CN114299057A - Extraction method and storage medium of blood vessel centerline - Google Patents
Extraction method and storage medium of blood vessel centerline Download PDFInfo
- Publication number
- CN114299057A CN114299057A CN202111678599.0A CN202111678599A CN114299057A CN 114299057 A CN114299057 A CN 114299057A CN 202111678599 A CN202111678599 A CN 202111678599A CN 114299057 A CN114299057 A CN 114299057A
- Authority
- CN
- China
- Prior art keywords
- blood vessel
- image
- blood
- centerline
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
技术领域technical field
本申请涉及计算机和图像处理技术领域,特别是涉及一种血管中心线的提取方法、装置、计算机设备、存储介质和计算机程序产品。The present application relates to the technical field of computer and image processing, and in particular, to a method, apparatus, computer equipment, storage medium and computer program product for extracting a blood vessel centerline.
背景技术Background technique
在脑血管疾病的诊断中,通常需要根据磁共振获取到的图像,识别该图像中主要的脑血管,进而,可以基于识别出的脑血管检测该脑血管的病变区域,得到诊断结果。针对脑血管的黑血图像,在识别该黑血图像中的脑血管时,通常需要先确定该黑血图像中脑血管的中心线,接着,基于该脑血管的中心线来提取该黑血图像内的脑血管。In the diagnosis of cerebrovascular disease, it is usually necessary to identify the main cerebral blood vessels in the image according to the image obtained by magnetic resonance, and then, the diseased area of the cerebrovascular can be detected based on the identified cerebral blood vessels to obtain a diagnosis result. For a black blood image of a cerebral blood vessel, when identifying a cerebral blood vessel in the black blood image, it is usually necessary to first determine the centerline of the cerebral blood vessel in the black blood image, and then extract the black blood image based on the centerline of the cerebral blood vessel. brain blood vessels.
传统技术中,自动识别黑血图像的血管中心线的过程为:在该黑血图像对应的亮血图像中手动或者自动获取血管中心线,接着,根据配准算法,将亮血图像中的血管中心线配准到黑血图像中,再对配准后的血管中心线进行微调,得到黑血图像的血管中心线。In the traditional technology, the process of automatically identifying the blood vessel centerline of the black blood image is as follows: manually or automatically obtaining the blood vessel centerline in the bright blood image corresponding to the black blood image, and then, according to the registration algorithm, the blood vessels in the bright blood image are The center line is registered to the black blood image, and then the registered blood vessel center line is fine-tuned to obtain the blood vessel center line of the black blood image.
然而,现有的黑血图像的血管中心线获取方法中,当亮血图像质量不高或者配准算法不准时,容易造成所获取到黑血图像的血管中心线的准确性较差。However, in the existing method for obtaining the blood vessel centerline of the black blood image, when the quality of the bright blood image is not high or the registration algorithm is inaccurate, the accuracy of the obtained blood vessel centerline of the black blood image is likely to be poor.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述技术问题,提供一种能够仅通过黑血图像提取血管中心线,进而提高血管中心线的提取准确性的血管中心线的提取方法、装置、计算机设备、计算机可读存储介质和计算机程序产品。Based on this, it is necessary to provide a method, device, computer equipment, and computer-readable storage for extracting the blood vessel centerline, which can extract the blood vessel centerline only through the black blood image, thereby improving the extraction accuracy of the blood vessel centerline. Media and Computer Program Products.
第一方面,本申请提供了一种血管中心线的提取方法。该方法包括:In a first aspect, the present application provides a method for extracting a blood vessel centerline. The method includes:
获取待测对象的初始黑血图像;Obtain the initial black blood image of the object to be tested;
将初始黑血图像输入预设的第一分割模型中,得到第一血管分段图像;其中,第一血管分段图像包括至少一条血管分段;Inputting the initial black blood image into a preset first segmentation model to obtain a first blood vessel segmented image; wherein the first blood vessel segmented image includes at least one blood vessel segment;
提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。The center line of each blood vessel segment in the first blood vessel segment image is extracted to obtain a blood vessel center line image corresponding to the initial black blood image.
在其中一个实施例中,提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像,包括:In one embodiment, the centerline of each blood vessel segment in the first blood vessel segment image is extracted to obtain a blood vessel centerline image corresponding to the initial black blood image, including:
针对每条血管分段,提取每条血管分段的中心线;For each vessel segment, extract the centerline of each vessel segment;
基于初始黑血图像以及预设的血管连接策略,连接每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。Based on the initial black blood image and the preset blood vessel connection strategy, the centerline of each blood vessel segment is connected to obtain the blood vessel centerline image corresponding to the initial black blood image.
在其中一个实施例中,提取每条血管分段的中心线,包括:In one embodiment, extracting the centerline of each blood vessel segment includes:
针对血管分段,确定该血管分段的第一端点和第二端点;For a blood vessel segment, determining a first endpoint and a second endpoint of the vessel segment;
基于第一血管分段图像,连接该血管分段的第一端点和第二端点,得到该血管分段的中心线。Based on the first blood vessel segment image, the first end point and the second end point of the blood vessel segment are connected to obtain the center line of the blood vessel segment.
在其中一个实施例中,确定该血管分段的第一端点和第二端点,包括:In one embodiment, determining the first endpoint and the second endpoint of the vessel segment includes:
血管分段包括多条子血管分段;The blood vessel segment includes multiple sub-vessel segments;
确定每条子血管分段的第一端点和第二端点;determining the first endpoint and the second endpoint of each sub-vessel segment;
相应地,基于第一血管分段图像,连接该血管分段的第一端点和第二端点,得到血管分段的中心线,包括:Correspondingly, based on the first blood vessel segment image, connect the first end point and the second end point of the blood vessel segment to obtain the center line of the blood vessel segment, including:
针对每条子血管分段,基于第一血管分段图像,连接子血管分段的第一端点和第二端点,得到子血管分段的中心线;For each sub-vessel segment, based on the first blood vessel segment image, connect the first endpoint and the second endpoint of the sub-vessel segment to obtain the centerline of the sub-vessel segment;
基于初始黑血图像,连接各条子血管分段的中心线,得到血管分段的中心线。Based on the initial black blood image, connect the centerlines of each sub-vessel segment to obtain the centerline of the vessel segment.
在其中一个实施例中,该方法还包括:In one embodiment, the method further includes:
基于血管中心线图像以及第一血管分段图像,确定至少一个血管分叉点;determining at least one blood vessel bifurcation point based on the blood vessel centerline image and the first blood vessel segment image;
基于各个血管分叉点,对血管中心线图像中的每条血管中心线进行分段处理,得到血管中心线分段图像。Based on each blood vessel bifurcation point, each blood vessel centerline in the blood vessel centerline image is segmented to obtain a segmented image of the blood vessel centerline.
在其中一个实施例中,基于血管中心线图像以及第一血管分段图像,确定至少一个血管分叉点,包括:In one embodiment, determining at least one blood vessel bifurcation point based on the blood vessel centerline image and the first blood vessel segment image includes:
确定第一血管分段图像中的第一分叉点的位置,以及血管中心线图像中的第二分叉点的位置;determining the position of the first bifurcation point in the first blood vessel segmented image, and the position of the second bifurcation point in the blood vessel centerline image;
判断第二分叉点的位置是否在第一分叉点的位置的预设范围内;Determine whether the position of the second bifurcation point is within the preset range of the position of the first bifurcation point;
在第二分叉点的位置在第一分叉点的位置的预设范围内的情况下,将第二分叉点确定为血管分叉点。When the position of the second bifurcation point is within a preset range of the position of the first bifurcation point, the second bifurcation point is determined as a blood vessel bifurcation point.
在其中一个实施例中,该方法还包括:在第二分叉点的位置不在第一分叉点的位置的预设范围内的情况下,返回重新执行基于初始黑血图像以及血管连接策略,连接每条血管分段的中心线,得到调整后的血管中心线图像,并执行确定调整后的血管中心线图像中的第二分叉点的位置的步骤,直至第二分叉点的位置位于第一分叉点的位置的预设范围内为止。In one of the embodiments, the method further includes: in the case that the position of the second bifurcation point is not within the preset range of the position of the first bifurcation point, returning to re-execute the strategy based on the initial black blood image and the blood vessel connection, Connect the centerlines of each blood vessel segment to obtain an adjusted blood vessel centerline image, and perform the steps of determining the position of the second bifurcation point in the adjusted blood vessel centerline image, until the position of the second bifurcation point is located at within the preset range of the position of the first bifurcation point.
在其中一个实施例中,该方法还包括:In one embodiment, the method further includes:
基于初始黑血图像,获取血管中心线图像中的每条血管中心线上的各个点对应的横截面图像;Based on the initial black blood image, obtain a cross-sectional image corresponding to each point on the centerline of each blood vessel in the blood vessel centerline image;
对各个横截面图像进行处理,得到与血管中心线图像对应的目标血管图像。Each cross-sectional image is processed to obtain a target blood vessel image corresponding to the blood vessel centerline image.
在其中一个实施例中,对各个横截面图像进行处理,得到与血管中心线图像对应的目标血管图像,包括:In one embodiment, each cross-sectional image is processed to obtain a target blood vessel image corresponding to the blood vessel centerline image, including:
将各个横截面图像分别输入第二分割模型中,得到各个横截面图像对应的分割结果图像;Inputting each cross-sectional image into the second segmentation model, respectively, to obtain a segmentation result image corresponding to each cross-sectional image;
基于各个横截面图像对应的分割结果图像,判断各个横截面图像中的血管结构是否满足预设的血管结构规则;Based on the segmentation result image corresponding to each cross-sectional image, determine whether the blood vessel structure in each cross-sectional image satisfies a preset blood vessel structure rule;
在横截面图像中的血管结构不满足预设的血管结构规则的情况下,去除该不满足血管结构规则的横截面图像,并根据满足血管结构规则的其余横截面图像,得到目标血管图像。When the blood vessel structure in the cross-sectional image does not meet the preset blood vessel structure rule, the cross-sectional image that does not satisfy the blood vessel structure rule is removed, and the target blood vessel image is obtained according to the remaining cross-sectional images that satisfy the blood vessel structure rule.
在其中一个实施例中,该方法还包括:In one embodiment, the method further includes:
基于各个血管分叉点,对目标血管图像中的每条血管进行分段处理,得到与目标血管图像对应的目标血管分段图像。Based on each blood vessel bifurcation point, each blood vessel in the target blood vessel image is segmented to obtain a target blood vessel segmented image corresponding to the target blood vessel image.
在其中一个实施例中,该方法还包括:In one embodiment, the method further includes:
基于血管中心线图像,检测初始黑血图像中的血管内是否存在目标组织;Based on the blood vessel centerline image, detect whether the target tissue exists in the blood vessel in the initial black blood image;
在初始黑血图像中的血管内存在目标组织的情况下,基于初始黑血图像,对目标组织进行分割处理,得到目标组织的分割结果。When the target tissue exists in the blood vessel in the initial black blood image, the target tissue is segmented based on the initial black blood image to obtain a segmentation result of the target tissue.
第二方面,本申请还提供了一种血管中心线的提取装置。该装置包括:In a second aspect, the present application also provides a device for extracting a blood vessel centerline. The device includes:
第一获取模块,用于获取待测对象的初始黑血图像;The first acquisition module is used to acquire the initial black blood image of the object to be tested;
第二获取模块,用于将初始黑血图像输入预设的第一分割模型中,得到第一血管分段图像;其中,第一血管分段图像包括至少一条血管分段;The second acquisition module is configured to input the initial black blood image into a preset first segmentation model to obtain a first blood vessel segmented image; wherein, the first blood vessel segmented image includes at least one blood vessel segment;
第三获取模块,用于提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。The third acquisition module is configured to extract the centerline of each blood vessel segment in the first blood vessel segmented image, and obtain the blood vessel centerline image corresponding to the initial black blood image.
第三方面,本申请还提供了一种计算机设备。该计算机设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现以下步骤:In a third aspect, the present application also provides a computer device. The computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
获取待测对象的初始黑血图像;Obtain the initial black blood image of the object to be tested;
将初始黑血图像输入预设的第一分割模型中,得到第一血管分段图像;其中,第一血管分段图像包括至少一条血管分段;Inputting the initial black blood image into a preset first segmentation model to obtain a first blood vessel segmented image; wherein the first blood vessel segmented image includes at least one blood vessel segment;
提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。The center line of each blood vessel segment in the first blood vessel segment image is extracted to obtain a blood vessel center line image corresponding to the initial black blood image.
第四方面,本申请还提供了一种计算机可读存储介质。该计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In a fourth aspect, the present application also provides a computer-readable storage medium. The computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by the processor, the following steps are implemented:
获取待测对象的初始黑血图像;Obtain the initial black blood image of the object to be tested;
将初始黑血图像输入预设的第一分割模型中,得到第一血管分段图像;其中,第一血管分段图像包括至少一条血管分段;Inputting the initial black blood image into a preset first segmentation model to obtain a first blood vessel segmented image; wherein the first blood vessel segmented image includes at least one blood vessel segment;
提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。The center line of each blood vessel segment in the first blood vessel segment image is extracted to obtain a blood vessel center line image corresponding to the initial black blood image.
第五方面,本申请还提供了一种计算机程序产品。该计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:In a fifth aspect, the present application also provides a computer program product. The computer program product includes a computer program that, when executed by a processor, implements the following steps:
获取待测对象的初始黑血图像;Obtain the initial black blood image of the object to be tested;
将初始黑血图像输入预设的第一分割模型中,得到第一血管分段图像;其中,第一血管分段图像包括至少一条血管分段;Inputting the initial black blood image into a preset first segmentation model to obtain a first blood vessel segmented image; wherein the first blood vessel segmented image includes at least one blood vessel segment;
提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。The center line of each blood vessel segment in the first blood vessel segment image is extracted to obtain a blood vessel center line image corresponding to the initial black blood image.
上述血管中心线的提取方法、装置、计算机设备、存储介质和计算机程序产品,计算机设备通过获取待测对象的初始黑血图像,并将初始黑血图像输入预设的第一分割模型中,得到包括至少一条血管分段的第一血管分段图像,接着,提取该第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像;实现了仅从黑血图像即可直接获取到血管中心线的自动提取方式,无需再借助与该黑血图像对应的亮血图像,也无需再额外获取亮血图像,当然也就无需考虑亮血图像的质量问题以及配准的准确性问题;在获取到初始黑血图像后,通过本实施例中的方法即可直接通过对初始黑血图像的识别和处理来得到该初始黑血图像对应的血管中心线图像,操作简单快捷,省时省力,所获取到的血管中心线图像的准确性较高,且提取效率高。The above-mentioned method, device, computer equipment, storage medium and computer program product for extracting the centerline of blood vessels, the computer equipment obtains the initial black blood image of the object to be measured by acquiring the initial black blood image and inputting the initial black blood image into the preset first segmentation model to obtain A first blood vessel segment image including at least one blood vessel segment, and then extracting the centerline of each blood vessel segment in the first blood vessel segment image to obtain a blood vessel centerline image corresponding to the initial black blood image; The automatic extraction method of the blood vessel centerline can be directly obtained from the black blood image, no need to use the bright blood image corresponding to the black blood image, and no need to additionally obtain the bright blood image. Of course, there is no need to consider the quality of the bright blood image. The problem and the accuracy of registration; after the initial black blood image is obtained, the method in this embodiment can directly identify and process the initial black blood image to obtain the blood vessel center line corresponding to the initial black blood image. Image, the operation is simple and quick, time-saving and labor-saving, the obtained blood vessel centerline image has high accuracy and high extraction efficiency.
附图说明Description of drawings
图1为一个实施例中血管中心线的提取方法的流程示意图;1 is a schematic flowchart of a method for extracting a blood vessel centerline in one embodiment;
图2为一个实施例中第一血管分段图像的结构示意图;2 is a schematic structural diagram of a first blood vessel segmented image in one embodiment;
图3为一个实施例中血管中心线图像的结构示意图;3 is a schematic structural diagram of a blood vessel centerline image in one embodiment;
图4为另一个实施例中血管中心线的提取方法的流程示意图;4 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment;
图5为另一个实施例中血管中心线的提取方法的流程示意图;5 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment;
图6为另一个实施例中血管中心线的提取方法的流程示意图;6 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment;
图7为一个实施例中血管分段的中心线提取过程示意图;7 is a schematic diagram of a centerline extraction process of blood vessel segmentation in one embodiment;
图8为另一个实施例中血管中心线的提取方法的流程示意图;8 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment;
图9为另一个实施例中血管中心线的提取方法的流程示意图;9 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment;
图10为另一个实施例中血管中心线的提取方法的流程示意图;10 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment;
图11为另一个实施例中血管中心线的提取方法的流程示意图;11 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment;
图12为一个实施例中血管中心线的提取方法的变化过程的完整示意图;12 is a complete schematic diagram of a change process of a method for extracting a blood vessel centerline in one embodiment;
图13为一个实施例中血管中心线的提取装置的结构框图;13 is a structural block diagram of an apparatus for extracting blood vessel centerline in one embodiment;
图14为一个实施例中计算机设备的内部结构图。Figure 14 is a diagram of the internal structure of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请实施例提供的血管中心线的提取方法,可以应用于计算机设备中,该计算机设备可以是终端、也可以是服务器,该终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、扫描设备以及与扫描设备连接的处理设备等,该服务器可以用独立的服务器或者是多个服务器组成的服务器集群来实现。The method for extracting the blood vessel centerline provided by the embodiments of the present application can be applied to computer equipment. The computer equipment can be a terminal or a server, and the terminal can be, but is not limited to, various personal computers, notebook computers, smart phones, Tablet computers, scanning devices, and processing devices connected to the scanning devices, etc., the server can be implemented by an independent server or a server cluster composed of multiple servers.
在一个实施例中,如图1所示,提供了一种血管中心线的提取方法,以该方法应用于上述计算机设备为例进行说明,包括以下步骤:In one embodiment, as shown in FIG. 1, a method for extracting a blood vessel centerline is provided, and the method is applied to the above-mentioned computer equipment as an example to illustrate, including the following steps:
步骤101,获取待测对象的初始黑血图像。Step 101: Obtain an initial black blood image of the object to be tested.
可选地,该初始黑血图像可以是从采集设备上采集得到的,也可以是从服务器中获取的,还可以是从设备本地获取的历史初始黑血图像等;本实施例对待测对象的初始黑血图像的获取方式并不做限定。另外,该初始黑血图像可以为不同形态的黑血序列,包括但不限于T1增强图像、T1图像、T2图像、质子密度图像等,本实施例对初始黑血图像的形式并不做限定。Optionally, the initial black blood image may be collected from a collection device, may also be obtained from a server, or may be a historical initial black blood image obtained locally from the device, etc.; The acquisition method of the initial black blood image is not limited. In addition, the initial black blood image may be a black blood sequence of different forms, including but not limited to T1 enhanced image, T1 image, T2 image, proton density image, etc. The form of the initial black blood image is not limited in this embodiment.
步骤102,将初始黑血图像输入预设的第一分割模型中,得到第一血管分段图像。Step 102: Input the initial black blood image into a preset first segmentation model to obtain a first segmented image of blood vessels.
其中,第一血管分段图像包括至少一条血管分段,每条血管分段可以是分布在不同组织或者器官中的部分血管,也可以是同一组织或者器官中的不同类型的血管,例如:动脉血管、静脉血管、毛细血管等。可选地,在第一血管分段图像中,可以通过不同的线条类型标注不同的血管分段,例如:可以根据线条颜色进行区分标注、也可以根据线条粗细进行区分标注、还可以根据线条形状进行区别标注等;还可以采用标识信息来区分不同的血管分段,例如:可以采用文字标识、数字标识、符号标识等;当然,还可以采用多种方式相结合的标注方式来区分不同的血管分段,本实施例对血管分段的标注方式并不做限定。The first blood vessel segment image includes at least one blood vessel segment, and each blood vessel segment may be a part of blood vessels distributed in different tissues or organs, or may be different types of blood vessels in the same tissue or organ, for example: arteries Blood vessels, veins, capillaries, etc. Optionally, in the first blood vessel segmented image, different blood vessel segments can be marked by different line types, for example, different labeling can be performed according to line color, line thickness, or line shape. Differential labeling, etc.; identification information can also be used to distinguish different blood vessel segments, for example: text identification, digital identification, symbol identification, etc.; Segmentation, this embodiment does not limit the labeling manner of the blood vessel segment.
可选地,该第一分割模型可以为采用多个黑血样本图像和每个黑血样本图像对应的血管分段标签图像,对第一初始分割网络进行训练后得到的分割模型,该第一初始分割网络可以为基于现有的任意类型的深度学习网络,也可以是多种不同类型的网络相结合的分割网络等,本实施例对此并不做限定。Optionally, the first segmentation model may be a segmentation model obtained after training the first initial segmentation network by using a plurality of black blood sample images and a blood vessel segment label image corresponding to each black blood sample image. The initial segmentation network may be an existing deep learning network of any type, or may be a segmentation network combining various types of networks, etc., which is not limited in this embodiment.
通过该第一分割模型,可以对初始黑血图像进行血管分割处理,得到该初始黑血图像对应的第一血管分段图像;可选地,该第一血管分段图像中血管分段的数量可以和初始黑血图像中血管分段的数量相同,血管分段的效果较佳。例如:如图2所示,为对初始黑血图像进行血管分割后的第一血管分段图像。Through the first segmentation model, the blood vessel segmentation process can be performed on the initial black blood image to obtain a first blood vessel segmented image corresponding to the initial black blood image; optionally, the number of blood vessel segments in the first blood vessel segmented image It can be the same as the number of blood vessel segments in the initial black blood image, and the effect of blood vessel segmentation is better. For example, as shown in FIG. 2 , it is the first segmented image of blood vessels after blood vessel segmentation is performed on the initial black blood image.
步骤103,提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。
可选地,在获取到初始黑血图像对应的包括至少一条血管分段的第一血管图像之后,可以对该第一血管分段图像中的每条血管分段进行中心线提取,得到每条血管分段对应的中心线,即可得到初始黑血图像对应的血管中心线图像,如图3所示。Optionally, after acquiring the first blood vessel image including at least one blood vessel segment corresponding to the initial black blood image, centerline extraction can be performed on each blood vessel segment in the first blood vessel segment image, to obtain each blood vessel segment. The centerline corresponding to the blood vessel segment can be obtained to obtain the blood vessel centerline image corresponding to the initial black blood image, as shown in Figure 3.
可选地,可以采用预设的中心线提取算法,提取第一血管分段图像中的每条血管分段的中心线,也可以采用在线学习算法等来提取第一血管分段图像中的每条血管分段的中心线,其中,该中心线提取算法可以是基于模型的中心线提取算法,也可以是基于非模型的中心线提取算法,本实施例对血管中心线的提取方式以及中心线提取算法的原理和方式并不做限定。Optionally, a preset centerline extraction algorithm can be used to extract the centerline of each blood vessel segment in the first blood vessel segmented image, or an online learning algorithm or the like can be used to extract each blood vessel segment in the first blood vessel segmented image. The centerline of a blood vessel segment, wherein the centerline extraction algorithm may be a model-based centerline extraction algorithm, or a non-model-based centerline extraction algorithm. The method for extracting the blood vessel centerline in this embodiment and the centerline The principle and method of the extraction algorithm are not limited.
上述血管中心线的提取方法中,计算机设备通过获取待测对象的初始黑血图像,并将初始黑血图像输入预设的第一分割模型中,得到包括至少一条血管分段的第一血管分段图像,接着,提取该第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像;实现了仅从黑血图像即可直接获取到血管中心线的自动提取方式,无需再借助与该黑血图像对应的亮血图像,也无需再额外获取亮血图像,当然也就无需考虑亮血图像的质量问题以及配准的准确性问题;在获取到初始黑血图像后,通过本实施例中的方法即可直接通过对初始黑血图像的识别和处理来得到该初始黑血图像对应的血管中心线图像,操作简单快捷,省时省力,所获取到的血管中心线图像的准确性较高,且提取效率高。In the above method for extracting the blood vessel centerline, the computer equipment obtains the first blood vessel segment including at least one blood vessel segment by acquiring the initial black blood image of the object to be measured and inputting the initial black blood image into the preset first segmentation model. Then, the center line of each blood vessel segment in the first blood vessel segment image is extracted to obtain the blood vessel center line image corresponding to the initial black blood image; it is realized that the blood vessel center can be directly obtained only from the black blood image. The automatic extraction method of the line does not need to use the bright blood image corresponding to the black blood image, nor does it need to obtain additional bright blood images. Of course, there is no need to consider the quality of the bright blood images and the accuracy of registration; After reaching the initial black blood image, the method in this embodiment can directly obtain the blood vessel centerline image corresponding to the initial black blood image by identifying and processing the initial black blood image. The operation is simple and fast, saving time and effort, so The obtained blood vessel centerline images have high accuracy and high extraction efficiency.
图4为另一个实施例中血管中心线的提取方法的流程示意图。本实施例涉及的是计算机设备提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像的其中一种可选的实现过程;如图4所示,在上述实施例的基础上,上述步骤103包括:FIG. 4 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment. This embodiment relates to an optional implementation process in which a computer device extracts the centerline of each blood vessel segment in the first blood vessel segmented image to obtain a blood vessel centerline image corresponding to the initial black blood image; as shown in FIG. 4 As shown, on the basis of the foregoing embodiment, the foregoing
步骤401,针对每条血管分段,提取每条血管分段的中心线。
关于提取血管分段的中心线的实现方式,可以参照上述步骤103中的相关内容,在此不再赘述。可选地,本实施例中可以采用不同的线条颜色来标注不同的血管分段。Regarding the implementation manner of extracting the centerline of the blood vessel segment, reference may be made to the relevant content in the foregoing
步骤402,基于初始黑血图像以及预设的血管连接策略,连接每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。
其中,该预设的血管连接策略中可以包括多条血管的连接规则,每条血管的连接规则中可以包括多条位于不同组织或者器官内的血管分段的连接规则;例如:对于一条完整的动脉血管,其可以穿梭于多个不同的组织或者器官,对于该动脉血管在不同组织或者器官内的多条血管分段可以采用不同的线条颜色进行区分,并可以预先设置该动脉血管对应的多条血管分段之间的连接顺序。The preset blood vessel connection strategy may include connection rules for multiple blood vessels, and the connection rules for each blood vessel may include multiple connection rules for blood vessel segments located in different tissues or organs; for example, for a complete blood vessel Arterial blood vessels, which can shuttle through multiple different tissues or organs, can use different line colors to distinguish the multiple blood vessel segments of the arterial blood vessels in different tissues or organs, and can preset the corresponding arterial blood vessels. The order of connections between the vessel segments.
可选地,计算机设备在提取出每条血管分段的中心线之后,可以基于初始黑血图像以及该血管连接策略,将各条血管分段中具有关联关系的血管分段的中心线进行连接,得到该初始黑血图像对应的血管中心线图像,其中,该血管中心线图像中包括至少一条完整血管。Optionally, after extracting the centerline of each blood vessel segment, the computer device can connect the centerlines of the blood vessel segments with associated relationships in each blood vessel segment based on the initial black blood image and the blood vessel connection strategy. , obtain a blood vessel centerline image corresponding to the initial black blood image, wherein the blood vessel centerline image includes at least one complete blood vessel.
可选地,计算机设备可以基于该血管连接策略,依据该血管连接策略中各条血管的血管连接顺序,确定出当前待连接的第一血管中具有关联关系的两条待连接的血管分段,接着,可基于初始黑血图像,采用最优路径算法,将这两条待连接的血管分段的中心线进行连接处理,以此类推,直至该第一血管中的各条血管分段的中心线连接完为止,得到该第一血管对应的第一血管中心线;同样的,在第一血管的中心线连接完成后,可以对第二血管的中心线进行连接处理,以此类推,直至具有关联关系的所有的血管分段的中心线连接完为止,即可得到该血管中心线图像。Optionally, the computer device may determine, based on the blood vessel connection strategy and the blood vessel connection sequence of each blood vessel in the blood vessel connection strategy, two blood vessel segments to be connected that have an associated relationship in the first blood vessel currently to be connected, Then, based on the initial black blood image, the optimal path algorithm can be used to connect the center lines of the two blood vessel segments to be connected, and so on, until the center of each blood vessel segment in the first blood vessel Until the line is connected, the first blood vessel center line corresponding to the first blood vessel is obtained; similarly, after the center line of the first blood vessel is connected, the center line of the second blood vessel can be connected, and so on, until there is a The centerline image of the blood vessel can be obtained until the centerlines of all the blood vessel segments in the associated relationship are connected.
本实施例中,针对每条血管分段,计算机设备通过提取每条血管分段的中心线,并基于初始黑血图像以及预设的血管连接策略,连接每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像,能够提高血管中心线的提取准确性,且能够提高血管中心线提高的效率。In this embodiment, for each blood vessel segment, the computer equipment extracts the center line of each blood vessel segment, and connects the center line of each blood vessel segment based on the initial black blood image and the preset blood vessel connection strategy, to obtain The blood vessel centerline image corresponding to the initial black blood image can improve the extraction accuracy of the blood vessel centerline, and can improve the efficiency of the blood vessel centerline improvement.
图5为另一个实施例中血管中心线的提取方法的流程示意图。本实施例涉及的是计算机设备提取每条血管分段的中心线的其中一种可选的实现过程;如图5所示,在上述实施例的基础上,上述步骤401包括:FIG. 5 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment. This embodiment relates to an optional implementation process for extracting the centerline of each blood vessel segment by a computer device; as shown in FIG. 5 , on the basis of the foregoing embodiment, the foregoing
步骤501,针对血管分段,确定该血管分段的第一端点和第二端点。
其中,该血管分段的第一端点可以是该血管分段的首端的中心点,该血管分段的第二端点可以为该血管分段的尾端的中心点。The first end point of the blood vessel segment may be the center point of the head end of the blood vessel segment, and the second end point of the blood vessel segment may be the center point of the tail end of the blood vessel segment.
步骤502,基于第一血管分段图像,连接该血管分段的第一端点和第二端点,得到该血管分段的中心线。Step 502: Based on the first blood vessel segment image, connect the first end point and the second end point of the blood vessel segment to obtain the center line of the blood vessel segment.
可选地,在确定第一血管分段图像中血管分段的中心线时,在确定出该血管分段的第一端点和第二端点之后,可以基于该第一血管分段图像中的该分段血管,连接该血管分段的第一端点和第二端点,形成该血管分段的中心线;可选地,基于该第一血管分段图像中的该分段血管,可以采用血管细化算法,得到该分段血管的多个位置上的中心点,并将该多个位置上的中心点和该血管分段的第一端点和第二端点进行连接,得到该血管分段的中心线;也可以基于该第一血管分段图像中的该分段血管,采用最优路径算法,连接该血管分段的第一端点和第二端点,得到该血管分段的中心线;需要说明的是,本实施例中对于连接血管分段的第一端点和第二端点以形成该血管分段的中心线的具体实现方式并不做限定,实际应用中,可以采用现有的任一种中心线确定方法来实现。Optionally, when determining the center line of the blood vessel segment in the first blood vessel segmented image, after determining the first endpoint and the second endpoint of the blood vessel segment, it can be based on the first blood vessel segmented image. The segmented blood vessel connects the first end point and the second end point of the blood vessel segment to form the centerline of the blood vessel segment; optionally, based on the segmented blood vessel in the first blood vessel segmented image, a The vessel thinning algorithm obtains the center points at multiple positions of the segmented vessel, and connects the center points at the multiple positions with the first and second endpoints of the vessel segment to obtain the vessel segment. The center line of the segment; or based on the segmented blood vessel in the first blood vessel segmented image, the optimal path algorithm can be used to connect the first end point and the second end point of the blood vessel segment to obtain the center of the blood vessel segment. It should be noted that, in this embodiment, the specific implementation of connecting the first end point and the second end point of the blood vessel segment to form the center line of the blood vessel segment is not limited. There are any kind of centerline determination methods to achieve.
本实施例中,针对血管分段,计算机设备通过确定该血管分段的第一端点和第二端点,并基于第一血管分段图像,连接该血管分段的第一端点和第二端点,得到该血管分段的中心线,所得到的血管分段的中心线的准确性高,实现过程简洁,中心线的提取效率高。In this embodiment, for the blood vessel segment, the computer device connects the first end point and the second end point of the blood vessel segment by determining the first end point and the second end point of the blood vessel segment and based on the first blood vessel segment image The end point is obtained to obtain the center line of the blood vessel segment, the obtained center line of the blood vessel segment has high accuracy, the realization process is simple, and the extraction efficiency of the center line is high.
在本申请的一个可选的实施例中,基于一些客观因素的影响,在待测对象的初始黑血图像中的不同血管分段可能会存在遮挡、显影效果较差的问题,导致第一分割模型输出的该初始黑血图像对应的第一血管分段图像中的各条血管分段可能出现断裂的情况,也就是说,对于同一血管分段,可能存在多条子血管分段(例如:在第一血管分段图像中可能出现多条相同颜色的血管分段,而该多条相同颜色的血管分段为血管在同一组织或者器官内的部分血管);在这种情况下,在确定血管分段的中心线时,可以分别确定该血管分段对应的多条子血管分段的中心线,进而,再将各条子血管分段的中心线进行连接,来得到该血管分段的中心线。In an optional embodiment of the present application, based on the influence of some objective factors, the different blood vessel segments in the initial black blood image of the object to be tested may have problems of occlusion and poor developing effect, resulting in the first segmentation Each blood vessel segment in the first blood vessel segment image corresponding to the initial black blood image output by the model may be broken, that is, for the same blood vessel segment, there may be multiple sub-vessel segments (for example: in the There may be multiple blood vessel segments of the same color in the first blood vessel segment image, and the multiple blood vessel segments of the same color are part of the blood vessels in the same tissue or organ); When the centerline of the segment is determined, the centerlines of the multiple sub-vessel segments corresponding to the vessel segment can be determined respectively, and then the centerlines of the respective sub-vessel segments are connected to obtain the centerline of the vessel segment.
图6为另一个实施例中血管中心线的提取方法的流程示意图。本实施例涉及的是在血管分段包括多条子血管分段的情况下,计算机设备提取每条血管分段的中心线的其中一种可选的实现过程;如图6所示,在上述实施例的基础上,上述步骤501包括:FIG. 6 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment. This embodiment relates to an optional implementation process for a computer device to extract the centerline of each blood vessel segment when the blood vessel segment includes multiple sub-vessel segments; as shown in FIG. 6 , in the above implementation process On the basis of the example, the
步骤601,确定每条子血管分段的第一端点和第二端点。Step 601: Determine the first endpoint and the second endpoint of each sub-vessel segment.
其中,该子血管分段的第一端点可以为该子血管分段的首端中心点,该子血管分段的第二端点可以为该子血管分段的尾端中心点。The first end point of the sub-vessel segment may be the center point of the head end of the sub-vessel segment, and the second end point of the sub-vessel segment may be the center point of the tail end of the sub-vessel segment.
相应地,上述步骤502包括:Correspondingly, the
步骤602,针对每条子血管分段,基于第一血管分段图像,连接子血管分段的第一端点和第二端点,得到子血管分段的中心线。
这里确定子血管分段的中心线的方式可以参照上述步骤502中确定血管分段的中心线的实现方式,在此不再赘述。The manner of determining the centerline of the sub-vessel segment here may refer to the implementation manner of determining the centerline of the vessel segment in the foregoing
步骤603,基于初始黑血图像,连接各条子血管分段的中心线,得到血管分段的中心线。
可选地,在确定出某一血管分段的多条子血管分段的中心线之后,可以基于初始黑血图像,确定出各条子血管分段的中心线的连接顺序,接着,可根据该连接顺序,连接相邻的两条子血管分段的中心线,得到该血管分段的中心线;可选地,在连接相邻的两条子血管分段的中心线时,对于这两条子血管分段的中心线之间的空缺部分,可以采用最优路径算法,并借助于初始黑血图像,生成这两条子血管分段的中心线之间的部分中心线,以此来连接这两条子血管分段的中心线;当然,也可以采用其他的连接方式或者连接算法,连接相邻的两条子血管分段的中心线,本申请实施例对此并不做限定。Optionally, after determining the centerlines of multiple sub-vessel segments of a certain vessel segment, the connection sequence of the centerlines of each sub-vessel segment can be determined based on the initial black blood image, and then, according to the connection Sequentially, connect the centerlines of two adjacent sub-vessel segments to obtain the centerline of the blood vessel segment; optionally, when connecting the centerlines of two adjacent sub-vessel segments, for these two sub-vessel segments For the vacant part between the center lines of the two sub-vessel segments, the optimal path algorithm can be used, and with the help of the initial black blood image, a partial center line between the center lines of the two sub-vessel segments can be generated, so as to connect the two sub-vessel segments. Of course, other connection methods or connection algorithms may also be used to connect the centerlines of two adjacent sub-vessel segments, which are not limited in this embodiment of the present application.
本实施例中,在血管分段包括多条子血管分段的情况下,可以确定出每条子血管分段的第一端点和第二端点,并针对每条子血管分段,基于第一血管分段图像,连接子血管分段的第一端点和第二端点,得到子血管分段的中心线;接着,再基于初始黑血图像,连接各条子血管分段的中心线,得到血管分段的中心线;所得到的血管分段的中心线的准确性高,以及得到的血管分段的中心线更完整,提高了中心线提取的准确性和完整性。In this embodiment, when the blood vessel segment includes multiple sub-vessel segments, the first endpoint and the second endpoint of each sub-vessel segment can be determined, and for each sub-vessel segment, based on the first blood vessel segment segment image, connect the first end point and the second end point of the sub-vessel segment to obtain the center line of the sub-vessel segment; then, based on the initial black blood image, connect the center lines of each sub-vessel segment to obtain the blood vessel segment The centerline of the obtained blood vessel segment has high accuracy, and the obtained centerline of the blood vessel segment is more complete, which improves the accuracy and completeness of the centerline extraction.
在本申请的另一个可选的实施例中,在血管分段包括多条子血管分段的情况下,还可以从该血管分段对应的多条子血管分段中确定出最长的两条子血管分段,并基于这两条最长的子血管分段,来得到该血管分段的中心线;可选地,针对一个血管分段(如图7(a)所示,为血管分段的结构示意图),可以从该血管分段的多条子血管分段中确定出最长子血管分段和次长子血管分段,并确定最长子血管分段的第一端点和次长子血管分段的第一端点为该血管分段的第一端点,以及确定最长子血管分段的第二端点和次长子血管分段的第二端点为该血管分段的第二端点;也就是说,确定出该最长子血管分段的第一端点和第二端点,以及确定出次长子血管分段的第一端点和第二端点;接着,针对最长子血管分段,连接该最长子血管分段的第一端点和第二端点,得到该最长子血管分段的第一中心线,以及针对次长子血管分段,连接该次长子血管分段的第一端点和第二端点,得到该次长子血管分段的第二中心线(如图7(b)所示,为血管分段中最长子血管分段的中心线和次长子血管分段的中心线的结构示意图);然后,可以连接该最长子血管分段的第一中心线和该次长子血管分段的第二中心线,以此来代表该血管分段的中心线(如图7(c)所示,为血管分段的中心线的结构示意图)。In another optional embodiment of the present application, when the blood vessel segment includes multiple sub-vessel segments, the two longest sub-vessel segments may also be determined from the multiple sub-vessel segments corresponding to the blood vessel segment segment, and based on the two longest sub-vessel segments, the centerline of the vessel segment is obtained; optionally, for a vessel segment (as shown in Figure 7(a), the Structure diagram), the longest sub-vessel segment and the second-longest sub-vessel segment can be determined from the multiple sub-vessel segments of the vessel segment, and the first endpoint of the longest sub-vessel segment and the second-longest sub-vessel segment are determined. The first endpoint is the first endpoint of the vessel segment, and the second endpoint of the longest sub-vessel segment and the second endpoint of the second-longest sub-vessel segment are determined to be the second endpoint of the vessel segment; that is, Determine the first endpoint and the second endpoint of the longest sub-vessel segment, and determine the first endpoint and the second endpoint of the second-longest sub-vessel segment; then, for the longest sub-vessel segment, connect the longest sub-vessel the first endpoint and the second endpoint of the segment to obtain the first centerline of the longest sub-vessel segment, and for the second-longest sub-vessel segment, connecting the first and second endpoints of the second-longest sub-vessel segment, Obtain the second centerline of the sub-longest sub-vessel segment (as shown in Figure 7(b), which is a schematic structural diagram of the centerline of the longest sub-vessel segment and the center line of the sub-longest sub-vessel segment in the blood vessel segment); then , the first centerline of the longest sub-vessel segment and the second centerline of the second-longest sub-vessel segment can be connected to represent the centerline of the vessel segment (as shown in Figure 7(c), for the blood vessel Schematic diagram of the segmented centerline).
可选地,在连接该最长子血管分段的第一端点和第二端点时,可以基于上述第一血管分段图像,采用最优路径算法,连接该最长子血管分段的第一端点和该最长子血管分段的第二端点,得到最长子血管分段的中心线;同样的,在连接该次长子血管分段的第一端点和该次长子血管分段的第二端点时,可以基于上述第一血管分段图像,采用最优路径算法,连接该次长子血管分段的第一端点和该次长子血管分段的第二端点,得到该次长子血管分段的中心线;接着,可以基于上述初始黑血图像,采用最优路径算法,连接该最长子血管分段的中心线和该次长子血管分段的中心线,得到该血管分段的中心线。Optionally, when connecting the first end point and the second end point of the longest sub-vessel segment, an optimal path algorithm can be used to connect the first end of the longest sub-vessel segment based on the above-mentioned first blood vessel segment image. point and the second endpoint of the longest sub-vessel segment to obtain the centerline of the longest sub-vessel segment; similarly, connect the first endpoint of the second-longest sub-vessel segment and the second endpoint of the second-long sub-vessel segment , based on the above-mentioned first blood vessel segment image, the optimal path algorithm can be used to connect the first end point of the second longest sub-vessel segment and the second end point of the sub-long sub-vessel segment to obtain the second end of the sub-long sub-vessel Centerline; then, based on the above-mentioned initial black blood image, an optimal path algorithm can be used to connect the centerline of the longest sub-vessel segment and the centerline of the second-longest sub-vessel segment to obtain the centerline of the vessel segment.
本实施例中,在血管分段包括多条子血管分段的情况下,可以基于该血管分段对应的多条子血管分段中的最长子血管分段和次长子血管分段,来确定该血管分段的中心线,即通过该血管分段中的两条最长的子血管分段来代表该血管分段,能够提高血管分段的中心线的提取速率,同时还能保证该血管分段的中心线的准确性。In this embodiment, when a blood vessel segment includes multiple sub-vessel segments, the blood vessel may be determined based on the longest sub-vessel segment and the second-longest sub-vessel segment among the multiple sub-vessel segments corresponding to the blood vessel segment The centerline of the segment, that is, the vessel segment is represented by the two longest sub-vessel segments in the vessel segment, which can improve the extraction rate of the centerline of the vessel segment, and at the same time ensure the vessel segment. accuracy of the centerline.
图8为另一个实施例中血管中心线的提取方法的流程示意图。本实施例涉及的是计算机设备在上述血管中心线图像的基础上,进一步确定血管中心线分段图像的其中一种可选的实现过程;如图8所示,在上述实施例的基础上,上述方法还包括:FIG. 8 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment. This embodiment relates to an optional implementation process in which the computer device further determines the segmented image of the blood vessel centerline on the basis of the above-mentioned blood vessel centerline image; as shown in FIG. 8 , on the basis of the above embodiment, The above method also includes:
步骤801,基于血管中心线图像以及第一血管分段图像,确定至少一个血管分叉点。Step 801: Determine at least one blood vessel bifurcation point based on the blood vessel centerline image and the first blood vessel segmented image.
其中,该第一血管分段图像中包括多条血管分段,该多条血管分段中包括多条不同类型的血管,且每条血管包括至少一条位于不同组织或者器官的血管分段,在上述实施例中,通过获取每条血管分段的中心线,并将具有关联关系的属于同一血管的多条血管分段进行连接,得到包括多条血管的完整的血管中心线,也就是该血管中心线图像;在得到该血管中心线图像之后,还可以对该血管中心线中的每条完整血管进行分段,得到与该第一血管分段图像对应的血管中心线分段图像。该血管中心线分段图像中的每条血管分段中心线与第一血管分段图像中的每条血管分段一一对应,但相比于基于初始黑血图像和第一血管分段图像得到的每条血管分段的中心线而言,基于血管中心线图像和第一血管分段图像所得到的每条血管分段的中心线,会更完整,且相互连接的两条血管分段的中心线之间的连接性也会更好,在保证各条血管的完整性的同时,还能准确区分出各条血管在不同组织或者器官中的血管分段的分布。Wherein, the first blood vessel segment image includes a plurality of blood vessel segments, the plurality of blood vessel segments include a plurality of blood vessels of different types, and each blood vessel includes at least one blood vessel segment located in a different tissue or organ. In the above-mentioned embodiment, by acquiring the centerline of each blood vessel segment and connecting multiple blood vessel segments with associated relationships that belong to the same blood vessel, a complete blood vessel centerline including multiple blood vessels is obtained, that is, the blood vessel. Centerline image; after the blood vessel centerline image is obtained, each complete blood vessel in the blood vessel centerline may be segmented to obtain a blood vessel centerline segmented image corresponding to the first blood vessel segmented image. Each vessel segment centerline in the vessel centerline segmented image corresponds one-to-one with each vessel segment in the first vessel segment image, but compared to the image based on the initial black blood image and the first vessel segment image For the obtained centerline of each blood vessel segment, the centerline of each blood vessel segment obtained based on the blood vessel centerline image and the first blood vessel segment image will be more complete, and the two blood vessel segments are connected to each other. The connectivity between the centerlines of the blood vessels will also be better, while ensuring the integrity of each blood vessel, it can also accurately distinguish the distribution of the blood vessel segments of each blood vessel in different tissues or organs.
可选地,在对血管中心线图像进行分段之前,需要先确定出多个分叉点,该多个血管分叉点为各个血管分段之间的连接点,以便计算机设备可以根据每个分叉点对该血管中心线图像中的多条血管进行分段处理;在确定分叉点时,可以通过确定第一血管分段图像中的多个分叉点,以及确定血管中心线图像中的多个分叉点,接着,可以通过对第一血管分段图像中的多个分叉点以及血管中心线图像中的多个分叉点进行对比,来得到最终对血管中心线图像进行分段的多个血管分叉点。Optionally, before segmenting the blood vessel centerline image, it is necessary to determine a plurality of bifurcation points, and the plurality of blood vessel bifurcation points are connection points between each blood vessel segment, so that the computer equipment can The bifurcation point performs segmentation processing on a plurality of blood vessels in the blood vessel centerline image; when determining the bifurcation point, the plurality of bifurcation points in the first blood vessel segmented image can be determined, and the Then, by comparing the plurality of bifurcation points in the first blood vessel segmented image and the plurality of bifurcation points in the blood vessel centerline image, the final segmentation of the blood vessel centerline image can be obtained. segment of multiple vascular bifurcation points.
可选地,可以确定第一血管分段图像中的第一分叉点的位置,以及血管中心线图像中的第二分叉点的位置,其中,该第一分叉点和该第二分叉点为该第一血管分段图像和该血管中心线图像中,相同血管之间的分叉点;接着,可以判断第二分叉点的位置是否在第一分叉点的位置的预设范围内;在确定第二分叉点的位置在第一分叉点的位置的预设范围内的情况下,可以将第二分叉点确定为血管分叉点,即在该情况下,说明第一血管分段图像中的几条血管之间的交叉连接与血管中心线中的这几条血管之间的交叉连接基本一致,也说明血管中心线图像中的各条血管的中心线与初始黑血图像中实际的血管的匹配度较高,所得到的血管中心线更准确,所以,在该情况下,可以直接将从血管中心线图像中确定的第二分叉点作为最终对血管中心线图像进行分段的血管分叉点。Optionally, the position of the first bifurcation point in the first blood vessel segmented image and the position of the second bifurcation point in the blood vessel centerline image may be determined, wherein the first bifurcation point and the second bifurcation point are determined. The bifurcation point is the bifurcation point between the same blood vessels in the first blood vessel segmented image and the blood vessel centerline image; then, it can be determined whether the position of the second bifurcation point is in the preset position of the first bifurcation point In the case where it is determined that the position of the second bifurcation point is within the preset range of the position of the first bifurcation point, the second bifurcation point can be determined as the blood vessel bifurcation point, that is, in this case, the description The cross-connection between several blood vessels in the first blood vessel segmented image is basically consistent with the cross-connection between these blood vessels in the blood vessel centerline, which also shows that the centerline of each blood vessel in the blood vessel centerline image is the same as the initial one. The matching degree of the actual blood vessels in the black blood image is higher, and the obtained blood vessel centerline is more accurate. Therefore, in this case, the second bifurcation point determined from the blood vessel centerline image can be directly used as the final pair of blood vessel centers. Line images of vessel bifurcation points for segmentation.
可选地,在第二分叉点的位置不在第一分叉点的位置的预设范围内的情况下,说明在对具有关联关系的多条血管分段的中心线进行连接后所得到的完整血管的中心线与初始黑血图像中的实际血管存在差异;此时,可以返回重新执行基于初始黑血图像以及血管连接策略,连接每条血管分段的中心线,得到调整后的血管中心线图像,接着,可以继续执行确定调整后的血管中心线图像中的第二分叉点的位置的步骤,并判断调整后的血管中心线图像中的第二分叉点的位置是否在第一血管分段图像中的第一分叉点的位置的预设范围内,如果在,则可以将调整后的血管中心线图像中的第二分叉点作为最终对血管中心线图像进行分段的血管分叉点;如果还是不在,则可以返回继续执行基于初始黑血图像以及血管连接策略,连接每条血管分段的中心线,得到调整后的血管中心线图像,以及后续的步骤,直至第二分叉点的位置位于第一分叉点的位置的预设范围内为止。Optionally, in the case that the position of the second bifurcation point is not within the preset range of the position of the first bifurcation point, it is explained that the result obtained after connecting the centerlines of the multiple blood vessel segments with the associated relationship is described. There is a difference between the center line of the complete blood vessel and the actual blood vessel in the initial black blood image; at this time, you can return to re-execute the initial black blood image and the blood vessel connection strategy to connect the center line of each blood vessel segment to obtain the adjusted blood vessel center Then, the step of determining the position of the second bifurcation point in the adjusted blood vessel centerline image may be continued, and it is determined whether the position of the second bifurcation point in the adjusted blood vessel centerline image is within the first If the position of the first bifurcation point in the blood vessel segmented image is within the preset range, if it is within the preset range, the second bifurcation point in the adjusted blood vessel centerline image may be used as the final segment of the blood vessel centerline image. The blood vessel bifurcation point; if it is still not there, you can go back and continue to execute the centerline of each blood vessel segment based on the initial black blood image and the blood vessel connection strategy to obtain the adjusted blood vessel centerline image, and the subsequent steps until the first Until the position of the bifurcation point is within the preset range of the position of the first bifurcation point.
步骤802,基于各个血管分叉点,对血管中心线图像中的每条血管中心线进行分段处理,得到血管中心线分段图像。Step 802: Perform segmentation processing on each blood vessel centerline in the blood vessel centerline image based on each blood vessel bifurcation point to obtain a blood vessel centerline segmented image.
可选地,在进行分段处理之后,可以采用与第一血管分段图像中各条血管分段相同的分段标记来标记经分段处理后的各条血管中心线分段,至此所得到的血管中心线分段图像与该第一血管分段图像之间就是一一对应的。Optionally, after the segmentation process is performed, the segment marks that are the same as those of each blood vessel segment in the first blood vessel segmented image can be used to mark each segmented blood vessel centerline segment, so far the obtained There is a one-to-one correspondence between the segmented image of the blood vessel centerline and the first segmented image of the blood vessel.
本实施例中,计算机设备在确定出血管中心线图像之后,可以进一步基于血管中心线图像以及第一血管分段图像,确定至少一个血管分叉点;接着,可以基于各个血管分叉点,对血管中心线图像中的每条血管中心线进行分段处理,得到血管中心线分段图像,即得到与第一血管分段图像一一对应的血管中心线分段图像,使得用户可以更直观了掌握不同血管在不同组织或者器官内的血管分布,提高用户体验。In this embodiment, after determining the blood vessel centerline image, the computer device may further determine at least one blood vessel bifurcation point based on the blood vessel centerline image and the first blood vessel segmented image; Each blood vessel centerline in the blood vessel centerline image is segmented to obtain a segmented image of the blood vessel centerline, that is, a segmented image of the blood vessel centerline corresponding to the first segmented image of the blood vessel is obtained, so that the user can be more intuitive. Master the blood vessel distribution of different blood vessels in different tissues or organs to improve user experience.
在本申请的一个可选的实施例中,计算机设备在基于血管中心线图像以及第一血管分段图像,确定至少一个血管分叉点之前,还可以基于初始黑血图像,延长血管中心线图像中的每条血管中心线,得到延长处理后的血管中心线图像;由于在使用第一分割模型对初始黑血图像进行血管分割后所得到的第一血管分段图像,可能存在边缘血管的缺失,或者采用上述最长两条血管分段进行中心线连接得到血管中心线时会导致该血管中心线的不完整,因此,本实施例中对血管中心线图像中的每条血管进行两端延长处理,经延长处理后的各条血管中心线会更完整,更能体现出初始黑血图像中实际血管的整体形态。In an optional embodiment of the present application, before determining at least one blood vessel bifurcation point based on the blood vessel centerline image and the first blood vessel segment image, the computer device may further extend the blood vessel centerline image based on the initial black blood image For each blood vessel centerline in , the extended blood vessel centerline image is obtained; because the first blood vessel segmented image obtained after the blood vessel segmentation is performed on the initial black blood image using the first segmentation model, there may be a lack of edge blood vessels. , or using the above-mentioned longest two blood vessel segments to connect the center lines to obtain the blood vessel center line will lead to the incompleteness of the blood vessel center line. Therefore, in this embodiment, the two ends of each blood vessel in the blood vessel center line image are extended. After processing, the centerline of each blood vessel will be more complete after extended processing, and can better reflect the overall shape of the actual blood vessel in the initial black blood image.
可选地,在对血管中心线图像中的各条血管中心线进行延长处理时,可以基于初始黑血图像,对每条血管中心线的两端进行预设长度的延长处理,也可以基于每条血管中心线的两端的血管流向,沿着血管流向进行预设长度的延长处理等,本实施例对延长血管中心线的实现方式和延长长度并不做限定。Optionally, when extending each blood vessel centerline in the blood vessel centerline image, the two ends of each blood vessel centerline may be extended by a preset length based on the initial black blood image, or may be extended based on each blood vessel centerline. The blood vessel flow direction at both ends of the blood vessel center line is extended along the blood vessel flow direction by a preset length, etc. This embodiment does not limit the implementation manner and extension length of the blood vessel center line.
图9为另一个实施例中血管中心线的提取方法的流程示意图。本实施例涉及的是计算机设备在上述血管中心线图像的基础上,对血管进行还原,进一步确定目标血管图像的其中一种可选的实现过程;如图9所示,在上述实施例的基础上,上述方法还包括:FIG. 9 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment. This embodiment relates to an optional implementation process in which the computer device restores the blood vessel on the basis of the above-mentioned blood vessel centerline image, and further determines the target blood vessel image; as shown in FIG. 9 , on the basis of the above-mentioned embodiment Above, the above method also includes:
步骤901,基于初始黑血图像,获取血管中心线图像中的每条血管中心线上的各个点对应的横截面图像。
可选地,针对血管中心线图像中的每条血管中心线,可以预先确定血管中心线上的多个点,且每个点之间的距离应小于等于预设距离阈值,例如:每个点之间的距离可以小于等于0.7mm;可选地,可以采用插值算法对每条血管中心线进行插密处理,得到每条血管中心线对应的两之间的间距小于等于预设距离阈值的多个点;接着,可以基于初始黑血图像,获取每个点对应的血管位置的横截面图像。Optionally, for each blood vessel centerline in the blood vessel centerline image, multiple points on the blood vessel centerline may be predetermined, and the distance between each point should be less than or equal to a preset distance threshold, for example: each point The distance between them can be less than or equal to 0.7mm; optionally, an interpolation algorithm can be used to perform dense processing on the centerline of each blood vessel, and the distance between the two corresponding to each blood vessel centerline is less than or equal to the preset distance threshold. points; then, based on the initial black blood image, a cross-sectional image of the blood vessel location corresponding to each point can be obtained.
步骤902,对各个横截面图像进行处理,得到与血管中心线图像对应的目标血管图像。Step 902: Process each cross-sectional image to obtain a target blood vessel image corresponding to the blood vessel centerline image.
可选地,在得到血管中心线的每个点对应的横截面图像之后,可以对每个点对应的横截面图像进行处理,使得每个点对应的横截面图像均满足预设的血管结构规则,其中,该预设的血管结构规则可以包括但不限于管腔轮廓不超过管壁轮廓、管腔的尺寸大小、管壁的尺寸大小、管腔和管壁之间的间隔距离等等;在判断某一点对应的横截面图像不满足血管结构规则的情况下,可以对该点对应的横截面图像进行调整,以得到调整后的满足血管结构规则的横截面图像;最后,可以基于各个点对应的均满足血管结构规则的横截面图像,生成与血管中心线图像对应的目标血管图像;可以采用填充的方式,填充相邻两个点的横截面图像,得到该目标血管图像。Optionally, after obtaining the cross-sectional image corresponding to each point of the blood vessel centerline, the cross-sectional image corresponding to each point may be processed, so that the cross-sectional image corresponding to each point satisfies the preset blood vessel structure rules. , wherein the preset vascular structure rules may include, but are not limited to, the contour of the lumen does not exceed the contour of the vessel wall, the size of the lumen, the size of the vessel wall, the separation distance between the lumen and the vessel wall, etc.; When it is judged that the cross-sectional image corresponding to a certain point does not meet the rules of the blood vessel structure, the cross-sectional image corresponding to the point can be adjusted to obtain the adjusted cross-sectional image that meets the rules of the blood vessel structure; The target blood vessel image corresponding to the blood vessel centerline image can be generated from the cross-sectional images that satisfy the rules of blood vessel structure; the cross-sectional images of two adjacent points can be filled by filling to obtain the target blood vessel image.
本实施例中,计算机设备可以基于初始黑血图像,获取血管中心线图像中的每条血管中心线上的各个点对应的横截面图像,并对各个横截面图像进行处理,得到与血管中心线图像对应的目标血管图像;该目标血管图像可以体现初始黑血图像中的各条血管的形态和分布,能更直观地为用户展示待测对象的各条血管分布,提高用户观看体验和可视化程度。In this embodiment, the computer device may acquire, based on the initial black blood image, cross-sectional images corresponding to each point on the centerline of each blood vessel in the blood vessel centerline image, and process each cross-sectional image to obtain a cross-sectional image corresponding to the blood vessel centerline The target blood vessel image corresponding to the image; the target blood vessel image can reflect the shape and distribution of each blood vessel in the initial black blood image, and can more intuitively display the blood vessel distribution of the object to be measured for the user, improving the user's viewing experience and visualization. .
图10为另一个实施例中血管中心线的提取方法的流程示意图。本实施例涉及的是计算机设备对各个横截面图像进行处理,得到与血管中心线图像对应的目标血管图像的其中一种可选的实现过程;如图10所示,在上述实施例的基础上,上述步骤902包括:FIG. 10 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment. This embodiment involves an optional implementation process in which a computer device processes each cross-sectional image to obtain a target blood vessel image corresponding to the blood vessel centerline image; as shown in FIG. 10 , on the basis of the above embodiment , the
步骤1001,将各个横截面图像分别输入第二分割模型中,得到各个横截面图像对应的分割结果图像。Step 1001: Input each cross-sectional image into the second segmentation model to obtain a segmentation result image corresponding to each cross-sectional image.
其中,该横截面图像对应的分割结果图像可以为具有该横截面图像中血管的管腔轮廓和管壁轮廓的标注信息的标注图像。The segmentation result image corresponding to the cross-sectional image may be an annotated image with annotation information of the lumen contour and the vessel wall contour of the blood vessel in the cross-sectional image.
该第二分割模型为根据多个血管的横截面样本图像和每个血管的横截面样本图像对应的分割结果标签,对第二初始分割网络进行训练得到的分割模型,该第二初始分割网络可以为基于现有的任意类型的深度学习网络,也可以是多种不同类型的网络相结合的分割网络等,本实施例对此并不做限定。另外,该第二初始分割网络可以是与第一初始分割网络相同或者不同的初始分割网络。The second segmentation model is a segmentation model obtained by training a second initial segmentation network according to the cross-sectional sample images of multiple blood vessels and the segmentation result labels corresponding to the cross-sectional sample images of each blood vessel, and the second initial segmentation network can be It is based on an existing deep learning network of any type, and may also be a segmentation network combining multiple different types of networks, which is not limited in this embodiment. In addition, the second initial segmentation network may be the same as or different from the first initial segmentation network.
步骤1002,基于各个横截面图像对应的分割结果图像,判断各个横截面图像中的血管结构是否满足预设的血管结构规则。Step 1002: Based on the segmentation result image corresponding to each cross-sectional image, determine whether the blood vessel structure in each cross-sectional image satisfies a preset blood vessel structure rule.
步骤1003,在横截面图像中的血管结构不满足预设的血管结构规则的情况下,去除不满足血管结构规则的横截面图像,并根据满足血管结构规则的其余横截面图像,得到目标血管图像。
可选地,可以对满足血管结构规则的其余横截面图像进行填充处理,得到该目标血管图像;也可以基于满足血管结构规则的其余横截面图像,将相邻的两个横截面图像进行第一填充处理,生成中间血管图像;该中间血管图像中,对于去除了不满足血管结构规则的横截面图像的位置存在血管缺口,而对于该血管缺口,可以进一步对该中间血管图像进行第二填充处理,得到该目标血管图像;其中,第一填充处理和第二填充处理可以采用现有技术中的不同填充处理方式。Optionally, filling processing can be performed on the remaining cross-sectional images that satisfy the blood vessel structure rules to obtain the target blood vessel image; or based on the remaining cross-sectional images that satisfy the blood vessel structure rules, the first two adjacent cross-sectional images can be processed. Filling processing to generate an intermediate blood vessel image; in the intermediate blood vessel image, there is a blood vessel gap at the position where the cross-sectional image that does not meet the rules of the blood vessel structure is removed, and for the blood vessel gap, a second filling process can be further performed on the intermediate blood vessel image , to obtain the target blood vessel image; wherein, the first filling processing and the second filling processing may adopt different filling processing methods in the prior art.
可选地,在对中间血管图像进行第二填充处理,得到该目标血管图像之前,还可以针对该中间血管图像中缺失的血管截面(也就是去除了不满足血管结构规则的横截面图像),可以采用插值算法,确定新的血管截面,接着,可以将新的血管截面插值到中间血管图像中的缺失位置,得到插值后的中间血管图像,至此,可以对插值后的中间血管图像进行第二填充处理,得到该目标血管图像。Optionally, before the second filling process is performed on the intermediate blood vessel image to obtain the target blood vessel image, the missing blood vessel cross-sections in the intermediate blood vessel image (that is, the cross-sectional images that do not satisfy the blood vessel structure rules are removed), An interpolation algorithm can be used to determine a new blood vessel cross-section, and then the new blood vessel cross-section can be interpolated to the missing position in the intermediate blood vessel image to obtain an interpolated intermediate blood vessel image. Filling processing is performed to obtain the target blood vessel image.
可选地,在对插值后的中间血管图像进行第二填充处理之后,还可以对填充处理后的血管图像进行后处理操作,得到该目标血管图像;可选地,该后处理操作可以包括但不限于去除血管表面的非血管点、对血管表面进行平滑处理等,来提高血管表面的平滑性。Optionally, after the second filling process is performed on the interpolated intermediate blood vessel image, a post-processing operation may also be performed on the filled blood vessel image to obtain the target blood vessel image; optionally, the post-processing operation may include but It is not limited to removing non-vascular points on the blood vessel surface, smoothing the blood vessel surface, etc., to improve the smoothness of the blood vessel surface.
本实施例中,计算机设备通过将各个横截面图像分别输入第二分割模型中,得到各个横截面图像对应的分割结果图像,并基于各个横截面图像对应的分割结果图像,判断各个横截面图像中的血管结构是否满足预设的血管结构规则,在横截面图像中的血管结构不满足预设的血管结构规则的情况下,去除该不满足血管结构规则的横截面图像,并根据满足血管结构规则的其余横截面图像,得到目标血管图像;通过将不满足血管结构规则的横截面图像去除,以满足血管结构规则的其余横截面图像生成目标血管图像,所得到的目标血管图像中的血管更符合于标准血管,得到的目标血管图像更精确,提高了目标血管图像的准确性。In this embodiment, the computer device obtains a segmentation result image corresponding to each cross-sectional image by inputting each cross-sectional image into the second segmentation model, and determines whether each cross-sectional image corresponds to the segmentation result image based on the segmentation result image corresponding to each cross-sectional image. Whether the blood vessel structure meets the preset blood vessel structure rules, if the blood vessel structure in the cross-sectional image does not meet the preset blood vessel structure rules, remove the cross-sectional image that does not meet the blood vessel structure rules, and according to the blood vessel structure rules The target blood vessel image is obtained by removing the remaining cross-sectional images that do not meet the rules of the blood vessel structure to generate the target blood vessel image by removing the cross-sectional images that do not meet the rules of the blood vessel structure, and the blood vessels in the obtained target blood vessel image are more consistent with For standard blood vessels, the obtained target blood vessel image is more accurate, which improves the accuracy of the target blood vessel image.
在本申请的一个可选的实施例中,基于上述获取到的多个血管分叉点,以及上述目标血管图像,进一步地,计算机设备还可以基于该各个血管分叉点,对目标血管图像中的每条血管进行分段处理,得到与目标血管图像对应的目标血管分段图像;相比于上述第一血管分段图像,该目标血管分段图像中的每条血管分段的血管形态与标准的血管结构更匹配,血管表面更光滑,且具有关联关系的每条血管分段之间的连接性更好,血管的提取效果更佳。In an optional embodiment of the present application, based on the obtained multiple blood vessel bifurcation points and the above-mentioned target blood vessel image, further, the computer device may further, based on the respective blood vessel bifurcation points, analyze the target blood vessel image for the Each blood vessel in the target blood vessel is segmented to obtain a target blood vessel segmented image corresponding to the target blood vessel image; The standard blood vessel structure is more matched, the blood vessel surface is smoother, and the connectivity between each blood vessel segment with an associated relationship is better, and the blood vessel extraction effect is better.
图11为另一个实施例中血管中心线的提取方法的流程示意图。本实施例涉及的是计算机设备基于血管中心线图像,对初始黑血图像进行组织检测的其中一种可选的实现过程;如图11所示,在上述实施例的基础上,上述方法还包括:FIG. 11 is a schematic flowchart of a method for extracting a blood vessel centerline in another embodiment. This embodiment relates to an optional implementation process for a computer device to perform tissue detection on an initial black blood image based on a blood vessel centerline image; as shown in FIG. 11 , on the basis of the foregoing embodiment, the foregoing method further includes: :
步骤1101,基于血管中心线图像,检测初始黑血图像中的血管内是否存在目标组织。
可选地,在本申请的第一个实施例中,计算机设备在根据初始黑血图像,确定出该初始黑血图像对应的血管中心线图像之后,可以进一步根据该血管中心线图像对待测对象的血管内的目标组织进行检测和定位,例如:可以基于该血管中心线图像对待测对象的血管进行斑块检测或者狭窄检测等。Optionally, in the first embodiment of the present application, after determining the blood vessel centerline image corresponding to the initial black blood image according to the initial black blood image, the computer device may further use the blood vessel centerline image to determine the object to be tested. The target tissue in the blood vessel is detected and located, for example, plaque detection or stenosis detection can be performed on the blood vessel of the object to be measured based on the blood vessel centerline image.
可选地,基于该血管中心线图像,可以对初始黑血图像中的血管进行分割,并对分割出的该初始黑血图像中的血管进行检测分析,确定血管内是否存在目标组织;可选地,在分割出初始黑血图像中的血管后,可以对该血管进行逐层分析,并获取到每一层对应的血管的横截面图像,接着,可以对每一层的血管的横截面图像进行分割处理,确定出血管的管腔和管壁,然后,还可以对分割出的血管的管腔和管壁进行管径分析,识别血管的狭窄部位,以及可以对识别出的血管的狭窄部位的管腔和管壁之间的成分进行识别,并根据识别结果判断该狭窄部位是否存在目标组织。需要说明的是,本实施例中对血管内的目标组织的识别可以采用现有技术,因此,对于目标组织识别的具体实现过程在此不再赘述。Optionally, based on the blood vessel centerline image, the blood vessels in the initial black blood image can be segmented, and the blood vessels in the segmented initial black blood image can be detected and analyzed to determine whether there is target tissue in the blood vessels; optional Specifically, after segmenting the blood vessels in the initial black blood image, the blood vessels can be analyzed layer by layer, and the cross-sectional images of the blood vessels corresponding to each layer can be obtained, and then, the cross-sectional images of the blood vessels in each layer can be obtained. The segmentation process is performed to determine the lumen and wall of the blood vessel, and then, the lumen and wall of the segmented blood vessel can be analyzed for the diameter of the blood vessel to identify the stenosis of the blood vessel, and the identified stenosis of the blood vessel. The components between the lumen and the wall of the tube are identified, and according to the identification results, it is judged whether there is a target tissue in the stenosis. It should be noted that, in this embodiment, the identification of the target tissue in the blood vessel may adopt the prior art, therefore, the specific implementation process of the identification of the target tissue will not be repeated here.
步骤1102,在初始黑血图像中的血管内存在目标组织的情况下,基于初始黑血图像,对目标组织进行分割处理,得到目标组织的分割结果。
可选地,在确定初始黑血图像中的血管内存在目标组织的情况下,可以采用预设的第三分割模型,基于该初始黑血图像,对目标组织进行分割处理,得到目标组织的分割结果;该第三分割模型可以为采用多个具有目标组织的黑血样本图像和每个黑血样本图像对应的目标组织标签,对第三初始分割网络进行训练后得到的分割模型,该第三初始分割网络可以为基于现有的任意类型的深度学习网络,也可以是多种不同类型的网络相结合的分割网络等,本实施例对此并不做限定;另外,该第三初始分割网络可以与上述第一初始分割网络或者上述第二初始分割网络相同或者不同。Optionally, when it is determined that the target tissue exists in the blood vessel in the initial black blood image, a preset third segmentation model can be used, and based on the initial black blood image, the target tissue is segmented to obtain the segmentation of the target tissue. As a result, the third segmentation model can be a segmentation model obtained by training the third initial segmentation network by using multiple black blood sample images with target tissues and target tissue labels corresponding to each black blood sample image. The initial segmentation network may be an existing deep learning network of any type, or may be a segmentation network combining multiple different types of networks, etc., which is not limited in this embodiment; in addition, the third initial segmentation network It may be the same as or different from the above-mentioned first initial segmentation network or the above-mentioned second initial segmentation network.
本实施例中,计算机设备基于血管中心线图像,检测初始黑血图像中的血管内是否存在目标组织;并在初始黑血图像中的血管内存在目标组织的情况下,基于初始黑血图像,对目标组织进行分割处理,得到目标组织的分割结果;即本实施例中的目标组织检测分割过程是基于仅通过黑血图像进行检测识别得到的血管中心线图像,对初始黑血图像进行检测分析实现的目标组织的检测分割,换句话说,整个检测过程中,只需要获取待测对象的初始黑血图像即可实现对血管中心线的提取以及目标组织的检测,整个过程高效且实时,检测精度高。In this embodiment, the computer device detects whether the target tissue exists in the blood vessel in the initial black blood image based on the blood vessel centerline image; and in the case that the target tissue exists in the blood vessel in the initial black blood image, based on the initial black blood image, The target tissue is segmented to obtain the segmentation result of the target tissue; that is, the target tissue detection and segmentation process in this embodiment is based on the blood vessel centerline image obtained only by the detection and identification of the black blood image, and the initial black blood image is detected and analyzed. The detection and segmentation of the target tissue is realized. In other words, in the whole detection process, only the initial black blood image of the object to be tested can be obtained to achieve the extraction of the blood vessel centerline and the detection of the target tissue. The whole process is efficient and real-time. High precision.
下面将提供血管中心线的提取方法的一个完整的实施例,可以包括以下步骤:The following will provide a complete embodiment of the extraction method of the blood vessel centerline, which may include the following steps:
1、获取待测对象的初始黑血图像,并将该初始黑血图像输入预设的第一分割模型中,得到该初始黑血图像对应的包括至少一条血管分段的第一血管分段图像,如图12(a)所示;1. Obtain an initial black blood image of the object to be tested, and input the initial black blood image into a preset first segmentation model to obtain a first blood vessel segment image corresponding to the initial black blood image and including at least one blood vessel segment , as shown in Figure 12(a);
2、针对该第一血管分段图像中的每条血管分段,提取每条血管分段的中心线,如图12(b)所示;2. For each blood vessel segment in the first blood vessel segment image, extract the center line of each blood vessel segment, as shown in Figure 12(b);
3、基于初始黑血图像以及预设的血管连接策略,连接每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像,如图12(c)所示;3. Based on the initial black blood image and the preset blood vessel connection strategy, connect the centerline of each blood vessel segment to obtain the blood vessel centerline image corresponding to the initial black blood image, as shown in Figure 12(c);
4、延长每条血管分段的中心线,得到延长处理后的血管中心线图像,如图12(d)所示;4. Extend the centerline of each blood vessel segment to obtain the extended blood vessel centerline image, as shown in Figure 12(d);
5、基于血管中心线图像以及第一血管分段图像,确定至少一个血管分叉点,并基于各个血管分叉点,对血管中心线图像中的每条血管中心线进行分段处理,得到血管中心线分段图像,如图12(e)所示;5. Determine at least one blood vessel bifurcation point based on the blood vessel centerline image and the first blood vessel segmentation image, and perform segmentation processing on each blood vessel centerline in the blood vessel centerline image based on each blood vessel bifurcation point to obtain a blood vessel. The segmented image of the centerline, as shown in Fig. 12(e);
6、对血管中心线图像中的每条血管进行插密处理,得到每条血管中心线上的多个点,如图12(f)所示,接着,基于初始黑血图像,获取血管中心线图像中的每条血管中心线上的各个点对应的横截面图像,并判断各个点对应的横截面图像中的血管结构是否满足预设的血管结构规则;对不满足血管结构规则的横截面图像进行去除,保留满足血管结构规则的横截面图像,得到中间血管图像,如图12(g)所示;6. Carry out the densification process on each blood vessel in the blood vessel centerline image to obtain multiple points on the centerline of each blood vessel, as shown in Figure 12(f), and then, based on the initial black blood image, obtain the blood vessel centerline Cross-sectional images corresponding to each point on the centerline of each blood vessel in the image, and determine whether the blood vessel structure in the cross-sectional image corresponding to each point satisfies the preset blood vessel structure rules; for cross-sectional images that do not meet the blood vessel structure rules Remove and retain the cross-sectional image that satisfies the rules of the blood vessel structure to obtain an intermediate blood vessel image, as shown in Figure 12(g);
7、对中间血管图像中缺失的血管截面,采用插值算法,确定缺失位置点处对应的新的血管截面,并将该新的血管截面插值到中间血管图像中的缺失位置,得到插值后的中间血管图像,接着,对该插值后的中间血管图像进行填充处理,得到目标血管图像,如图12(h)所示;对该目标血管图像进行后处理操作(例如:去除表面非血管点),得到处理后的目标血管图像,如图12(i)所示;7. For the missing blood vessel cross section in the intermediate blood vessel image, use an interpolation algorithm to determine the new blood vessel cross section corresponding to the missing position point, and interpolate the new blood vessel cross section to the missing position in the intermediate blood vessel image to obtain the interpolated middle blood vessel. The blood vessel image, and then, perform filling processing on the interpolated intermediate blood vessel image to obtain the target blood vessel image, as shown in Figure 12(h); The processed target blood vessel image is obtained, as shown in Figure 12(i);
8、基于上述各个血管分叉点,对该目标血管图像进行分段处理,得到分管后的目标血管分段图像,如图12(j)所示。8. Perform segmentation processing on the target blood vessel image based on each of the foregoing blood vessel bifurcation points to obtain a segmented image of the target blood vessel after branching, as shown in FIG. 12(j).
需要说明的是,上述图12中的各个示意图只是作为该实施例的一个举例进行示意说明,并不用于限定该实施例中的各个步骤的具体表现形式。It should be noted that each schematic diagram in FIG. 12 above is only used for schematic illustration as an example of this embodiment, and is not used to limit the specific expression form of each step in this embodiment.
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that, although the steps in the flowcharts involved in the above embodiments are sequentially displayed according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in the flowcharts involved in the above embodiments may include multiple steps or multiple stages, and these steps or stages are not necessarily executed and completed at the same time, but may be performed at different times The execution order of these steps or phases is not necessarily sequential, but may be performed alternately or alternately with other steps or at least a part of the steps or phases in the other steps.
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的血管中心线的提取方法的血管中心线的提取装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个血管中心线的提取装置实施例中的具体限定可以参见上文中对于血管中心线的提取方法的限定,在此不再赘述。Based on the same inventive concept, an embodiment of the present application also provides a blood vessel centerline extraction device for implementing the above-mentioned blood vessel centerline extraction method. The solution to the problem provided by this device is similar to the solution described in the above method, so the specific definitions in the embodiments of one or more blood vessel centerline extraction devices provided below can refer to the above for the blood vessel centerline The limitation of the extraction method is not repeated here.
在一个实施例中,如图13所示,提供了一种血管中心线的提取装置,包括:第一获取模块1301、第二获取模块1302和第三获取模块1303,其中:In one embodiment, as shown in FIG. 13, a device for extracting blood vessel centerline is provided, including: a
第一获取模块1301,用于获取待测对象的初始黑血图像;The
第二获取模块1302,用于将初始黑血图像输入预设的第一分割模型中,得到第一血管分段图像;其中,第一血管分段图像包括至少一条血管分段;The
第三获取模块1303,用于提取第一血管分段图像中的每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。The
在其中一个实施例中,第三获取模块1303包括提取单元和获取单元;其中,提取单元,用于针对每条血管分段,提取每条血管分段的中心线;获取单元,用于基于初始黑血图像以及预设的血管连接策略,连接每条血管分段的中心线,得到初始黑血图像对应的血管中心线图像。In one embodiment, the
在其中一个实施例中,上述提取单元,具体用于针对血管分段,确定该血管分段的第一端点和第二端点;基于第一血管分段图像,连接该血管分段的第一端点和第二端点,得到该血管分段的中心线。In one of the embodiments, the above-mentioned extraction unit is specifically configured to determine the first end point and the second end point of the blood vessel segment for the blood vessel segment; based on the first blood vessel segment image, connect the first end point of the blood vessel segment endpoint and the second endpoint to obtain the centerline of the vessel segment.
在其中一个实施例中,上述提取单元,具体用于在血管分段包括多条子血管分段的情况下,确定每条子血管分段的第一端点和第二端点;并针对每条子血管分段,基于第一血管分段图像,连接子血管分段的第一端点和第二端点,得到子血管分段的中心线;基于初始黑血图像,连接各条子血管分段的中心线,得到血管分段的中心线。In one of the embodiments, the above-mentioned extraction unit is specifically configured to determine the first endpoint and the second endpoint of each sub-vessel segment when the vessel segment includes multiple sub-vessel segments; and for each sub-vessel segment segment, based on the first blood vessel segment image, connect the first end point and the second end point of the sub-vessel segment to obtain the center line of the sub-vessel segment; based on the initial black blood image, connect the center lines of each sub-vessel segment, Obtain the centerline of the vessel segment.
在其中一个实施例中,该装置还包括确定模块和第四获取模块;该确定模块,用于基于血管中心线图像以及第一血管分段图像,确定至少一个血管分叉点;第四获取模块,用于基于各个血管分叉点,对血管中心线图像中的每条血管中心线进行分段处理,得到血管中心线分段图像。In one embodiment, the device further includes a determination module and a fourth acquisition module; the determination module is configured to determine at least one blood vessel bifurcation point based on the blood vessel centerline image and the first blood vessel segmented image; the fourth acquisition module , which is used to segment each blood vessel centerline in the blood vessel centerline image based on each blood vessel bifurcation point to obtain a segmented image of the blood vessel centerline.
在其中一个实施例中,上述确定模块包括第一确定单元、判断单元和第二确定单元;其中,第一确定单元,用于确定第一血管分段图像中的第一分叉点的位置,以及血管中心线图像中的第二分叉点的位置;判断单元,用于判断第二分叉点的位置是否在第一分叉点的位置的预设范围内;第二确定单元,用于在第二分叉点的位置在第一分叉点的位置的预设范围内的情况下,将第二分叉点确定为血管分叉点。In one of the embodiments, the above determination module includes a first determination unit, a determination unit and a second determination unit; wherein the first determination unit is configured to determine the position of the first bifurcation point in the first blood vessel segmented image, and the position of the second bifurcation point in the blood vessel centerline image; the judgment unit is used for judging whether the position of the second bifurcation point is within the preset range of the position of the first bifurcation point; the second determination unit is used for When the position of the second bifurcation point is within a preset range of the position of the first bifurcation point, the second bifurcation point is determined as a blood vessel bifurcation point.
在其中一个实施例中,第二确定单元,还用于在第二分叉点的位置不在第一分叉点的位置的预设范围内的情况下,返回重新执行基于初始黑血图像以及血管连接策略,连接每条血管分段的中心线,得到调整后的血管中心线图像,并执行确定调整后的血管中心线图像中的第二分叉点的位置的步骤,直至第二分叉点的位置位于第一分叉点的位置的预设范围内为止。In one of the embodiments, the second determining unit is further configured to return to re-executing based on the initial black blood image and blood vessels when the position of the second bifurcation point is not within the preset range of the position of the first bifurcation point The connection strategy is to connect the centerlines of each blood vessel segment to obtain an adjusted blood vessel centerline image, and perform the steps of determining the position of the second bifurcation point in the adjusted blood vessel centerline image until the second bifurcation point until the position of the first bifurcation point is within the preset range of the position of the first bifurcation point.
在其中一个实施例中,该装置还包括第五获取模块和第六获取模块;该第五获取模块,用于基于初始黑血图像,获取血管中心线图像中的每条血管中心线上的各个点对应的横截面图像;第六获取模块,用于对各个横截面图像进行处理,得到与血管中心线图像对应的目标血管图像。In one of the embodiments, the apparatus further includes a fifth acquisition module and a sixth acquisition module; the fifth acquisition module is configured to acquire, based on the initial black blood image, each blood vessel centerline in the blood vessel centerline image. The cross-sectional image corresponding to the point; the sixth acquisition module is used for processing each cross-sectional image to obtain a target blood vessel image corresponding to the blood vessel centerline image.
在其中一个实施例中,上述第六获取模块包括第一获取单元、判断单元和第二获取单元;其中,第一获取单元,用于将各个横截面图像分别输入第二分割模型中,得到各个横截面图像对应的分割结果图像;判断单元,用于基于各个横截面图像对应的分割结果图像,判断各个横截面图像中的血管结构是否满足预设的血管结构规则;第二获取单元,用于在横截面图像中的血管结构不满足预设的血管结构规则的情况下,去除该不满足血管结构规则的横截面图像,并根据满足血管结构规则的其余横截面图像,得到目标血管图像。In one of the embodiments, the above-mentioned sixth obtaining module includes a first obtaining unit, a judging unit and a second obtaining unit; wherein, the first obtaining unit is configured to input each cross-sectional image into the second segmentation model, respectively, to obtain each a segmentation result image corresponding to the cross-sectional image; a judging unit for judging whether the blood vessel structure in each cross-sectional image satisfies a preset blood vessel structure rule based on the segmentation result image corresponding to each cross-sectional image; a second acquiring unit for When the blood vessel structure in the cross-sectional image does not meet the preset blood vessel structure rule, the cross-sectional image that does not satisfy the blood vessel structure rule is removed, and the target blood vessel image is obtained according to the remaining cross-sectional images that satisfy the blood vessel structure rule.
在其中一个实施例中,该装置还包括第七获取模块;该第七获取模块,用于基于各个血管分叉点,对目标血管图像中的每条血管进行分段处理,得到与目标血管图像对应的目标血管分段图像。In one of the embodiments, the device further includes a seventh acquisition module; the seventh acquisition module is configured to perform segmentation processing on each blood vessel in the target blood vessel image based on each blood vessel bifurcation point to obtain the target blood vessel image Corresponding target vessel segmented images.
在其中一个实施例中,该装置还包括检测模块和第八获取模块;其中,检测模块,用于基于血管中心线图像,检测初始黑血图像中的血管内是否存在目标组织;第八获取模块,用于在初始黑血图像中的血管内存在目标组织的情况下,基于初始黑血图像,对目标组织进行分割处理,得到目标组织的分割结果。In one of the embodiments, the device further includes a detection module and an eighth acquisition module; wherein, the detection module is used to detect whether there is a target tissue in the blood vessel in the initial black blood image based on the blood vessel centerline image; the eighth acquisition module , is used to perform segmentation processing on the target tissue based on the initial black blood image when the target tissue exists in the blood vessel in the initial black blood image to obtain the segmentation result of the target tissue.
上述血管中心线的提取装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。Each module in the above-mentioned apparatus for extracting blood vessel centerline may be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图14所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种血管中心线的提取方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。In one embodiment, a computer device is provided, and the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 14 . The computer equipment includes a processor, memory, a communication interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The communication interface of the computer equipment is used for wired or wireless communication with an external terminal, and the wireless communication can be realized by WIFI, mobile cellular network, NFC (Near Field Communication) or other technologies. The computer program implements a method for extracting a blood vessel centerline when executed by a processor. The display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , or an external keyboard, trackpad, or mouse.
本领域技术人员可以理解,图14中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 14 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述任一实施例中血管中心线的提取方法的步骤。In one embodiment, a computer device is provided, including a memory and a processor, where a computer program is stored in the memory, and when the processor executes the computer program, the steps of the method for extracting a blood vessel centerline in any of the foregoing embodiments are implemented.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中血管中心线的提取方法的步骤。In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the method for extracting a blood vessel centerline in any of the foregoing embodiments.
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述任一实施例中血管中心线的提取方法的步骤。In one embodiment, a computer program product is provided, including a computer program that, when executed by a processor, implements the steps of the method for extracting a blood vessel centerline in any of the foregoing embodiments.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-OnlyMemory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to a memory, a database or other media used in the various embodiments provided in this application may include at least one of a non-volatile memory and a volatile memory. Non-volatile memory may include Read-Only Memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Memory) Access Memory, MRAM), Ferroelectric Random Access Memory (FRAM), Phase Change Memory (Phase Change Memory, PCM), graphene memory, etc. Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, and the like. As an illustration and not a limitation, the RAM can be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM). The database involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database. The non-relational database may include a blockchain-based distributed database, etc., but is not limited thereto. The processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, data processing logic devices based on quantum computing, etc., and are not limited to this.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to make the description simple, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are relatively specific and detailed, but should not be construed as a limitation on the scope of the patent of the present application. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the present application should be determined by the appended claims.
Claims (12)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111678599.0A CN114299057A (en) | 2021-12-31 | 2021-12-31 | Extraction method and storage medium of blood vessel centerline |
US18/148,402 US20230214952A1 (en) | 2021-12-31 | 2022-12-29 | Methods and systems for vascular image processing |
EP22217344.5A EP4207062A1 (en) | 2021-12-31 | 2022-12-30 | Methods and systems for vascular image processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111678599.0A CN114299057A (en) | 2021-12-31 | 2021-12-31 | Extraction method and storage medium of blood vessel centerline |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114299057A true CN114299057A (en) | 2022-04-08 |
Family
ID=80976095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111678599.0A Pending CN114299057A (en) | 2021-12-31 | 2021-12-31 | Extraction method and storage medium of blood vessel centerline |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114299057A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116740049A (en) * | 2023-07-12 | 2023-09-12 | 强联智创(北京)科技有限公司 | Method, device and storage medium for blind patch connection of head, neck and chest blood vessel center line |
CN117830200A (en) * | 2023-04-20 | 2024-04-05 | 强联智创(北京)科技有限公司 | Method, device and storage medium for completing the centerline of a blood vessel segment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020019408A1 (en) * | 2018-07-24 | 2020-01-30 | 博动医学影像科技(上海)有限公司 | Method and apparatus for processing blood vessel image, storage medium, and imaging device |
CN111681226A (en) * | 2020-06-09 | 2020-09-18 | 上海联影医疗科技有限公司 | Target tissue positioning method and device based on blood vessel identification |
CN113160189A (en) * | 2021-04-27 | 2021-07-23 | 中国科学院深圳先进技术研究院 | Blood vessel center line extraction method, device, equipment and storage medium |
CN113223015A (en) * | 2021-05-11 | 2021-08-06 | 清华大学 | Vascular wall image segmentation method, device, computer equipment and storage medium |
CN113592764A (en) * | 2020-05-01 | 2021-11-02 | 复旦大学 | System and method for identifying and segmenting aneurysms of different anatomical regions of different modalities |
-
2021
- 2021-12-31 CN CN202111678599.0A patent/CN114299057A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020019408A1 (en) * | 2018-07-24 | 2020-01-30 | 博动医学影像科技(上海)有限公司 | Method and apparatus for processing blood vessel image, storage medium, and imaging device |
CN113592764A (en) * | 2020-05-01 | 2021-11-02 | 复旦大学 | System and method for identifying and segmenting aneurysms of different anatomical regions of different modalities |
CN111681226A (en) * | 2020-06-09 | 2020-09-18 | 上海联影医疗科技有限公司 | Target tissue positioning method and device based on blood vessel identification |
CN113160189A (en) * | 2021-04-27 | 2021-07-23 | 中国科学院深圳先进技术研究院 | Blood vessel center line extraction method, device, equipment and storage medium |
CN113223015A (en) * | 2021-05-11 | 2021-08-06 | 清华大学 | Vascular wall image segmentation method, device, computer equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
程诗音;段侪杰;陈慧军;梁正荣;: "颈动脉磁共振图像的血管中心线提取", 中国体视学与图像分析, no. 04, 25 December 2016 (2016-12-25), pages 415 - 422 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117830200A (en) * | 2023-04-20 | 2024-04-05 | 强联智创(北京)科技有限公司 | Method, device and storage medium for completing the centerline of a blood vessel segment |
CN117830200B (en) * | 2023-04-20 | 2025-01-07 | 强联智创(北京)科技有限公司 | Method, device and storage medium for completing the centerline of a blood vessel segment |
CN116740049A (en) * | 2023-07-12 | 2023-09-12 | 强联智创(北京)科技有限公司 | Method, device and storage medium for blind patch connection of head, neck and chest blood vessel center line |
CN116740049B (en) * | 2023-07-12 | 2024-02-27 | 强联智创(北京)科技有限公司 | Method, device and storage medium for blind patch connection of head, neck and chest blood vessel center line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110060263B (en) | Medical image segmentation method, segmentation device, segmentation system and computer readable medium | |
Cohen et al. | Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging | |
CN114299057A (en) | Extraction method and storage medium of blood vessel centerline | |
US7103203B2 (en) | Medical imaging station with a function of extracting a path within a ramified object | |
CN115409859A (en) | Coronary artery blood vessel image segmentation method and device, storage medium and terminal | |
CN109034253B (en) | An image classification method of chronic venous disease based on multi-scale semantic features | |
CN114155193B (en) | Blood vessel segmentation method and device based on feature enhancement | |
CN114298999A (en) | Method for detecting vascular structure variation, readable storage medium, and program product | |
CN114998582A (en) | Coronary blood vessel segmentation method, device and storage medium | |
CN114359284A (en) | Method for analyzing retinal fundus images and related products | |
CN114533002A (en) | Carotid artery central line extraction method and device, storage medium and electronic equipment | |
CN116934741B (en) | Method and device for acquiring composition and quantitative parameters of one-stop type blood vessel wall | |
CN113129297A (en) | Automatic diameter measurement method and system based on multi-phase tumor images | |
Dogra et al. | Novel seed selection techniques for MR brain image segmentation using graph cut | |
CN117152063A (en) | A SWI-based cerebral microbleed image detection method, device and processing equipment | |
CN117593420A (en) | Plane drawing labeling method, device, medium and equipment based on image processing | |
CN111354008A (en) | Method and device for separation of hepatic vein and portal vein based on local features | |
CN116778486A (en) | Point cloud segmentation method, device, equipment and medium of angiography image | |
CN117152173A (en) | A coronary artery segmentation method and system based on DUNetR model | |
Zhang et al. | A fast algorithm for automatic segmentation and extraction of a single object by active surfaces | |
CN113487616B (en) | Method for constructing complete structure vascular tree structure by using continuous multi-frame images | |
CN115861189A (en) | Image registration method and device, electronic equipment and storage medium | |
Le et al. | Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance | |
Zheng et al. | Model-driven centerline extraction for severely occluded major coronary arteries | |
CN115482261A (en) | Blood vessel registration method, device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |