[go: up one dir, main page]

CN114298091A - SF6Gas flow measuring value correction method, device, equipment and storage medium - Google Patents

SF6Gas flow measuring value correction method, device, equipment and storage medium Download PDF

Info

Publication number
CN114298091A
CN114298091A CN202111521340.5A CN202111521340A CN114298091A CN 114298091 A CN114298091 A CN 114298091A CN 202111521340 A CN202111521340 A CN 202111521340A CN 114298091 A CN114298091 A CN 114298091A
Authority
CN
China
Prior art keywords
value
gas flow
neural network
temperature
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111521340.5A
Other languages
Chinese (zh)
Inventor
张明
蔡勇
王巍
易锫
余健飞
蔡剑
张驰
张莹
向梓菡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Fangyuan Dongli Electric Power Science Research Co ltd
Xinneng Zhihui Wuhan Technology Development Co ltd
State Grid Hubei Electric Power Co Ltd
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Hubei Fangyuan Dongli Electric Power Science Research Co ltd
Xinneng Zhihui Wuhan Technology Development Co ltd
State Grid Hubei Electric Power Co Ltd
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Fangyuan Dongli Electric Power Science Research Co ltd, Xinneng Zhihui Wuhan Technology Development Co ltd, State Grid Hubei Electric Power Co Ltd, Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Hubei Fangyuan Dongli Electric Power Science Research Co ltd
Priority to CN202111521340.5A priority Critical patent/CN114298091A/en
Publication of CN114298091A publication Critical patent/CN114298091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

本申请涉及一种SF6气体流量计量值修正方法、装置、设备及存储介质,该方法包括以下步骤:获取SF6气体流量计量值以及对应的温度值和气压值;将上述温度值和气压值输入到训练好的修正值预测模型中,所述修正值预测模型包括多个对应不同温度段和气压段组合的神经网络模型,所述修正值预测模型根据输入的温度值和气压值所属的温度段和气压段利用对应的神经网络模型预测并输出对应的气体流量修正值;将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值。将温度和气压进行分段并得到不同温度段和气压段组合对应的神经网络模型,该模型输出较高精度的气体流量修正值,最终实现对SF6气体流量计量装置测量误差的补偿。

Figure 202111521340

The present application relates to a method, device, equipment and storage medium for correcting the measured value of SF 6 gas flow. The method includes the following steps: obtaining the measured value of SF 6 gas flow and the corresponding temperature value and air pressure value; Input into the trained correction value prediction model, the correction value prediction model includes a plurality of neural network models corresponding to the combination of different temperature segments and air pressure segments, and the correction value prediction model is based on the input temperature value and the temperature value to which the air pressure value belongs. segment and air pressure segment using the corresponding neural network model to predict and output the corresponding gas flow correction value; superimpose the SF 6 gas flow measurement value and the gas flow correction value to obtain the corrected gas flow value. The temperature and air pressure are segmented to obtain the neural network model corresponding to the combination of different temperature and air pressure segments.

Figure 202111521340

Description

SF6气体流量计量值修正方法、装置、设备及存储介质SF6 gas flow measurement value correction method, device, equipment and storage medium

技术领域technical field

本申请涉及气体流量计量领域,具体涉及一种SF6气体流量计量值修正方法、装置、设备及存储介质。The application relates to the field of gas flow measurement, and in particular to a method, device, equipment and storage medium for correcting the measurement value of SF 6 gas flow.

背景技术Background technique

六氟化硫(SF6)具有良好的电气绝缘性能及优异的灭弧性能。其耐电强度为同一压力下氮气的2.5倍,击穿电压是空气的2.5倍,灭弧能力是空气的100倍,是一种优于空气和油之间的新一代超高压绝缘介质材料。六氟化硫以其良好的绝缘性能和灭弧性能,广泛应用于电子器件中,如:断路器、高压变压器、气封闭组合电容器、高压传输线、互感器等。电气工业利用其很高介电强度和良好的灭电弧性能,用作高压开关、大容量变压器、高压电缆和气体的绝缘材料。Sulfur hexafluoride (SF 6 ) has good electrical insulation properties and excellent arc extinguishing properties. Its electric strength is 2.5 times that of nitrogen under the same pressure, its breakdown voltage is 2.5 times that of air, and its arc extinguishing ability is 100 times that of air. It is a new generation of ultra-high voltage insulating material superior to that between air and oil. Sulfur hexafluoride is widely used in electronic devices for its good insulating properties and arc extinguishing properties, such as circuit breakers, high-voltage transformers, gas-enclosed combined capacitors, high-voltage transmission lines, transformers, etc. The electrical industry uses its high dielectric strength and good arc extinguishing performance as an insulating material for high-voltage switches, large-capacity transformers, high-voltage cables and gases.

SF6气体在应用时需要对其流量进行测量,然而利用传统的气体流量计对SF6气体流量进行测量时由于受温度和气压的影响导致测量值存在误差,因此有必要提供一种SF6气体流量计量值修正方法。The flow of SF 6 gas needs to be measured when it is applied. However, when measuring the flow of SF 6 gas with a traditional gas flow meter, there is an error in the measured value due to the influence of temperature and air pressure. Therefore, it is necessary to provide a SF 6 gas. Flow measurement value correction method.

发明内容SUMMARY OF THE INVENTION

本申请实施例的目的在于提供一种SF6气体流量计量值修正方法、装置设备及存储介质,旨在用于解决现有的气体流量计对SF6气体流量进行测量时存在误差的问题。The purpose of the embodiments of the present application is to provide a method, device and storage medium for correcting the measured value of SF 6 gas flow, which are intended to solve the problem of errors existing in the measurement of SF 6 gas flow by existing gas flow meters.

为实现上述目的,本申请提供如下技术方案:To achieve the above purpose, the application provides the following technical solutions:

第一方面,本申请实施例提供一种SF6气体流量计量值修正方法,包括以下步骤:In a first aspect, an embodiment of the present application provides a method for correcting the measured value of SF 6 gas flow, including the following steps:

获取SF6气体流量计量值以及对应的温度值和气压值;Obtain the SF 6 gas flow measurement value and the corresponding temperature value and pressure value;

将上述温度值和气压值输入到训练好的修正值预测模型中,所述修正值预测模型包括多个对应不同温度段和气压段组合的神经网络模型,所述修正值预测模型根据输入的温度值和气压值所属的温度段和气压段利用对应的神经网络模型预测并输出对应的气体流量修正值;Input the above-mentioned temperature value and air pressure value into the trained correction value prediction model, the correction value prediction model includes a plurality of neural network models corresponding to the combination of different temperature segments and air pressure segments, and the correction value prediction model is based on the input temperature. The temperature segment and the pressure segment to which the value and air pressure value belong are predicted by the corresponding neural network model and output the corresponding gas flow correction value;

将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值。The corrected gas flow value is obtained by superimposing the SF 6 gas flow measurement value and the gas flow correction value.

进一步的,所述训练好的修正值预测模型的获取方法如下:Further, the acquisition method of the trained correction value prediction model is as follows:

获取多个特征样本数据,每个所述特征样本数据包含温度值、气压值以及对应的SF6气体流量计量误差值,将多个特征样本数据按不同的温度段和气压段的组合分成多组;Obtain a plurality of characteristic sample data, each of which includes a temperature value, a pressure value and a corresponding SF 6 gas flow measurement error value, and divide the plurality of characteristic sample data into multiple groups according to the combination of different temperature segments and pressure segments ;

建立双输入单输出的神经网络模型;Build a dual-input single-output neural network model;

分别利用各组特征样本数据,以温度值和气压值作为输入,以SF6气体流量计量误差值作为输出,对上述建立的神经网络模型进行训练,得到多个对应不同温度段和气压段组合的神经网络模型,即为训练好的修正值预测模型。Using each group of characteristic sample data respectively, with temperature value and pressure value as input, and SF 6 gas flow measurement error value as output, the neural network model established above is trained, and a plurality of corresponding combinations of different temperature sections and pressure sections are obtained. The neural network model is the trained correction value prediction model.

进一步的,所述将多个特征样本数据按不同的温度段和气压段的组合分成多组具体包括:Further, dividing the plurality of characteristic sample data into multiple groups according to the combination of different temperature segments and pressure segments specifically includes:

将一定范围的温度和气压分别进行分段并将二者分段后的区间进行排列组合,每个组合包含一个温度区间和一个气压区间,将多个特征样本数据按上述组合分成多组。Divide a certain range of temperature and pressure into segments, and arrange and combine the segmented intervals, each combination includes a temperature interval and a pressure interval, and divide multiple characteristic sample data into multiple groups according to the above combinations.

进一步的,所述建立双输入单输出的神经网络模型具体包括:Further, the establishment of a dual-input single-output neural network model specifically includes:

首先搭建传统的BP神经网络框架PSO算法框架,初始化PSO算法粒子的速度、位置矢量,设定需要修正的误差区间阈值,同时计算均方误差函数;First, build the traditional BP neural network framework PSO algorithm framework, initialize the velocity and position vectors of the PSO algorithm particles, set the error interval threshold to be corrected, and calculate the mean square error function at the same time;

然后更新BP神经网络的个体和全局极值,更新PSO算法粒子速度和位置矢量;Then update the individual and global extreme values of the BP neural network, and update the particle velocity and position vector of the PSO algorithm;

随后根据计算得到的均方误差函数值判断是否满足精度要求,如果满足精度要求,则直接将粒子速度和位置信息赋值给BP神经网络完成神经网络优化,如果不满足精度要求,则增加迭代次数,直到均方误差函数值满足精度要求,完成双输入单输出的神经网络模型的建立。Then, according to the calculated mean square error function value, it is judged whether the accuracy requirements are met. If the accuracy requirements are met, the particle velocity and position information are directly assigned to the BP neural network to complete the neural network optimization. If the accuracy requirements are not met, the number of iterations is increased. Until the mean square error function value meets the accuracy requirements, the establishment of the dual-input single-output neural network model is completed.

进一步的,所述均方误差函数表示如下:Further, the mean square error function is expressed as follows:

Figure BDA0003408608810000031
Figure BDA0003408608810000031

其中n为优化后神经网络训练样本的数量,Yp(i)为神经网络的期望输出值,

Figure BDA0003408608810000032
为神经网络输出层实际输出值。where n is the number of training samples of the neural network after optimization, Y p (i) is the expected output value of the neural network,
Figure BDA0003408608810000032
The actual output value of the output layer of the neural network.

进一步的,该方法还包括:Further, the method also includes:

将训练好的修正值预测模型输出的气体流量修正值与对应的温度值和气压值作为特征样本对模型进行进一步训练。The model is further trained by using the gas flow correction value and the corresponding temperature value and air pressure value output by the trained correction value prediction model as feature samples.

第二方面,本申请实施例提供一种SF6气体流量计量值修正装置,包括:In the second aspect, an embodiment of the present application provides a device for correcting the measured value of SF 6 gas flow, including:

数据获取模块,用于获取SF6气体流量计量值以及对应的温度值和气压值;The data acquisition module is used to acquire the measured value of SF 6 gas flow and the corresponding temperature value and pressure value;

修正值获取模块,用于将上述温度值和气压值输入到训练好的修正值预测模型中,所述修正值预测模型包括多个对应不同温度段和气压段组合的神经网络模型,所述修正值预测模型根据输入的温度值和气压值所属的温度段和气压段利用对应的神经网络模型预测并输出对应的气体流量修正值;A correction value acquisition module, used for inputting the above-mentioned temperature value and air pressure value into the trained correction value prediction model, the correction value prediction model including a plurality of neural network models corresponding to different combinations of temperature segments and air pressure segments, the correction value prediction model The value prediction model uses the corresponding neural network model to predict and output the corresponding gas flow correction value according to the temperature segment and the pressure segment to which the input temperature value and air pressure value belong;

误差修正模块,用于将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值。An error correction module, configured to superimpose the SF 6 gas flow measurement value and the gas flow correction value to obtain a corrected gas flow value.

第三方面,本申请实施例提供一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述方法的步骤。In a third aspect, an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, which is implemented when the processor executes the computer program The steps of the method as described above.

第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有数据处理程序,所述数据处理程序被处理器执行时实现如上所述方法的步骤。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, where a data processing program is stored on the computer-readable storage medium, and when the data processing program is executed by a processor, the steps of the above method are implemented.

与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

本发明提供的这种SF6气体流量计量值修正方法、装置、设备及存储介质,首先获取SF6气体流量计量值以及对应的温度值和气压值,然后将上述温度值和气压值输入到其所属温度段和气压段对应的训练好的修正值预测模型中,模型输出该温度值和气压值对应的气体流量修正值,最后将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值;将温度和气压进行分段并得到不同温度段和气压段组合对应的神经网络模型,该模型输出较高精度的气体流量修正值,最终实现对SF6气体流量计量装置测量误差的补偿。The SF 6 gas flow measurement value correction method, device, equipment and storage medium provided by the present invention firstly obtain the SF 6 gas flow measurement value and the corresponding temperature value and air pressure value, and then input the above-mentioned temperature value and air pressure value into its In the trained correction value prediction model corresponding to the temperature segment and the air pressure segment, the model outputs the gas flow correction value corresponding to the temperature value and the air pressure value, and finally superimposes the SF gas flow measurement value and the gas flow correction value Obtain the corrected gas flow value ; divide the temperature and air pressure into sections and obtain the neural network model corresponding to the combination of different temperature sections and pressure sections. Compensation for device measurement errors.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to explain the technical solutions of the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the embodiments of the present application. It should be understood that the following drawings only show some embodiments of the present application, therefore It should not be regarded as a limitation of the scope. For those of ordinary skill in the art, other related drawings can also be obtained from these drawings without any creative effort.

图1为本发明实施例提供的一种SF6气体流量计量值修正方法的流程图; 1 is a flowchart of a method for correcting the measured value of SF gas flow provided by an embodiment of the present invention;

图2为本发明实施例提供的一种SF6气体流量计量值修正装置的结构框图。FIG. 2 is a structural block diagram of a device for correcting the measured value of SF 6 gas flow provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application. It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further definition and explanation in subsequent figures.

术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。The terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion such that a process, method, article or device comprising a list of elements includes not only those elements, but also other not expressly listed elements, or also include elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

术语“第一”、“第二”等仅用于将一个实体或者操作与另一个实体或操作区分开来,而不能理解为指示或暗示相对重要性,也不能理解为要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。The terms "first", "second", etc. are only used to distinguish one entity or operation from another, and should not be construed to indicate or imply relative importance, nor to require or imply such entities or operations. There is no such actual relationship or sequence between operations.

如图1所示,本发明实施例提供一种SF6气体流量计量值修正方法,包括以下步骤:As shown in FIG. 1 , an embodiment of the present invention provides a method for correcting the measured value of SF gas flow, including the following steps:

S101、获取SF6气体流量计量值以及对应的温度值和气压值。S101. Obtain the SF 6 gas flow measurement value and the corresponding temperature value and air pressure value.

其中,所述SF6气体流量计量值通过SF6气体流量计量装置例如SF6气体流量计/SF6气体流量传感器测得,对应的温度值和气压值可以通过温度传感器和气压传感器测得,SF6气体流量计量装置以及温度传感器和气压传感器在SF6气体通道上串联设置,即SF6气体依次经过上述测量装置。Wherein, the SF 6 gas flow measurement value is measured by an SF 6 gas flow measuring device such as an SF 6 gas flow meter/SF 6 gas flow sensor, and the corresponding temperature value and air pressure value can be measured by a temperature sensor and an air pressure sensor, SF 6 6. The gas flow measuring device, the temperature sensor and the pressure sensor are arranged in series on the SF 6 gas channel, that is, the SF 6 gas passes through the above-mentioned measuring device in turn.

S102、将上述温度值和气压值输入到训练好的修正值预测模型中,所述修正值预测模型包括多个对应不同温度段和气压段组合的神经网络模型,所述修正值预测模型根据输入的温度值和气压值所属的温度段和气压段利用对应的神经网络模型预测并输出对应的气体流量修正值。S102. Input the above temperature value and air pressure value into the trained correction value prediction model, where the correction value prediction model includes a plurality of neural network models corresponding to combinations of different temperature segments and air pressure segments, and the correction value prediction model is based on the input The temperature segment and the pressure segment to which the temperature value and air pressure value belong are predicted by the corresponding neural network model and output the corresponding gas flow correction value.

本发明实施例将温度和气压进行分段并得到不同温度段和气压段组合对应的神经网络模型,由于不同温度段和气压段下SF6气体温度和气压对SF6气体流量测量的影响大小不同,本发明实施例相比仅采用一个神经网络模型而言,该模型能够输出较高精度的气体流量修正值,从而获取更高精度的气体流量值。In the embodiment of the present invention, temperature and air pressure are segmented to obtain neural network models corresponding to the combination of different temperature segments and air pressure segments. Because the influences of SF 6 gas temperature and air pressure on SF 6 gas flow measurement under different temperature segments and air pressure segments are different , compared with only using a neural network model in the embodiment of the present invention, the model can output a higher-precision gas flow correction value, thereby obtaining a higher-precision gas flow value.

S103、将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值。S103 , superimposing the SF 6 gas flow measurement value and the gas flow correction value to obtain a corrected gas flow value.

具体可以实时计算气体流量修正值并对SF6气体流量计量值进行实时修正,获取高精度的气体流量值提供给用户,实现对SF6气体流量计量装置测量误差的补偿。Specifically, the gas flow correction value can be calculated in real time and the SF 6 gas flow measurement value can be corrected in real time, and the high-precision gas flow value can be obtained and provided to the user, so as to realize the compensation of the measurement error of the SF 6 gas flow measurement device.

进一步地,所述训练好的修正值预测模型的获取方法如下:Further, the acquisition method of the trained correction value prediction model is as follows:

(1)获取多个特征样本数据,该特征样本数据采用的是标准数据,每个所述特征样本数据包含温度值、气压值以及对应的SF6气体流量计量误差值,将多个特征样本数据按不同的温度段和气压段的组合分成多组;(1) Acquiring a plurality of characteristic sample data, the characteristic sample data adopts standard data, each of the characteristic sample data includes a temperature value, a pressure value and a corresponding SF 6 gas flow measurement error value, and the plurality of characteristic sample data Divide into multiple groups according to the combination of different temperature sections and pressure sections;

(2)建立双输入单输出的神经网络模型;(2) Establish a neural network model with dual input and single output;

(3)分别利用各组特征样本数据,以温度值和气压值作为输入,以SF6气体流量计量误差值作为输出,对上述建立的神经网络模型进行训练,得到多个对应不同温度段和气压段组合的神经网络模型,即为训练好的修正值预测模型。( 3 ) Use each group of characteristic sample data respectively, take the temperature value and the pressure value as the input, and take the SF gas flow measurement error value as the output to train the neural network model established above, and obtain a plurality of corresponding different temperature sections and pressure values. The neural network model of the segment combination is the trained correction value prediction model.

具体地,所述将多个特征样本数据按不同的温度段和气压段的组合分成多组具体包括:Specifically, dividing the plurality of characteristic sample data into multiple groups according to the combination of different temperature segments and pressure segments specifically includes:

将一定范围的温度和气压分别进行分段并将二者分段后的区间进行排列组合,每个组合包含一个温度区间和一个气压区间,将多个特征样本数据根据其温度和气压所属的区间按上述组合分成多组,每组包含多个特征样本数据,进行分段的温度和气压的范围以及分段的方法可以根基实际需要来设置,本实施例对此不作限定。Divide a certain range of temperature and pressure into segments and arrange and combine the segmented intervals. Each combination includes a temperature interval and an air pressure interval. Multiple characteristic sample data are divided according to the interval to which their temperature and air pressure belong. Divide into multiple groups according to the above combination, each group contains multiple characteristic sample data, and the range of temperature and air pressure for segmentation and the segmentation method can be set based on actual needs, which is not limited in this embodiment.

由于在随机生成BP神经网络的初始权值和阈值时,如果初始权值和阈值的选取不恰当时,容易导致出现网络收敛速度慢、陷入局部最小值等问题。本发明采用PSO算法对BP神经网络进行优化,降低初始值对BP神经网络预测结果的影响,提高网络的收敛速度和预测精度。优选地,所述建立双输入单输出的神经网络模型具体包括:When the initial weights and thresholds of the BP neural network are randomly generated, if the selection of the initial weights and thresholds is not appropriate, it is easy to cause problems such as slow network convergence and local minimum. The invention adopts the PSO algorithm to optimize the BP neural network, reduces the influence of the initial value on the prediction result of the BP neural network, and improves the convergence speed and prediction accuracy of the network. Preferably, the establishment of a dual-input single-output neural network model specifically includes:

首先搭建传统的BP神经网络框架PSO算法框架,初始化PSO算法粒子的速度、位置矢量,设定需要修正的误差区间阈值,同时计算均方误差函数;然后更新BP神经网络的个体和全局极值,更新PSO算法粒子速度和位置矢量;随后根据计算得到的均方误差函数值判断是否满足精度要求,如果满足精度要求,则直接将粒子速度和位置信息赋值给BP神经网络完成神经网络优化,如果不满足精度要求,则增加迭代次数,直到均方误差函数值满足精度要求,完成双输入单输出的神经网络模型的建立。First, build the traditional BP neural network framework PSO algorithm framework, initialize the speed and position vectors of the PSO algorithm particles, set the error interval threshold to be corrected, and calculate the mean square error function at the same time; then update the individual and global extreme values of the BP neural network, Update the particle velocity and position vector of the PSO algorithm; then judge whether the accuracy requirements are met according to the calculated mean square error function value. If the accuracy requirements are met, directly assign the particle velocity and position information to the BP neural network to complete the neural network optimization. If the accuracy requirements are met, the number of iterations is increased until the mean square error function value meets the accuracy requirements, and the establishment of a dual-input single-output neural network model is completed.

所述均方误差函数表示如下:The mean squared error function is expressed as follows:

Figure BDA0003408608810000071
Figure BDA0003408608810000071

其中n为优化后神经网络训练样本的数量,Yp(i)为神经网络的期望输出值,

Figure BDA0003408608810000072
为神经网络输出层实际输出值。where n is the number of training samples of the neural network after optimization, Yp(i) is the expected output value of the neural network,
Figure BDA0003408608810000072
The actual output value of the output layer of the neural network.

优选地,该方法还包括:将训练好的修正值预测模型输出的气体流量修正值与对应的温度值和气压值作为特征样本对模型进行进一步训练,从而进一步提高模型的精度。Preferably, the method further includes: further training the model by using the gas flow correction value and the corresponding temperature value and air pressure value output by the trained correction value prediction model as feature samples, thereby further improving the accuracy of the model.

如图2所示,本发明实施例还提供一种SF6气体流量计量值修正装置,包括:As shown in FIG. 2 , an embodiment of the present invention also provides a device for correcting the measured value of SF 6 gas flow, including:

数据获取模块201,用于获取SF6气体流量计量值以及对应的温度值和气压值;The data acquisition module 201 is used to acquire the SF gas flow measurement value and the corresponding temperature value and air pressure value ;

修正值获取模块202,用于将上述温度值和气压值输入到训练好的修正值预测模型中,所述修正值预测模型包括多个对应不同温度段和气压段组合的神经网络模型,所述修正值预测模型根据输入的温度值和气压值所属的温度段和气压段利用对应的神经网络模型预测并输出对应的气体流量修正值;The correction value acquisition module 202 is used for inputting the above-mentioned temperature value and air pressure value into the trained correction value prediction model, and the correction value prediction model includes a plurality of neural network models corresponding to combinations of different temperature segments and air pressure segments. The correction value prediction model uses the corresponding neural network model to predict and output the corresponding gas flow correction value according to the temperature segment and the pressure segment to which the input temperature value and air pressure value belong;

误差修正模块203,用于将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值。The error correction module 203 is configured to superimpose the SF 6 gas flow measurement value and the gas flow correction value to obtain a corrected gas flow value.

本发明实施例还提供一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上任一所述方法的步骤Embodiments of the present invention further provide an electronic device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements any of the above when executing the computer program steps of the method

本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有数据处理程序,所述数据处理程序被处理器执行时实现如上任一所述方法的步骤。An embodiment of the present invention further provides a computer-readable storage medium, where a data processing program is stored on the computer-readable storage medium, and when the data processing program is executed by a processor, the steps of any of the foregoing methods are implemented.

由于上述装置、电子设备以及计算机可读存储介质的实施例解决问题的原理与上述方法实施例类似,因此其实施可以参照上述方法实施例,重复之处不再赘述。Since the principle of solving the problem in the above-mentioned embodiments of the apparatus, electronic device and computer-readable storage medium is similar to that of the above-mentioned method embodiments, reference may be made to the above-mentioned method embodiments for implementation thereof, and repeated descriptions will not be repeated.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.

存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.

计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology. Information may be computer readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device. As defined herein, computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.

以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are merely examples of the present application, and are not intended to limit the protection scope of the present application. For those skilled in the art, various modifications and changes may be made to the present application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.

Claims (9)

1.一种SF6气体流量计量值修正方法,其特征在于,包括以下步骤:1. a SF 6 gas flow measurement value correction method, is characterized in that, comprises the following steps: 获取SF6气体流量计量值以及对应的温度值和气压值;Obtain the SF 6 gas flow measurement value and the corresponding temperature value and pressure value; 将上述温度值和气压值输入到训练好的修正值预测模型中,所述修正值预测模型包括多个对应不同温度段和气压段组合的神经网络模型,所述修正值预测模型根据输入的温度值和气压值所属的温度段和气压段利用对应的神经网络模型预测并输出对应的气体流量修正值;Input the above-mentioned temperature value and air pressure value into the trained correction value prediction model, the correction value prediction model includes a plurality of neural network models corresponding to the combination of different temperature segments and air pressure segments, and the correction value prediction model is based on the input temperature. The temperature segment and the pressure segment to which the value and air pressure value belong are predicted by the corresponding neural network model and output the corresponding gas flow correction value; 将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值。The corrected gas flow value is obtained by superimposing the SF 6 gas flow measurement value and the gas flow correction value. 2.根据权利要求1所述的一种SF6气体流量计量值修正方法,其特征在于,所述训练好的修正值预测模型的获取方法如下:2. a kind of SF gas flow measurement value correction method according to claim 1 , is characterized in that, the acquisition method of described trained correction value prediction model is as follows: 获取多个特征样本数据,每个所述特征样本数据包含温度值、气压值以及对应的SF6气体流量计量误差值,将多个特征样本数据按不同的温度段和气压段的组合分成多组;Obtain a plurality of characteristic sample data, each of which includes a temperature value, a pressure value and a corresponding SF 6 gas flow measurement error value, and divide the plurality of characteristic sample data into multiple groups according to the combination of different temperature segments and pressure segments ; 建立双输入单输出的神经网络模型;Build a dual-input single-output neural network model; 分别利用各组特征样本数据,以温度值和气压值作为输入,以SF6气体流量计量误差值作为输出,对上述建立的神经网络模型进行训练,得到多个对应不同温度段和气压段组合的神经网络模型,即为训练好的修正值预测模型。Using each group of characteristic sample data respectively, with temperature value and pressure value as input, and SF 6 gas flow measurement error value as output, the neural network model established above is trained, and a plurality of corresponding combinations of different temperature sections and pressure sections are obtained. The neural network model is the trained correction value prediction model. 3.根据权利要求2所述的一种SF6气体流量计量值修正方法,其特征在于,所述将多个特征样本数据按不同的温度段和气压段的组合分成多组具体包括:3. A kind of SF 6 gas flow measurement value correction method according to claim 2, it is characterized in that, described dividing a plurality of characteristic sample data into a plurality of groups according to the combination of different temperature sections and air pressure sections specifically comprises: 将一定范围的温度和气压分别进行分段并将二者分段后的区间进行排列组合,每个组合包含一个温度区间和一个气压区间,将多个特征样本数据按上述组合分成多组。Divide a certain range of temperature and pressure into segments, and arrange and combine the segmented intervals, each combination includes a temperature interval and a pressure interval, and divide multiple characteristic sample data into multiple groups according to the above combinations. 4.根据权利要求2所述的一种SF6气体流量计量值修正方法,其特征在于,所述建立双输入单输出的神经网络模型具体包括:4. a kind of SF 6 gas flow measurement value correction method according to claim 2, is characterized in that, described establishing the neural network model of double input and single output specifically comprises: 首先搭建传统的BP神经网络框架PSO算法框架,初始化PSO算法粒子的速度、位置矢量,设定需要修正的误差区间阈值,同时计算均方误差函数;First, build the traditional BP neural network framework PSO algorithm framework, initialize the velocity and position vectors of the PSO algorithm particles, set the error interval threshold to be corrected, and calculate the mean square error function at the same time; 然后更新BP神经网络的个体和全局极值,更新PSO算法粒子速度和位置矢量;Then update the individual and global extreme values of the BP neural network, and update the particle velocity and position vector of the PSO algorithm; 随后根据计算得到的均方误差函数值判断是否满足精度要求,如果满足精度要求,则直接将粒子速度和位置信息赋值给BP神经网络完成神经网络优化,如果不满足精度要求,则增加迭代次数,直到均方误差函数值满足精度要求,完成双输入单输出的神经网络模型的建立。Then, according to the calculated mean square error function value, it is judged whether the accuracy requirements are met. If the accuracy requirements are met, the particle velocity and position information are directly assigned to the BP neural network to complete the neural network optimization. If the accuracy requirements are not met, the number of iterations is increased. Until the mean square error function value meets the accuracy requirements, the establishment of the dual-input single-output neural network model is completed. 5.根据权利要求4所述的一种SF6气体流量计量值修正方法,其特征在于,所述均方误差函数表示如下: 5. a kind of SF gas flow measurement value correction method according to claim 4, is characterized in that, described mean square error function is expressed as follows:
Figure FDA0003408608800000021
Figure FDA0003408608800000021
其中n为优化后神经网络训练样本的数量,Yp(i)为神经网络的期望输出值,
Figure FDA0003408608800000022
为神经网络输出层实际输出值。
where n is the number of training samples of the neural network after optimization, Y p (i) is the expected output value of the neural network,
Figure FDA0003408608800000022
The actual output value of the output layer of the neural network.
6.根据权利要求1所述的一种SF6气体流量计量值修正方法,其特征在于,该方法还包括:6. The method for correcting the measured value of a SF 6 gas flow rate according to claim 1, wherein the method further comprises: 将训练好的修正值预测模型输出的气体流量修正值与对应的温度值和气压值作为特征样本对模型进行进一步训练。The model is further trained by using the gas flow correction value and the corresponding temperature value and air pressure value output by the trained correction value prediction model as feature samples. 7.一种SF6气体流量计量值修正装置,其特征在于,包括:7. A SF 6 gas flow measurement value correction device, characterized in that, comprising: 数据获取模块,用于获取SF6气体流量计量值以及对应的温度值和气压值;The data acquisition module is used to acquire the measured value of SF 6 gas flow and the corresponding temperature value and pressure value; 修正值获取模块,用于将上述温度值和气压值输入到训练好的修正值预测模型中,所述修正值预测模型包括多个对应不同温度段和气压段组合的神经网络模型,所述修正值预测模型根据输入的温度值和气压值所属的温度段和气压段利用对应的神经网络模型预测并输出对应的气体流量修正值;A correction value acquisition module, used for inputting the above-mentioned temperature value and air pressure value into the trained correction value prediction model, the correction value prediction model including a plurality of neural network models corresponding to different combinations of temperature segments and air pressure segments, the correction value prediction model The value prediction model uses the corresponding neural network model to predict and output the corresponding gas flow correction value according to the temperature segment and the pressure segment to which the input temperature value and air pressure value belong; 误差修正模块,用于将所述SF6气体流量计量值与所述气体流量修正值叠加得到修正后的气体流量值。An error correction module, configured to superimpose the SF 6 gas flow measurement value and the gas flow correction value to obtain a corrected gas flow value. 8.一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-6任一所述方法的步骤。8. An electronic device, comprising a memory, a processor, and a computer program stored in the memory and running on the processor, wherein the processor implements the computer program as claimed in the claims Steps of any one of the methods 1-6. 9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有数据处理程序,所述数据处理程序被处理器执行时实现如权利要求1-6任一所述方法的步骤。9. A computer-readable storage medium, wherein a data processing program is stored on the computer-readable storage medium, and when the data processing program is executed by a processor, the method according to any one of claims 1-6 is implemented A step of.
CN202111521340.5A 2021-12-13 2021-12-13 SF6Gas flow measuring value correction method, device, equipment and storage medium Pending CN114298091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111521340.5A CN114298091A (en) 2021-12-13 2021-12-13 SF6Gas flow measuring value correction method, device, equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111521340.5A CN114298091A (en) 2021-12-13 2021-12-13 SF6Gas flow measuring value correction method, device, equipment and storage medium

Publications (1)

Publication Number Publication Date
CN114298091A true CN114298091A (en) 2022-04-08

Family

ID=80968583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111521340.5A Pending CN114298091A (en) 2021-12-13 2021-12-13 SF6Gas flow measuring value correction method, device, equipment and storage medium

Country Status (1)

Country Link
CN (1) CN114298091A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115077634A (en) * 2022-07-26 2022-09-20 湖南敏行汽车科技有限公司 Air flow measuring device and method
CN115099129A (en) * 2022-05-31 2022-09-23 中海石油(中国)有限公司天津分公司 Natural gas well yield prediction method based on input characteristic error correction
CN115856059A (en) * 2022-12-14 2023-03-28 珠海华瑞诚科技有限公司 Oxygen sensor data calibration method and device, electronic device and storage medium
WO2024077587A1 (en) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 Battery performance prediction method, and battery performance distribution prediction method
CN119803597A (en) * 2025-03-12 2025-04-11 浙江松川仪表科技有限公司 A wireless remote gas meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368926A (en) * 2017-07-28 2017-11-21 中南大学 A kind of how natural parameter sensing method for amalgamation processing of intelligent environment carrying robot identification floor
WO2019237357A1 (en) * 2018-06-15 2019-12-19 华为技术有限公司 Method and device for determining weight parameters of neural network model
CN113610297A (en) * 2021-08-06 2021-11-05 浙江工业大学之江学院 Air quality prediction method, device, equipment and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368926A (en) * 2017-07-28 2017-11-21 中南大学 A kind of how natural parameter sensing method for amalgamation processing of intelligent environment carrying robot identification floor
WO2019237357A1 (en) * 2018-06-15 2019-12-19 华为技术有限公司 Method and device for determining weight parameters of neural network model
CN113610297A (en) * 2021-08-06 2021-11-05 浙江工业大学之江学院 Air quality prediction method, device, equipment and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵正杰;赵勇毅;孔春霞;佘明熹;常建华;沈婉;: "基于GWO-BP神经网络补偿的SF_6红外气体传感器", 激光与红外, no. 01, 20 January 2020 (2020-01-20) *
陈远鸣等: "基于改进型BP神经网络的SF6气体传感器", 电子测量与仪器学报, 31 October 2017 (2017-10-31), pages 1 - 4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115099129A (en) * 2022-05-31 2022-09-23 中海石油(中国)有限公司天津分公司 Natural gas well yield prediction method based on input characteristic error correction
CN115099129B (en) * 2022-05-31 2024-04-16 中海石油(中国)有限公司天津分公司 Natural gas well yield prediction method based on input characteristic error correction
CN115077634A (en) * 2022-07-26 2022-09-20 湖南敏行汽车科技有限公司 Air flow measuring device and method
CN115077634B (en) * 2022-07-26 2023-11-03 湖南敏行汽车科技有限公司 Air flow measuring method
WO2024077587A1 (en) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 Battery performance prediction method, and battery performance distribution prediction method
CN115856059A (en) * 2022-12-14 2023-03-28 珠海华瑞诚科技有限公司 Oxygen sensor data calibration method and device, electronic device and storage medium
CN115856059B (en) * 2022-12-14 2025-06-24 珠海华瑞诚科技有限公司 Oxygen sensor data calibration method and device, electronic equipment and storage medium
CN119803597A (en) * 2025-03-12 2025-04-11 浙江松川仪表科技有限公司 A wireless remote gas meter

Similar Documents

Publication Publication Date Title
CN114298091A (en) SF6Gas flow measuring value correction method, device, equipment and storage medium
CN105676085B (en) Based on extra-high voltage GIS detection method for local discharge combined of multi-sensor information
US8198904B2 (en) Synchrophasor measuring device and inter-bus-line phase angle difference measurement unit using the same
CN103617816B (en) The measuring method of reactor core power distribution
CN103197177B (en) A kind of transformer fault diagnosis analytical approach based on Bayesian network
CN106505557B (en) A telemetry error identification method and device
CN103955186A (en) Natural gas pipe network pipe flow state parameter determining method and device
CN106249599A (en) A kind of network control system fault detection method based on neural network prediction
CN112100869B (en) Power line point supplementing method and device and electronic equipment
CN110363677B (en) Shape finding method for icing transmission line
Poudineh‐Ebrahimi et al. Accurate and comprehensive fault location algorithm for two‐terminal transmission lines
CN109358276A (en) Air clear distance calculation method and device
Liang et al. A robust and accurate discrete Fourier transform‐based phasor estimation method for frequency domain fault location of power transmission lines
CN109557365B (en) Grid voltage frequency and phase angle detection method and system, single-phase grid detection system
Mohajer et al. Accurate fault location method for distribution network in presence of DG using distributed time‐domain line model
CN109946765B (en) Method and system for predicting the flow field of a wind farm
CN115102214A (en) Method for determining voltage control and limiting range of line resistance of direct-current transmission system
Hong et al. Steady‐state PMU data selection for parameter identification of transmission line considering the influence of measurement error
CN105468864A (en) Electromagnetic transient numerical computation method of high-voltage power transmission line based on increment dimension precise integration
CN108920879B (en) Frequency shift modeling simulation method and device
CN103576120B (en) Third-harmonic component plesiochronous information transfer check and Self-healing Algorithm
Swetapadma et al. Fuzzy based fault location estimation during unearthed open conductor faults in double circuit transmission line
CN216285454U (en) Three-phase zero sequence voltage sensor
CN105337547A (en) Rotation speed identification method of asynchronous motor speed sensor-free vector control system
Wu et al. A new method for identifying a fault in T-connected lines based on multiscale S-transform energy entropy and an extreme learning machine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination