视频编码器200可在一次变换之后应用二次变换,例如,与模式相关的不可分离的二次变换(MDNSST)、与信号相关的变换、Karhunen-Loeve变换(KLT)等。在应用一个或多个变换之后产生变换系数。After prediction such as intra prediction or inter prediction of the block, residual data for the block may be calculated. Residual data, such as a residual block, represents the sample-by-sample difference between the block and the predicted block for the block formed using the corresponding prediction mode. One or more transforms may be applied to the residual block to produce transformed data in the transform domain rather than the sample domain. For example, a discrete cosine transform (DCT), integer transform, wavelet transform, or conceptually similar transforms may be applied to the residual video data. Additionally, video encoder 200 may apply a secondary transform after a primary transform, eg, Mode Dependent Non-Separable Secondary Transform (MDNSST), Signal Dependent Transform, Karhunen-Loeve Transform (KLT), and the like. Transform coefficients are generated after applying one or more transforms.

如上所述,在用以产生变换系数的任何变换之后,可以根据量化系数(QP),执行对变换系数的量化。量化通常是指对变换系数进行量化以可能减少用于表示系数的数据量,从而提供进一步压缩的过程。通过执行量化过程,可以减小与一些或所有系数相关联的位深度。例如,可以在量化期间将n-位值舍入为m-位值,其中n大于m。在一些示例中,为了执行量化,可以执行对待量化的值的按位右移。量化系数(QP)通常是采用语法元素的行驶包含在头信息中的。As described above, after any transform used to generate transform coefficients, quantization of the transform coefficients may be performed according to the quantized coefficients (QP). Quantization generally refers to the process of quantizing transform coefficients to possibly reduce the amount of data used to represent the coefficients, thereby providing further compression. By performing a quantization process, the bit depth associated with some or all coefficients may be reduced. For example, an n-bit value may be rounded to an m-bit value during quantization, where n is greater than m. In some examples, to perform quantization, a bitwise right shift of the value to be quantized may be performed. Quantization coefficients (QPs) are usually included in the header information using a run of syntax elements.

在量化之后,可以扫描变换系数,从而从包括经量化的变换系数的二维矩阵产生一维向量。可以将扫描设计为将较高能量(并且因此较低频率)的系数放置在向量的前面,并将较低能量(并且因此较高频率)的变换系数放置在向量的后面。在一些示例中,可以利用预定义的扫描顺序来扫描经量化的变换系数以产生串行化的向量,然后对向量的经量化的变换系数进行熵编码。在其他示例中,可以执行自适应扫描。在扫描经量化的变换系数以形成一维向量之后,可以例如根据上下文自适应二进制算术译码(CABAC)对一维向量进行熵编码还可对用于语法元素的值进行熵编码,语法元素描述与经编码视频数据相关联的元数据,以供视频解码器300在解码视频数据时使用。After quantization, the transform coefficients may be scanned, resulting in a one-dimensional vector from a two-dimensional matrix including the quantized transform coefficients. The scan can be designed to place higher energy (and therefore lower frequency) coefficients at the front of the vector and lower energy (and therefore higher frequency) transform coefficients at the back of the vector. In some examples, the quantized transform coefficients may be scanned using a predefined scan order to produce a serialized vector, and then the quantized transform coefficients of the vector are entropy encoded. In other examples, adaptive scanning can be performed. After scanning the quantized transform coefficients to form a one-dimensional vector, the one-dimensional vector may be entropy encoded, eg, according to context adaptive binary arithmetic coding (CABAC), and the values for the syntax elements, which describe the Metadata associated with encoded video data for use by video decoder 300 in decoding the video data.

在编码过程中,可以例如在图片报头、块报头、切片报头中,生成语法数据,诸如基于块的语法数据、基于图片的语法数据和基于序列的语法数据,或其他语法数据,诸如序列参数集(SPS)、图片参数集(PPS)或视频参数集(VPS)。视频解码器可类似地解码此类语法数据以确定如何解码对应的视频数据。这些信息都可以被称为“头信息”。During encoding, syntax data, such as block-based syntax data, picture-based syntax data, and sequence-based syntax data, or other syntax data, such as sequence parameter sets, may be generated, eg, in picture headers, block headers, slice headers (SPS), Picture Parameter Set (PPS) or Video Parameter Set (VPS). A video decoder may similarly decode such syntax data to determine how to decode corresponding video data. These information can be called "header information".

以此方式,可以生成包括经编码视频数据(例如,描述从图片到块(例如,CU)的划分的语法元素以及块的预测和/或残差信息)的位流。In this manner, a bitstream may be generated that includes encoded video data (eg, syntax elements describing partitioning from pictures into blocks (eg, CUs) and prediction and/or residual information for the blocks).

在包括HEVC和VVC在内的现有技术中,虽然考虑了获得基于多个参考帧的组合预测值的情况,但是,并未考虑到对编码单元(CU)的帧内预测值和帧间预测值进行某种组合,从而不能充分利用帧内预测值和帧间预测值二者。In the prior art including HEVC and VVC, although the case of obtaining a combined prediction value based on multiple reference frames is considered, the intra prediction value and inter prediction for a coding unit (CU) are not considered The values are combined in some way so that both intra- and inter-predictors cannot be fully utilized.

另外,在现有技术中,通常是以CU或PU的方式对视频数据块进行分割的,这种分割局限于垂直和水平方向上的分割,因此局限性大,不能最佳地应对块内视频内容的内部变化。In addition, in the prior art, the video data block is usually divided in the form of CU or PU. This kind of division is limited to the division in the vertical and horizontal directions, so the limitation is large, and the video within the block cannot be optimally dealt with. Internal changes in content.

另外,在现有技术中,提出了一些非垂直和水平方向上的分割,但是这些分割都是在帧内预测阶段或帧间预测阶段内部进行的,即分割后的块或者都进行帧内预测或者都进行帧间预测,从而限制了非垂直和水平方向的分割的应用范围。而且,现有技术中的非垂直和水平方向上的分割通常也仅是提出一种新颖的分割方式,而并未在分割时考虑到当前视频块(CU或PU)的相邻块的预测情况(例如相邻块是帧内预测还是帧间预测)。In addition, in the prior art, some segmentations in non-vertical and horizontal directions are proposed, but these segmentations are all performed within the intra-frame prediction stage or the inter-frame prediction stage, that is, the segmented blocks or all perform intra-frame prediction Or both perform inter-frame prediction, thereby limiting the application range of segmentation in non-vertical and horizontal directions. Moreover, the segmentation in the non-vertical and horizontal directions in the prior art usually only proposes a novel segmentation method, and does not consider the prediction situation of the adjacent blocks of the current video block (CU or PU) during segmentation. (eg whether the neighboring blocks are intra-predicted or inter-predicted).

因此,针对现有技术中的视频块分割,仍然存在很大的改进需求。Therefore, for the video block segmentation in the prior art, there is still a great need for improvement.

发明内容SUMMARY OF THE INVENTION

为了解决上述技术问题,本发明提出了针对每个CU,通过对CU的帧内预测值和帧间预测值进行组合,来充分利用CU的帧内预测和帧间预测二者的增益。在考虑帧内预测值时,本发明考虑整个CU的全部帧内预测模式中的减少的数量的帧内预测模式,例如,采用6种具有代表性的帧内预测模式,并从中确定最佳帧内预测模式。以此方式,能够在减少计算量的同时仍然能够充分利用帧内预测的增益。In order to solve the above technical problems, the present invention proposes that for each CU, by combining the intra-frame prediction value and the inter-frame prediction value of the CU, the gains of both the intra-frame prediction and the inter-frame prediction of the CU are fully utilized. When considering intra-prediction values, the present invention considers a reduced number of intra-prediction modes among all intra-prediction modes of the entire CU, for example, adopts 6 representative intra-prediction modes, and determines the best frame therefrom Intra prediction mode. In this way, the gain of intra prediction can be fully utilized while reducing the amount of computation.

在考虑帧间预测值时,本发明并非是如现有技术中那样基于CU进行帧间预测,而是通过在非垂直和水平方向上对CU进行进一步分割,并基于相邻CU的预测方式(即相邻CU是帧内预测还是帧间预测)来进一步确定两个分割区域的预测方式(帧内预测,帧间预测)。为了避免概念模糊,本发明将这种帧间预测称为“第一组合预测”,该“第一组合预测”可以是两个分割区域的帧内预测、帧间预测、或帧内帧间混合预测的组合预测。以此方式,本发明充分考虑到了相邻块的预测情况来进行当前CU的分割和预测方式确定,从而能够充分地考虑当前CU中的视频内容,这在特定视频内容(例如同一物体,诸如足球、窗口等等)被划分到两个CTU或CU中时特别有益处。When considering inter-frame prediction values, the present invention does not perform inter-frame prediction based on CUs as in the prior art, but further divides CUs in non-vertical and horizontal directions and uses prediction methods based on adjacent CUs ( That is, whether adjacent CUs are intra-frame prediction or inter-frame prediction) to further determine the prediction modes (intra-frame prediction, inter-frame prediction) of the two partitioned regions. In order to avoid conceptual ambiguity, the present invention refers to such inter-frame prediction as "first combined prediction", and the "first combined prediction" may be intra-frame prediction, inter-frame prediction, or intra-frame and inter-frame mixing of two divided regions Combined forecast for forecast. In this way, the present invention fully considers the prediction situation of adjacent blocks to perform the segmentation of the current CU and the determination of the prediction method, so that the video content in the current CU can be fully considered, which is in a specific video content (for example, the same object, such as a soccer ball). , windows, etc.) are divided into two CTUs or CUs.

由此,在一方面,本发明提出了一种用于视频解码的方法,包括:Thus, in one aspect, the present invention provides a method for video decoding, comprising:

从视频流的语法元素中获得关于当前帧的当前编码树单元(CTU)的信息;obtain information about the current coding tree unit (CTU) of the current frame from a syntax element of the video stream;

从视频流的语法元素中获得关于对所述当前CTU进行编码单元(CU)分割的信息;以及obtain information on coding unit (CU) partitioning of the current CTU from syntax elements of the video stream; and

针对每个CU:For each CU:

在CTU级别的语法元素或CU级别的语法元素中获得最佳帧内预测模式,其中,所述最佳帧内预测模式包括如下6种帧内预测模式之一:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式;The optimal intra prediction mode is obtained in the syntax element at the CTU level or the syntax element at the CU level, wherein the optimal intra prediction mode includes one of the following 6 intra prediction modes: plane mode, DC mode, upper block Angle Mode, Left Block Angle Mode, Vertical Mode and Horizontal Mode;

确定与所述最佳帧内预测模式对应的帧内预测值;determining an intra prediction value corresponding to the best intra prediction mode;

在CTU级别的语法元素或CU级别的语法元素中获得针对所述CU的分割信息,所述分割信息包括角度参数和预测方式(帧内预测、帧间预测),所述分割信息将所述CU进行分割得到两个分割区域,所述两个分割区域中的一个区域采用帧内预测,另一个区域采用帧间预测;Partition information for the CU is obtained in a CTU-level syntax element or a CU-level syntax element, the partition information includes an angle parameter and a prediction method (intra prediction, inter prediction), the partition information combines the CU Performing segmentation to obtain two segmentation regions, one of the two segmentation regions adopts intra-frame prediction, and the other region adopts inter-frame prediction;

针对所述两个分割区域,基于所述预测方式来确定第一组合预测值;for the two divided regions, determining a first combined prediction value based on the prediction method;

基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值;determining a second combined predictor based on the intra predictor and the first combined predictor;

将所述第二组合预测值作为所述CU的预测值。The second combined predicted value is used as the predicted value of the CU.

在进一步的方面,当左侧CU和上方CU都采用帧间预测时,所述角度参数为第一锐角角度参数,并且左侧区域采用帧间预测,右侧区域采用帧内预测;当左侧CU和上方CU都采用帧内预测时,所述角度参数为第二锐角角度参数,并且左侧区域采用帧内预测,右侧区域采用帧间预测;当左侧CU采用帧内预测而上方CU采用帧间预测时,所述角度参数为第三钝角角度参数,并且左侧区域采用帧内预测,右侧区域采用帧间预测;以及当左侧CU采用帧间预测而上方CU采用帧内预测时,所述角度参数为第四钝角角度参数,并且左侧区域采用帧间预测,右侧区域采用帧内预测。In a further aspect, when both the left CU and the upper CU use inter-frame prediction, the angle parameter is the first acute angle parameter, and the left area uses inter-frame prediction, and the right area uses intra-frame prediction; When both the CU and the upper CU use intra-frame prediction, the angle parameter is the second acute angle parameter, and the left area uses intra-frame prediction, and the right-side area uses inter-frame prediction; when the left CU uses intra-frame prediction and the upper CU uses intra-frame prediction When inter prediction is used, the angle parameter is the third obtuse angle parameter, and intra prediction is used for the left area and inter prediction is used for the right area; and when the left CU uses inter prediction and the upper CU uses intra prediction , the angle parameter is the fourth obtuse angle parameter, and the left region adopts inter-frame prediction, and the right region adopts intra-frame prediction.

在进一步的方面,基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值进一步包括:通过对所述帧内预测值和所述第一组合预测值进行加权平均,来确定所述第二组合预测值。In a further aspect, determining a second combined predicted value based on the intra predicted value and the first combined predicted value further comprises: performing a weighted average of the intra predicted value and the first combined predicted value , to determine the second combined predicted value.

在进一步的方面,所述分割信息还包括与所述角度参数相对应的位移值,所述位移值表示相对于对应角度的垂直位移。In a further aspect, the segmentation information further includes a displacement value corresponding to the angle parameter, the displacement value representing a vertical displacement relative to a corresponding angle.

另一方面,本发明还提出了一种用于视频编解码的方法,包括:On the other hand, the present invention also proposes a method for video encoding and decoding, comprising:

获得当前帧的当前编码树单元(CTU);Get the current coding tree unit (CTU) of the current frame;

对所述当前CTU进行编码单元(CU)分割;以及performing coding unit (CU) partitioning on the current CTU; and

针对每个CU:For each CU:

确定与如下6种帧内预测模式相对应的最佳帧内预测模式:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式;Determine the best intra prediction mode corresponding to the following 6 intra prediction modes: plane mode, DC mode, upper block angle mode, left block angle mode, vertical mode and horizontal mode;

确定与所述最佳帧内预测模式对应的帧内预测值;determining an intra prediction value corresponding to the best intra prediction mode;

根据左侧CU和上方CU的预测方式(帧内预测、帧间预测),来采用与角度参数对应的分割线对CU进行分割得到两个分割区域,并且根据左侧CU和上方CU的预测方式(帧内预测、帧间预测),所述两个分割区域中的一个区域采用帧内预测,另一个区域采用帧间预测;According to the prediction methods (intra-frame prediction, inter-frame prediction) of the left CU and the upper CU, the CU is divided by the dividing line corresponding to the angle parameter to obtain two divided regions, and according to the prediction methods of the left CU and the upper CU (intra-frame prediction, inter-frame prediction), one of the two divided regions adopts intra-frame prediction, and the other region adopts inter-frame prediction;

针对所述两个分割区域,确定第一组合预测值;determining a first combined predicted value for the two segmented regions;

基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值;以及determining a second combined predictor based on the intra predictor and the first combined predictor; and

将所述第二组合预测值作为所述CU的预测值来对所述CU进行预测。The CU is predicted using the second combined predictor as a predictor for the CU.

在进一步的方面,所述分割线还对应于与所述角度参数相对应的位移值,所述位移值表示相对于对应角度的垂直位移。In a further aspect, the dividing line further corresponds to a displacement value corresponding to the angle parameter, the displacement value representing a vertical displacement relative to a corresponding angle.

在进一步的方面,当左侧CU和上方CU都采用帧间预测时,使用第一锐角角度参数对CU进行分割,并且左侧区域采用帧间预测,右侧区域采用帧内预测;当左侧CU和上方CU都采用帧内预测时,使用第二锐角角度参数对CU进行分割,并且左侧区域采用帧内预测,右侧区域采用帧间预测;当左侧CU采用帧内预测而上方CU采用帧间预测时,使用第三钝角角度参数对CU进行分割,并且左侧区域采用帧内预测,右侧区域采用帧间预测;以及当左侧CU采用帧间预测而上方CU采用帧内预测时,使用第四钝角角度参数对CU进行分割,并且左侧区域采用帧间预测,右侧区域采用帧内预测。In a further aspect, when both the left CU and the upper CU adopt inter-frame prediction, the CU is segmented using the first acute angle parameter, and the left-side region adopts inter-frame prediction, and the right-side region adopts intra-frame prediction; When both the CU and the upper CU use intra-frame prediction, the second acute angle parameter is used to segment the CU, and the left area uses intra-frame prediction, and the right-side area uses inter-frame prediction; when the left CU uses intra-frame prediction and the upper CU uses intra-frame prediction When inter prediction is used, the CU is segmented using the third obtuse angle parameter, and intra prediction is used for the left area and inter prediction is used for the right area; and when the left CU uses inter prediction and the upper CU uses intra prediction , the CU is segmented using the fourth obtuse angle parameter, and the left region adopts inter prediction, and the right region adopts intra prediction.

在进一步的方面,基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值进一步包括:通过对所述帧内预测值和所述第一组合预测值进行加权平均,来确定所述第二组合预测值。In a further aspect, determining a second combined predicted value based on the intra predicted value and the first combined predicted value further comprises: performing a weighted average of the intra predicted value and the first combined predicted value , to determine the second combined predicted value.

在进一步的方面,确定与如下6种帧内预测模式相对应的最佳帧内预测模式:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式进一步包括:针对所述6种帧内预测模式确定最佳帧内预测代价值;以及确定与最佳帧内预测代价值相对应的帧内预测模式,作为所述最佳帧内预测模式。In a further aspect, determining the optimal intra prediction mode corresponding to the following 6 intra prediction modes: plane mode, DC mode, upper block angle mode, left block angle mode, vertical mode and horizontal mode further comprises: for all The six intra-frame prediction modes are used to determine an optimal intra-frame prediction cost value; and an intra-frame prediction mode corresponding to the optimal intra-frame prediction cost value is determined as the optimal intra-frame prediction mode.

另一方面,本发明还提出了一种能够执行视频解码的计算设备,其包括:On the other hand, the present invention also provides a computing device capable of performing video decoding, comprising:

存储器,其存储有用于视频编解码的可执行代码;a memory that stores executable code for video encoding and decoding;

一个或多个处理器或视频编解码器,其用于执行存储器中存储的用于视频编解码的可执行代码,以执行如权利要求1所述的方法。One or more processors or video codecs for executing executable code for video codecs stored in memory to perform the method of claim 1 .

另一方面,本发明还提出了一种计算机可读存储介质,其存储了用于执行视频编解码的代码,所述代码当被执行时,能够实现如上所述的视频编码或视频解码的方法。On the other hand, the present invention also provides a computer-readable storage medium, which stores codes for performing video encoding and decoding, and when the codes are executed, can realize the above-mentioned video encoding or video decoding method .

附图说明Description of drawings

图1示出了HEVC/VVC的通用编码器的一般性方框图的实施例。Figure 1 shows an embodiment of a generalized block diagram of a general encoder for HEVC/VVC.

图2示出了HEVC中的编码树(CTU)的示意图。Figure 2 shows a schematic diagram of a coding tree (CTU) in HEVC.

图3示出了用于VVC的多类型树划分模式。Figure 3 shows a multi-type tree partitioning pattern for VVC.

图4示出了VVC的具有嵌套的多类型树的四叉树分割结构的CTU到CU的分割的一个具体实施例。FIG. 4 shows a specific embodiment of a CTU-to-CU partition of a quadtree partition structure with nested multi-type trees of VVC.

图5(a)-5(d)示出了根据本发明的实施例的非垂直和水平划分的一种非限定性的划分方式。Figures 5(a)-5(d) illustrate a non-limiting way of dividing non-vertical and horizontal dividing according to an embodiment of the present invention.

图6示出了根据本发明的实施例的视频编码方法。FIG. 6 illustrates a video encoding method according to an embodiment of the present invention.

图7示出了用于实现本发明的一个实施例的编解码方法的设备的示意图。FIG. 7 shows a schematic diagram of a device for implementing a coding and decoding method according to an embodiment of the present invention.

具体实施方式Detailed ways

现在参考附图来描述各种方案。在以下描述中,为了进行解释,阐述了多个具体细节以便提供对一个或多个方案的透彻理解。然而,显然,在没有这些具体细节的情况下也能够实现这些方案。Various schemes are now described with reference to the figures. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. Obviously, however, these schemes can be implemented without these specific details.

如在本申请中所使用的,术语“组件”、“模块”、“系统”等等旨在指代与计算机相关的实体,例如但不限于,硬件、固件、硬件和软件的组合、软件,或者是执行中的软件。例如,组件可以是但不限于:在处理器上运行的进程、处理器、对象、可执行体(executable)、执行线程、程序、和/或计算机。举例而言,运行在计算设备上的应用程序和该计算设备都可以是组件。一个或多个组件可以位于执行进程和/或者执行线程内,并且组件可以位于一台计算机上和/或者分布在两台或更多台计算机上。另外,这些组件可以从具有存储在其上的各种数据结构的各种计算机可读介质执行。组件可以借助于本地和/或远程进程进行通信,例如根据具有一个或多个数据分组的信号,例如,来自于借助于信号与本地系统、分布式系统中的另一组件交互和/或者与在诸如因特网之类的网络上借助于信号与其他系统交互的一个组件的数据。As used in this application, the terms "component," "module," "system," and the like are intended to refer to computer-related entities such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. For example, both an application running on a computing device and the computing device can be components. One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed across two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. Components may communicate by means of local and/or remote processes, for example, based on signals having one or more data packets, for example, from interacting with another component in a local system, a distributed system by means of signals, and/or with another component in a distributed system. Data for a component on a network such as the Internet that interacts with other systems by means of signals.

在包括HEVC和VVC在内的现有技术中,虽然考虑了获得基于多个参考帧的组合预测值的情况,但是,并未考虑到对编码单元(CU)的帧内预测值和帧间预测值进行某种组合,从而不能充分利用帧内预测值和帧间预测值二者。In the prior art including HEVC and VVC, although the case of obtaining a combined prediction value based on multiple reference frames is considered, the intra prediction value and inter prediction for a coding unit (CU) are not considered The values are combined in some way so that both intra- and inter-predictors cannot be fully utilized.

另外,在现有技术中,通常是以CU或PU的方式对视频数据块进行分割的,这种分割局限于垂直和水平方向上的分割,因此局限性大,不能最佳地应对块内视频内容的内部变化。In addition, in the prior art, the video data block is usually divided in the form of CU or PU. This kind of division is limited to the division in the vertical and horizontal directions, so the limitation is large, and the video within the block cannot be optimally dealt with. Internal changes in content.

另外,在现有技术中,提出了一些非垂直和水平方向上的分割,但是这些分割都是在帧内预测阶段或帧间预测阶段内部进行的,即分割后的块或者都进行帧内预测或者都进行帧间预测,从而限制了非垂直和水平方向的分割的应用范围。而且,现有技术中的非垂直和水平方向上的分割通常也仅是提出一种新颖的分割方式,而并未在分割时考虑到当前视频块(CU或PU)的相邻块的预测情况(例如相邻块是帧内预测还是帧间预测)。In addition, in the prior art, some segmentations in non-vertical and horizontal directions are proposed, but these segmentations are all performed within the intra-frame prediction stage or the inter-frame prediction stage, that is, the segmented blocks or all perform intra-frame prediction Or both perform inter-frame prediction, thereby limiting the application range of segmentation in non-vertical and horizontal directions. Moreover, the segmentation in the non-vertical and horizontal directions in the prior art usually only proposes a novel segmentation method, and does not consider the prediction situation of the adjacent blocks of the current video block (CU or PU) during segmentation. (eg whether the neighboring blocks are intra-predicted or inter-predicted).

为了解决上述技术问题,本发明提出了针对每个CU,通过对CU的帧内预测值和帧间预测值进行组合,来充分利用CU的帧内预测和帧间预测二者的增益。In order to solve the above technical problems, the present invention proposes that for each CU, by combining the intra-frame prediction value and the inter-frame prediction value of the CU, the gains of both the intra-frame prediction and the inter-frame prediction of the CU are fully utilized.

在考虑帧内预测值时,本发明并非针对HEVC中的35种预测模式和VVC中的67种预测模式都进行遍历以查找最佳帧内预测模式,而是考虑整个CU的全部帧内预测模式中的减少的数量的帧内预测模式,例如,采用6种具有代表性的帧内预测模式(例如,平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式),并从中确定最佳帧内预测模式。以此方式,能够在减少计算量的同时仍然能够充分利用帧内预测的增益。When considering the intra prediction value, the present invention does not traverse all the 35 prediction modes in HEVC and 67 prediction modes in VVC to find the best intra prediction mode, but considers all intra prediction modes of the entire CU a reduced number of intra-prediction modes in and determine the best intra prediction mode from it. In this way, the gain of intra prediction can be fully utilized while reducing the amount of computation.

在考虑帧间预测值时,本发明并非是如现有技术中那样基于CU进行帧间预测,而是通过在非垂直和水平方向上对CU进行进一步分割,并基于相邻CU的预测方式(即相邻CU是帧内预测还是帧间预测)来进一步确定两个分割区域的预测方式(帧内预测,帧间预测)。为了避免概念模糊,本发明将这种帧间预测称为“第一组合预测”,该“第一组合预测”可以是两个分割区域的帧内预测、帧间预测、或帧内帧间混合预测的组合预测。When considering inter-frame prediction values, the present invention does not perform inter-frame prediction based on CUs as in the prior art, but further divides CUs in non-vertical and horizontal directions and uses prediction methods based on adjacent CUs ( That is, whether adjacent CUs are intra-frame prediction or inter-frame prediction) to further determine the prediction modes (intra-frame prediction, inter-frame prediction) of the two partitioned regions. In order to avoid conceptual ambiguity, the present invention refers to such inter-frame prediction as "first combined prediction", and the "first combined prediction" may be intra-frame prediction, inter-frame prediction, or intra-frame and inter-frame mixing of two divided regions Combined forecast for forecast.

以此方式,本发明充分考虑到了相邻块的预测情况来进行当前CU的分割和预测方式确定,从而能够充分地考虑当前CU中的视频内容,这在特定视频内容(例如同一物体,诸如足球、窗口等等)被划分到两个CTU或CU中时特别有益处。In this way, the present invention fully considers the prediction situation of adjacent blocks to perform the segmentation of the current CU and the determination of the prediction method, so that the video content in the current CU can be fully considered, which is in a specific video content (for example, the same object, such as a soccer ball). , windows, etc.) are divided into two CTUs or CUs.

图5(a)-5(d)示出了根据本发明的实施例的非垂直和水平划分的一种非限定性的划分方式。图中的角度和划分位置都是示例性的。容易理解,图中的角度可以在锐角和钝角范围内变化。在一个优选实施例中,可以预先定义一组角度(包括开集(0,90)度和(90,180)度内的若干角度值),并用角度索引来加以指示和以信号通知,从而节约信令开销。在一个替换实施例中,可以直接确定角度值并以信号通知。另外,划分位置也可以变化。在一个优选实施例中,针对一个特定角度,可以采用相对于该角度的垂直位移的方式来定义划分位置,其中,该垂直位移可以是相对于视频数据块(例如CU)的四个顶点或中心点的,或者相对于其他参考位置的,本发明的范围并不局限于此。Figures 5(a)-5(d) illustrate a non-limiting way of dividing non-vertical and horizontal dividing according to an embodiment of the present invention. The angles and division positions in the figures are exemplary. It is easy to understand that the angles in the figures can vary from acute to obtuse. In a preferred embodiment, a set of angles (including several angle values within the open set (0,90) degrees and (90,180) degrees) can be predefined, indicated and signaled with an angle index, thereby saving signaling overhead. In an alternative embodiment, the angle value may be directly determined and signaled. In addition, the division position can also be changed. In a preferred embodiment, for a specific angle, the division position may be defined by a vertical displacement relative to the angle, where the vertical displacement may be relative to four vertices or centers of a video data block (eg CU) point, or relative to other reference locations, the scope of the invention is not limited thereto.

另外,如图所示,无论所采用的角度和位移如何,分割后都必然得到左侧块和右侧块,虽然左侧块和右侧块可能有各种形状。In addition, as shown in the figure, regardless of the angle and displacement used, the left and right blocks are bound to be obtained after division, although the left and right blocks may have various shapes.

在图5(a)-图5(d)中,A1和B1分别对应于当前视频数据块(例如CU)的左侧(例如CU)块和上方块(例如CU)。该图示出了左侧CU和上方CU的优选位置,即左侧CU的底边对应于当前CU底边,上方CU的右边对应于当前CU右边,这些位置定义是VVC中的常规定义。在其他实施例中,也可以针对其他视频编解码方法或标准采用其他位置的左侧CU和上方CU,本发明的范围并不局限于此。In Figures 5(a)-5(d), A1 and B1 correspond to the left (eg CU) block and the upper block (eg CU) of the current video data block (eg CU), respectively. The figure shows the preferred positions of the left CU and the upper CU, that is, the bottom edge of the left CU corresponds to the bottom edge of the current CU, and the right side of the upper CU corresponds to the right side of the current CU. These position definitions are conventional definitions in VVC. In other embodiments, the left CU and the upper CU at other positions may also be used for other video coding and decoding methods or standards, and the scope of the present invention is not limited thereto.

在一个具体实施例中,如在图5(a)-5(d)中所示,当左块(A1)和上块(B1)都采用帧间预测模式时,采用的划分方法如图5(a)所示;当A1和B1都采用帧内预测模式时,采用的划分方法如图5(b)所示;当A1采用帧内预测模式,B1采用帧间预测模式时,使用如图5(c);当A1采用帧间预测模式,B1采用帧内预测模式时,如图5(d)。但是,在图5(a)-5(d)中的角度和位移都是示例性的,本发明的范围并不局限于此。In a specific embodiment, as shown in Figures 5(a)-5(d), when both the left block (A1) and the upper block (B1) use the inter prediction mode, the division method used is shown in Figure 5 As shown in (a); when both A1 and B1 use the intra-frame prediction mode, the division method used is shown in Figure 5(b); when A1 uses the intra-frame prediction mode and B1 uses the inter-frame prediction mode, the use is shown in Figure 5(b). 5(c); when A1 adopts the inter-frame prediction mode and B1 adopts the intra-frame prediction mode, as shown in Fig. 5(d). However, the angles and displacements in Figures 5(a)-5(d) are exemplary, and the scope of the present invention is not limited thereto.

图6示出了根据本发明的实施例的视频编码方法。根据图6的视频编码方法,可以对原始的未压缩视频进行编码,并最终输出编码视频比特流。FIG. 6 illustrates a video encoding method according to an embodiment of the present invention. According to the video encoding method of FIG. 6 , the original uncompressed video can be encoded, and the encoded video bitstream can be finally output.

在步骤601中,获得当前帧的当前CTU。在HEVC/VVC中,可以直接将一个帧划分为CTU,或者可以首先将一个帧划分为片(slice)和/或瓦片(tile),但最终是要以CTU为单位进行编码的。片、瓦片和CTU的划分关系可以从HEVC/VVC的相关协议中找到。但本发明的范围并不局限于此,而是可以应用于任何基于图像数据块的视频编码方法。In step 601, the current CTU of the current frame is obtained. In HEVC/VVC, a frame can be directly divided into CTUs, or a frame can be divided into slices and/or tiles at first, but it is ultimately encoded in CTU units. The division relationship of slices, tiles and CTUs can be found in the related protocols of HEVC/VVC. However, the scope of the present invention is not limited to this, but can be applied to any image data block-based video coding method.

在步骤603中,对当前CTU进行编码单元(CU)分割。在一个实施例中,可以按照HEVC以及之前的视频编码标准,采用四叉树方式对CTU进行分割来得到CU。在一个替换实施例中,可以按照VVC或之后的视频编码标准中的QTBT或其他类似嵌套结构来进行CU分割。但本发明的范围并不局限于此,而是可以应用于任何基于图像数据块的视频编码方法。In step 603, coding unit (CU) segmentation is performed on the current CTU. In one embodiment, the CU may be obtained by dividing the CTU in a quad-tree manner according to the HEVC and previous video coding standards. In an alternative embodiment, the CU partitioning may be performed in accordance with QTBT or other similar nesting structures in VVC or later video coding standards. However, the scope of the present invention is not limited to this, but can be applied to any image data block-based video coding method.

在进行了CU分割后,进行CTU内的CU遍历,其中,针对每个CU进行如下操作。After the CU segmentation is performed, CU traversal within the CTU is performed, wherein the following operations are performed for each CU.

在步骤605中,针对当前CU,确定与如下6种帧内预测模式相对应的最佳帧内预测模式:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式。这些帧内预测模式的细节可以从HEVC/VVC的相关协议中找到。In step 605, for the current CU, determine the best intra prediction mode corresponding to the following 6 intra prediction modes: plane mode, DC mode, upper block angle mode, left block angle mode, vertical mode and horizontal mode. Details of these intra prediction modes can be found in the relevant HEVC/VVC protocols.

在一个优选实施例中,可以针对所述6种帧内预测模式确定最佳帧内预测代价值,并且可以确定与最佳帧内预测代价值相对应的帧内预测模式,作为所述最佳帧内预测模式。In a preferred embodiment, an optimal intra-frame prediction cost value may be determined for the six intra-frame prediction modes, and an intra-frame prediction mode corresponding to the optimal intra-frame prediction cost value may be determined as the optimal intra-frame prediction cost value. Intra prediction mode.

在确定了最佳帧内预测模式后,确定当前CU的与最佳帧内预测模式对应的帧内预测值。After the optimal intra prediction mode is determined, the intra prediction value of the current CU corresponding to the optimal intra prediction mode is determined.

在步骤607中,针对当前CU,根据当前CU的左侧CU和上方CU的预测方式(帧内预测或帧间预测),来采用与特定角度参数对应的分割线对CU进行分割得到两个分割区域,并且根据左侧CU和上方CU的预测方式(帧内预测、帧间预测),所述两个分割区域中的一个区域采用帧内预测,另一个区域采用帧间预测。图5(a)-图5(d)示出了这种分割的一个示例。In step 607, for the current CU, according to the prediction mode (intra-frame prediction or inter-frame prediction) of the left CU of the current CU and the upper CU, the CU is divided by the dividing line corresponding to the specific angle parameter to obtain two divisions region, and according to the prediction modes (intra-frame prediction, inter-frame prediction) of the left CU and the upper CU, one of the two divided regions adopts intra-frame prediction, and the other region adopts inter-frame prediction. Figures 5(a)-5(d) show an example of such a segmentation.

对于所述分割,在一个优选实施例中,针对一个特定分割角度,可以采用相对于该角度的垂直位移的方式来定义划分位置,其中,该垂直位移可以是相对于视频数据块(例如CU)的四个顶点或中心点的,或者相对于其他参考位置的,本发明的范围并不局限于此。For the division, in a preferred embodiment, for a specific division angle, the division position may be defined by means of a vertical displacement relative to the angle, where the vertical displacement may be relative to a video data block (eg CU) of the four vertices or center points, or relative to other reference positions, the scope of the present invention is not limited thereto.

在一个实施例中,在所述分割中,可以采用固定角度和固定位移,如图5(a)-图5(d)所示。这样,可以不必在编码视频流中用信号通知该固定角度和固定位移。In one embodiment, in the segmentation, a fixed angle and a fixed displacement may be used, as shown in Figs. 5(a)-5(d). In this way, the fixed angle and fixed displacement may not have to be signaled in the encoded video stream.

在另一个实施例中,在所述分割中,可以预先定义一组角度(包括开集(0,90)度和(90,180)度内的若干角度值),并用角度索引来加以指示并在编码视频流中以信号通知。附加地或替代地,在所述分割中,可以预先定义与每个角度相对应的一组一个或多个固定位移,并用位移索引来加以指示并在编码视频流中以信号通知。In another embodiment, in the segmentation, a set of angles (including several angle values within the open set (0,90) degrees and (90,180) degrees) can be predefined, indicated by angle indices and encoded in the Signaled in the video stream. Additionally or alternatively, in the partitioning, a set of one or more fixed displacements corresponding to each angle may be predefined and indicated by displacement indices and signaled in the encoded video stream.

在一个实施例中,可以基于代价函数,来在这些角度的子集和这些位移中选择最佳角度和最佳位移。在一个实施例中,所述角度的子集可以服从如下所定义的基于左侧CU和上方CU的预测方式(帧内预测、帧间预测)所确定的锐角或钝角范围,即(0,90)度子集和(90,180)度子集。In one embodiment, the optimal angle and optimal displacement may be selected among a subset of these angles and these displacements based on a cost function. In one embodiment, the subset of angles may obey an acute or obtuse angle range determined based on the prediction modes (intra prediction, inter prediction) of the left CU and the upper CU as defined below, ie (0,90 ) degree subset and (90, 180) degree subset.

在一个替换实施例中,可以直接确定角度值并在编码视频流中以信号通知。在一个实施例中,可以直接确定相对于特定角度的垂直位移值并在编码视频流中以信号通知。In an alternative embodiment, the angle value may be determined directly and signaled in the encoded video stream. In one embodiment, the vertical displacement value relative to a particular angle can be directly determined and signaled in the encoded video stream.

在一个实施例中,这些信号在编码视频流中可以放在CU或CTU级别的语法元素中。In one embodiment, these signals may be placed in CU or CTU level syntax elements in the encoded video stream.

针对特定的角度参数,根据当前CU的左侧CU和上方CU的预测方式(帧内预测或帧间预测),来采用与该角度参数对应的分割线对CU进行分割得到两个分割区域,并且根据左侧CU和上方CU的预测方式(帧内预测或帧间预测),这两个分割区域中的一个区域采用帧内预测,另一个区域采用帧间预测。这里,角度参数指的是用于分割的角度。For a specific angle parameter, according to the prediction mode (intra-frame prediction or inter-frame prediction) of the left CU of the current CU and the upper CU (intra-frame prediction or inter-frame prediction), the CU is divided by the dividing line corresponding to the angle parameter to obtain two divided regions, and According to the prediction mode (intra-frame prediction or inter-frame prediction) of the left CU and the upper CU, one of the two divided regions adopts intra-frame prediction, and the other region adopts inter-frame prediction. Here, the angle parameter refers to the angle used for division.

作为一个优选实施例,当左侧CU和上方CU都采用帧间预测时,使用第一锐角角度参数对CU进行分割,并且左侧区域采用帧间预测,右侧区域采用帧内预测。As a preferred embodiment, when both the left CU and the upper CU use inter-frame prediction, the first acute angle parameter is used to segment the CU, and the left area uses inter-frame prediction, and the right-side area uses intra-frame prediction.

作为一个优选实施例,当左侧CU和上方CU都采用帧内预测时,使用第二锐角角度参数对CU进行分割,并且左侧区域采用帧内预测,右侧区域采用帧间预测。As a preferred embodiment, when both the left CU and the upper CU use intra-frame prediction, the second acute angle parameter is used to segment the CU, and the left area uses intra-frame prediction, and the right-side area uses inter-frame prediction.

作为一个优选实施例,当左侧CU采用帧内预测而上方CU采用帧间预测时,使用第三钝角角度参数对CU进行分割,并且左侧区域采用帧内预测,右侧区域采用帧间预测。As a preferred embodiment, when the left CU adopts intra prediction and the upper CU adopts inter prediction, the third obtuse angle parameter is used to segment the CU, and the left region adopts intra prediction, and the right region adopts inter prediction .

作为一个优选实施例,当左侧CU采用帧间预测而上方CU采用帧内预测时,使用第四钝角角度参数对CU进行分割,并且左侧区域采用帧间预测,右侧区域采用帧内预测。As a preferred embodiment, when the left CU adopts inter prediction and the upper CU adopts intra prediction, the fourth obtuse angle parameter is used to segment the CU, and the left region adopts inter prediction, and the right region adopts intra prediction .

除了角度参数之外,还可以使用与角度参数相对应的位移值,所述位移值表示相对于对应角度的垂直位移。如上所述地,该位移值可以是固定的、从一组预定义值中选择的、等等。In addition to the angle parameter, a displacement value corresponding to the angle parameter can also be used, the displacement value representing the vertical displacement with respect to the corresponding angle. As mentioned above, the displacement value may be fixed, selected from a set of predefined values, and the like.

针对这两个分割区域,确定当前CU的第一组合预测值。容易理解,该第一组合预测值是这两个分割区域依据各自的预测方式得到的对应分割区域预测值的合并。For these two partitioned regions, the first combined predictor for the current CU is determined. It is easy to understand that the first combined predicted value is a combination of the predicted values of the corresponding divided regions obtained by the two divided regions according to their respective prediction modes.

在步骤609中,基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值。在一个优选实施例中,通过对步骤605中得到的帧内预测值和步骤607中得到的第一组合预测值进行加权平均,来确定第二组合预测值。但本发明的范围并不局限于此,而是可以采用任何组合方式,例如简单的求平均等等。In step 609, a second combined prediction value is determined based on the intra prediction value and the first combined prediction value. In a preferred embodiment, the second combined predicted value is determined by performing a weighted average of the intra-frame predicted value obtained in step 605 and the first combined predicted value obtained in step 607 . However, the scope of the present invention is not limited to this, and any combination method can be adopted, such as simple averaging and the like.

在步骤611中,使用该第二组合预测值作为当前CU的预测值来对当前CU进行预测。在一个实施例中,通过用当前CU的视频数据值减去该预测值来得到当前CU的残差值。容易理解,在步骤611中,通常由于CTU到CU的分割过程,当前CU的视频数据值应该已经被检索并暂存在存储器中。或者,在步骤611中可以通过检索来获得当前CU的原始未编码视频数据值。In step 611, the current CU is predicted using the second combined prediction value as the prediction value of the current CU. In one embodiment, the residual value of the current CU is obtained by subtracting the predicted value from the video data value of the current CU. It is easy to understand that in step 611, usually due to the CTU-to-CU segmentation process, the video data value of the current CU should have been retrieved and temporarily stored in the memory. Alternatively, the original uncoded video data value of the current CU may be obtained through retrieval in step 611 .

最后,当前CU的残差值在经过扫描、量化、熵编码后被添加到编码视频流中。容易理解,其他相关参数的信号通知可以使用编码视频流中的语法元素来传递。Finally, the residual value of the current CU is added to the encoded video stream after scanning, quantization, and entropy encoding. It is readily understood that signaling of other relevant parameters may be conveyed using syntax elements in the encoded video stream.

在解码器端,可以进行与图6的方法基本上互补的操作。On the decoder side, operations substantially complementary to the method of FIG. 6 can be performed.

例如,在解码器端,可以从视频流的语法元素中获得关于当前帧的当前编码树单元(CTU)的信息。可以从视频流的语法元素中获得关于对所述当前CTU进行编码单元(CU)分割的信息。For example, at the decoder side, information about the current coding tree unit (CTU) of the current frame can be obtained from syntax elements of the video stream. Information on coding unit (CU) partitioning of the current CTU may be obtained from syntax elements of the video stream.

针对每个CU,可以在CTU级别的语法元素或CU级别的语法元素中获得最佳帧内预测模式,其中,最佳帧内预测模式包括如下6种帧内预测模式之一:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式。For each CU, an optimal intra prediction mode can be obtained in a CTU-level syntax element or a CU-level syntax element, where the optimal intra prediction mode includes one of the following 6 intra prediction modes: plane mode, DC mode, upper block angle mode, left block angle mode, vertical mode and horizontal mode.

可以确定与最佳帧内预测模式对应的帧内预测值。The intra prediction value corresponding to the optimal intra prediction mode may be determined.

针对每个CU,可以在CTU级别的语法元素或CU级别的语法元素中获得针对当前CU的分割信息,所述分割信息包括角度参数和预测方式(帧内预测或帧间预测),所述分割信息将所述CU进行分割得到两个分割区域,所述两个分割区域中的一个区域采用帧内预测,另一个区域采用帧间预测。For each CU, partition information for the current CU can be obtained in a CTU-level syntax element or a CU-level syntax element, the partition information including an angle parameter and a prediction method (intra prediction or inter prediction), the partition The information divides the CU to obtain two divided regions, one of the two divided regions adopts intra-frame prediction, and the other region adopts inter-frame prediction.

作为一个进一步实施例,该分割信息还包括与所述角度参数相对应的位移值,该位移值表示相对于对应角度的垂直位移。在一个实施例中,该垂直位移可以是相对于视频数据块(例如CU)的四个顶点或中心点的,或者相对于其他参考位置的,本发明的范围并不局限于此。As a further embodiment, the segmentation information further includes a displacement value corresponding to the angle parameter, where the displacement value represents a vertical displacement relative to the corresponding angle. In one embodiment, the vertical displacement may be relative to the four vertices or center points of the video data block (eg, CU), or relative to other reference locations, the scope of the present invention is not limited thereto.

在一个实施例中,角度参数是针对一组预先定义的角度的子集中特定角度的角度索引值。In one embodiment, the angle parameter is an angle index value for a particular angle in a subset of a predefined set of angles.

在一个实施例中,该位移值是与该特定角度相对应的一组垂直位移的索引值。所述角度的子集可以服从如下所定义的基于左侧CU和上方CU的预测方式(帧内预测、帧间预测)所确定的锐角或钝角范围,即(0,90)度子集和(90,180)度子集。In one embodiment, the displacement value is an index value of a set of vertical displacements corresponding to the particular angle. The subset of angles may obey the acute or obtuse angle range determined based on the prediction modes (intra prediction, inter prediction) of the left CU and the upper CU as defined below, that is, the (0,90) degree subset and ( 90,180) degree subset.

在一个实施例中,该位移值可以是预先定义的与特定角度相对应的固定位移值。In one embodiment, the displacement value may be a predefined fixed displacement value corresponding to a specific angle.

作为一个进一步实施例,分割信息中包括的预测方式可以指示每个分割区域中哪一个采用帧内预测,而哪一个可以采用帧间预测。在一个优选实施例中,所述预测方式可以仅指示其中一个分割区域的预测方式,而另一个分割区域的预测方式可以由于与该分割区域的预测方式不同而隐含地确定。As a further embodiment, the prediction mode included in the segmentation information may indicate which of each segmented region uses intra-frame prediction and which one may use inter-frame prediction. In a preferred embodiment, the prediction mode may only indicate the prediction mode of one of the divided regions, and the prediction mode of the other divided region may be implicitly determined because it is different from the prediction mode of the divided region.

在一个优选实施例中,例如,当左侧CU和上方CU都采用帧间预测时,所述角度参数为第一锐角角度参数,并且左侧区域采用帧间预测,右侧区域采用帧内预测。在一个优选实施例中,例如,当左侧CU和上方CU都采用帧内预测时,所述角度参数为第二锐角角度参数,并且左侧区域采用帧内预测,右侧区域采用帧间预测。在一个优选实施例中,例如,当左侧CU采用帧内预测而上方CU采用帧间预测时,所述角度参数为第三钝角角度参数,并且左侧区域采用帧内预测,右侧区域采用帧间预测。在一个优选实施例中,例如,当左侧CU采用帧间预测而上方CU采用帧内预测时,所述角度参数为第四钝角角度参数,并且左侧区域采用帧间预测,右侧区域采用帧内预测。In a preferred embodiment, for example, when the left CU and the upper CU both use inter prediction, the angle parameter is the first acute angle parameter, and the left area uses inter prediction, and the right area uses intra prediction . In a preferred embodiment, for example, when intra-frame prediction is used for both the left CU and the upper CU, the angle parameter is the second acute angle parameter, and the left area uses intra-frame prediction, and the right-side area uses inter-frame prediction . In a preferred embodiment, for example, when the left CU adopts intra prediction and the upper CU adopts inter prediction, the angle parameter is the third obtuse angle parameter, and the left region adopts intra prediction, and the right region adopts Inter prediction. In a preferred embodiment, for example, when the left CU adopts inter prediction and the upper CU adopts intra prediction, the angle parameter is the fourth obtuse angle parameter, and the left region adopts inter prediction, and the right region adopts Intra prediction.

在获得了当前CU的分割信息(其可以包括角度参数和预测方式,以及附加地可以包括位移值)和预测方式之后,可以针对这两个分割区域,基于其各自的预测方式来确定第一组合预测值。容易理解,该第一组合预测值是这两个分割区域依据各自的预测方式得到的对应分割区域预测值的合并。After obtaining the segmentation information of the current CU (which may include angle parameters and prediction modes, and additionally may include displacement values) and prediction modes, a first combination may be determined based on their respective prediction modes for the two segmentation regions Predictive value. It is easy to understand that the first combined predicted value is a combination of the predicted values of the corresponding divided regions obtained by the two divided regions according to their respective prediction modes.

可以基于以上确定的帧内预测值和第一组合预测值,来确定当前CU的第二组合预测值,作为当前CU的预测值。在一个优选实施例中,通过对所得到的帧内预测值和第一组合预测值进行加权平均,来确定第二组合预测值。但本发明的范围并不局限于此,而是可以采用任何组合方式,例如简单的求平均等等。The second combined predicted value of the current CU may be determined as the predicted value of the current CU based on the intra predicted value and the first combined predicted value determined above. In a preferred embodiment, the second combined predicted value is determined by performing a weighted average of the obtained intra-frame predicted value and the first combined predicted value. However, the scope of the present invention is not limited to this, and any combination method can be adopted, such as simple averaging and the like.

可以从视频流获得当前CU的残差值。容易理解,该步骤可以在其他步骤之前执行,或者与其他步骤中的一个或多个步骤并发地执行。The residual value of the current CU may be obtained from the video stream. It is readily understood that this step may be performed before the other steps, or may be performed concurrently with one or more of the other steps.

可以基于当前CU的残差值和当前CU的预测值来重构所述CU的视频数据。Video data for the current CU may be reconstructed based on residual values for the current CU and prediction values for the current CU.

图6中示出了一种可用于视频编解码的设备,该设备包括:处理器和存储器,在所述存储器中包括用于实现本发明的各种视频编解码方法的处理器可执行代码或指令,其中,所述处理器可以是视频编解码器。Figure 6 shows a device that can be used for video encoding and decoding, the device comprising: a processor and a memory, the memory including processor executable codes for implementing various video encoding and decoding methods of the present invention or instructions, wherein the processor may be a video codec.

根据另一方面,本公开内容还可以涉及用于实现上述编码方法的编码器。该编码器可以是专用硬件。根据另一方面,本公开内容还可以涉及对应的对编码后的视频流进行解码的解码器。根据另一方面,本公开内容还可以涉及用于上述编码方法或解码方法的视频编解码器。According to another aspect, the present disclosure may also relate to an encoder for implementing the above encoding method. The encoder can be dedicated hardware. According to another aspect, the present disclosure may also relate to a corresponding decoder for decoding an encoded video stream. According to another aspect, the present disclosure may also relate to a video codec for the above-mentioned encoding method or decoding method.

根据本发明的一个具体实施例,所述设备可以片上系统(SOC)、计算机、服务器、云服务器中的一种或多种。According to a specific embodiment of the present invention, the device may be one or more of a system on a chip (SOC), a computer, a server, and a cloud server.

根据另一方面,本公开内容还可以涉及执行本文所述方法的计算机程序产品。根据进一步的方面,该计算机程序产品具有非暂时性存储介质,其上存储有计算机代码/指令,当其被处理器执行时,可以实现本文所述的各种操作。According to another aspect, the present disclosure may also relate to a computer program product for performing the methods described herein. According to a further aspect, the computer program product has a non-transitory storage medium having computer code/instructions stored thereon which, when executed by a processor, can implement the various operations described herein.

虽然以上主要针对HEVC/VVC进行了论述,但是本领域技术人员人员很容易理解,本发明显然可以应用于其他视频编解码标准,只要这些视频编解码标准采用与HEVC/VVC类似的视频数据块方式即可。Although the above discussion mainly focuses on HEVC/VVC, those skilled in the art can easily understand that the present invention can obviously be applied to other video codec standards, as long as these video codec standards adopt a video data block method similar to HEVC/VVC That's it.

在本公开内容中,术语“图片(picture)”和“帧(frame)”经常可互换地使用,除非明确表明某个特征或操作是专门针对“帧”的。In this disclosure, the terms "picture" and "frame" are often used interchangeably unless it is clearly indicated that a feature or operation is specific to the "frame".

当用硬件实现时,视频编码器可以用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件或者设计为执行本文所述功能的其任意组合,来实现或执行。通用处理器可以是微处理器,但是可替换地,该处理器也可以是任何常规的处理器、控制器、微控制器或者状态机。处理器也可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器的组合、一个或多个微处理器与DSP内核的组合或者任何其它此种结构。另外,至少一个处理器可以包括可操作以执行上述的一个或多个步骤和/或操作的一个或多个模块。When implemented in hardware, the video encoder may use a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic A device, discrete hardware component, or any combination thereof designed to perform the functions described herein is implemented or performed. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, a combination of multiple microprocessors, a combination of one or more microprocessors and a DSP core, or any other such configuration. Additionally, at least one processor may include one or more modules operable to perform one or more of the steps and/or operations described above.

当用硬件实现时,视频编码器或者包含视频编解码的设备可以是片上系统(SOC)。When implemented in hardware, the video encoder or device containing the video codec may be a system on a chip (SOC).

当用ASIC、FPGA等硬件电路来实现视频编码器时,其可以包括被配置为执行各种功能的各种电路块。本领域技术人员可以根据施加在整个系统上的各种约束条件来以各种方式设计和实现这些电路,来实现本发明所公开的各种功能。When the video encoder is implemented with hardware circuits such as ASIC, FPGA, etc., it may include various circuit blocks configured to perform various functions. Those skilled in the art can design and implement these circuits in various ways according to various constraints imposed on the entire system to achieve various functions disclosed in the present invention.

尽管前述公开文件论述了示例性方案和/或实施例,但应注意,在不背离由权利要求书定义的描述的方案和/或实施例的范围的情况下,可以在此做出许多变化和修改。而且,尽管以单数形式描述或要求的所述方案和/或实施例的要素,但也可以设想复数的情况,除非明确表示了限于单数。另外,任意方案和/或实施例的全部或部分都可以与任意其它方案和/或实施例的全部或部分结合使用,除非表明了有所不同。While the foregoing disclosure discusses exemplary aspects and/or embodiments, it should be noted that many changes and/or changes may be made herein without departing from the scope of the described aspects and/or embodiments as defined by the claims. Revise. Furthermore, although elements of the described aspects and/or embodiments are described or claimed in the singular, the plural is contemplated unless limitation to the singular is expressly stated. Additionally, all or a portion of any aspect and/or embodiment may be used in conjunction with all or a portion of any other aspect and/or embodiment, unless indicated to the contrary.

根据示例1,一种用于视频解码的方法,包括:According to example 1, a method for video decoding, comprising:

从视频流的语法元素中获得关于当前帧的当前编码树单元(CTU)的信息;obtain information about the current coding tree unit (CTU) of the current frame from a syntax element of the video stream;

从视频流的语法元素中获得关于对所述当前CTU进行编码单元(CU)分割的信息;以及针对每个CU:从视频流中获得最佳帧内预测模式,其中,所述最佳帧内预测模式包括如下6种帧内预测模式之一:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式;确定与所述最佳帧内预测模式对应的帧内预测值;从视频流中获得针对所述CU的分割信息,所述分割信息包括角度参数和预测方式(帧内预测、帧间预测),所述分割信息将所述CU进行分割得到两个分割区域,所述两个分割区域中的一个区域采用帧内预测,另一个区域采用帧间预测;针对所述两个分割区域,基于所述预测方式来确定第一组合预测值;基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值;将所述第二组合预测值作为所述CU的预测值。obtain information on coding unit (CU) partitioning of the current CTU from syntax elements of the video stream; and for each CU: obtain the best intra prediction mode from the video stream, wherein the best intra prediction mode is The prediction mode includes one of the following 6 intra prediction modes: plane mode, DC mode, upper block angle mode, left block angle mode, vertical mode and horizontal mode; determine the intra prediction corresponding to the best intra prediction mode The segmentation information for the CU is obtained from the video stream, the segmentation information includes angle parameters and prediction methods (intra-frame prediction, inter-frame prediction), and the segmentation information divides the CU to obtain two segmentation regions , one of the two divided regions adopts intra-frame prediction, and the other region adopts inter-frame prediction; for the two divided regions, the first combined prediction value is determined based on the prediction method; based on the intra-frame prediction The predicted value and the first combined predicted value are used to determine a second combined predicted value; the second combined predicted value is used as the predicted value of the CU.

根据示例2,如示例1所述的方法,其中:当左侧CU和上方CU都采用帧间预测时,所述角度参数为第一锐角角度参数,并且左侧区域采用帧间预测,右侧区域采用帧内预测;当左侧CU和上方CU都采用帧内预测时,所述角度参数为第二锐角角度参数,并且左侧区域采用帧内预测,右侧区域采用帧间预测;当左侧CU采用帧内预测而上方CU采用帧间预测时,所述角度参数为第三钝角角度参数,并且左侧区域采用帧内预测,右侧区域采用帧间预测;以及当左侧CU采用帧间预测而上方CU采用帧内预测时,所述角度参数为第四钝角角度参数,并且左侧区域采用帧间预测,右侧区域采用帧内预测。According to example 2, the method of example 1, wherein: when the left CU and the upper CU both use inter prediction, the angle parameter is the first acute angle parameter, and the left area uses inter prediction, the right The area adopts intra-frame prediction; when both the left CU and the upper CU use intra-frame prediction, the angle parameter is the second acute angle parameter, and the left area adopts intra-frame prediction, and the right-side area adopts inter-frame prediction; When the side CU adopts intra prediction and the upper CU adopts inter prediction, the angle parameter is the third obtuse angle parameter, and the left region adopts intra prediction and the right region adopts inter prediction; and when the left CU adopts frame prediction When inter prediction is used and the upper CU uses intra prediction, the angle parameter is the fourth obtuse angle parameter, and the left area uses inter prediction, and the right area uses intra prediction.

根据示例3,如示例1或2所述的方法,其中,基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值进一步包括:通过对所述帧内预测值和所述第一组合预测值进行加权平均,来确定所述第二组合预测值。According to example 3, the method of example 1 or 2, wherein determining a second combined prediction value based on the intra prediction value and the first combined prediction value further comprises: by comparing the intra prediction value A weighted average is performed with the first combined predicted value to determine the second combined predicted value.

根据示例4,如示例1-3中任一项所述的方法,其中,所述分割信息还包括与所述角度参数相对应的位移值,所述位移值表示相对于对应角度的垂直位移。According to example 4, the method of any one of examples 1-3, wherein the segmentation information further includes a displacement value corresponding to the angle parameter, the displacement value representing a vertical displacement relative to a corresponding angle.

根据示例5,一种用于视频编解码的方法,包括:According to example 5, a method for video encoding and decoding, comprising:

获得当前帧的当前编码树单元(CTU);Get the current coding tree unit (CTU) of the current frame;

对所述当前CTU进行编码单元(CU)分割;以及performing coding unit (CU) partitioning on the current CTU; and

针对每个CU:确定与如下6种帧内预测模式相对应的最佳帧内预测模式:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式;确定与所述最佳帧内预测模式对应的帧内预测值;根据左侧CU和上方CU的预测方式(帧内预测、帧间预测),来采用与角度参数对应的分割线对CU进行分割得到两个分割区域,并且根据左侧CU和上方CU的预测方式(帧内预测、帧间预测),所述两个分割区域中的一个区域采用帧内预测,另一个区域采用帧间预测;针对所述两个分割区域,确定第一组合预测值;基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值;以及将所述第二组合预测值作为所述CU的预测值来对所述CU进行预测。For each CU: determine the best intra prediction mode corresponding to the following 6 intra prediction modes: plane mode, DC mode, upper block angle mode, left block angle mode, vertical mode and horizontal mode; The intra-frame prediction value corresponding to the best intra-frame prediction mode; according to the prediction modes (intra-frame prediction, inter-frame prediction) of the left CU and the upper CU, use the dividing line corresponding to the angle parameter to divide the CU to obtain two divisions area, and according to the prediction methods (intra-frame prediction, inter-frame prediction) of the left CU and the upper CU, one of the two divided areas adopts intra-frame prediction, and the other area adopts inter-frame prediction; a divided region, determining a first combined prediction value; based on the intra prediction value and the first combined prediction value, determining a second combined prediction value; and using the second combined prediction value as the prediction of the CU value to predict the CU.

根据示例6,如示例4所述的方法,其中,所述分割线还对应于与所述角度参数相对应的位移值,所述位移值表示相对于对应角度的垂直位移。According to example 6, the method of example 4, wherein the dividing line further corresponds to a displacement value corresponding to the angle parameter, the displacement value representing a vertical displacement relative to a corresponding angle.

根据示例7,如如示例4或5所述的方法,其中:当左侧CU和上方CU都采用帧间预测时,使用第一锐角角度参数对CU进行分割,并且左侧区域采用帧间预测,右侧区域采用帧内预测;当左侧CU和上方CU都采用帧内预测时,使用第二锐角角度参数对CU进行分割,并且左侧区域采用帧内预测,右侧区域采用帧间预测;当左侧CU采用帧内预测而上方CU采用帧间预测时,使用第三钝角角度参数对CU进行分割,并且左侧区域采用帧内预测,右侧区域采用帧间预测;以及当左侧CU采用帧间预测而上方CU采用帧内预测时,使用第四钝角角度参数对CU进行分割,并且左侧区域采用帧间预测,右侧区域采用帧内预测。According to example 7, the method of example 4 or 5, wherein: when both the left CU and the upper CU employ inter prediction, the CU is segmented using the first acute angle parameter, and the left region employs inter prediction , the right region adopts intra-frame prediction; when both the left CU and the upper CU adopt intra-frame prediction, the second acute angle parameter is used to segment the CU, and the left region adopts intra-frame prediction, and the right-side region adopts inter-frame prediction When the left CU adopts intra prediction and the upper CU adopts inter prediction, use the third obtuse angle parameter to segment the CU, and the left area adopts intra prediction, and the right area adopts inter prediction; and when the left When the CU adopts inter prediction and the upper CU adopts intra prediction, the fourth obtuse angle parameter is used to segment the CU, and the left region adopts inter prediction, and the right region adopts intra prediction.

根据示例8,如示例4-6中任一项所述的方法,其中,基于所述帧内预测值和所述第一组合预测值,来确定第二组合预测值进一步包括:通过对所述帧内预测值和所述第一组合预测值进行加权平均,来确定所述第二组合预测值。According to example 8, the method of any one of examples 4-6, wherein determining a second combined predictor based on the intra predictor and the first combined predictor further comprises: The intra-frame predicted value and the first combined predicted value are weighted averaged to determine the second combined predicted value.

根据示例9,如示例4-7中任一项所述的方法,其中,确定与如下6种帧内预测模式相对应的最佳帧内预测模式:平面模式、DC模式、上块角度模式、左块角度模式、垂直模式和水平模式进一步包括:针对所述6种帧内预测模式确定最佳帧内预测代价值;以及确定与最佳帧内预测代价值相对应的帧内预测模式,作为所述最佳帧内预测模式。According to example 9, the method of any one of examples 4-7, wherein an optimal intra prediction mode corresponding to the following 6 intra prediction modes is determined: planar mode, DC mode, upper block angle mode, The left block angle mode, the vertical mode and the horizontal mode further include: determining an optimal intra prediction cost value for the 6 intra prediction modes; and determining an intra prediction mode corresponding to the optimal intra prediction cost value as the best intra prediction mode.

根据示例10,一种能够执行视频解码的计算设备,其包括:存储器,其存储有用于视频编解码的可执行代码;一个或多个处理器或视频编解码器,其用于执行存储器中存储的用于视频编解码的可执行代码,以执行如示例1所述的方法。According to example 10, a computing device capable of performing video decoding, comprising: a memory storing executable code for video encoding and decoding; one or more processors or video codecs for performing storage in the memory Executable code for video encoding and decoding to perform the method as described in Example 1.

Claims (10)

1. A method for video decoding, comprising:
obtaining information on a current Coding Tree Unit (CTU) of a current frame from a syntax element of a video stream;
obtaining information on Coding Unit (CU) partitioning of the current CTU from a syntax element of a video stream; and
for each CU:
obtaining an optimal intra prediction mode from a video stream, wherein the optimal intra prediction mode comprises one of the following 6 intra prediction modes: a planar mode, a DC mode, an upper block angle mode, a left block angle mode, a vertical mode, and a horizontal mode;
determining an intra prediction value corresponding to the optimal intra prediction mode;
obtaining partition information for the CU from a video stream, wherein the partition information comprises an angle parameter and a prediction mode (intra-frame prediction and inter-frame prediction), the partition information partitions the CU into two partition areas, one of the two partition areas adopts intra-frame prediction, and the other partition area adopts inter-frame prediction;
determining a first combined prediction value based on the prediction mode for the two divided areas;
determining a second combined prediction value based on the intra prediction value and the first combined prediction value;
and taking the second combined predicted value as the predicted value of the CU.
2. The method of claim 1, wherein:
when the left-side CU and the upper CU adopt inter-frame prediction, the angle parameter is a first acute angle parameter, the left-side area adopts inter-frame prediction, and the right-side area adopts intra-frame prediction;
when both the left-side CU and the upper CU adopt intra-frame prediction, the angle parameter is a second acute angle parameter, the left-side area adopts intra-frame prediction, and the right-side area adopts inter-frame prediction;
when the left-side CU adopts intra-frame prediction and the upper CU adopts inter-frame prediction, the angle parameter is a third obtuse angle parameter, the left-side area adopts intra-frame prediction, and the right-side area adopts inter-frame prediction; and
when the left-side CU employs inter-frame prediction and the upper CU employs intra-frame prediction, the angle parameter is a fourth obtuse angle parameter, and the left-side area employs inter-frame prediction and the right-side area employs intra-frame prediction.
3. The method of claim 1 or 2, wherein determining a second combined predictor based on the intra predictor and the first combined predictor further comprises:
determining the second combined predictor by weighted averaging the intra predictor and the first combined predictor.
4. The method of any of claims 1-3, wherein the segmentation information further includes a displacement value corresponding to the angle parameter, the displacement value representing a vertical displacement relative to a corresponding angle.
5. A method for video coding, comprising:
obtaining a current Coding Tree Unit (CTU) of a current frame;
performing Coding Unit (CU) partitioning on the current CTU; and
for each CU:
determining an optimal intra prediction mode corresponding to the following 6 intra prediction modes: a planar mode, a DC mode, an upper block angle mode, a left block angle mode, a vertical mode, and a horizontal mode;
determining an intra prediction value corresponding to the optimal intra prediction mode;
dividing the CU by a dividing line corresponding to the angle parameter according to prediction methods (intra prediction and inter prediction) of the left-side CU and the upper CU to obtain two divided regions, and according to the prediction methods (intra prediction and inter prediction) of the left-side CU and the upper CU, one of the two divided regions adopts intra prediction and the other adopts inter prediction;
determining a first combined predicted value for the two partitioned areas;
determining a second combined prediction value based on the intra prediction value and the first combined prediction value; and
predicting the CU by taking the second combined predicted value as a predicted value of the CU.
6. The method of claim 4, wherein the split line further corresponds to a displacement value corresponding to the angle parameter, the displacement value representing a vertical displacement relative to a corresponding angle.
7. The method of claim 4 or 5, wherein:
when both the left-side CU and the upper CU adopt inter-frame prediction, the first acute angle parameter is used for dividing the CU, the left-side area adopts inter-frame prediction, and the right-side area adopts intra-frame prediction;
when both the left-side CU and the upper CU adopt intra-frame prediction, the second acute angle parameter is used for dividing the CUs, the intra-frame prediction is adopted in the left-side area, and the inter-frame prediction is adopted in the right-side area;
when the left-side CU adopts intra-frame prediction and the upper CU adopts inter-frame prediction, the third obtuse angle parameter is used for dividing the CU, the left-side area adopts intra-frame prediction, and the right-side area adopts inter-frame prediction; and
when the left-side CU employs inter prediction and the upper CU employs intra prediction, the CU is partitioned using the fourth obtuse angle parameter, and the left-side region employs inter prediction and the right-side region employs intra prediction.
8. The method of any of claims 4-6, wherein determining a second combined predictor based on the intra predictor and the first combined predictor further comprises:
determining the second combined predictor by weighted averaging the intra predictor and the first combined predictor.
9. The method according to any of claims 4-7, wherein the best intra prediction mode is determined corresponding to the following 6 intra prediction modes: the planar mode, the DC mode, the upper block angle mode, the left block angle mode, the vertical mode, and the horizontal mode further include:
determining an optimal intra prediction cost value for the 6 intra prediction modes; and
and determining the intra-frame prediction mode corresponding to the optimal intra-frame prediction cost value as the optimal intra-frame prediction mode.
10. A computing device capable of performing video decoding, comprising:
a memory storing executable code for video coding;
one or more processors or video codecs to execute executable code stored in memory for video codec to perform the method of claim 1.
CN202210040502.1A 2022-01-14 2022-01-14 Combined predictor determination in video coding Active CN114302138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210040502.1A CN114302138B (en) 2022-01-14 2022-01-14 Combined predictor determination in video coding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210040502.1A CN114302138B (en) 2022-01-14 2022-01-14 Combined predictor determination in video coding

Publications (2)

Publication Number Publication Date
CN114302138A true CN114302138A (en) 2022-04-08
CN114302138B CN114302138B (en) 2024-10-22

Family

ID=80978149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210040502.1A Active CN114302138B (en) 2022-01-14 2022-01-14 Combined predictor determination in video coding

Country Status (1)

Country Link
CN (1) CN114302138B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215521A1 (en) * 2016-09-22 2019-07-11 Mediatek Inc. Method and apparatus for video coding using decoder side intra prediction derivation
CN111107356A (en) * 2018-10-27 2020-05-05 华为技术有限公司 Image prediction method and device
CN112840654A (en) * 2018-10-12 2021-05-25 韦勒斯标准与技术协会公司 Video signal processing method and apparatus using multi-hypothesis prediction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215521A1 (en) * 2016-09-22 2019-07-11 Mediatek Inc. Method and apparatus for video coding using decoder side intra prediction derivation
CN112840654A (en) * 2018-10-12 2021-05-25 韦勒斯标准与技术协会公司 Video signal processing method and apparatus using multi-hypothesis prediction
CN111107356A (en) * 2018-10-27 2020-05-05 华为技术有限公司 Image prediction method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAI ZHANG: "Intra-Prediction Mode Propagation for Video Coding", IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 1 March 2019 (2019-03-01) *
朱涛;: "基于帧内帧间联合预测的深度视频编码方法", 信息技术, no. 10, 25 October 2016 (2016-10-25) *

Also Published As

Publication number Publication date
CN114302138B (en) 2024-10-22

Similar Documents

Publication Publication Date Title
US12095987B2 (en) Method and apparatus for processing video signal
CN106067977B (en) For the device encoded to image
CN107105280B (en) Apparatus for encoding moving picture
CA2968598C (en) Method for deriving a merge candidate block and device using same
CN116567218A (en) Image encoding/decoding method and image data transmitting method
CN117221582A (en) Image encoding/decoding apparatus and apparatus for transmitting image data
JPWO2010067529A1 (en) Moving picture decoding method and apparatus, moving picture encoding method and apparatus
US20220368901A1 (en) Image encoding method/device, image decoding method/device and recording medium having bitstream stored therein
CN113287305A (en) Video encoding/decoding method, apparatus and recording medium storing bit stream therein
CN115426500A (en) Image decoding method and image encoding method
CN113841399A (en) Image encoding/decoding method and apparatus
CN113438479B (en) Rate Control Based on CTU Information Entropy
CN114302138B (en) Combined predictor determination in video coding
CN116684577A (en) Fast Affine Mode Decision Based on Motion Vector Difference
CN116684578A (en) Affine model optimization based on control point motion vectors
CN116567206A (en) Selecting a prediction mode for a CU in Screen Content Coding (SCC)
AU2016200597B2 (en) Method for inducing a merge candidate block and device using same
CN116647676A (en) Quick selection of CU division based on the characteristics of screen content area

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant