CN114296248B - Spectroscopic film, selective spectroscope, optical device and spectroscopic method - Google Patents
Spectroscopic film, selective spectroscope, optical device and spectroscopic method Download PDFInfo
- Publication number
- CN114296248B CN114296248B CN202111502085.XA CN202111502085A CN114296248B CN 114296248 B CN114296248 B CN 114296248B CN 202111502085 A CN202111502085 A CN 202111502085A CN 114296248 B CN114296248 B CN 114296248B
- Authority
- CN
- China
- Prior art keywords
- light
- thickness
- silicon nitride
- silicon dioxide
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 46
- 238000004611 spectroscopical analysis Methods 0.000 title description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 213
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 106
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 106
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 106
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 106
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 239000011521 glass Substances 0.000 claims description 7
- 238000002834 transmittance Methods 0.000 abstract description 16
- 238000004891 communication Methods 0.000 abstract description 15
- 238000002310 reflectometry Methods 0.000 abstract description 9
- 230000009286 beneficial effect Effects 0.000 abstract description 6
- 239000011159 matrix material Substances 0.000 abstract 2
- 239000010408 film Substances 0.000 description 88
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Optical Filters (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
技术领域technical field
本发明涉及光束分离技术领域,特别是涉及一种分光膜、选择性分光镜、光学设备及分光方法。The invention relates to the technical field of beam separation, in particular to a beam splitting film, a selective beam splitter, optical equipment and a beam splitting method.
背景技术Background technique
不同波长的激光,在光纤中传输时,其衰耗各不相同。经过物理实验发现,光在三段波长范围内,光缆损耗较小,色散较小。该三段波长分别是850nm左右、1310nm左右和1550nm左右。因此,一般将这三个波长附近的波长作为通信使用的波长,一般将光纤衰耗低的区域,称为光通信窗口。Lasers with different wavelengths have different attenuation when they are transmitted in optical fibers. Through physical experiments, it is found that the optical cable has less loss and less dispersion when the light is in the three wavelength ranges. The three wavelengths are about 850nm, about 1310nm and about 1550nm respectively. Therefore, the wavelengths near these three wavelengths are generally used as the wavelengths used for communication, and the area with low fiber attenuation is generally called the optical communication window.
光波分复用技术(WDM)是将一系列载有信息的光载波,在光频域内以1至几百纳米的波长间隔合在一起,沿单根光纤传输;在接收端再用一定的方法,将各个不同波长的光载波分开的通信方式。光波分复用技术一般使用波长分割复用器(也称为合波器)以及解复用器(也称为分波器)分别置于光纤的两端,实现不同光波的耦合与分离。该通信系统称为光通信波分复用系统。Optical wavelength division multiplexing (WDM) is to combine a series of optical carriers carrying information in the optical frequency domain at a wavelength interval of 1 to several hundred nanometers, and transmit them along a single optical fiber; at the receiving end, a certain method is used to , A communication method that separates optical carriers of different wavelengths. Optical wavelength division multiplexing technology generally uses a wavelength division multiplexer (also called a multiplexer) and a demultiplexer (also called a demultiplexer) to be placed at both ends of the optical fiber to realize the coupling and separation of different light waves. This communication system is called an optical communication wavelength division multiplexing system.
光学薄膜是由薄的分层介质构成,通过界面传播光束的一类光学介质材料。光学薄膜器件主要有反射膜、减反射膜、偏振膜、干涉滤光片以及分光镜等。最简单的光学薄膜模型是表面光滑、各向同性的均匀介质薄层。在这种情况下,可以用光的干涉理论来研究光学薄膜的光学性质。当一束单色平面波入射到光学薄膜上时,在其两个表面上发生多次反射和折射,反射光和折射光的方向由反射定律和折射定律给出,反射光和折射光的振幅大小则由菲涅耳公式确定。Optical thin films are a class of optical dielectric materials that are composed of thin layered media and transmit light beams through the interface. Optical thin-film devices mainly include reflective films, anti-reflective films, polarizing films, interference filters, and beam splitters. The simplest optical thin film model is a smooth, isotropic homogeneous dielectric thin layer. In this case, the optical properties of optical thin films can be studied using the interference theory of light. When a monochromatic plane wave is incident on an optical film, multiple reflections and refractions occur on its two surfaces, the directions of the reflected light and refracted light are given by the laws of reflection and refraction, and the amplitudes of the reflected light and refracted light is determined by the Fresnel formula.
光的色散指的是复色光分解为单色光的现象;复色光通过棱镜分解成单色光的现象;光纤中由光源光谱成分中不同频率的不同群速度所引起的光脉冲展宽的现象。色散也是对光纤的一个传播参数与频率关系的描述。牛顿在1666年最先利用三棱镜观察到光的色散,把白光分解为彩色光带(光谱)。色散现象说明光在介质中的速度v(v=c/n,n代表介质的折射率)随光的频率f而变。光的色散可以用三棱镜、衍射光栅及干涉仪等来实现。The dispersion of light refers to the phenomenon that polychromatic light is decomposed into monochromatic light; the phenomenon that polychromatic light is decomposed into monochromatic light through a prism; the phenomenon of light pulse broadening caused by different group velocities of different frequencies in the spectral components of the light source in optical fibers. Dispersion is also a description of the relationship between a propagation parameter and frequency of an optical fiber. In 1666, Newton first observed the dispersion of light with a prism, decomposing white light into colored light bands (spectrum). The dispersion phenomenon shows that the speed v of light in the medium (v=c/n, n represents the refractive index of the medium) changes with the frequency f of the light. Dispersion of light can be achieved with prisms, diffraction gratings and interferometers.
一种常用的光波分复用技术方案是利用衍射光栅(如反射光栅、传输光栅)来实现不同波长的光在空间上的分离。衍射光栅上有等间距排列的平行裂缝或沟槽,间距和光波长相近。光入射后,离开衍射光栅的角度和波长有关,呈扇形展开,以此来实现不同波长的光在空间上的分离。然而,对于波长比较接近的光,衍射光栅将其在空间中分离开的距离或角度较小。A commonly used optical wavelength division multiplexing technology solution is to use a diffraction grating (such as a reflection grating, a transmission grating) to separate light of different wavelengths in space. There are parallel cracks or grooves arranged at equal intervals on the diffraction grating, and the spacing is similar to the wavelength of light. After the light is incident, the angle of leaving the diffraction grating is related to the wavelength and fanned out, so as to realize the spatial separation of light of different wavelengths. However, for light with relatively close wavelengths, the distance or angle that the diffraction grating separates them in space is small.
发明内容Contents of the invention
基于此,有必要提供一种分光膜、选择性分光镜、光学设备及分光方法,以解决难以在空间上将不同波段的光进行大角度分离的问题。Based on this, it is necessary to provide a spectroscopic film, a selective spectroscopic mirror, an optical device and a spectroscopic method to solve the problem that it is difficult to spatially separate light of different wavelength bands at a large angle.
本发明的其中一个目的是针对波长为850nm的光和1550nm的光的分光,提供一种分光膜,方案如下:One of the objectives of the present invention is to provide a spectroscopic film for the splitting of light with a wavelength of 850nm and light with a wavelength of 1550nm. The scheme is as follows:
一种分光膜,所述分光膜包括依次层叠设置的第一二氧化硅层、第一氮化硅层、第二二氧化硅层、第二氮化硅层、第三二氧化硅层、第三氮化硅层、第四二氧化硅层、第四氮化硅层、第五二氧化硅层以及第五氮化硅层。A light-splitting film, the light-splitting film comprises a first silicon dioxide layer, a first silicon nitride layer, a second silicon dioxide layer, a second silicon nitride layer, a third silicon dioxide layer, a first a silicon trinitride layer, a fourth silicon dioxide layer, a fourth silicon nitride layer, a fifth silicon dioxide layer and a fifth silicon nitride layer.
与现有方案相比,上述分光膜具有以下有益效果:Compared with existing schemes, the above-mentioned spectroscopic film has the following beneficial effects:
上述分光膜通过设置成交替层叠的二氧化硅膜层和氮化硅膜层,使其对850nm的光具有高反射率,同时对1550nm的光具有高透射率,对波长为850nm的光和1550nm的光具有高选择性,可用于在空间上分隔开这两种波长的光。当光通信系统同时采用波长为850nm和1550nm的两种光在同一光路中进行传输时,上述分光膜可以在接收段将850nm和1550nm这两种光在空间上分离开,有利于后端接收器分别识别加载于不同波段光束上的信号。The above-mentioned spectroscopic film has high reflectivity for 850nm light and high transmittance for 1550nm light by setting alternately stacked silicon dioxide film layers and silicon nitride film layers, and has high transmittance for light with wavelengths of 850nm and 1550nm The light is highly selective and can be used to spatially separate the two wavelengths of light. When the optical communication system uses two kinds of light with wavelengths of 850nm and 1550nm to transmit in the same optical path at the same time, the above-mentioned spectroscopic film can separate the two kinds of light of 850nm and 1550nm in the receiving section, which is beneficial to the back-end receiver. Separately identify signals loaded on beams of different wavelength bands.
在其中一个实施例中,所述第一二氧化硅层的厚度为318nm~323nm,所述第一氮化硅层的厚度为343nm~349nm,所述第二二氧化硅层的厚度为158nm~163nm,所述第二氮化硅层的厚度为107nm~112nm,所述第三二氧化硅层的厚度为172nm~177nm,所述第三氮化硅层的厚度为114nm~119nm,所述第四二氧化硅层的厚度为162nm~167nm,所述第四氮化硅层的厚度为104nm~109nm,所述第五二氧化硅层的厚度为167nm~172nm,所述第五氮化硅层的厚度为116nm~121nm。In one embodiment, the thickness of the first silicon dioxide layer is 318nm-323nm, the thickness of the first silicon nitride layer is 343nm-349nm, and the thickness of the second silicon dioxide layer is 158nm-323nm. 163nm, the thickness of the second silicon nitride layer is 107nm-112nm, the thickness of the third silicon dioxide layer is 172nm-177nm, the thickness of the third silicon nitride layer is 114nm-119nm, and the thickness of the third silicon nitride layer is 114nm-119nm. The thickness of the fourth silicon dioxide layer is 162nm-167nm, the thickness of the fourth silicon nitride layer is 104nm-109nm, the thickness of the fifth silicon dioxide layer is 167nm-172nm, the fifth silicon nitride layer The thickness is 116nm ~ 121nm.
在其中一个实施例中,所述第一二氧化硅层的厚度为320nm~321nm,所述第一氮化硅层的厚度为345nm~346nm,所述第二二氧化硅层的厚度为160nm~161nm,所述第二氮化硅层的厚度为109nm~110nm,所述第三二氧化硅层的厚度为174nm~175nm,所述第三氮化硅层的厚度为116nm~117nm,所述第四二氧化硅层的厚度为164nm~165nm,所述第四氮化硅层的厚度为106nm~107nm,所述第五二氧化硅层的厚度为169nm~170nm,所述第五氮化硅层的厚度为118nm~119nm。In one embodiment, the thickness of the first silicon dioxide layer is 320nm-321nm, the thickness of the first silicon nitride layer is 345nm-346nm, and the thickness of the second silicon dioxide layer is 160nm-321nm. 161nm, the thickness of the second silicon nitride layer is 109nm-110nm, the thickness of the third silicon dioxide layer is 174nm-175nm, the thickness of the third silicon nitride layer is 116nm-117nm, and the thickness of the third silicon nitride layer is 116nm-117nm. The thickness of the fourth silicon dioxide layer is 164nm-165nm, the thickness of the fourth silicon nitride layer is 106nm-107nm, the thickness of the fifth silicon dioxide layer is 169nm-170nm, the fifth silicon nitride layer The thickness is 118nm ~ 119nm.
在其中一个实施例中,所述分光膜中各二氧化硅膜层以及氮化硅膜层采用离子增强化学气相淀积(PECVD)制备In one of the embodiments, the silicon dioxide film layers and silicon nitride film layers in the light splitting film are prepared by ion-enhanced chemical vapor deposition (PECVD)
本发明的另一个目的是针对波长为850nm的光和1550nm的光的分光,提供一种选择性分光镜,方案如下:Another object of the present invention is to provide a selective spectroscope for the light splitting of the light of 850nm and the light of 1550nm with a wavelength of 850nm, and the scheme is as follows:
一种选择性分光镜,包括镜片基体以及上述任一实施例所述的分光膜,所述分光膜设置在所述镜片基体上,所述第一二氧化硅层位于所述第一氮化硅层的靠近所述镜片基体的一侧。A selective dichroic mirror, comprising a lens base and the dichroic film described in any one of the above embodiments, the dichroic film is arranged on the lens base, the first silicon dioxide layer is located on the first silicon nitride The side of the layer close to the lens base.
上述选择性分光镜可应用于光通信系统中,通过设置成交替层叠的二氧化硅膜层和氮化硅膜层,使其对850nm的光具有高反射率,同时对1550nm的光具有高透射率,对波长为850nm的光和1550nm的光具有高选择性,可用于在空间上分隔开这两种波长的光。当光通信系统同时采用波长为850nm和1550nm的两种光在同一光路中进行传输时,上述选择性分光镜可以在接收段将850nm和1550nm这两种光在空间上分离开,有利于后端接收器分别识别加载于不同波段光束上的信号。The above-mentioned selective spectroscopic mirror can be applied to optical communication systems, and it has high reflectivity for 850nm light and high transmittance for 1550nm light by setting alternately stacked silicon dioxide film layers and silicon nitride film layers High selectivity between 850nm and 1550nm wavelengths can be used to spatially separate the two wavelengths of light. When the optical communication system uses two kinds of light with wavelengths of 850nm and 1550nm to transmit in the same optical path at the same time, the above-mentioned selective beam splitter can spatially separate the two kinds of light of 850nm and 1550nm in the receiving section, which is beneficial to the back-end The receivers separately identify the signals loaded on the beams of different wavelength bands.
在其中一个实施例中,所述选择性分光镜还包括增透膜,所述增透膜设置在所述镜片基体的远离所述分光膜的一侧,所述增透膜包括层叠设置的第六氮化硅层以及第六二氧化硅层。In one of the embodiments, the selective dichroic mirror further includes an anti-reflection film, the anti-reflection film is arranged on the side of the lens base away from the dichroic film, and the anti-reflection film includes a layered first A silicon hexanitride layer and a sixth silicon dioxide layer.
在其中一个实施例中,所述第六氮化硅层的厚度为119nm~124nm,所述第六二氧化硅层的厚度为342nm~347nm。In one embodiment, the thickness of the sixth silicon nitride layer is 119nm-124nm, and the thickness of the sixth silicon dioxide layer is 342nm-347nm.
在其中一个实施例中,所述第六氮化硅层的厚度为121nm~122nm,所述第六二氧化硅层的厚度为344nm~345nm。In one embodiment, the sixth silicon nitride layer has a thickness of 121 nm to 122 nm, and the sixth silicon dioxide layer has a thickness of 344 nm to 345 nm.
在其中一个实施例中,所述增透膜中二氧化硅膜层以及氮化硅膜层采用离子增强化学气相淀积(PECVD)制备。In one embodiment, the silicon dioxide film layer and the silicon nitride film layer in the anti-reflection film are prepared by ion-enhanced chemical vapor deposition (PECVD).
在其中一个实施例中,所述镜片基体为玻璃,例如可以是ZF玻璃等。In one of the embodiments, the lens substrate is glass, such as ZF glass or the like.
本发明的又一个目的是针对波长为850nm的光和1550nm的光的分光,提供一种光学设备,方案如下:Yet another object of the present invention is to provide an optical device for the light splitting of light with a wavelength of 850nm and light with a wavelength of 1550nm, the scheme is as follows:
一种光学设备,具有上述任一实施例所述的选择性分光镜。An optical device has the selective beam splitter described in any one of the above embodiments.
上述光学设备具有上述的选择性分光镜,因而能够获得相应的技术效果。The above-mentioned optical device has the above-mentioned selective beam splitter, so corresponding technical effects can be obtained.
在其中一个实施例中,所述光学设备为解复用器或分光器。In one of the embodiments, the optical device is a demultiplexer or an optical splitter.
本发明的又一个目的是针对波长为850nm的光和1550nm的光的分光,提供一种分光方法,方案如下:Yet another object of the present invention is to provide a spectroscopic method for the spectroscopic separation of light with a wavelength of 850nm and light with a wavelength of 1550nm, the scheme is as follows:
一种波长为850nm和1550nm的光的分光方法,包括以下步骤:A kind of wavelength is the spectroscopic method of the light of 850nm and 1550nm, comprises the following steps:
利用上述任一实施例所述的选择性分光镜对复合光束进行分光,使所述复合光束从所述分光膜入射所述选择性分光镜,所述复合光束含有波长为850nm和1550nm的光。The composite beam is split by the selective beam splitter described in any of the above embodiments, and the composite beam is incident on the selective beam splitter from the beam splitting film, and the composite beam contains light with wavelengths of 850nm and 1550nm.
在其中一个实施例中,所述复合光束的入射角为44°~46°。在其中一个实施例中,所述复合光束的入射角为45°。In one of the embodiments, the incident angle of the composite light beam is 44°-46°. In one of the embodiments, the incident angle of the composite light beam is 45°.
附图说明Description of drawings
图1为本发明一实施例的分光膜的结构示意图;FIG. 1 is a schematic structural view of a light splitting film according to an embodiment of the present invention;
图2为含有图1所示分光膜的选择性分光镜的结构示意图;Fig. 2 is the structural representation of the selective spectroscope containing spectroscopic film shown in Fig. 1;
图3为图2所示选择性分光镜中增透膜的结构示意图;Fig. 3 is the structural representation of anti-reflection coating in the selective beam splitter shown in Fig. 2;
图4为利用图2所示选择性分光镜对波长为850nm的光和1550nm的光进行分光的示意图。Fig. 4 is a schematic diagram of splitting light with a wavelength of 850nm and light with a wavelength of 1550nm by using the selective beam splitter shown in Fig. 2 .
附图标记说明:Explanation of reference signs:
100、分光膜;101、第一二氧化硅层;102、第一氮化硅层;103、第二二氧化硅层;104、第二氮化硅层;105、第三二氧化硅层;106、第三氮化硅层;107、第四二氧化硅层;108、第四氮化硅层;109、第五二氧化硅层;110、第五氮化硅层;10、选择性分光镜;200、镜片基体;300、增透膜;301、第六氮化硅层;302、第六二氧化硅层。100. Light splitting film; 101. First silicon dioxide layer; 102. First silicon nitride layer; 103. Second silicon dioxide layer; 104. Second silicon nitride layer; 105. Third silicon dioxide layer; 106. The third silicon nitride layer; 107. The fourth silicon dioxide layer; 108. The fourth silicon nitride layer; 109. The fifth silicon dioxide layer; 110. The fifth silicon nitride layer; 10. Selective light splitting mirror; 200, lens substrate; 300, antireflection film; 301, sixth silicon nitride layer; 302, sixth silicon dioxide layer.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the present invention will be described more fully below with reference to the associated drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, these embodiments are provided to make the understanding of the disclosure of the present invention more thorough and comprehensive.
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括至少一个该特征。In the description of the present invention, it should be understood that the terms "first", "second" and so on are only used for descriptive purposes, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features . Thus, a feature defined with "first", "second", etc. may expressly or implicitly include at least one of that feature.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
请参考图1所示,本发明一实施例的分光膜100包括交替层叠设置的二氧化硅(SiO2)膜层和氮化硅(Si3N4)膜层。Please refer to FIG. 1 , a
更具体地,分光膜100包括依次层叠设置的第一二氧化硅层101、第一氮化硅层102、第二二氧化硅层103、第二氮化硅层104、第三二氧化硅层105、第三氮化硅层106、第四二氧化硅层107、第四氮化硅层108、第五二氧化硅层109以及第五氮化硅层110。More specifically, the
上述分光膜100通过设置成交替层叠的二氧化硅膜层和氮化硅膜层,使其对850nm的光具有高反射率,同时对1550nm的光具有高透射率,对波长为850nm的光和1550nm的光具有高选择性,可用于在空间上分隔开这两种波长的光。当光通信系统同时采用波长为850nm和1550nm的两种光在同一光路中进行传输时,上述分光膜100可以在接收段将850nm和1550nm这两种光在空间上分离开,有利于后端接收器分别识别加载于不同波段光束上的信号。The above-mentioned
在其中一个示例中,第一二氧化硅层101的厚度为318nm~323nm,第一氮化硅层102的厚度为343nm~349nm,第二二氧化硅层103的厚度为158nm~163nm,第二氮化硅的厚度为107nm~112nm,第三二氧化硅层105的厚度为172nm~177nm,第三氮化硅层106的厚度为114nm~119nm,第四二氧化硅层107的厚度为162nm~167nm,第四氮化硅层108的厚度为104nm~109nm,第五二氧化硅层109的厚度为167nm~172nm,第五氮化硅层110的厚度为116nm~121nm。In one example, the thickness of the first
上述示例的选择性分光镜10通过进一步优选各膜层的厚度范围,分离后两束光之间的夹角达到85°以上,提高分光效果。The
在其中一个示例中,第一二氧化硅层101的厚度为320nm~322nm,第一氮化硅层102的厚度为345nm~347nm,第二二氧化硅层103的厚度为160nm~162nm,第二氮化硅的厚度为108nm~110nm,第三二氧化硅层105的厚度为173nm~175nm,第三氮化硅层106的厚度为116nm~118nm,第四二氧化硅层107的厚度为163nm~165nm,第四氮化硅层108的厚度为105nm~107nm,第五二氧化硅层109的厚度为169nm~171nm,第五氮化硅层110的厚度为118nm~120nm。In one example, the thickness of the first
上述示例的选择性分光镜10通过进一步优选各膜层的厚度范围,分离后两束光之间的夹角达到90°,提高分光效果。The
上述分光膜100中各二氧化硅膜层以及氮化硅膜层可以采用镀膜、气相沉积等方式制作而成。在其中一个示例中,分光膜100中各二氧化硅膜层以及氮化硅膜层采用离子增强化学气相淀积(PECVD)制备。Each silicon dioxide film layer and silicon nitride film layer in the above-mentioned
进一步地,如图2所示,本发明还提供一种选择性分光镜10,其包括镜片基体200以及上述任一示例的分光膜100,分光膜100设置在镜片基体200上,第一二氧化硅层101位于第一氮化硅层102的靠近镜片基体200的一侧。Further, as shown in FIG. 2 , the present invention also provides a selective
上述选择性分光镜10可应用于光通信系统中,通过设置成交替层叠的二氧化硅膜层和氮化硅膜层,使其对850nm的光具有高反射率,同时对1550nm的光具有高透射率,对波长为850nm的光和1550nm的光具有高选择性,可用于在空间上分隔开这两种波长的光。当光通信系统同时采用波长为850nm和1550nm的两种光在同一光路中进行传输时,上述选择性分光镜10可以在接收段将850nm和1550nm这两种光在空间上分离开,有利于后端接收器分别识别加载于不同波段光束上的信号。The above-mentioned
如图3所示,在其中一个示例中,选择性分光镜10还包括增透膜300。增透膜300设置在镜片基体200的远离分光膜100的一侧。增透膜300用于提高1550nm的光的透过率。As shown in FIG. 3 , in one example, the
可选地,镜片基体200可以是但不限于玻璃,例如ZF玻璃等。Optionally, the
在其中一个示例中,增透膜300包括层叠设置的第六氮化硅层301以及第六二氧化硅层302,第六氮化硅层301设置在第六二氧化硅层302的靠近镜片基体200的一侧。In one example, the
在其中一个示例中,第六氮化硅层301的厚度为119nm~124nm,第六二氧化硅层302的厚度为342nm~347nm。In one example, the sixth
上述选择性分光镜10通过优选增透膜300中第六氮化硅层301以及第六二氧化硅层302的厚度范围,使得增透膜300对1550nm的光具有更高的透射率。The above-mentioned
进一步地,在其中一个示例中,第六氮化硅层301的厚度为121nm~122nm,第六二氧化硅层302的厚度为344nm~345nm。Further, in one example, the thickness of the sixth
上述选择性分光镜10通过优选增透膜300中第六氮化硅层301以及第六二氧化硅层302的厚度范围,使得增透膜300对1550nm的光具有更高的透射率。The above-mentioned
上述增透膜300中各二氧化硅膜层以及氮化硅膜层可以采用镀膜、气相沉积等方式制作而成。在其中一个示例中,增透膜300中各二氧化硅膜层以及氮化硅膜层采用离子增强化学气相淀积(PECVD)制备。Each silicon dioxide film layer and silicon nitride film layer in the above-mentioned
其中一个示例的选择性分光镜10的制备方法包括以下步骤:The preparation method of the
步骤1,获取镜片基体200,镜片基体200为片状结构,其具有相对设置的第一侧面以及第二侧面。In step 1, the
步骤2,采用离子增强化学气相淀积方法,在镜片基体200的第一侧面上依次沉积第一二氧化硅层101、第一氮化硅层102、第二二氧化硅层103、第二氮化硅层104、第三二氧化硅层105、第三氮化硅层106、第四二氧化硅层107、第四氮化硅层108、第五二氧化硅层109以及第五氮化硅层110。Step 2, using the ion-enhanced chemical vapor deposition method, sequentially deposit the first
步骤3,采用离子增强化学气相淀积方法,在镜片基体200的第二侧面上依次沉积第六氮化硅层301以及第六二氧化硅层302。In step 3, a sixth
进一步地,本发明还提供一种光学设备,其具有上述任一示例的选择性分光镜10。Further, the present invention also provides an optical device, which has the
上述光学设备具有上述的选择性分光镜10,因而能够获得相应的技术效果。The above-mentioned optical device has the above-mentioned
光学设备可以是但不限于解复用器、分光器等。Optical devices may be, but are not limited to, demultiplexers, optical splitters, and the like.
本发明还提供一种波长为850nm和1550nm的光的分光方法,包括以下步骤:The present invention also provides a spectroscopic method for light with a wavelength of 850nm and 1550nm, comprising the following steps:
利用上述任一示例的选择性分光镜10对复合光束进行分光,使复合光束从分光膜100入射选择性分光镜10,复合光束含有波长为850nm和1550nm的光。The composite beam is split by the
在其中一个示例中,复合光束的入射角为44°~46°。In one example, the incident angle of the composite light beam is 44°-46°.
进一步地,在其中一个示例中,复合光束的入射角为45°。Further, in one example, the incident angle of the composite light beam is 45°.
以下提供具体实施例对本发明作进一步说明。但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。Specific examples are provided below to further illustrate the present invention. But the present invention is not limited to the following embodiments, it should be understood that the scope of the present invention is summarized by the appended claims. Certain changes will be covered by the spirit and scope of the claims of the present invention.
实施例1Example 1
本实施例的选择性分光镜包括镜片基体、分光膜以及增透膜。The selective dichroic mirror in this embodiment includes a lens base, a dichroic film and an anti-reflection film.
其中,镜片基体为ZF玻璃片。分光膜包括依次层叠设置的第一二氧化硅层、第一氮化硅、第二二氧化硅层、第二氮化硅、第三二氧化硅层、第三氮化硅、第四二氧化硅层、第四氮化硅、第五二氧化硅层以及第五氮化硅。第一二氧化硅层位于第一氮化硅的靠近镜片基体的一侧。分光膜的结构参数如表1所示。增透膜设置在镜片基体的远离分光膜的一侧,增透膜包括层叠设置的第六氮化硅层以及第六二氧化硅层,第六氮化硅层设置在第六二氧化硅层的靠近镜片基体的一侧。增透膜的结构参数如表2所示。Wherein, the lens substrate is a ZF glass sheet. The light splitting film includes a first silicon dioxide layer, a first silicon nitride, a second silicon dioxide layer, a second silicon nitride, a third silicon dioxide layer, a third silicon nitride, and a fourth silicon dioxide layer stacked in sequence. a silicon layer, a fourth silicon nitride, a fifth silicon dioxide layer and a fifth silicon nitride. The first silicon dioxide layer is located on the side of the first silicon nitride close to the lens base. The structural parameters of the spectroscopic film are shown in Table 1. The anti-reflection film is arranged on the side of the lens base away from the beam splitting film, the anti-reflection film includes a sixth silicon nitride layer and a sixth silicon dioxide layer stacked, and the sixth silicon nitride layer is arranged on the sixth silicon dioxide layer The side close to the lens base. The structural parameters of the AR coating are shown in Table 2.
表1 选择性分光膜的结构参数Table 1 Structural parameters of selective spectroscopic film
表2 增透膜的结构参数Table 2 Structural parameters of AR coating
当入射光以45°角入射时,该选择性分光镜对850nm光的TM波(横磁波,也称为p偏振波)和TE波(横电波,也称为s偏振波)分别具有73.6%和94.6%的反射率;对1550nm光的TM波和TE波分别具有99.0%和99.6%的透射率。如果入射光是圆偏振光(光通信所用激光可认为是圆偏振光),则通过计算可得出实施例2所提供的选择性分光镜对850nm光的反射率为84.1%,对1550nm光的透射率为99.3%,对850nm和1550nm光具有很强的选择性。When the incident light is incident at an angle of 45°, the selective beamsplitter has 73.6% of the TM wave (transverse magnetic wave, also called p-polarized wave) and TE wave (transverse electric wave, also called s-polarized wave) of 850nm light, respectively. and 94.6% reflectivity; 99.0% and 99.6% transmittance for TM wave and TE wave of 1550nm light, respectively. If the incident light is circularly polarized light (laser light used in optical communication can be regarded as circularly polarized light), then the reflectance of the selective beamsplitter provided by embodiment 2 to 850nm light can be 84.1%, and the reflectance of 1550nm light can be obtained by calculation. The transmittance is 99.3%, and it has strong selectivity to 850nm and 1550nm light.
实施例2Example 2
本实施例的选择性分光镜包括镜片基体、分光膜以及增透膜。The selective dichroic mirror in this embodiment includes a lens base, a dichroic film and an anti-reflection film.
其中,镜片基体为ZF玻璃片。分光膜包括依次层叠设置的第一二氧化硅层、第一氮化硅、第二二氧化硅层、第二氮化硅、第三二氧化硅层、第三氮化硅、第四二氧化硅层、第四氮化硅、第五二氧化硅层以及第五氮化硅。第一二氧化硅层位于第一氮化硅的靠近镜片基体的一侧。分光膜的结构参数如表3所示。增透膜设置在镜片基体的远离分光膜的一侧,增透膜包括层叠设置的第六氮化硅层以及第六二氧化硅层,第六氮化硅层设置在第六二氧化硅层的靠近镜片基体的一侧。增透膜的结构参数如表4所示。Wherein, the lens substrate is a ZF glass sheet. The light splitting film includes a first silicon dioxide layer, a first silicon nitride, a second silicon dioxide layer, a second silicon nitride, a third silicon dioxide layer, a third silicon nitride, and a fourth silicon dioxide layer stacked in sequence. a silicon layer, a fourth silicon nitride, a fifth silicon dioxide layer and a fifth silicon nitride. The first silicon dioxide layer is located on the side of the first silicon nitride close to the lens base. The structural parameters of the spectroscopic film are shown in Table 3. The anti-reflection film is arranged on the side of the lens base away from the beam splitting film, the anti-reflection film includes a sixth silicon nitride layer and a sixth silicon dioxide layer stacked, and the sixth silicon nitride layer is arranged on the sixth silicon dioxide layer The side close to the lens base. The structural parameters of the AR coating are shown in Table 4.
表3 选择性分光膜的结构参数Table 3 Structural parameters of selective spectroscopic film
表4 增透膜的结构参数Table 4 Structural parameters of AR coating
当入射光以45°角入射时,该选择性分光镜对850nm光的TM波(横磁波,也称为p偏振波)和TE波(横电波,也称为s偏振波)分别具有73.5%和94.6%的反射率;对1550nm光的TM波和TE波分别具有99.6%和99.8%的透射率。When the incident light is incident at an angle of 45°, the selective beamsplitter has 73.5% of the TM wave (transverse magnetic wave, also called p-polarized wave) and TE wave (transverse electric wave, also called s-polarized wave) of 850nm light, respectively. and 94.6% reflectivity; 99.6% and 99.8% transmittance for TM wave and TE wave of 1550nm light, respectively.
如果入射光是圆偏振光(光通信所用激光可认为是圆偏振光),则通过计算可得出实施例2所提供的选择性分光镜对850nm光的反射率为84.1%,对1550nm光的透射率为99.7%,对850nm和1550nm光具有很强的选择性。If the incident light is circularly polarized light (laser light used in optical communication can be regarded as circularly polarized light), then the reflectance of the selective beamsplitter provided by embodiment 2 to 850nm light can be 84.1%, and the reflectance of 1550nm light can be obtained by calculation. The transmittance is 99.7%, and it has strong selectivity to 850nm and 1550nm light.
当入射光以44°角入射时,该选择性分光镜对850nm光的TM波(横磁波,也称为p偏振波)和TE波(横电波,也称为s偏振波)分别具有74.5%和94.4%的反射率;对1550nm光的TM波和TE波分别具有99.6%和99.8%的透射率。如果入射光是圆偏振光(光通信所用激光可认为是圆偏振光),则通过计算可得出实施例2所提供的选择性分光镜对850nm光的反射率为84.4%,对1550nm光的透射率为99.7%,对850nm和1550nm光具有很强的选择性。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。When the incident light is incident at an angle of 44°, the selective beamsplitter has 74.5% of the TM wave (transverse magnetic wave, also called p-polarized wave) and TE wave (transverse electric wave, also called s-polarized wave) of 850nm light, respectively. and 94.4% reflectivity; 99.6% and 99.8% transmittance for TM wave and TE wave of 1550nm light, respectively. If the incident light is circularly polarized light (laser light used in optical communication can be regarded as circularly polarized light), then the reflectance of the selective beamsplitter provided by embodiment 2 to 850nm light can be 84.4%, and the reflectivity of 1550nm light can be obtained by calculation. The transmittance is 99.7%, and it has strong selectivity to 850nm and 1550nm light. The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111502085.XA CN114296248B (en) | 2021-12-09 | 2021-12-09 | Spectroscopic film, selective spectroscope, optical device and spectroscopic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111502085.XA CN114296248B (en) | 2021-12-09 | 2021-12-09 | Spectroscopic film, selective spectroscope, optical device and spectroscopic method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114296248A CN114296248A (en) | 2022-04-08 |
CN114296248B true CN114296248B (en) | 2023-07-14 |
Family
ID=80966795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111502085.XA Active CN114296248B (en) | 2021-12-09 | 2021-12-09 | Spectroscopic film, selective spectroscope, optical device and spectroscopic method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114296248B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7079322B2 (en) * | 2003-09-26 | 2006-07-18 | Hitachi Maxell, Ltd. | Wavelength division multiplexer |
CN202217081U (en) * | 2011-08-17 | 2012-05-09 | 奥普镀膜技术(广州)有限公司 | CWDM passive optical network type optical filter |
US10948640B2 (en) * | 2018-03-13 | 2021-03-16 | Viavi Solutions Inc. | Sensor window with a set of layers configured to a particular color and associated with a threshold opacity in a visible spectral range wherein the color is a color-matched to a surface adjacent to the sensor window |
CN108897085B (en) * | 2018-08-06 | 2024-07-16 | 信阳舜宇光学有限公司 | Optical filter and infrared image sensing system comprising same |
US11314004B2 (en) * | 2019-04-08 | 2022-04-26 | Visera Technologies Company Limited | Optical filters and methods for forming the same |
-
2021
- 2021-12-09 CN CN202111502085.XA patent/CN114296248B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114296248A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Frigg et al. | Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films | |
US10139538B2 (en) | Wire grid polarizer with high reflectivity on both sides | |
CA2728594C (en) | An optical spectral filter, angular filter and polariser | |
US20020027655A1 (en) | Optical device and spectroscopic and polarization separating apparatus using the same | |
Xi et al. | Internal high-reflectivity omni-directional reflectors | |
EP4569361A2 (en) | Waveguide-based displays incorporating evacuated periodic structures | |
FR2942549A1 (en) | Polarizing reflection diffraction grating for planar imaging/optical beam transporting system, has dielectric layer made of material with thickness and index difference preset such that magnetic polarization diffraction efficiency is high | |
Stegmaier et al. | Broadband directional coupling in aluminum nitride nanophotonic circuits | |
CN114296248B (en) | Spectroscopic film, selective spectroscope, optical device and spectroscopic method | |
Azzam et al. | Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si–SiO2 interface | |
CN110361802A (en) | A kind of 1-D photon crystal filter | |
Melnyk et al. | Air gap resonant tunneling bandpass filter and polarizer | |
Golshani et al. | Low-loss, low-temperature PVD SiN waveguides | |
US8818193B2 (en) | Multichannel tunable optical dispersion compensator | |
CN100472243C (en) | wavelength multiplexer | |
JP4042426B2 (en) | Optical element and spectroscopic device using the same | |
JP3584257B2 (en) | Polarizing beam splitter | |
Liu et al. | Multi-band optical bandpass filter with picometer bandwidth in visible spectrum formed by prism pair coupled planar optical waveguide | |
CN105891961A (en) | Multimode guided mode resonance optical filter with wide angle switching | |
JP2006053200A (en) | Edge filter | |
WO2022040912A1 (en) | Low-angle shift optical filter | |
Chardonnet et al. | Polarization properties of thin films of diamond | |
JP2002267845A (en) | Optical element and spectroscope unit and polarized light separating device using the same | |
Petrov | Achromatic polarization rotator | |
US20150331244A1 (en) | Parallel Plate and Twin Polarization Wavelength Isolation Filters for Optical Communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |