[go: up one dir, main page]

CN114300923A - A kind of semiconductor saturable absorption mirror and preparation method thereof - Google Patents

A kind of semiconductor saturable absorption mirror and preparation method thereof Download PDF

Info

Publication number
CN114300923A
CN114300923A CN202111680297.7A CN202111680297A CN114300923A CN 114300923 A CN114300923 A CN 114300923A CN 202111680297 A CN202111680297 A CN 202111680297A CN 114300923 A CN114300923 A CN 114300923A
Authority
CN
China
Prior art keywords
layer
quantum well
strain
well layer
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111680297.7A
Other languages
Chinese (zh)
Inventor
林楠
熊聪
马骁宇
刘素平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202111680297.7A priority Critical patent/CN114300923A/en
Publication of CN114300923A publication Critical patent/CN114300923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明提供一种半导体可饱和吸收镜及其制备方法,包括:衬底,依次叠设于衬底上的缓冲层、分布式布拉格反射镜层、下隔离层、应变补偿多量子阱层、上隔离层、下介质膜层、上介质膜层。其中应变补偿多量子阱层为张应变量子垒层和压应变量子阱层交叉叠设而成,应变补偿多量子阱层外表面均布置为张应变量子垒层。下隔离层、应变补偿多量子阱层、上隔离层的总光学厚度为λ、1.5λ、2λ的一种,其中,λ为掺Yb超快光纤激光器的激射波长。本发明半导体可饱和吸收镜具有较高的调制深度,应用于掺Yb光纤超快激光器可实现自动锁模,重复周期稳定。

Figure 202111680297

The invention provides a semiconductor saturable absorption mirror and a preparation method thereof, comprising: a substrate, a buffer layer, a distributed Bragg mirror layer, a lower isolation layer, a strain compensation multiple quantum well layer, an upper Isolation layer, lower dielectric film layer, upper dielectric film layer. The strain compensation multi-quantum well layer is formed by overlapping tensile strain quantum barrier layers and compressive strain quantum well layers, and the outer surfaces of the strain compensation multi-quantum well layers are all arranged as tensile strain quantum barrier layers. The total optical thickness of the lower isolation layer, the strain-compensated multiple quantum well layer, and the upper isolation layer is one of λ, 1.5λ, and 2λ, where λ is the lasing wavelength of the Yb-doped ultrafast fiber laser. The semiconductor saturable absorption mirror of the invention has a high modulation depth, and can realize automatic mode locking when applied to a Yb-doped fiber ultrafast laser, and the repetition period is stable.

Figure 202111680297

Description

一种半导体可饱和吸收镜及其制备方法A kind of semiconductor saturable absorption mirror and preparation method thereof

技术领域technical field

本发明属于超快激光技术领域,尤其涉及一种半导体可饱和吸收镜及其制备方法。The invention belongs to the technical field of ultrafast lasers, and in particular relates to a semiconductor saturable absorption mirror and a preparation method thereof.

背景技术Background technique

超快激光器凭借其高峰值功率,窄脉冲宽度等优点,在材料精细加工,生物医疗,科学研究,军事国防等领域获得了广泛的应用。半导体可饱和吸收镜作为一种锁模器件,因其具有自启动、易于集成、覆盖波段范围广、结构紧凑以及设计灵活等优点,已经广泛应用于固体、光纤和半导体等各种类型超快激光器。目前工业市场上主流的皮秒级固体和光纤激光器均为基于半导体可饱和吸收镜(SESAM)的被动锁模激光器,而且随着掺Yb光纤超快激光器的广泛应用,满足其所需的SESAM成为超快激光行业关注的焦点。With its advantages of high peak power and narrow pulse width, ultrafast lasers have been widely used in the fields of fine material processing, biomedicine, scientific research, military and national defense. As a mode-locked device, semiconductor saturable absorber mirrors have been widely used in various types of ultrafast lasers such as solid-state, optical fibers, and semiconductors due to their advantages of self-starting, easy integration, wide coverage, compact structure, and flexible design. . At present, the mainstream picosecond solid-state and fiber lasers in the industrial market are passively mode-locked lasers based on semiconductor saturable absorber mirrors (SESAMs). The focus of the ultrafast laser industry.

光纤激光器对SESAM的特性参数要求与固体激光器有所不同,固体激光器通常要求SESAM的调制深度为0.5-3%,而光纤激光器要求SESAM的调制深度高达10-30%,即是要求SESAM拥有更厚的吸收层。应用于掺Yb光纤超快激光器的SESAM的吸收层一般选用InGaAs材料,其中In的组分范围为25%-32%,使得InGaAs材料与GaAs衬底之间存在较大失配,因此InGaAs的临界厚度仅约为10nm,而高调制深度的SESAM的吸收层厚度为数百纳米。由于较大的晶格失配导致吸收层外延材料质量极易恶化,造成了掺Yb光纤超快激光器所需的SESAM普遍存在损伤阈值低和使用寿命短的问题。The characteristic parameters of fiber lasers for SESAM are different from those of solid-state lasers. Solid-state lasers usually require a modulation depth of 0.5-3% for SESAM, while fiber lasers require a modulation depth of SESAM as high as 10-30%, which means that SESAM has a thicker SESAM. absorbing layer. The absorption layer of the SESAM applied to the Yb-doped fiber ultrafast laser is generally made of InGaAs material, in which the composition of In ranges from 25% to 32%, which causes a large mismatch between the InGaAs material and the GaAs substrate. Therefore, the critical value of InGaAs is The thickness is only about 10 nm, while the absorber layer thickness of SESAM with high modulation depth is hundreds of nanometers. Due to the large lattice mismatch, the quality of the epitaxial material of the absorber layer is easily deteriorated, resulting in the low damage threshold and short service life of the SESAM required for the Yb-doped fiber ultrafast laser.

目前,国内应用于掺Yb光纤激光器所需的SESAM主要依赖于进口,然而,进口商品同样存在损伤阈值低,使用寿命短的问题,国内部分超快激光器厂商通过增加换点装置来延长SESAM的使用寿命和简化维修工作。而这些措施只是增加了同一块SESAM的使用次数,却没有从根本上解决损伤阈值低和使用寿命短的问题。At present, the SESAM required for domestic application of Yb-doped fiber lasers mainly relies on imports. However, imported products also have the problems of low damage threshold and short service life. Some domestic ultrafast laser manufacturers extend the use of SESAM by adding point changing devices. longevity and simplified maintenance work. These measures only increase the number of times the same SESAM is used, but do not fundamentally solve the problems of low damage threshold and short service life.

发明内容SUMMARY OF THE INVENTION

(一)要解决的技术问题(1) Technical problems to be solved

针对现有的技术问题,本发明提出一种半导体可饱和吸收镜及其制备方法;从SESAM本身出发,优化其外延结构和改善材料质量,用于至少部分解决上述技术问题之一。In view of the existing technical problems, the present invention proposes a semiconductor saturable absorber mirror and a preparation method thereof; starting from SESAM itself, optimizing its epitaxial structure and improving material quality are used to at least partially solve one of the above technical problems.

(二)技术方案(2) Technical solutions

本发明一方面提供一种半导体可饱和吸收镜,包括:衬底,依次叠设于衬底上的缓冲层、分布式布拉格反射镜层、下隔离层、应变补偿多量子阱层、上隔离层;应变补偿多量子阱层为张应变量子垒层和压应变量子阱层交叉叠设而成,应变补偿多量子阱层外表面均布置为张应变量子垒层。One aspect of the present invention provides a semiconductor saturable absorber mirror, comprising: a substrate, a buffer layer, a distributed Bragg mirror layer, a lower isolation layer, a strain-compensated multiple quantum well layer, and an upper isolation layer stacked on the substrate in sequence The strain-compensated multi-quantum well layer is formed by overlapping tensile strain quantum barrier layers and compressive strain quantum well layers, and the outer surfaces of the strain-compensated multi-quantum well layers are all arranged as tensile strain quantum barrier layers.

可选的,衬底材料包括GaAs材料。Optionally, the substrate material includes GaAs material.

可选的,上隔离层、下隔离层的物理厚度为4-10nm。Optionally, the physical thickness of the upper isolation layer and the lower isolation layer is 4-10 nm.

可选的,下隔离层、应变补偿多量子阱层、上隔离层的总光学厚度为λ、1.5λ、2λ的一种,其中,λ为掺Yb超快光纤激光器的激射波长。Optionally, the total optical thickness of the lower isolation layer, the strain-compensated multiple quantum well layer, and the upper isolation layer is one of λ, 1.5λ, and 2λ, where λ is the lasing wavelength of the Yb-doped ultrafast fiber laser.

可选的,应变补偿多量子阱层周期数为10-45。Optionally, the period number of the strain-compensated multiple quantum well layer is 10-45.

可选的,张应变量子垒层材料包括GaAsP材料,压应变量子阱层材料包括InGaAs材料。Optionally, the tensile strain quantum barrier layer material includes GaAsP material, and the compressive strain quantum well layer material includes InGaAs material.

可选的,张应变量子垒层、压应变量子阱层物理厚度为6-15nm。Optionally, the physical thickness of the tensile strain quantum barrier layer and the compressive strain quantum well layer is 6-15 nm.

可选的,张应变量子阱层的光致发光谱为λ-λ+20nm,其中,λ为掺Yb超快光纤激光器的激射波长。Optionally, the photoluminescence spectrum of the tensile strain quantum well layer is λ-λ+20 nm, where λ is the lasing wavelength of the Yb-doped ultrafast fiber laser.

可选的,半导体可饱和吸收镜还包括依次叠设于所述上隔离层160表面的下介质膜层、上介质膜层,所述下介质膜层、上介质膜层的光学厚度均为λ/4,λ为掺Yb超快光纤激光器的激射波长。Optionally, the semiconductor saturable absorption mirror further includes a lower dielectric film layer and an upper dielectric film layer stacked on the surface of the upper isolation layer 160 in sequence, and the optical thicknesses of the lower dielectric film layer and the upper dielectric film layer are both λ. /4, λ is the lasing wavelength of the Yb-doped ultrafast fiber laser.

本发明另一方面提供一种应用于半导体可饱和吸收镜的制备方法,包括:在衬底表面依次叠设缓冲层、分布式布拉格反射镜层、下隔离层、应变补偿多量子阱层、上隔离层、下介质膜层、上介质膜层;其中,应变补偿多量子阱层为张应变量子垒层和压应变量子阱层交叉叠设而成,应变补偿多量子阱层外表面均布置为张应变量子垒层。Another aspect of the present invention provides a preparation method applied to a semiconductor saturable absorber mirror, comprising: sequentially stacking a buffer layer, a distributed Bragg mirror layer, a lower isolation layer, a strain-compensated multiple quantum well layer, an upper The isolation layer, the lower dielectric film layer, and the upper dielectric film layer; wherein, the strain compensation multi-quantum well layer is formed by overlapping a tensile strain quantum barrier layer and a compressive strain quantum well layer, and the outer surface of the strain compensation multi-quantum well layer is arranged as The tensile strain quantum barrier layer.

(三)有益效果(3) Beneficial effects

(1)本申请结构中采用应变补偿多量子阱层,可以有效缓解异质结晶格失配引起材料质量恶化,有效提高其损伤阈值和使用寿命。(1) The strain compensation multi-quantum well layer is adopted in the structure of the present application, which can effectively alleviate the deterioration of material quality caused by heterocrystalline lattice mismatch, and effectively improve its damage threshold and service life.

(2)下隔离层、上隔离层与应变补偿多量子阱层的总光学厚度为λ、1.5λ、2λ的一种;减少了其他材料对入射光的吸收,有效降低非饱和损耗,易于实现锁模,降低了SESAM的热效应,从而可以获得更长的使用寿命。(2) The total optical thickness of the lower isolation layer, the upper isolation layer and the strain-compensated multiple quantum well layer is one of λ, 1.5λ, and 2λ; it reduces the absorption of incident light by other materials, effectively reduces unsaturated loss, and is easy to implement Mode-locking reduces the thermal effect of the SESAM, resulting in a longer service life.

(3)在上隔离层表面依次制备下介质膜层、上介质膜层,不仅对SESAM晶片起到保护作用,同时有助于提高SESAM的损伤阈值。(3) The lower dielectric film layer and the upper dielectric film layer are sequentially prepared on the surface of the upper isolation layer, which not only protects the SESAM wafer, but also helps to improve the damage threshold of the SESAM.

附图说明Description of drawings

图1为本发明实施例中的SESAM的结构示意图;Fig. 1 is the structural representation of SESAM in the embodiment of the present invention;

图2为本发明实施例中的SESAM外延片的光致发光谱测试图;Fig. 2 is the photoluminescence spectrum test chart of the SESAM epitaxial wafer in the embodiment of the present invention;

图3为本发明实施例提供的半导体可饱和吸收镜制备方法的流程图;3 is a flowchart of a method for fabricating a semiconductor saturable absorption mirror provided by an embodiment of the present invention;

图4为本发明实施例中的SESAM外延片的高分辨X射线双晶衍射摇摆曲线测试图;Fig. 4 is the high-resolution X-ray twin-crystal diffraction rocking curve test chart of the SESAM epitaxial wafer in the embodiment of the present invention;

图5为本发明实施例中的SESAM的反射率测试图;Fig. 5 is the reflectivity test chart of SESAM in the embodiment of the present invention;

图6为本发明实施例中的SESAM锁模掺Yb光纤激光器输出光谱图;6 is an output spectrogram of a SESAM mode-locked Yb-doped fiber laser in an embodiment of the present invention;

图7为本发明实施例中的SESAM锁模掺Yb光纤激光器输出在示波器上的锁模脉冲序列;7 is a mode-locked pulse sequence output on an oscilloscope by a SESAM mode-locked Yb-doped fiber laser in an embodiment of the present invention;

图8为本发明实施例中的SESAM锁模掺Yb光纤激光器输出脉冲的自相关仪测试图。FIG. 8 is an autocorrelator test diagram of the output pulse of the SESAM mode-locked Yb-doped fiber laser in the embodiment of the present invention.

110-衬底,120-缓冲层,130-分布式布拉格反射镜层,140-下隔离层,150-应变补偿多量子阱层,160-上隔离层,170-下介质膜层,180-上介质膜层,131-分布式布拉格反射镜层结构中的GaAs层,132-分布式布拉格反射镜层结构中的AlGaAs层,151-张应变量子垒层,压应变量子阱层-152。110-substrate, 120-buffer layer, 130-distributed Bragg mirror layer, 140-lower isolation layer, 150-strain compensation multiple quantum well layer, 160-upper isolation layer, 170-lower dielectric film layer, 180-upper Dielectric film layer, 131-GaAs layer in the distributed Bragg mirror layer structure, 132-AlGaAs layer in the distributed Bragg mirror layer structure, 151- tensile strain quantum barrier layer, compressive strain quantum well layer-152.

具体实施方式Detailed ways

为了使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present disclosure will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings. Obviously, the described embodiments are some, but not all, embodiments of the present disclosure. Based on the embodiments of the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present disclosure.

在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开;术语“上”、“下”、“前”、“后”、“左”“右”、等指示方位或位置关系的词语为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或原件必须具有特定的方位,以特定的方位构造和操作,不能理解为对本申请的限制;在此使用的术语“包含”“包括”等表明了所述特征、步骤、操作和/或的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。Terms used herein are for the purpose of describing particular embodiments only and are not intended to limit the present disclosure; the terms "upper," "lower," "front," "rear," "left," "right," etc. indicate orientation or position The words of the relationship are based on the orientation or positional relationship shown in the attached drawings, or the orientation or positional relationship that the product of the application is usually placed in use, and are only for the convenience of describing the application and simplifying the description, rather than indicating or implying that The device or element must have a specific orientation, be constructed and operated in a specific orientation, and should not be construed as limiting the application; the terms "comprising", "comprising", etc. used herein indicate the features, steps, operations and/or One or more other features, steps, operations, or components are present, but not precluded, or added.

针对现有技术的不足,本公开提供一种半导体可饱和吸收镜及其制备方法,从SESAM本身出发,通过优化其外延结构和改善材料质量,从根源上解决SESAM损伤阈值低和使用寿命短的问题。In view of the deficiencies of the prior art, the present disclosure provides a semiconductor saturable absorber mirror and a preparation method thereof. Starting from SESAM itself, by optimizing its epitaxial structure and improving the quality of materials, the problems of low damage threshold and short service life of SESAM can be solved from the root cause. question.

图1示意性示出了本公开实施例提供的一种半导体可饱和吸收镜,需要注意的是,图1所示仅为可以应用本公开实施例的实例,以帮助本领域技术人员理解本公开的技术内容,并不意味着本公开实施例不可以用于其他场合。FIG. 1 schematically shows a semiconductor saturable absorber mirror provided by an embodiment of the present disclosure. It should be noted that FIG. 1 is only an example to which the embodiment of the present disclosure can be applied, so as to help those skilled in the art to understand the present disclosure It does not mean that the embodiments of the present disclosure cannot be used in other occasions.

如图1所示,本发明的半导体可饱和吸收镜包括:衬底110,缓冲层120,分布式布拉格反射镜(DBR)层130,下隔离(space)层140,应变补偿多量子阱层150,上隔离(space)层160,下介质膜层170,上介质膜层180。As shown in FIG. 1 , the semiconductor saturable absorber mirror of the present invention includes: a substrate 110 , a buffer layer 120 , a distributed Bragg reflector (DBR) layer 130 , a lower space layer 140 , and a strain-compensated multiple quantum well layer 150 , an upper spacer layer 160 , a lower dielectric film layer 170 , and an upper dielectric film layer 180 .

在本发明实施例中,衬底110材料包括GaAs材料,进一步的可以为包括N型Si掺杂GaAs材料,物理厚度例如可以为450μm,外延生长面为朝向(110)方向偏角为2°的(100)面。缓冲层120设于衬底110表面,材料包括GaAs材料,物理厚度可以为0.5-2μm。DBR层130设于缓冲层120表面,包括依次叠设在缓冲层120上的GaAs层131和AlGaAs层132,GaAs层131的材料可以包括GaAs材料,AlGaAs层132材料可以包括AlGaAs材料,形成DBR层的周期例如可以为30,AlGaAs层132中组分例如可以为Al组分为0.9,Ga组分为0.1,As组分为1,AlGaAs层132和GaAs层131的光学厚度均为λ/4,其中,λ为掺Yb超快光纤激光器的激射波长,λ例如可以为1064nm。In the embodiment of the present invention, the material of the substrate 110 includes GaAs material, and further may include N-type Si-doped GaAs material, the physical thickness may be, for example, 450 μm, and the epitaxial growth surface is an off-angle of 2° toward the (110) direction. (100) faces. The buffer layer 120 is disposed on the surface of the substrate 110 , the material includes GaAs material, and the physical thickness may be 0.5-2 μm. The DBR layer 130 is disposed on the surface of the buffer layer 120, and includes a GaAs layer 131 and an AlGaAs layer 132 sequentially stacked on the buffer layer 120. The material of the GaAs layer 131 may include GaAs material, and the material of the AlGaAs layer 132 may include AlGaAs material, forming a DBR layer. For example, the period of the AlGaAs layer 132 can be 30, the composition in the AlGaAs layer 132 can be, for example, the Al composition is 0.9, the Ga composition is 0.1, the As composition is 1, and the optical thicknesses of the AlGaAs layer 132 and the GaAs layer 131 are both λ/4, Wherein, λ is the lasing wavelength of the Yb-doped ultrafast fiber laser, and λ can be, for example, 1064 nm.

对于高Al组分的AlGaAs材料而言,缓冲层物理厚度对于提高AlGaAs材料质量非常关键,当缓冲层物理厚度≥0.5μm时,可以获得高质量AlGaAs材料,而且随着Al组分值的升高,要求缓冲层的物理厚度更厚;AlGaAs层132中组成例如可以为Al组分为0.9,Ga组分为0.1,As组分为1,可以有效的减少“氧”的并入,从而提高DBR130的材料质量,减少SESAM的非饱和吸收损耗。For AlGaAs materials with high Al composition, the physical thickness of the buffer layer is very important to improve the quality of the AlGaAs material. When the physical thickness of the buffer layer is greater than or equal to 0.5 μm, high-quality AlGaAs materials can be obtained, and with the increase of the Al composition value , the physical thickness of the buffer layer is required to be thicker; for example, the composition of the AlGaAs layer 132 can be that the Al composition is 0.9, the Ga composition is 0.1, and the As composition is 1, which can effectively reduce the incorporation of "oxygen", thereby improving the DBR130 material quality, reducing the unsaturated absorption loss of SESAM.

在本发明实施例中,在AlGaAs层132表面依次叠设下space层140、应变补偿多量子阱层150、上space层160,应变补偿多量子阱层150包括依次叠设在下space140表面的张应变量子垒层151和压应变量子阱层152。在下space层140表面叠设应变补偿多量子阱层150的顺序为量子垒层151、量子阱层152、量子垒层151……量子垒层151、量子阱层152、量子垒层151,周期数例如可以为10-45。在应变补偿多量子阱层150叠设过程中,首先在下space层140表面叠设的是量子垒层151,结束时最后一层叠设的也是量子垒层151,因此量子垒层151的叠设周期数比量子阱层152的叠设周期数多1。量子垒层151材料包括GaAsP材料,其中,As组分为0.7-0.95,P组分为0.05-0.3,量子阱层152材料包括InGaAs材料,In组分为0.25-0.32,Ga组分为0.68-0.75。下space层140、上space层160材料包括GaAs材料;量子垒层151、量子阱层152的物理厚度为6-15nm,下space层140、上space层160的物理厚度为4-10nm。In the embodiment of the present invention, a lower space layer 140 , a strain-compensated multiple quantum well layer 150 , and an upper space layer 160 are sequentially stacked on the surface of the AlGaAs layer 132 , and the strain-compensated multiple quantum well layer 150 includes tensile strains stacked on the surface of the lower space 140 in sequence. The quantum barrier layer 151 and the compressively strained quantum well layer 152 . The sequence of stacking the strain-compensated multiple quantum well layers 150 on the surface of the lower space layer 140 is quantum barrier layer 151, quantum well layer 152, quantum barrier layer 151... Quantum barrier layer 151, quantum well layer 152, quantum barrier layer 151, the number of cycles For example, it can be 10-45. During the stacking process of the strain-compensated multiple quantum well layers 150 , the quantum barrier layer 151 is first stacked on the surface of the lower space layer 140 , and the last stack is also the quantum barrier layer 151 at the end. Therefore, the stacking period of the quantum barrier layer 151 is The number is one more than the number of stacking periods of the quantum well layers 152 . The material of the quantum barrier layer 151 includes GaAsP material, wherein the As composition is 0.7-0.95, the P composition is 0.05-0.3, the material of the quantum well layer 152 includes InGaAs material, the In composition is 0.25-0.32, and the Ga composition is 0.68- 0.75. The material of the lower space layer 140 and the upper space layer 160 includes GaAs material; the physical thickness of the quantum barrier layer 151 and the quantum well layer 152 is 6-15 nm, and the physical thickness of the lower space layer 140 and the upper space layer 160 is 4-10 nm.

在应变层中,由于每一个单层均存在应变能,使得每一个单层都存在一个临界厚度,而当应变层厚度超过这个临界厚度时,应变层将会发生弛豫现象,从而导致应变层的材料质量恶化,进而影响器件的性能。本申请基于应变补偿结构的理论,将应变补偿多量子阱层150布置为张应变量子垒层151和压应变量子阱层152交叉叠设形状,张应变量子垒层151材料包括GaAsP材料,压应变量子阱层152材料包括InGaAs材料,其中,张应变量子垒层151中GaAsP材料相对于GaAs衬底的应变与压应变量子阱层152中InGaAs材料相对于GaAs衬底的应变是两种相反类型的应变,可以抵消整体结构的净应变值。因此本申请多量子阱层150在每个周期的净应变比较小,保持整个应变量子阱结构的稳定,而不发生应变弛豫现象,从而保证了材料质量。In the strained layer, due to the existence of strain energy in each monolayer, each monolayer has a critical thickness, and when the thickness of the strained layer exceeds this critical thickness, the strained layer will relax, resulting in the strained layer The quality of the material deteriorates, which in turn affects the performance of the device. Based on the theory of strain compensation structure, the present application arranges the strain compensation multi-quantum well layer 150 in a cross-stacked shape of a tensile strain quantum barrier layer 151 and a compressive strain quantum well layer 152. The material of the tensile strain quantum barrier layer 151 includes GaAsP material, and the compressive strain The material of the quantum well layer 152 includes InGaAs material, wherein the strain of the GaAsP material in the tensile strain quantum barrier layer 151 relative to the GaAs substrate and the strain of the InGaAs material in the compressive strain quantum well layer 152 relative to the GaAs substrate are two opposite types. strain, which can offset the net strain value of the overall structure. Therefore, the net strain of the multi-quantum well layer 150 of the present application in each cycle is relatively small, and the stability of the entire strained quantum well structure is maintained without strain relaxation, thereby ensuring the material quality.

为叙述方便,此处分别将下space层140、量子垒层151、量子阱层152、上space层160的物理厚度表示为h1、h2、h3、h4,将下space层140、量子垒层151、量子阱层152、上space层160的光学厚度表示为h1’、h2’、h3’、h4’,将下space层140、量子垒层151、量子阱层152、上space层160材料的折射率分别表示为n1、n2、n3、n4,将应变补偿多量子阱层150的叠设周期数表示为n。h1、h2、h3、h4及n的选择必须满足h1’、(n+1)h2’、nh3’、h4’之和的总光学厚度为λ、1.5λ、2λ其中一种,总光学厚度为λ、1.5λ、2λ其中一种,保证本发明SESAM为谐振型,谐振型的SESAM可以通过周期比较少的多量子阱结构获得比较大的调制深度,具有较高的饱和通量,满足掺Yb光纤激光器对锁模器件的要求,谐振型的SESAM可以通过周期比较少的多量子阱结构获得比较大的调制深度。总光学厚度的具体选择根据调制深度的需要而定,其中,光学厚度与物理厚度的换算公式为:hi’=hi*niFor the convenience of description, the physical thicknesses of the lower space layer 140, the quantum barrier layer 151, the quantum well layer 152, and the upper space layer 160 are respectively expressed as h 1 , h 2 , h 3 , and h 4 , and the lower space layer 140 , The optical thicknesses of the quantum barrier layer 151, the quantum well layer 152, and the upper space layer 160 are denoted as h1 ', h2', h3 ', h4 ', and the lower space layer 140, the quantum barrier layer 151, and the quantum well layer 152 and the refractive indices of the material of the upper space layer 160 are represented as n 1 , n 2 , n 3 , and n 4 respectively, and the number of stacking periods of the strain-compensated multiple quantum well layer 150 is represented as n. h 1 , h 2 , h 3 , h 4 and n must be selected so that the total optical thickness of the sum of h 1 ', (n+1)h 2 ', nh 3 ', h 4 ' is λ, 1.5λ, 2λ One of them, the total optical thickness is one of λ, 1.5λ, and 2λ, which ensures that the SESAM of the present invention is a resonant type. The saturation flux of the Yb-doped fiber laser meets the requirements of the mode-locked device of the Yb-doped fiber laser. The resonant SESAM can obtain a relatively large modulation depth through the multiple quantum well structure with a relatively small period. The specific selection of the total optical thickness is determined according to the requirement of the modulation depth, wherein the conversion formula between the optical thickness and the physical thickness is: h i '=h i *n i .

图2为本发明实施例中的SESAM外延片的光致发光谱测试图,应变补偿多量子阱层150中压应变量子阱层152的光致发光谱(PL)为λ-λ+20nm,压应变量子阱层152的光致发光谱略微长于光纤激光器的激射波长,有利于SESAM的饱和吸收。2 is a photoluminescence spectrum test diagram of the SESAM epitaxial wafer in the embodiment of the present invention, the photoluminescence spectrum (PL) of the compressive strain quantum well layer 152 in the strain compensation multiple quantum well layer 150 is λ-λ+20 nm, and the pressure The photoluminescence spectrum of the strained quantum well layer 152 is slightly longer than the lasing wavelength of the fiber laser, which is favorable for the saturable absorption of the SESAM.

在本发明实施例中,在上space层160表面依次叠设下介质膜层170、上介质膜层180,下介质膜层170材料包括Si3N4材料,上介质膜层180材料包括SiO2材料,下介质膜层170、上介质膜层180的光学厚度可以均为λ/4,物理厚度可以分别为132.3nm和180.9nm,介质膜可以对SESAM晶片起到很好的保护作用,同时有助于提高SESAM的损伤阈值。In the embodiment of the present invention, a lower dielectric film layer 170 and an upper dielectric film layer 180 are sequentially stacked on the surface of the upper space layer 160 , the material of the lower dielectric film layer 170 includes Si 3 N 4 material, and the material of the upper dielectric film layer 180 includes SiO 2 Material, the optical thickness of the lower dielectric film layer 170 and the upper dielectric film layer 180 can be both λ/4, and the physical thickness can be 132.3nm and 180.9nm respectively. The dielectric film can play a good role in protecting the SESAM wafer. Helps increase the damage threshold of SESAM.

基于上述半导体可饱和吸收镜,本发明实施例还提供一种半导体可饱和吸收镜的制备方法。Based on the above-mentioned semiconductor saturable absorber mirror, an embodiment of the present invention further provides a method for fabricating a semiconductor saturable absorber mirror.

图3示意性示出了本发明实施例提供的半导体可饱和吸收镜的制备方法的流程图。FIG. 3 schematically shows a flow chart of a method for fabricating a semiconductor saturable absorption mirror provided by an embodiment of the present invention.

如图3所示,该方法例如可以包括步骤S201-S207。As shown in FIG. 3, the method may include steps S201-S207, for example.

S201,在衬底110表面沉积制备缓冲层120。S201 , depositing and preparing a buffer layer 120 on the surface of the substrate 110 .

具体的,衬底110材料包括N型GaAs材料,在制备缓冲层120之前,需要对衬底110进行脱氧处理,脱氧过程例如可以包括:将衬底110放入金属有机化合物化学气相沉淀(MOCVD)的反应室中,通过电脑自动化程序控制,将通入MOCVD反应室的氮气改为氢气,将反应室压力降到例如50mbar,然后升温,当反应室的温度升高到例如350℃以后,打开AsH3阀门,并将其通入反应室,在AsH3气氛保护下将反应室的温度升高到例如750℃,稳定10分钟;材料沉积前对衬底110进行高温脱氧处理是必要的,因为通过高温热处理,衬底110表面的氧化层被去掉,在其上沉积的材料质量会得到明显提高。同时,由于衬底110在高温下会分解,需通入AsH3加以保护。Specifically, the material of the substrate 110 includes an N-type GaAs material. Before preparing the buffer layer 120, the substrate 110 needs to be deoxidized. For example, the deoxidation process may include: placing the substrate 110 into metal organic compound chemical vapor deposition (MOCVD) In the reaction chamber, through computer automation program control, change the nitrogen gas into the MOCVD reaction chamber to hydrogen, reduce the pressure of the reaction chamber to, for example, 50mbar, and then increase the temperature. 3 valve, and pass it into the reaction chamber, raise the temperature of the reaction chamber to, for example, 750 °C under the protection of AsH atmosphere, and stabilize for 10 minutes; high temperature deoxidation treatment of the substrate 110 is necessary before material deposition, because by During high temperature heat treatment, the oxide layer on the surface of the substrate 110 is removed, and the quality of the material deposited thereon will be significantly improved. At the same time, since the substrate 110 will be decomposed at high temperature, it needs to be protected by passing AsH 3 .

衬底110脱氧处理完成后,在通入AsH3保护的情况下将反应室温度降低到例如690℃,待其稳定后,打开TMGa源进行缓冲层120沉积,缓冲层材料包括GaAs材料。After the deoxidation treatment of the substrate 110 is completed, the temperature of the reaction chamber is lowered to, for example, 690° C. under the protection of AsH 3 . After it is stabilized, the TMGa source is turned on to deposit the buffer layer 120 . The buffer layer material includes GaAs material.

S202,在缓冲层120表面沉积制备分布式布拉格反射镜层(DBR)。S202 , depositing and preparing a distributed Bragg mirror layer (DBR) on the surface of the buffer layer 120 .

具体的,缓冲层120沉积完成后关闭TMGa源,反应室温度保持690℃进行30周期的DBR层130沉积,其中DBR层材料包括AlGaAs/GaAs材料。Specifically, after the deposition of the buffer layer 120 is completed, the TMGa source is turned off, and the temperature of the reaction chamber is maintained at 690° C. for 30 cycles of deposition of the DBR layer 130 , wherein the DBR layer material includes AlGaAs/GaAs material.

S203,在DBR层130表面沉积制备下隔离(space)层140。S203 , depositing and preparing a lower space layer 140 on the surface of the DBR layer 130 .

具体的,DBR层130沉积完成后,反应室温度保持690℃进行下space层沉积,下space层140材料包括GaAs材料。Specifically, after the deposition of the DBR layer 130 is completed, the temperature of the reaction chamber is kept at 690° C. to deposit the lower space layer, and the material of the lower space layer 140 includes GaAs material.

S204,在下space层140表面沉积制备应变补偿多量子阱层150。S204 , depositing and preparing the strain-compensated multiple quantum well layer 150 on the surface of the lower space layer 140 .

具体的,下space层140沉积完成后,反应室温度降低到例如580℃,待其稳定后进行周期性的应变补偿多量子阱层150沉积,应变补偿多量子阱层150通过张应变量子垒层151和压应变量子阱层152交叉叠设而成,应变补偿多量子阱层150外表面均布置为张应变量子垒层151张应变量子垒层。151材料包括GaAsP材料,压应变量子阱层152材料包括InGaAs材料。将反应室的温度降低到例如580℃,是为了获得高质量的应变量子阱材料,抑制InGaAs/GaAsP多量子阱生长模式由二维(2D)向三维(3D)转变,这主要是因为具有高In组分的InGaAs外延层与GaAs衬底之间的晶格失配较大,引起的应力会导致晶格弛豫。III、V族原子在快速迁移的过程中,In原子很容易到达生长表面缺陷处形成某些能量较低的成核位置,导致富In小岛的形成,外延层由2D生长转变为3D生长,从而形成大量缺陷影响材料质量。Specifically, after the deposition of the lower space layer 140 is completed, the temperature of the reaction chamber is lowered to, for example, 580° C. After it is stabilized, periodic deposition of the strain-compensated multi-quantum well layer 150 is performed, and the strain-compensated multi-quantum well layer 150 passes through the tensile strain quantum barrier layer. 151 and the compressive strain quantum well layer 152 are cross-stacked, and the outer surface of the strain compensation multiple quantum well layer 150 is arranged as a tensile strain quantum barrier layer 151 and a tensile strain quantum barrier layer. The material of 151 includes GaAsP material, and the material of compressive strain quantum well layer 152 includes InGaAs material. Lowering the temperature of the reaction chamber to, for example, 580 °C, is to obtain high-quality strained quantum well materials and suppress the transition of the InGaAs/GaAsP multiple quantum well growth mode from two-dimensional (2D) to three-dimensional (3D), mainly due to the high The lattice mismatch between the InGaAs epitaxial layer of In composition and the GaAs substrate is large, and the induced stress can lead to lattice relaxation. During the rapid migration of III and V atoms, In atoms can easily reach the growth surface defects to form some low-energy nucleation sites, resulting in the formation of In-rich islands, and the epitaxial layer is transformed from 2D growth to 3D growth. Thereby forming a large number of defects affecting the quality of the material.

S205,在应变补偿多量子阱层150表面叠设沉积制备上隔离(space)层160。S205 , a space layer 160 is stacked and deposited on the surface of the strain-compensated multiple quantum well layer 150 .

具体的,应变补偿多量子阱层150沉积完成后,反应室温度保持580℃,进行上space层160沉积,上space层160材料包括GaAs材料,上space160叠设沉积完成后,下space140、应变补偿多量子阱层150、上space160的总光学厚度为λ、1.5λ、2λ其中一种。Specifically, after the deposition of the strain-compensated multi-quantum well layer 150 is completed, the temperature of the reaction chamber is kept at 580°C, and the deposition of the upper space layer 160 is performed. The material of the upper space layer 160 includes GaAs material. The total optical thickness of the multiple quantum well layer 150 and the upper space 160 is one of λ, 1.5λ, and 2λ.

S206,在上space层160表面沉积制备下介质膜层170。S206 , depositing and preparing the lower dielectric film layer 170 on the surface of the upper space layer 160 .

上space层160沉积完成后,将反应室温度降低到例如500℃,待其稳定后,将通入反应室的氢气切换为氮气,在氮气环境下退火例如10分钟,得到晶片1;将沉积完成并经过退火处理的晶片放入等离子体增强化学气相沉积(PECVD)设备的反应室中进行下介质膜层170的制备。下介质膜层170例如可以为Si3N4介质膜层,制备条件例如可以为:当反应室的温度升高到例如280℃时,将SiH4和NH3通入反应室,调节SiH4和NH3气体流量,使得Si3N4介质膜的生长速率为1.0nm/s。After the deposition of the upper space layer 160 is completed, the temperature of the reaction chamber is lowered to, for example, 500° C. After it is stabilized, the hydrogen gas introduced into the reaction chamber is switched to nitrogen, and annealed in a nitrogen environment for, for example, 10 minutes to obtain wafer 1; the deposition is completed The annealed wafer is placed in a reaction chamber of a plasma-enhanced chemical vapor deposition (PECVD) apparatus to prepare the lower dielectric film layer 170 . The lower dielectric film layer 170 can be, for example, a Si 3 N 4 dielectric film layer, and the preparation conditions can be, for example, when the temperature of the reaction chamber is raised to, for example, 280° C., SiH 4 and NH 3 are passed into the reaction chamber, and the SiH 4 and NH 3 are adjusted to the reaction chamber. The flow rate of NH 3 gas is such that the growth rate of the Si 3 N 4 dielectric film is 1.0 nm/s.

S207,在下介质膜层170表面沉积制备上介质膜层180。S207 , depositing and preparing the upper dielectric film layer 180 on the surface of the lower dielectric film layer 170 .

具体的,下介质膜层170膜制备完成后,在PECVD设备的反应室中继续进行上介质膜层180的制备。上介质膜层180例如可以为SiO2介质膜层,制备条件例如可以为:保持反应室的温度为280℃,将SiH4和N2O通入反应室进行,调节SiH4和N2O气体流量,使得SiO2介质膜的生长速率为1.0nm/s。Specifically, after the preparation of the lower dielectric film layer 170 is completed, the preparation of the upper dielectric film layer 180 is continued in the reaction chamber of the PECVD equipment. The upper dielectric film layer 180 can be, for example, a SiO 2 dielectric film layer, and the preparation conditions can be, for example, maintaining the temperature of the reaction chamber at 280° C., passing SiH 4 and N 2 O into the reaction chamber, and adjusting the SiH 4 and N 2 O gases flow so that the growth rate of the SiO 2 dielectric film is 1.0 nm/s.

在进行下介质膜层170和上介质膜层180制备之前通过相关的测试方法对外延晶片的特征参数进行相应测试,确保与设计结构保持一致。Before the preparation of the lower dielectric film layer 170 and the upper dielectric film layer 180 is performed, corresponding tests are performed on the characteristic parameters of the epitaxial wafer through relevant test methods to ensure that they are consistent with the designed structure.

需要说明的是:为了满足光纤激光器要求SESAM的调制深度达10-30%,本申请提出的技术方案,通过将下space层140、多量子阱层150、上space层160的总光学厚度设置为λ、1.5λ、2λ其中一种即可满足要求,保证下space层140、多量子阱层150、上space层160的总光学厚度设置为λ、1.5λ、2λ其中一种,可以通过在各自的参数范围内自由选择下space层140、多量子阱层150、上space层160的物理厚度、多量子阱层150的周期数,而不具体规定下space层140、多量子阱层150、上space层160的物理厚度及多量子阱层150的周期数。It should be noted that: in order to meet the requirement of the fiber laser that the modulation depth of the SESAM reaches 10-30%, the technical solution proposed in this application, by setting the total optical thickness of the lower space layer 140, the multiple quantum well layer 150, and the upper space layer 160 to One of λ, 1.5λ, and 2λ can meet the requirements, and it is ensured that the total optical thickness of the lower space layer 140, the multiple quantum well layer 150, and the upper space layer 160 is set to one of λ, 1.5λ, and 2λ. The physical thickness of the lower space layer 140, the multiple quantum well layer 150, the upper space layer 160, and the number of periods of the multiple quantum well layer 150 are freely selected within the parameter range of the parameter, and the lower space layer 140, the multiple quantum well layer 150, the upper space layer 150 and the upper space layer 150 are not specified. The physical thickness of the space layer 160 and the period number of the multiple quantum well layer 150 .

为了更清楚的说明本申请技术方案,以下通过示意性的具体实施例来描述。In order to illustrate the technical solutions of the present application more clearly, the following descriptions are given by way of illustrative specific embodiments.

实施例1;衬底110选用N型Si掺杂GaAs材料,物理厚度为450μm,外延生长面为朝向(110)方向偏角为2°的(100)面;缓冲层设于衬底110表面,选用GaAs材料,物理厚度为1μm;分布式布拉格反射镜(DBR)层130设于缓冲层120表面,包括依次叠设在缓冲层120上的GaAs层131和AlGaAs层132,形成DBR层的周期为30,AlGaAs层132中组成为Al组分为0.9,Ga组分为0.1,As组分为1,AlGaAs层132和GaAs层131的光学厚度均为λ/4,λ是掺Yb超快光纤激光器的激射波长,为1064nm,AlGaAs层132表面依次叠设下space层140、应变补偿多量子阱层150、上space层160、下介质膜层170、上介质膜层180。下space层140、上space层160材料为GaAs,物理厚度均为4nm,GaAs的折射率为3.454;应变补偿多量子阱层150周期数为30,包括依次叠设在下space140层表面的量子垒层151和量子阱层152;其中,量子垒层151材料为GaAsP材料,折射率为3.521,物理厚度为9.7nm,周期数为31,量子阱层152材料为InGaAs材料,折射率为3.472,厚度为10nm,周期数为30,下介质膜层170材料为Si3N4材料,上介质膜层180材料为SiO2材料;下介质膜层170、上介质膜层180的物理厚度分别为132.3nm和180.9nm。下space140的光学厚度为:4×3.454=13.816nm,量子垒层151的总光学厚度为:31×9.7×3.521=1058.7647nm,量子阱层152的总光学厚度为:30×10×3.472=1041.6nm,上space层160的光学厚度为:4×3.454=13.816nm;下space140、应变补偿多量子阱层150、上space160的总光学厚度为:13.816+1058.7647+1041.6+13.816=2127.9967nm≈2λ=2128nm;下space140、应变补偿多量子阱层150、上space160的总光学厚度为2λ,满足光纤激光器对SESAM调制深度的要求。Embodiment 1: The substrate 110 is made of N-type Si-doped GaAs material, the physical thickness is 450 μm, and the epitaxial growth surface is the (100) plane with an off-angle of 2° toward the (110) direction; the buffer layer is arranged on the surface of the substrate 110, GaAs material is selected, the physical thickness is 1 μm; the distributed Bragg reflector (DBR) layer 130 is arranged on the surface of the buffer layer 120, including the GaAs layer 131 and the AlGaAs layer 132 stacked on the buffer layer 120 in sequence, and the period of forming the DBR layer is 30. The composition of the AlGaAs layer 132 is that the Al composition is 0.9, the Ga composition is 0.1, and the As composition is 1. The optical thicknesses of the AlGaAs layer 132 and the GaAs layer 131 are both λ/4, and λ is the Yb-doped ultrafast fiber laser. The lasing wavelength is 1064 nm, and the surface of the AlGaAs layer 132 is sequentially stacked with a lower space layer 140, a strain-compensated multiple quantum well layer 150, an upper space layer 160, a lower dielectric film layer 170, and an upper dielectric film layer 180. The material of the lower space layer 140 and the upper space layer 160 is GaAs, the physical thickness is 4 nm, and the refractive index of GaAs is 3.454; the period number of the strain compensation multi-quantum well layer 150 is 30, including the quantum barrier layers sequentially stacked on the surface of the lower space 140 layer 151 and quantum well layer 152; wherein, the material of the quantum barrier layer 151 is GaAsP material, the refractive index is 3.521, the physical thickness is 9.7nm, the number of periods is 31, the material of the quantum well layer 152 is InGaAs material, the refractive index is 3.472, and the thickness is 10nm, the number of cycles is 30, the material of the lower dielectric film layer 170 is Si 3 N 4 material, and the material of the upper dielectric film layer 180 is SiO 2 material; the physical thicknesses of the lower dielectric film layer 170 and the upper dielectric film layer 180 are 132.3 nm and 180.9nm. The optical thickness of the lower space 140 is: 4×3.454=13.816nm, the total optical thickness of the quantum barrier layer 151 is: 31×9.7×3.521=1058.7647nm, and the total optical thickness of the quantum well layer 152 is: 30×10×3.472=1041.6 nm, the optical thickness of the upper space layer 160 is: 4×3.454=13.816 nm; the total optical thickness of the lower space 140, the strain-compensated multiple quantum well layer 150, and the upper space 160 is: 13.816+1058.7647+1041.6+13.816=2127.9967nm≈2λ= 2128 nm; the total optical thickness of the lower space 140, the strain-compensated multi-quantum well layer 150, and the upper space 160 is 2λ, which meets the requirements of the fiber laser for SESAM modulation depth.

实施例2,实施例2与实施例1不同的地方在于:应变补偿多量子阱层150周期数为45,量子垒层151物理厚度为7.18nm,周期数为46,量子阱层152物理厚度为6nm,周期数为45,量子垒层151的总光学厚度为:46×7.18×3.521=1162.9159nm,量子阱层152的总光学厚度为:45×6×3.472=937.44nm,其他参数与示例1相同。下space140、应变补偿多量子阱层150、上space160的总光学厚度为:13.816+1162.9159+937.44+13.816=2127.9879nm≈2λ=2128nm,下space140、应变补偿多量子阱层150、上space160的总光学厚度为2λ,满足光纤激光器对SESAM调制深度的要求。Example 2, Example 2 differs from Example 1 in that the number of periods of the strain compensation multi-quantum well layer 150 is 45, the physical thickness of the quantum barrier layer 151 is 7.18 nm, the number of periods is 46, and the physical thickness of the quantum well layer 152 is 6nm, the number of periods is 45, the total optical thickness of the quantum barrier layer 151 is: 46×7.18×3.521=1162.9159nm, the total optical thickness of the quantum well layer 152 is: 45×6×3.472=937.44nm, other parameters and example 1 same. The total optical thickness of the lower space140, the strain-compensated multiple quantum well layer 150, and the upper space160 is: 13.816+1162.9159+937.44+13.816=2127.9879nm≈2λ=2128nm, the total optical thickness of the lower space140, the strain-compensated multiple quantum well layer 150, and the upper space160 The thickness is 2λ, which meets the requirement of fiber laser for SESAM modulation depth.

其它实施细节与实施例1类似,此处不再赘述。Other implementation details are similar to those in Embodiment 1, and are not repeated here.

实施例3,实施例3与实施例1不同的地方在于:应变补偿多量子阱层150周期数为20,量子垒层151物理厚度为8.381nm,周期数为21,量子阱层152物理厚度为6nm,周期数为20,量子垒层151的总光学厚度为:21×8.381×3.521=619.7nm,量子阱层152的总光学厚度为:20×6×3.472=416.64nm,其他参数与示例1相同。下space140、应变补偿多量子阱层150、上space160的总光学厚度为:13.816+619.7+416.64+13.816=1063.972nm≈λ=1064nm,下space140、应变补偿多量子阱层150、上space160的总光学厚度为λ,满足光纤激光器对SESAM调制深度的要求。Example 3, Example 3 differs from Example 1 in that the number of periods of the strain compensation multi-quantum well layer 150 is 20, the physical thickness of the quantum barrier layer 151 is 8.381 nm, the number of periods is 21, and the physical thickness of the quantum well layer 152 is 6nm, the number of periods is 20, the total optical thickness of the quantum barrier layer 151 is: 21×8.381×3.521=619.7nm, the total optical thickness of the quantum well layer 152 is: 20×6×3.472=416.64nm, other parameters and example 1 same. The total optical thickness of the lower space140, the strain-compensated multiple quantum well layer 150, and the upper space160 is: 13.816+619.7+416.64+13.816=1063.972nm≈λ=1064nm, the total optical thickness of the lower space140, the strain-compensated multiple quantum well layer 150, and the upper space160 The thickness is λ, which meets the requirement of the fiber laser for SESAM modulation depth.

其它实施细节与实施例1类似,此处不再赘述。Other implementation details are similar to those in Embodiment 1, and are not repeated here.

实施例4,实施例4与实施例1不同的地方在于:应变补偿多量子阱层150周期数为30,量子垒层151物理厚度为6.735nm,周期数为31,量子阱层152物理厚度为6nm,周期数为30,量子垒层151的总光学厚度为:31×6.735×3.521=735.132nm,量子阱层152的总光学厚度为:30×8×3.472=833.28nm,其他参数与示例1相同。下space140、应变补偿多量子阱层150、上space160的总光学厚度为:13.816+735.132+833.28+13.816=1596.044nm≈1.5λ=1596nm,下space140、应变补偿多量子阱层150、上space160的总光学厚度为1.5λ,满足光纤激光器对SESAM调制深度的要求。Example 4, Example 4 differs from Example 1 in that the number of periods of the strain compensation multi-quantum well layer 150 is 30, the physical thickness of the quantum barrier layer 151 is 6.735 nm, the number of periods is 31, and the physical thickness of the quantum well layer 152 is 6nm, the number of periods is 30, the total optical thickness of the quantum barrier layer 151 is: 31×6.735×3.521=735.132nm, the total optical thickness of the quantum well layer 152 is: 30×8×3.472=833.28nm, other parameters and example 1 same. The total optical thickness of the lower space140, the strain-compensated multiple quantum well layer 150, and the upper space160 is: 13.816+735.132+833.28+13.816=1596.044nm≈1.5λ=1596nm, the total optical thickness of the lower space140, the strain-compensated multiple quantum well layer 150, and the upper space160 The optical thickness is 1.5λ, which meets the requirement of the fiber laser for SESAM modulation depth.

其它实施细节与实施例1类似,此处不再赘述。Other implementation details are similar to those in Embodiment 1, and are not repeated here.

图4为本发明实施例中的SESAM外延片的高分辨X射线双晶衍射摇摆曲线,由于AlGaAs/GaAs DBR和应变补偿InGaAs/GaAsP多量子阱均为多周期结构,因此如图4所示,摇摆曲线将出现周期性的衍射峰,可以通过相邻衍射峰之间的间距计算外延材料的周期厚度。Fig. 4 is the high-resolution X-ray double crystal diffraction rocking curve of the SESAM epitaxial wafer in the embodiment of the present invention. Since the AlGaAs/GaAs DBR and the strain-compensated InGaAs/GaAsP multiple quantum wells are all multi-periodic structures, as shown in Fig. 4, Periodic diffraction peaks will appear in the rocking curve, and the periodic thickness of the epitaxial material can be calculated from the spacing between adjacent diffraction peaks.

图5为本发明实施例中的SESAM的反射率测试图,反射率是AlGaAs/GaAs DBR和InGaAs/GaAsP多量子阱的综合表征,可以根据反射率对AlGaAs/GaAs DBR和InGaAs/GaAsP的外延生长参数进行相应的调整,获得满足要求的外延材料。Fig. 5 is the reflectivity test chart of SESAM in the embodiment of the present invention, the reflectivity is the comprehensive characterization of AlGaAs/GaAs DBR and InGaAs/GaAsP multiple quantum wells, and the epitaxial growth of AlGaAs/GaAs DBR and InGaAs/GaAsP can be measured according to the reflectivity The parameters are adjusted accordingly to obtain epitaxial materials that meet the requirements.

图6为本发明实施例中的SESAM应用于线型腔掺Yb光纤超快激光器的输出光谱图,输出脉冲的中心波长为1064.5nm。6 is an output spectrum diagram of the SESAM in an embodiment of the present invention applied to a linear cavity Yb-doped fiber ultrafast laser, and the center wavelength of the output pulse is 1064.5 nm.

图7为本发明实施例中的SESAM应用于线型腔掺Yb光纤超快激光器输出在示波器上的锁模脉冲序列。FIG. 7 is a mode-locked pulse sequence output on an oscilloscope by applying the SESAM in an embodiment of the present invention to a linear cavity Yb-doped fiber ultrafast laser output on an oscilloscope.

图8为本发明实施例中的SESAM应用于线型腔掺Yb光纤超快激光器输出脉冲的自相关仪测试结果,输出脉冲的脉宽为9.6ps。8 is an autocorrelator test result of applying the SESAM in the embodiment of the present invention to the output pulse of the linear cavity Yb-doped fiber ultrafast laser, and the pulse width of the output pulse is 9.6 ps.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in further detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1.一种半导体可饱和吸收镜,其特征在于,包括:1. a semiconductor saturable absorption mirror, is characterized in that, comprises: 衬底(110);a substrate (110); 依次叠设于所述衬底(110)上的缓冲层(120)、分布式布拉格反射镜层(130)、下隔离层(140)、应变补偿多量子阱层(150)、上隔离层(160);A buffer layer (120), a distributed Bragg mirror layer (130), a lower isolation layer (140), a strain-compensated multiple quantum well layer (150), and an upper isolation layer ( 160); 所述应变补偿多量子阱层(150)为张应变量子垒层(151)和压应变量子阱层(152)交叉叠设而成,所述应变补偿多量子阱层(150)外表面均布置为所述张应变量子垒层(151)。The strain compensation multiple quantum well layer (150) is formed by overlapping a tensile strain quantum barrier layer (151) and a compressive strain quantum well layer (152), and the outer surfaces of the strain compensation multiple quantum well layer (150) are all arranged is the tensile strain quantum barrier layer (151). 2.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,所述衬底(110)材料包括GaAs材料。2. The semiconductor saturable absorber mirror according to claim 1, wherein the substrate (110) material comprises GaAs material. 3.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,所述下隔离层(140)、上隔离层(160)的物理厚度为4-10nm。3. The semiconductor saturable absorption mirror according to claim 1, wherein the physical thickness of the lower isolation layer (140) and the upper isolation layer (160) is 4-10 nm. 4.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,其中,所述下隔离层(140)、应变补偿多量子阱层(150)、上隔离层(160)的总光学厚度为λ、1.5λ、2λ的一种,其中,λ为掺Yb超快光纤激光器的激射波长。4. The semiconductor saturable absorber mirror according to claim 1, wherein the total optical thickness of the lower isolation layer (140), the strain-compensated multiple quantum well layer (150), and the upper isolation layer (160) is one of λ, 1.5λ, and 2λ, where λ is the lasing wavelength of the Yb-doped ultrafast fiber laser. 5.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,所述应变补偿多量子阱层(150)周期数为10-45。5 . The semiconductor saturable absorption mirror according to claim 1 , wherein the period of the strain-compensated multiple quantum well layer ( 150 ) is 10-45. 6 . 6.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,所述张应变量子垒层(151)材料包括GaAsP材料,所述压应变量子阱层(152)材料包括InGaAs材料。6. The semiconductor saturable absorber mirror according to claim 1, wherein the material of the tensile strain quantum barrier layer (151) comprises GaAsP material, and the material of the compressive strain quantum well layer (152) comprises InGaAs material. 7.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,所述张应变量子垒层(151)、压应变量子阱层(152)物理厚度为6-15nm。7 . The semiconductor saturable absorption mirror according to claim 1 , wherein the physical thickness of the tensile strain quantum barrier layer ( 151 ) and the compressive strain quantum well layer ( 152 ) is 6-15 nm. 8 . 8.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,所述压应变量子阱层(152)的光致发光谱为λ-λ+20nm,其中,λ为掺Yb超快光纤激光器的激射波长。8. The semiconductor saturable absorption mirror according to claim 1, wherein the photoluminescence spectrum of the compressive strain quantum well layer (152) is λ-λ+20 nm, wherein λ is a Yb-doped ultrafast fiber The lasing wavelength of the laser. 9.根据权利要求1所述的半导体可饱和吸收镜,其特征在于,还包括:依次叠设于所述上隔离层(160)表面的下介质膜层(170),上介质膜层(180),所述下介质膜层(170)、上介质膜层(180)的光学厚度均为λ/4,其中,λ为掺Yb超快光纤激光器的激射波长。9 . The semiconductor saturable absorption mirror according to claim 1 , further comprising: a lower dielectric film layer ( 170 ) and an upper dielectric film layer ( 180 ) sequentially stacked on the surface of the upper isolation layer ( 160 ). 10 . ), the optical thicknesses of the lower dielectric film layer (170) and the upper dielectric film layer (180) are both λ/4, where λ is the lasing wavelength of the Yb-doped ultrafast fiber laser. 10.一种应用于权利要求1-9中任一项所述的半导体可饱和吸收镜制备方法,包括:在衬底(110)表面依次叠设缓冲层(120)、分布式布拉格反射镜层(130)、下隔离层(140)、应变补偿多量子阱层(150)、上隔离层(160)、下介质膜层(170)、上介质膜层(180),其中,所述应变补偿多量子阱层(150)为张应变量子垒层(151)和压应变量子阱层(152)交叉叠设而成,所述应变补偿多量子阱层(150)外表面均布置为所述张应变量子垒层(151)。10. A method for preparing a semiconductor saturable absorber mirror applied in any one of claims 1-9, comprising: stacking a buffer layer (120) and a distributed Bragg mirror layer in sequence on the surface of a substrate (110) (130), a lower isolation layer (140), a strain compensation multiple quantum well layer (150), an upper isolation layer (160), a lower dielectric film layer (170), and an upper dielectric film layer (180), wherein the strain compensation The multiple quantum well layer (150) is formed by overlapping a tensile strain quantum barrier layer (151) and a compressive strain quantum well layer (152), and the outer surfaces of the strain compensation multiple quantum well layer (150) are all arranged such that the tension Strained quantum barrier layer (151).
CN202111680297.7A 2021-12-30 2021-12-30 A kind of semiconductor saturable absorption mirror and preparation method thereof Pending CN114300923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111680297.7A CN114300923A (en) 2021-12-30 2021-12-30 A kind of semiconductor saturable absorption mirror and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111680297.7A CN114300923A (en) 2021-12-30 2021-12-30 A kind of semiconductor saturable absorption mirror and preparation method thereof

Publications (1)

Publication Number Publication Date
CN114300923A true CN114300923A (en) 2022-04-08

Family

ID=80975234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111680297.7A Pending CN114300923A (en) 2021-12-30 2021-12-30 A kind of semiconductor saturable absorption mirror and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114300923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116316032A (en) * 2023-05-23 2023-06-23 青岛翼晨镭硕科技有限公司 Doped semiconductor saturable absorber mirror, preparation method thereof and laser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065244A (en) * 1996-04-30 1998-03-06 Lucent Technol Inc Saturable bragg reflector structure and fabrication thereof
EP0886351A1 (en) * 1996-03-04 1998-12-23 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
CN1848561A (en) * 2005-04-04 2006-10-18 中国科学院半导体研究所 Semiconductor saturable absorber mirror and its manufacturing method
CN101572387A (en) * 2009-04-10 2009-11-04 长春理工大学 Method for designing and extending 808nm laser material by adopting (In)GaAs/GaAs straining isolated layer
CN207069288U (en) * 2017-07-31 2018-03-02 嘉兴海创激光科技有限公司 A kind of strain compensation type semiconductor laser structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0886351A1 (en) * 1996-03-04 1998-12-23 Matsushita Electric Industrial Co., Ltd. Semiconductor laser
JPH1065244A (en) * 1996-04-30 1998-03-06 Lucent Technol Inc Saturable bragg reflector structure and fabrication thereof
CN1848561A (en) * 2005-04-04 2006-10-18 中国科学院半导体研究所 Semiconductor saturable absorber mirror and its manufacturing method
CN101572387A (en) * 2009-04-10 2009-11-04 长春理工大学 Method for designing and extending 808nm laser material by adopting (In)GaAs/GaAs straining isolated layer
CN207069288U (en) * 2017-07-31 2018-03-02 嘉兴海创激光科技有限公司 A kind of strain compensation type semiconductor laser structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄德修等: "《半导体激光器及其应用》", 31 May 1999, 国防工业出版社, pages: 107 - 109 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116316032A (en) * 2023-05-23 2023-06-23 青岛翼晨镭硕科技有限公司 Doped semiconductor saturable absorber mirror, preparation method thereof and laser
CN116316032B (en) * 2023-05-23 2023-08-15 青岛翼晨镭硕科技有限公司 Doped semiconductor saturable absorber mirror, preparation method thereof and laser

Similar Documents

Publication Publication Date Title
JP6159796B2 (en) Nitride semiconductor multilayer mirror and light emitting device using the same
CN103457158A (en) TM-polarization GaAsP/GaInP active-region 808nm quantum-well laser
CN109873299B (en) GaN-based multi-quantum well laser epitaxial wafer with low V-type defect density and preparation method
CN101888056B (en) Light trap adopted epitaxial material structure of ultrafine divergent angle high-power semiconductor laser
CN104617487A (en) Same-temperature growth method of laser quantum well active region on gallium nitride native substrate
WO2021212597A1 (en) Quaternary system tensile strain semiconductor laser epitaxial wafer and preparation method therefor
JP2018098401A (en) Nitride semiconductor laser element
CN114300923A (en) A kind of semiconductor saturable absorption mirror and preparation method thereof
CN114709309A (en) Epitaxial wafer, preparation method of epitaxial wafer, and light-emitting diode
CN105088181B (en) A kind of MOCVD preparation methods of si-based quantum dot laser material
JPWO2014061174A1 (en) Semiconductor light emitting device
JP5257967B2 (en) Semiconductor optical device
JP2008537351A (en) Saturable absorption structure
CN108011287A (en) A kind of saturable absorbing mirror of composite construction
JP5561629B2 (en) Semiconductor optical device
CN117477336A (en) Semiconductor saturable absorber mirror, preparation method thereof and picosecond fiber laser seed source
CN108666860A (en) A kind of semiconductor saturable absorbing mirror structure with strain compensation
CN103996972A (en) Photonic crystal edge emitting laser device capable of modulating wave length and divergence angle at the same time
CN104953467A (en) GaN-based semiconductor laser and manufacturing method thereof
JP4886634B2 (en) Quantum well structure, optical confinement quantum well structure, semiconductor laser, distributed feedback semiconductor laser, and method of manufacturing quantum well structure
JP7333666B2 (en) Optical device and method for manufacturing optical device
JP2011014832A (en) Method of manufacturing semiconductor optical device, and semiconductor optical device
EP2253995B1 (en) Method for reduction of recovery time of SESAM absorbers
JP5931653B2 (en) Photoelectric conversion element
CN110323670A (en) Semiconductor laser and its laser resonator, optical confinement structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination