CN114292343B - A method for preparing exopolysaccharide and intracellular polysaccharide of Perennial ash and its application in regulating intestinal microbial flora and lowering blood sugar - Google Patents
A method for preparing exopolysaccharide and intracellular polysaccharide of Perennial ash and its application in regulating intestinal microbial flora and lowering blood sugar Download PDFInfo
- Publication number
- CN114292343B CN114292343B CN202111676281.9A CN202111676281A CN114292343B CN 114292343 B CN114292343 B CN 114292343B CN 202111676281 A CN202111676281 A CN 202111676281A CN 114292343 B CN114292343 B CN 114292343B
- Authority
- CN
- China
- Prior art keywords
- perennial
- polysaccharide
- intracellular
- solution
- intestinal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000004676 glycans Chemical class 0.000 title claims abstract description 212
- 229920001282 polysaccharide Polymers 0.000 title claims abstract description 208
- 239000005017 polysaccharide Substances 0.000 title claims abstract description 208
- 230000003834 intracellular effect Effects 0.000 title claims abstract description 97
- 230000000968 intestinal effect Effects 0.000 title claims abstract description 57
- 210000004369 blood Anatomy 0.000 title claims abstract description 42
- 239000008280 blood Substances 0.000 title claims abstract description 42
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 43
- 230000000813 microbial effect Effects 0.000 title abstract description 6
- 229920002444 Exopolysaccharide Polymers 0.000 title description 50
- 241000894006 Bacteria Species 0.000 claims abstract description 92
- 241000233866 Fungi Species 0.000 claims abstract description 19
- 241000235349 Ascomycota Species 0.000 claims abstract description 14
- 241000221198 Basidiomycota Species 0.000 claims abstract description 14
- 241000186660 Lactobacillus Species 0.000 claims abstract description 12
- 229940039696 lactobacillus Drugs 0.000 claims abstract description 12
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 241000606125 Bacteroides Species 0.000 claims abstract description 10
- 241000235575 Mortierella Species 0.000 claims abstract description 9
- 241001660259 Cereus <cactus> Species 0.000 claims abstract description 6
- 241000565359 Fraxinus chinensis Species 0.000 claims abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 77
- 239000000284 extract Substances 0.000 claims description 69
- 239000007788 liquid Substances 0.000 claims description 65
- 239000000243 solution Substances 0.000 claims description 59
- 238000000855 fermentation Methods 0.000 claims description 48
- 230000004151 fermentation Effects 0.000 claims description 48
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 42
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 36
- 239000008103 glucose Substances 0.000 claims description 36
- 238000011282 treatment Methods 0.000 claims description 35
- 102000004169 proteins and genes Human genes 0.000 claims description 31
- 108090000623 proteins and genes Proteins 0.000 claims description 31
- 229940045860 white wax Drugs 0.000 claims description 29
- 238000000502 dialysis Methods 0.000 claims description 27
- 150000004666 short chain fatty acids Chemical class 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 25
- 102000004142 Trypsin Human genes 0.000 claims description 23
- 108090000631 Trypsin Proteins 0.000 claims description 23
- 239000012588 trypsin Substances 0.000 claims description 23
- 238000000605 extraction Methods 0.000 claims description 20
- 238000005119 centrifugation Methods 0.000 claims description 19
- 235000021391 short chain fatty acids Nutrition 0.000 claims description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 17
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 17
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 16
- 241000192142 Proteobacteria Species 0.000 claims description 15
- 238000002386 leaching Methods 0.000 claims description 15
- 239000002244 precipitate Substances 0.000 claims description 15
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 14
- 238000005238 degreasing Methods 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 14
- 102000004190 Enzymes Human genes 0.000 claims description 13
- 108090000790 Enzymes Proteins 0.000 claims description 13
- 230000001580 bacterial effect Effects 0.000 claims description 13
- 239000007853 buffer solution Substances 0.000 claims description 12
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 12
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 11
- 239000000047 product Substances 0.000 claims description 10
- 239000011780 sodium chloride Substances 0.000 claims description 9
- 239000006228 supernatant Substances 0.000 claims description 9
- OAABHEHWRQAHEJ-UHFFFAOYSA-N butan-1-ol;chloroform Chemical compound ClC(Cl)Cl.CCCCO OAABHEHWRQAHEJ-UHFFFAOYSA-N 0.000 claims description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000003208 petroleum Substances 0.000 claims description 8
- 241000605059 Bacteroidetes Species 0.000 claims description 7
- 229920002271 DEAE-Sepharose Polymers 0.000 claims description 7
- 241000192125 Firmicutes Species 0.000 claims description 7
- 238000010828 elution Methods 0.000 claims description 6
- 239000006041 probiotic Substances 0.000 claims description 6
- 235000018291 probiotics Nutrition 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 241000580482 Acidobacteria Species 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229940005605 valeric acid Drugs 0.000 claims description 5
- 241000233652 Chytridiomycota Species 0.000 claims description 4
- 241001583499 Glomeromycotina Species 0.000 claims description 4
- 241001261005 Verrucomicrobia Species 0.000 claims description 4
- 239000000945 filler Substances 0.000 claims description 4
- 235000019260 propionic acid Nutrition 0.000 claims description 4
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 4
- 238000007873 sieving Methods 0.000 claims description 4
- 241001156739 Actinobacteria <phylum> Species 0.000 claims description 3
- 241000131694 Tenericutes Species 0.000 claims description 3
- 206010052428 Wound Diseases 0.000 claims description 3
- 208000027418 Wounds and injury Diseases 0.000 claims description 3
- 241000972275 Zoopagomycota Species 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000011097 chromatography purification Methods 0.000 claims description 3
- 238000004108 freeze drying Methods 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims description 2
- 230000035755 proliferation Effects 0.000 claims description 2
- 239000001993 wax Substances 0.000 claims 4
- 241001536358 Fraxinus Species 0.000 claims 3
- 241000235395 Mucor Species 0.000 claims 2
- 210000002939 cerumen Anatomy 0.000 claims 2
- 238000012258 culturing Methods 0.000 claims 2
- 239000001963 growth medium Substances 0.000 claims 2
- 241000186046 Actinomyces Species 0.000 claims 1
- 241000209441 Ceratophyllum Species 0.000 claims 1
- 241001157813 Cercospora Species 0.000 claims 1
- 241000282985 Cervus Species 0.000 claims 1
- 241001430197 Mollicutes Species 0.000 claims 1
- 241001494489 Thielavia Species 0.000 claims 1
- 230000003213 activating effect Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 230000009849 deactivation Effects 0.000 claims 1
- 238000009630 liquid culture Methods 0.000 claims 1
- 239000002609 medium Substances 0.000 claims 1
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 claims 1
- 239000012188 paraffin wax Substances 0.000 claims 1
- 230000000529 probiotic effect Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000009777 vacuum freeze-drying Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 241000699670 Mus sp. Species 0.000 abstract description 98
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 abstract description 28
- 206010012601 diabetes mellitus Diseases 0.000 abstract description 17
- 102000004877 Insulin Human genes 0.000 abstract description 14
- 108090001061 Insulin Proteins 0.000 abstract description 14
- 229940125396 insulin Drugs 0.000 abstract description 14
- 241000699666 Mus <mouse, genus> Species 0.000 abstract description 10
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 abstract description 8
- 241000193830 Bacillus <bacterium> Species 0.000 abstract description 5
- 102000017011 Glycated Hemoglobin A Human genes 0.000 abstract description 5
- 241000589876 Campylobacter Species 0.000 abstract description 4
- 108010014663 Glycated Hemoglobin A Proteins 0.000 abstract description 4
- 235000013406 prebiotics Nutrition 0.000 abstract description 4
- 241000228212 Aspergillus Species 0.000 abstract description 3
- 241000588914 Enterobacter Species 0.000 abstract description 3
- 241000228143 Penicillium Species 0.000 abstract description 3
- 241000222122 Candida albicans Species 0.000 abstract description 2
- 229940095731 candida albicans Drugs 0.000 abstract description 2
- 241000503641 Coprobacter Species 0.000 abstract 1
- 206010061218 Inflammation Diseases 0.000 abstract 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 40
- 230000000694 effects Effects 0.000 description 30
- 230000003203 everyday effect Effects 0.000 description 29
- 229940079593 drug Drugs 0.000 description 22
- 239000003814 drug Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 20
- 241000894007 species Species 0.000 description 20
- 230000003247 decreasing effect Effects 0.000 description 18
- 235000009200 high fat diet Nutrition 0.000 description 18
- 239000012141 concentrate Substances 0.000 description 17
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 16
- 229960003105 metformin Drugs 0.000 description 16
- 230000002218 hypoglycaemic effect Effects 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 14
- 239000008223 sterile water Substances 0.000 description 14
- 238000004587 chromatography analysis Methods 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 239000012153 distilled water Substances 0.000 description 12
- 102100040136 Free fatty acid receptor 3 Human genes 0.000 description 11
- 101000890662 Homo sapiens Free fatty acid receptor 3 Proteins 0.000 description 11
- 102100040133 Free fatty acid receptor 2 Human genes 0.000 description 10
- 101000890668 Homo sapiens Free fatty acid receptor 2 Proteins 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000002538 fungal effect Effects 0.000 description 9
- 238000003304 gavage Methods 0.000 description 9
- 241000566145 Otus Species 0.000 description 8
- OQUKIQWCVTZJAF-UHFFFAOYSA-N phenol;sulfuric acid Chemical compound OS(O)(=O)=O.OC1=CC=CC=C1 OQUKIQWCVTZJAF-UHFFFAOYSA-N 0.000 description 8
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 210000003608 fece Anatomy 0.000 description 6
- 241000076839 Dubosiella Species 0.000 description 5
- 206010022489 Insulin Resistance Diseases 0.000 description 5
- 241000425347 Phyla <beetle> Species 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241001608234 Faecalibacterium Species 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 244000005709 gut microbiome Species 0.000 description 4
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 150000004804 polysaccharides Polymers 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000002390 rotary evaporation Methods 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 238000003828 vacuum filtration Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 241000208838 Asteraceae Species 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 208000013016 Hypoglycemia Diseases 0.000 description 3
- 241001134638 Lachnospira Species 0.000 description 3
- 241000972273 Mucoromycota Species 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 229940041514 candida albicans extract Drugs 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000000415 inactivating effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 239000012138 yeast extract Substances 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000031648 Body Weight Changes Diseases 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 2
- 241000916164 Cryptomycota Species 0.000 description 2
- 241001143296 Deferribacteres <phylum> Species 0.000 description 2
- 208000027244 Dysbiosis Diseases 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000012449 Kunming mouse Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000776474 Patescibacteria group Species 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 2
- 240000002657 Thymus vulgaris Species 0.000 description 2
- 235000007303 Thymus vulgaris Nutrition 0.000 description 2
- 241000798427 Vanderbylia fraxinea Species 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000004579 body weight change Effects 0.000 description 2
- 230000000112 colonic effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 235000020940 control diet Nutrition 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000007140 dysbiosis Effects 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 235000012631 food intake Nutrition 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 235000013402 health food Nutrition 0.000 description 2
- 238000012165 high-throughput sequencing Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 238000003305 oral gavage Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229960001052 streptozocin Drugs 0.000 description 2
- 239000001585 thymus vulgaris Substances 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- 241000193798 Aerococcus Species 0.000 description 1
- 241000009794 Agaricomycetes Species 0.000 description 1
- 241000521092 Alloprevotella Species 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241001248433 Campylobacteraceae Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000037384 Clostridium Infections Diseases 0.000 description 1
- 206010009657 Clostridium difficile colitis Diseases 0.000 description 1
- 206010054236 Clostridium difficile infection Diseases 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 241001135761 Deltaproteobacteria Species 0.000 description 1
- 241000605716 Desulfovibrio Species 0.000 description 1
- 241001467894 Desulfovibrionaceae Species 0.000 description 1
- 208000002249 Diabetes Complications Diseases 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 240000001624 Espostoa lanata Species 0.000 description 1
- 235000009161 Espostoa lanata Nutrition 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 241000306836 Faecalibaculum Species 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 241000589989 Helicobacter Species 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 208000000913 Kidney Calculi Diseases 0.000 description 1
- 241000869429 Muribaculaceae Species 0.000 description 1
- 206010029148 Nephrolithiasis Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 241001619479 Perenniporia Species 0.000 description 1
- 241000222341 Polyporaceae Species 0.000 description 1
- 241000222383 Polyporales Species 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 241000607598 Vibrio Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000003486 adipose tissue brown Anatomy 0.000 description 1
- 210000000593 adipose tissue white Anatomy 0.000 description 1
- 229940126675 alternative medicines Drugs 0.000 description 1
- 230000003579 anti-obesity Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004534 cecum Anatomy 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229960002327 chloral hydrate Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010235 enterohepatic circulation Effects 0.000 description 1
- 239000006167 equilibration buffer Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 230000007145 fungal dysbiosis Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 108091005995 glycated hemoglobin Proteins 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000005027 intestinal barrier Anatomy 0.000 description 1
- 208000028774 intestinal disease Diseases 0.000 description 1
- 230000004609 intestinal homeostasis Effects 0.000 description 1
- 230000004673 intestinal mucosal barrier function Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 239000003538 oral antidiabetic agent Substances 0.000 description 1
- 238000007410 oral glucose tolerance test Methods 0.000 description 1
- 229940127209 oral hypoglycaemic agent Drugs 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 201000001245 periodontitis Diseases 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000037197 vascular physiology Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,特别涉及一种白蜡多年菌胞外多糖和胞内多糖制备方法及其在调节肠道微生物菌群与降血糖应用。The invention belongs to the field of biological technology, and in particular relates to a method for preparing exopolysaccharides and intracellular polysaccharides of perennial bacteria and its application in regulating intestinal microbial flora and lowering blood sugar.
背景技术Background technique
白蜡多年菌(Perenniporiafraxinea)隶属于担子菌门(Basidiomycotina)伞菌纲(Agaricomycetes)多孔菌目(Polyporales)多孔菌科(Polyporaceae)多年卧孔菌属(Perenniporia),是一种极具药用价值的药用真菌。白蜡多年菌中含有多种生理活性成分,其中包括多糖、多酚、纤溶蛋白酶等。有研究表明,白蜡多年菌具有抗肿瘤作用及抗氧化活性,但对于白蜡多年菌多糖的提取方法及药用价值的研究相对较少。Perenniporia fraxinea belongs to Basidiomycotina, Agaricomycetes, Polyporales, Polyporaceae, and Perenniporia. Medicinal fungi. White wax perennial bacteria contain a variety of physiologically active components, including polysaccharides, polyphenols, plasminase and so on. Studies have shown that perennial perennials has anti-tumor effect and antioxidant activity, but there are relatively few studies on the extraction method and medicinal value of polysaccharides from perennial perennials perennials.
肠道中的细菌、古细菌和结肠真菌等统称为“肠道微生物”。胃肠道中的微生物数量超过1014种,构成了肠粘膜屏障,在营养物质的摄取和代谢、免疫组织的成熟以及防止病原微生物繁殖方面具有重要调节作用,健康的肠道微生物群对宿主的整体健康负有很大的责任。相反,肠道菌群的失调可能参与了一些疾病的发展,例如:肥胖、哮喘、腹腔疾病、Ⅰ型和Ⅱ型糖尿病、炎症性肠病(克罗恩病、溃疡性结肠炎)、肠易激综合征、艰难梭菌感染、艾滋病毒感染、结直肠癌、肾结石和牙周炎等等。Bacteria, archaea, and colonic fungi in the gut are collectively referred to as "gut microbes." The number of microorganisms in the gastrointestinal tract exceeds 10 to 14 species, which constitute the intestinal mucosal barrier and play an important regulatory role in the intake and metabolism of nutrients, the maturation of immune tissues, and the prevention of the reproduction of pathogenic microorganisms. Health comes with a lot of responsibility. Conversely, dysbiosis of the gut microbiota may be involved in the development of diseases such as: obesity, asthma, celiac disease,
随着城市化和发展以及人们饮食结构的改变,Ⅱ型糖尿病(type 2diabetesmellitus,T2DM)及其并发症已成为危害人类健康的主要疾病之一。注射胰岛素及口服降糖药是目前较为有效的控制血糖的治疗方式,然而,它们有明显的副作用,包括低血糖和胃肠道问题。因此,迫切需要有效的替代品来减少糖尿病的并发症和较低的副作用。近年来,寻找对抗糖尿病的替代药品得到了极大关注。越来越多的研究表明,食药用真菌多糖功效明显,并且具有预防和治疗T2DM的作用,是天然的降血糖物质。With urbanization and development and changes in people's diet, type 2 diabetes mellitus (T2DM) and its complications have become one of the major diseases that endanger human health. Insulin injections and oral hypoglycemic agents are currently more effective treatments for controlling blood sugar. However, they have significant side effects, including hypoglycemia and gastrointestinal problems. Therefore, effective alternatives with reduced diabetes complications and lower side effects are urgently needed. In recent years, the search for alternative medicines against diabetes has received a great deal of attention. More and more studies have shown that edible and medicinal fungal polysaccharides have obvious effects, and have the effect of preventing and treating T2DM, and are natural hypoglycemic substances.
目前尚未发现关于白蜡多年(卧孔)菌多糖影响肠道微生物菌群来发挥降血糖作用的研究。So far, no research has been found on the effect of polysaccharides from Perennial spp. on the intestinal microbiota to exert a hypoglycemic effect.
发明内容Contents of the invention
本发明的首要目的在于克服现有技术的缺点与不足,提供一种白蜡多年菌胞外多糖和胞内多糖的制备方法。该方法稳定可靠、实用性强。The primary purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a method for preparing exopolysaccharides and intracellular polysaccharides of perennial bacteria. The method is stable, reliable and practical.
本发明的另一目的在于提供所述方法制备得到的白蜡多年菌胞外多糖和胞内多糖。Another object of the present invention is to provide the exopolysaccharide and intracellular polysaccharide of Perennialia cerevisiae prepared by the method.
本发明的再一目的在于提供所述的白蜡多年菌胞外多糖和胞内多糖在制备对肠道益生菌具有促增殖作用,促进肠道短链脂肪酸产量,调节肠道菌群结构,和/或降血糖的产品中的应用。Another object of the present invention is to provide the exopolysaccharides and intracellular polysaccharides of Perennial cerevisiae, which can promote the proliferation of intestinal probiotics, promote the production of intestinal short-chain fatty acids, regulate the structure of intestinal flora, and/or Or the application of hypoglycemic products.
本发明的目的通过下述技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种白蜡多年菌胞外多糖和胞内多糖的制备方法,包含如下步骤:A method for preparing exopolysaccharides and intracellular polysaccharides of perennial bacteria, comprising the steps of:
(1)将白蜡多年菌菌种接种于液体培养基中进行发酵培养,固液分离,得到白蜡多年菌发酵液和菌丝体,将白蜡多年菌发酵液浓缩备用;(1) inoculating the perennial cereus strains in a liquid medium for fermentation and cultivation, separating the solid and liquid to obtain the perennial perennial cerevisiae fermented liquid and mycelia, and concentrating the perennial perennial perennial perennial ceruleum fermentation liquid for subsequent use;
(2)将步骤(1)中得到的白蜡多年菌菌丝体烘干、粉碎过筛,得到菌丝体粉末;然后加入石油醚进行脱脂处理,烘干,得到白蜡多年菌菌丝体干粉;(2) drying, pulverizing and sieving the mycelium of the perennial asteroids obtained in the step (1) to obtain mycelium powder; then adding petroleum ether for degreasing treatment, and drying to obtain dry mycelium powder of the perennial asteraceae;
(3)将步骤(2)中得到的白蜡多年菌菌丝体干粉加入到水中,进行热水浸提,得到白蜡多年菌浸提液;然后将其浓缩,得到白蜡多年菌浸提浓缩液;(3) adding the dry powder of the perennial mycelia obtained in the step (2) into water, and carrying out hot water extraction to obtain the extract of the perennial perennial;
(4)将步骤(1)中得到的白蜡多年菌发酵液浓缩后和(3)中得到的白蜡多年菌浸提浓缩液分别采用胰蛋白酶结合Sevage法除蛋白,依次得到除蛋白后的胞外多糖提取液和胞内粗多糖提取液;(4) After concentrating the fermented liquid of the perennial bacteria obtained in step (1) and the extract concentrate of the perennial bacteria obtained in (3), the trypsin combined with the Sevage method is used to remove the protein respectively, and the extracellular protein after the protein removal is obtained successively. Polysaccharide extract and intracellular crude polysaccharide extract;
(5)将步骤(4)中得到胞外粗多糖提取液和胞内粗多糖提取液分别加入到乙醇溶液中,静置,离心收集沉淀,再分别加水复溶,得到胞外粗多糖溶液和胞内粗多糖溶液;再进行透析、浓缩、冷冻干燥,得到白蜡多年菌胞外粗多糖提取物和胞内粗多糖提取物;(5) adding the extracellular crude polysaccharide extract and the intracellular crude polysaccharide extract obtained in step (4) into the ethanol solution respectively, standing still, centrifuging to collect the precipitate, and then adding water to redissolve to obtain the extracellular crude polysaccharide solution and Intracellular crude polysaccharide solution; followed by dialysis, concentration, and freeze-drying to obtain extracellular crude polysaccharide extract and intracellular crude polysaccharide extract of perennial bacteria;
(6)将步骤(5)中得到的白蜡多年菌胞外粗多糖提取物和胞内粗多糖提取物分别进行层析纯化,然后透析,冷冻干燥,得到白蜡多年菌胞外多糖(EPPF)和胞内多糖(IPPF)。(6) The extracellular crude polysaccharide extract and the intracellular crude polysaccharide extract of the perennial bacteria obtained in step (5) are chromatographically purified respectively, then dialyzed, and freeze-dried to obtain the extracellular polysaccharide (EPPF) and Intracellular polysaccharide (IPPF).
步骤(1)中所述的液体发酵培养基的配方为:每1000mL液体发酵培养基,葡萄糖30~40g,K2HPO45~8g,酵母浸粉6~10g,补充水至1000mL,调节pH=5~7。优选的,步骤(1)中所述的液体发酵培养基的配方为:每1000mL液体发酵培养基,葡萄糖37.7g,K2HPO4 6.31g,酵母浸粉8.3g,补水至1000mL,调pH为6。The formula of the liquid fermentation medium described in step (1) is: for every 1000mL liquid fermentation medium, glucose 30-40g, K 2 HPO 4 5-8g, yeast extract powder 6-10g, add water to 1000mL, adjust pH =5~7. Preferably, the formula of the liquid fermentation medium described in step (1) is: for every 1000mL liquid fermentation medium, glucose 37.7g, K 2 HPO 4 6.31g, yeast extract powder 8.3g, replenish water to 1000mL, adjust pH to 6.
步骤(1)中所述的发酵培养优选为通过如下步骤实现:The fermentation culture described in step (1) is preferably realized through the following steps:
①将白蜡多年菌斜面母种活化培养后转接至斜面固体培养基中,于20~37℃培养8~15d,得到白蜡多年菌斜面菌种;① After activation and culture of the slant parent species of Perennial spp., transfer it to the solid medium of the slant, and cultivate it at 20-37°C for 8-15 days to obtain the slant strain of Bacillus perennial slant;
②将步骤①得到的白蜡多年菌斜面菌种上挑取4~6块菌块,接种于150~200mL液体发酵培养基中,室温静置,待菌块伤口处愈合避光恒温振荡培养,得到发酵液和菌丝体。②Pick 4-6 pieces of bacteria from the slant of the white wax perennial bacteria obtained in
步骤①所述的斜面固体培养基的配方为:去皮马铃薯200g,葡萄糖20g,蛋白胨1g,(NH4)2SO4 2g,MgSO4·7H2O 1g,KH2PO41 g,琼脂20g,加水定容至1000mL,pH调至6.5。The formula of the slant solid medium described in
步骤②所述恒温振荡培养具体为待菌块伤口处愈合后在25~32℃、转速100~250rpm条件下避光恒温振荡培养8~9d。The constant-temperature shaking culture in step ② is specifically 8-9 days at 25-32°C and 100-250 rpm in the dark for constant temperature shaking culture after the wound of the bacteria block has healed.
步骤(1)中所述的固液分离为采用过滤、离心或抽滤的方式进行分离。The solid-liquid separation described in step (1) is separated by means of filtration, centrifugation or suction filtration.
步骤(1)中浓缩后的白蜡多年菌发酵液为原体积的1/10~1/4;优选为原体积的1/5。The concentrated fermented liquid of the perennial bacterium in the step (1) is 1/10 to 1/4 of the original volume; preferably 1/5 of the original volume.
步骤(2)中所述的烘干的温度均为50~70℃;优选为60℃。步骤(2)中所述的过筛为过40~60目筛;优选为过40目筛。The drying temperature described in step (2) is 50-70°C; preferably 60°C. The sieving described in the step (2) is through a 40-60 mesh sieve; preferably through a 40 mesh sieve.
步骤(2)中所述的菌丝体粉末与石油醚的固液比为1:0.5~2(g/mL);优选为1:1(g/mL)。The solid-to-liquid ratio of the mycelium powder and petroleum ether described in step (2) is 1:0.5-2 (g/mL); preferably 1:1 (g/mL).
步骤(2)中所述的脱脂处理的时间为2~4天;优选为2天。步骤(2)中所述的脱脂处理的次数为1~3次;优选为2次。The time for the degreasing treatment described in step (2) is 2 to 4 days; preferably 2 days. The frequency of the degreasing treatment described in step (2) is 1 to 3 times; preferably 2 times.
步骤(3)中所述的白蜡多年菌菌丝体干粉与水的料液比1:20~40(g/mL);优选为1:25(g/mL)。The solid-liquid ratio of the mycelia dry powder of Perennial aureus aureus described in step (3) to water is 1:20-40 (g/mL); preferably 1:25 (g/mL).
步骤(3)中所述的提取的温度为50~90℃,优选为80℃。步骤(3)中所述的提取的时间为1.5~3.5h;优选为3h。步骤(3)中所述的提取的次数为1~3次;优选为2次。The temperature of the extraction described in step (3) is 50-90°C, preferably 80°C. The extraction time described in step (3) is 1.5-3.5 hours; preferably 3 hours. The number of extractions described in step (3) is 1 to 3 times; preferably 2 times.
步骤(3)中所述的浓缩为采用减压浓缩的方式进行浓缩。步骤(3)中所述的浓缩的温度为50~70℃;优选为55~65℃;更优选为60℃。The concentration described in the step (3) is to concentrate under reduced pressure. The concentration temperature in step (3) is 50-70°C; preferably 55-65°C; more preferably 60°C.
步骤(3)中所述的浓缩的为浓缩至白蜡多年菌浸提液体积的1/10~1/4;优选为浓缩至白蜡多年菌浸提液体积的1/5。The concentration described in the step (3) is concentrated to 1/10-1/4 of the volume of the extract solution of the perennial bacteria; preferably concentrated to 1/5 of the volume of the extract solution of the perennial bacteria.
步骤(4)中所述的采用胰蛋白酶和Sevage法除蛋白优选为通过如下步骤实现:Adopting trypsin and Sevage method to remove protein described in step (4) is preferably realized through the following steps:
(I)将步骤(3)中得到的白蜡多年菌浸提浓缩液和步骤(1)中得到的白蜡多年菌发酵浓缩液分别调pH至8.0,然后分别加入胰蛋白酶溶液,充分振荡后再水浴灭酶,冷却至室温,得到酶解后的白蜡多年菌发酵液和胞内浸提液;(1) adjust the pH to 8.0 respectively with the leaching concentrate obtained in the step (3) and the fermented concentrate obtained in the step (1), then add the trypsin solution respectively, fully shake and then water bath Inactivate the enzyme, cool to room temperature, and obtain the fermented liquid and the intracellular extract of the perennial bacteria aureus after enzymolysis;
(II)将步骤(I)中得到的酶解后的白蜡多年菌发酵液和胞内浸提液加入氯仿和正丁醇的混合液,振荡后离心,弃去蛋白层及有机溶液,收集上清液,即为胞内粗多糖提取液。(II) Add the mixed solution of chloroform and n-butanol to the fermented liquid and intracellular extract of the enzymolysis obtained in step (I), centrifuge after shaking, discard the protein layer and organic solution, and collect the supernatant solution, which is the intracellular crude polysaccharide extract.
步骤(I)中所述的胰蛋白酶溶液的浓度为质量体积比2%~5%;优选为2%。The concentration of the trypsin solution described in the step (I) is 2% to 5% by mass to volume; preferably 2%.
步骤(I)中所述的胰蛋白酶溶液与浓缩后的白蜡多年菌发酵液和浸提液的体积比均为1:15~30;优选为1:20。The volume ratio of the trypsin solution described in the step (I) to the concentrated perennial bacteria fermentation broth and extract is 1:15-30; preferably 1:20.
步骤(I)所述振荡为于37±2℃、80~150rpm振荡30~60min。The shaking in the step (I) is shaking at 37±2° C., 80-150 rpm for 30-60 minutes.
步骤(I)中所述的灭酶的条件为:100℃灭酶5~15min;优选为100℃灭酶10min。The conditions for inactivating the enzyme in the step (I) are: inactivating the enzyme at 100° C. for 5 to 15 minutes; preferably inactivating the enzyme at 100° C. for 10 minutes.
步骤(II)中所述的氯仿正丁醇混合液中氯仿和正丁醇的体积比为3~7:1,优选为5:1。The volume ratio of chloroform and n-butanol in the chloroform-n-butanol mixture described in step (II) is 3-7:1, preferably 5:1.
步骤(II)中所述的氯仿正丁醇混合液与酶解后的白蜡多年菌发酵液和胞内浸提液的体积比均为1:0.1~0.25;优选为1:0.2。The volume ratio of the chloroform-n-butanol mixture described in step (II) to the fermented liquid and intracellular extract of the perennial bacteria after enzymolysis is 1:0.1-0.25; preferably 1:0.2.
步骤(II)中所述振荡的时间为30~40min;所述离心的条件为:5000~10000rpm离心5~15min;优选为:8000rpm离心10min。The oscillation time in step (II) is 30-40 minutes; the centrifugation condition is: centrifugation at 5000-10000 rpm for 5-15 minutes; preferably: centrifugation at 8000 rpm for 10 minutes.
优选的,重复步骤(II)3~5次,直至不再出现蛋白层,得到除蛋白后的胞内粗多糖提取液。Preferably, step (II) is repeated 3 to 5 times until no protein layer appears to obtain the intracellular crude polysaccharide extract after protein removal.
步骤(5)中所述的乙醇溶液与除蛋白后的白蜡多年菌发酵浓缩液和浸提液的体积比为2~5:1;优选为3~5:1;更优选为4:1。The volume ratio of the ethanol solution described in step (5) to the protein-removed fermented concentrated liquid and the extract of the perennial bacteria is 2-5:1; preferably 3-5:1; more preferably 4:1.
步骤(5)中所述的乙醇溶液为质量分数95%的乙醇溶液。The ethanol solution described in step (5) is an ethanol solution with a mass fraction of 95%.
步骤(5)中所述的静置的条件为:0~4℃静置24~48h;优选为:4℃静置48h。步骤(5)所述的离心的条件为:5000~10000rpm离心5~15min;优选为:10000rpm离心10min。The standing condition described in step (5) is: standing at 0-4°C for 24-48h; preferably: standing at 4°C for 48h. The centrifugation conditions in step (5) are: centrifugation at 5000-10000 rpm for 5-15 minutes; preferably: centrifugation at 10000 rpm for 10 minutes.
步骤(5)中所述的透析为采用截留分子量为6000~8000Da的透析袋进行透析;优选为采用截留分子量为6000~8000Da的透析袋透析72h,每8h更换一次去离子水。The dialysis described in step (5) is to use a dialysis bag with a molecular weight cut-off of 6000-8000 Da for dialysis; preferably, a dialysis bag with a molecular weight cut-off of 6000-8000 Da is used for dialysis for 72 hours, and the deionized water is replaced every 8 hours.
步骤(5)中所述的浓缩为浓缩至白蜡多年菌胞外多糖提取液和胞内多糖提取液体积的1/5~1/2;优选为浓缩至白蜡多年菌胞外多糖和胞内多糖提取液体积的1/3。The concentration described in step (5) is concentrated to 1/5~1/2 of the volume of the extract solution of exopolysaccharide and intracellular polysaccharide of perennial bacteria; 1/3 of the extract volume.
步骤(6)中所述的层析纯化优选为通过如下步骤实现:The chromatographic purification described in step (6) is preferably realized by the following steps:
S1、装柱:往层析柱中加入水,打开下端出液口,再将DEAE-Sepharose Fast Flow填料倒入层析柱中,使之在层析柱中自然沉降;S1. Column packing: add water to the chromatography column, open the liquid outlet at the lower end, and then pour DEAE-Sepharose Fast Flow filler into the chromatography column to allow it to settle naturally in the chromatography column;
S2、平衡:利用恒流泵将NaCl缓冲液泵入到层析柱内,打开下端出液口,直至流出液的pH值与NaCl缓冲液的pH值相同;S2. Balance: use a constant flow pump to pump the NaCl buffer solution into the chromatography column, open the lower end liquid outlet until the pH value of the effluent is the same as that of the NaCl buffer solution;
S3、上样和洗脱:S3, sample loading and elution:
S31、取胞外粗多糖和胞内粗多糖水溶液,离心后取上清,利用恒流泵缓缓加入已平衡的层析柱中。先用缓冲液洗去未吸附的物质,再分别以NaCl溶液梯度洗脱,设定部分收集器的收集时间,进行收集,并测定总糖含量,合并单一吸收峰样品并浓缩、透析后,对透析液进行浓缩和真空冷冻干燥处理,得到纯化多糖EPPF和IPPF。S31. Take the aqueous solution of extracellular crude polysaccharide and intracellular crude polysaccharide, centrifuge and take the supernatant, and slowly add it into the equilibrated chromatographic column by using a constant flow pump. First wash off the unadsorbed substances with buffer solution, then elute them with NaCl solution gradient respectively, set the collection time of the partial collector, collect, and measure the total sugar content, combine the single absorption peak samples, concentrate and dialyze, then The dialysate is concentrated and vacuum freeze-dried to obtain purified polysaccharides EPPF and IPPF.
步骤S1中所述的层析柱的规格为:1.5cm×20cm。步骤S1中加入水的体积为1/3柱体积,填料的体积为柱体积的2/3。The size of the chromatographic column described in step S1 is: 1.5 cm×20 cm. The volume of water added in step S1 is 1/3 of the column volume, and the volume of the filler is 2/3 of the column volume.
步骤S2中所述的NaCl缓冲液的pH值为7.0~7.6;优选为7.0。步骤S2中所述的流出液的流速为0.5~2mL/min,优选为1mL/min。The pH value of the NaCl buffer solution in step S2 is 7.0-7.6; preferably 7.0. The flow rate of the effluent in step S2 is 0.5-2 mL/min, preferably 1 mL/min.
步骤S31中所述的胞外粗多糖水溶液和胞内粗多糖水溶液的浓度均为8~12mg/mL,优选为10mg/mL。The concentrations of the aqueous solution of extracellular crude polysaccharide and the aqueous solution of intracellular crude polysaccharide in step S31 are both 8-12 mg/mL, preferably 10 mg/mL.
步骤S3中离心的条件为:5000~10000rpm离心5~15min,优选为8000rpm离心10min。步骤S31中所述的洗脱所用NaCl溶液的浓度为0-0.5mol/L,洗脱的流速为1mL/min。The centrifugation conditions in step S3 are: centrifugation at 5000-10000 rpm for 5-15 minutes, preferably 10 minutes at 8000 rpm. The concentration of NaCl solution used for elution in step S31 is 0-0.5 mol/L, and the flow rate of elution is 1 mL/min.
步骤S31中所述收集具体为每个梯度收集20管,每管收集10分钟;步骤S31中收集后样品的总糖含量通过苯酚硫酸法测定。The collection described in step S31 is specifically to collect 20 tubes for each gradient, and each tube is collected for 10 minutes; the total sugar content of the sample collected in step S31 is determined by the phenol-sulfuric acid method.
步骤(6)中所述的透析为采用截留分子量为6000~8000Da的透析袋进行透析;优选为采用截留分子量为6000~8000Da的透析袋透析48~72h。The dialysis described in step (6) is performed by using a dialysis bag with a molecular weight cut-off of 6000-8000 Da; preferably, the dialysis is performed with a dialysis bag with a molecular weight cut-off of 6000-8000 Da for 48-72 hours.
一种白蜡多年菌胞外多糖和胞内多糖,通过上述方法制备得到。An exopolysaccharide and an intracellular polysaccharide of Perennial cerevisiae, prepared by the above method.
所述的白蜡多年菌胞外多糖和胞内多糖在制备对肠道益生菌具有促增殖作用,促进肠道短链脂肪酸产量,调节肠道菌群结构,和/或降血糖的产品中的应用。该白蜡多年菌胞外多糖和胞内多糖具有良好的改善肠道微生态和降血糖作用。The application of the exopolysaccharide and intracellular polysaccharide of perennial cereus in the preparation of probiotics in the intestinal tract, promoting the production of short-chain fatty acids in the intestinal tract, regulating the structure of intestinal flora, and/or reducing blood sugar. . The exopolysaccharide and intracellular polysaccharide of the perennial bacteria have good effects of improving intestinal microecology and lowering blood sugar.
所述的产品为药品、保健品和功能性食品中的至少一种。The product is at least one of medicines, health products and functional foods.
所述的白蜡多年菌胞外多糖和胞内多糖的使用剂量为50~200mg/kg/d;优选为100~200mg/kg/d;更优选为100mg/kg/d。The dosage of exopolysaccharides and intracellular polysaccharides of Perennialia cerevisiae is 50-200 mg/kg/d; preferably 100-200 mg/kg/d; more preferably 100 mg/kg/d.
所述的肠道益生菌包括拟杆菌、乳杆菌。The intestinal probiotics include Bacteroides and Lactobacillus.
所述的短链脂肪酸为乙酸、丙酸、丁酸和戊酸中的至少一种;白蜡多年菌胞外多糖和胞内多糖均能诱导激活短链脂肪酸受体GPR41和GPR43的表达。The short-chain fatty acid is at least one of acetic acid, propionic acid, butyric acid and valeric acid; both the exopolysaccharide and the intracellular polysaccharide of Perennialia cerevisiae can induce and activate the expression of short-chain fatty acid receptors GPR41 and GPR43.
所述的肠道菌群为肠道细菌群和/或肠道真菌群;优选为肠道真菌群。The intestinal flora is intestinal flora and/or intestinal fungi; preferably intestinal flora.
所述的肠道细菌包括:变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、疣微菌门(Verrucomicrobia)、Patescibacteria、Epsilonbacteraeota、放线菌门(Actinobacteria)、柔膜菌门(Tenericutes)、酸杆菌门(Acidobacteria)、脱铁杆菌门(Deferribacteres),优选为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)。本研究中,高脂饮食联合STZ诱导能使肠道菌群中的乳杆菌属、拟杆菌属、粪杆菌属等益生菌的相对丰度,而增加肠杆菌、产芽孢杆菌及Δ变形菌及弯曲杆菌等有害菌的相对丰度。经过白蜡多年菌胞外多糖和胞内多糖干预后,提高肠道乳杆菌、毛螺菌、粪杆菌、拟杆菌等菌群的相对丰度,减少了产芽孢杆菌、弯曲杆菌以及肠杆菌的相对丰度。The intestinal bacteria include: Proteobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia, Patescibacteria, Epsilonbacteraeota, Actinobacteria, Tenericutes, Acidobacteria, Deferribacteres, preferably Proteobacteria, Firmicutes, Bacteroidetes. In this study, high-fat diet combined with STZ induction can increase the relative abundance of probiotics such as Lactobacillus, Bacteroides, and Faecalibacterium in the intestinal flora, while increasing Enterobacter, Bacillus and Δproteobacteria and Relative abundance of harmful bacteria such as Campylobacter. After the intervention of exopolysaccharides and intracellular polysaccharides of perennial bacteria, the relative abundance of intestinal Lactobacillus, Lachnospira, Faecalibacterium, and Bacteroides increased, and the relative abundance of Bacillus, Campylobacter, and Enterobacteriaceae decreased. abundance.
优选的,所述的肠道真菌包括:子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)、壶菌门(Chytridiomycota)、罗氏菌门(Rozellomycota)、油壶菌门(Olpidiomycota)、球囊菌门(Glomeromycota)、捕虫霉门(Zoopagomycota)及毛霉门(Mucoromycota),本发明的白蜡多年菌胞外多糖和胞内多糖可以降低担子菌门与子囊菌门的比值,提高了青霉属、白念珠属的相对丰度,降低了曲霉属及被孢霉属的相对丰度。Preferably, the intestinal fungi include: Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Rozellomycota, Oiltridiomycetes Phylum (Olpidiomycota), Glomeromycota (Glomeromycota), Insectivomycota (Zoopagomycota) and Mucoromycota (Mucoromycota), the white wax perennial bacteria exopolysaccharide and intracellular polysaccharide of the present invention can reduce the difference between Basidiomycota and Ascomycota. Ratio, increased the relative abundance of Penicillium and Nosdida, decreased the relative abundance of Aspergillus and Mortierella.
本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:
(1)本发明使用的液体发酵培养基配方成分明确,重复性高,发酵效率高,产物稳定,菌丝体生长良好,发酵液浓稠,且易于多糖分离纯化。(1) The liquid fermentation medium used in the present invention has clear ingredients, high repeatability, high fermentation efficiency, stable product, good mycelium growth, thick fermentation liquid, and easy separation and purification of polysaccharides.
(2)本发明通过液体深层发酵培养快速获得白蜡多年菌发酵液和菌丝体,提取可得白蜡多年菌胞外多糖和胞内多糖,提取过程安全可控,所得多糖组分含量高,溶解性好;制备过程简单,条件易于控制,周期短,产率高,可实现大批量生产。(2) The present invention rapidly obtains the fermented liquid and mycelia of perennial bacteria through liquid submerged fermentation, and extracts extracellular polysaccharides and intracellular polysaccharides of perennial bacteria. Good property; the preparation process is simple, the conditions are easy to control, the cycle is short, the yield is high, and mass production can be realized.
(3)本发明使用DEAE-Sepharose Fast Flow柱层析纯化白蜡多年菌胞外多糖和胞内多糖,通过梯度洗脱,可以快速高效得到多糖组分,多糖纯度好且工艺简单易操作,避免多次纯化工艺造成的多糖组分的损失。(3) The present invention uses DEAE-Sepharose Fast Flow column chromatography to purify extracellular polysaccharides and intracellular polysaccharides of perennial bacteria, and through gradient elution, the polysaccharide components can be obtained quickly and efficiently. The polysaccharides are of good purity and the process is simple and easy to operate, avoiding multiple The loss of polysaccharide components caused by the secondary purification process.
(4)本发明的白蜡多年菌胞外多糖和胞内多糖可作为益生元,不仅能调节糖尿病小鼠肠道细菌菌群结构,提高肠道乳杆菌、毛螺菌、粪杆菌、拟杆菌等菌群的相对丰度,减少了产芽孢杆菌、弯曲杆菌以及肠杆菌的相对丰度,同时可调节真菌菌群结构,降低担子菌门与子囊菌门的数量比值,降低曲霉属及被孢霉属等促炎症的真菌的相对丰度,提高青霉属和白念珠属的相对丰度。本发明的白蜡多年菌多糖为肠道调节类保健食品提供了新的思路。(4) The extracellular polysaccharides and intracellular polysaccharides of the perennial bacteria of the present invention can be used as prebiotics, which can not only regulate the intestinal bacterial flora structure of diabetic mice, but also improve intestinal lactobacillus, Lachnospira, Faecalibacterium, Bacteroides, etc. The relative abundance of the flora reduces the relative abundance of Bacillus, Campylobacter, and Enterobacter, and at the same time adjusts the structure of the fungal flora, reduces the ratio of the number of Basidiomycota to Ascomycota, and reduces the number of Aspergillus and Mortierella The relative abundance of pro-inflammatory fungi such as the genus Penicillium and Candida albicans was increased. The polysaccharide of the perennial bacteria of the invention provides a new idea for intestinal regulation health food.
(5)本发明的白蜡多年菌胞外多糖和胞内多糖均可改善小鼠胰岛素水平、糖化血红蛋白水平及胰岛β细胞的功能以起到改善糖尿病小鼠血糖的作用。(5) Both the exopolysaccharide and the intracellular polysaccharide of perennialia cerevisiae of the present invention can improve the insulin level, the glycosylated hemoglobin level and the function of the islet β cells in mice so as to improve blood sugar in diabetic mice.
(6)本发明白蜡多年菌胞外多糖和胞内多糖制备过程简单,产物稳定,可高效大批量生产,具有良好的调节糖尿病小鼠肠道菌群紊乱及降血糖作用,可应用于调节肠道菌群结构及降血糖药物或保健食品领域。(6) The preparation process of the exopolysaccharide and intracellular polysaccharide of perennial bacteria of the present invention is simple, the product is stable, and can be produced in large quantities with high efficiency. The structure of intestinal flora and the field of hypoglycemic drugs or health food.
附图说明Description of drawings
图1.实施例4所得白蜡多年菌多糖对T2DM小鼠肠道细菌在不同水平上的物种分布柱状图。Fig. 1. Histograms of the species distribution of the polysaccharides obtained in Example 4 on the intestinal bacteria of T2DM mice at different levels.
图2.实施例4所得白蜡多年菌多糖对T2DM小鼠肠道细菌多样性分析。Fig. 2. Analysis of intestinal bacterial diversity of T2DM mice by polysaccharides obtained from Perennials perennials obtained in Example 4.
图3.实施例4所得白蜡多年菌多糖作用于T2DM小鼠真菌OTU的Veen图。Fig. 3. The Veen diagram of the action of the polysaccharide from Perennialia cerevisiae obtained in Example 4 on the OTU of the fungus in T2DM mice.
图4.实施例4所得白蜡多年菌多糖作用于T2DM小鼠肠道真菌在门水平上的物种分布图。Fig. 4. Species distribution diagram of the phylum level of the polysaccharide obtained from Perennials perennials acting on T2DM mice intestinal fungi obtained in Example 4.
图5.实施例4所得白蜡多年菌多糖对T2DM小鼠肠道特定真菌门的影响。Fig. 5. The effect of polysaccharides obtained from Perennials perennials obtained in Example 4 on specific fungal phyla in the intestinal tract of T2DM mice.
图6.实施例4所得白蜡多年菌多糖对T2DM小鼠粪便中短链脂肪酸的影响。Fig. 6. The effect of the polysaccharide obtained from Perennial cerevisiae in Example 4 on short-chain fatty acids in feces of T2DM mice.
图7.实施例4所得白蜡多年菌多糖对T2DM小鼠降血糖相关指标的影响。Fig. 7. Effects of polysaccharides obtained from Perennial perennials in Example 4 on hypoglycemic-related indicators in T2DM mice.
图8.实施例4所得白蜡多年菌多糖对T2DM小鼠胰岛素功能和β细胞功能的影响。Fig. 8. Effects of polysaccharides from Perennialia perennials obtained in Example 4 on insulin function and β-cell function in T2DM mice.
图9.实施例4所白蜡多年菌多糖调节短链脂肪酸受体GPR41和GPR43表达分析。Fig. 9. Analysis of expression of short-chain fatty acid receptors GPR41 and GPR43 regulated by the polysaccharide of Perennialia cerevisiae in Example 4.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件。除非特别说明,本发明所用试剂和原材料均可通过市售获得。The present invention will be further described in detail below in conjunction with examples, but the embodiments of the present invention are not limited thereto. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field. The test method that does not indicate specific experimental conditions in the following examples is usually in accordance with conventional experimental conditions. Unless otherwise specified, the reagents and raw materials used in the present invention can be obtained commercially.
实施例中白蜡多年菌(Perenniporiafraxinea)菌株由华南师范大学生命科学学院提供。The strain of Perenniporia fraxinea in the examples was provided by the School of Life Sciences, South China Normal University.
实施例中涉及到的培养基配方:The medium formula involved in the embodiment:
斜面固体培养基和平板固体培养基配方:马铃薯200g(去皮),葡萄糖20g,K2HPO41g,MgSO4 1g,蛋白胨1g,(NH4)2SO4 1g,维生素B1 0.01g,琼脂20g融化,补纯水至1000mL,pH为6.5。Slope solid medium and plate solid medium formula: 200g potato (peeled), glucose 20g, K 2 HPO 4 1g, MgSO 4 1g, peptone 1g, (NH 4 ) 2 SO 4 1g, vitamin B 1 0.01g, agar 20g was melted, added pure water to 1000mL, pH was 6.5.
液体深层发酵培养基:葡萄糖37.7g,K2HPO4 6.31g,酵母浸粉8.3g,补纯水至1000mL,pH为6。Liquid submerged fermentation medium: glucose 37.7g, K 2 HPO 4 6.31g, yeast extract powder 8.3g, add pure water to 1000mL,
实施例1:白蜡多年菌胞内多糖的制备Embodiment 1: Preparation of intracellular polysaccharide of perennial bacteria
(1)白蜡多年菌经菌种活化,斜面菌种培养和液体深层发酵培养,获得白蜡多年菌菌丝体,具体方法如下:(1) Perennial perennial ash is activated by bacterial classification, cultured on a slanted surface and submerged in liquid fermentation to obtain mycelium of perennial perennial ash. The specific methods are as follows:
①斜面菌种培养:将白蜡多年菌斜面母种活化培养后接种于灭菌的斜面固体培养基中,于28℃培养8天备用;①Cultivation of slant strains: After activation and cultivation of the slant parent species of Perennial aureus, inoculate in sterilized slant solid medium, and cultivate at 28°C for 8 days for later use;
②液体深层发酵培养:从白蜡多年菌斜面菌种上挑取4~6块黄豆大小的菌块,接种于150mL无菌的液体发酵培养基中,于30℃、转速180rpm条件下避光恒温振荡培养9天制得白蜡多年菌液体发酵产物,经离心和真空抽滤分离得到菌丝体,60℃烘干;② Liquid submerged fermentation culture: pick 4 to 6 soybean-sized bacteria blocks from the slant of the slanted strain of the white wax perennial bacteria, inoculate in 150mL sterile liquid fermentation medium, and shake at 30°C and 180rpm at a constant temperature in the dark Cultivate for 9 days to obtain the liquid fermentation product of the perennial bacteria, and separate the mycelium by centrifugation and vacuum filtration, and dry it at 60°C;
(2)脱脂:菌丝体烘干至恒重后,粉粹机粉粹过40目筛,收集40目以上的菌丝体粉末。将菌丝体粉末置于三角瓶中,菌丝体粉末与石油醚按照固液比1:1(V:Vg/mL)搅匀,置于摇床上振荡48h,离心留沉淀,此步骤重复一次。所得沉淀于60℃烘干,置于干燥箱中备用;(2) Degreasing: After the mycelium is dried to a constant weight, it is pulverized by a pulverizer to pass through a 40-mesh sieve, and the mycelium powder above 40 mesh is collected. Put the mycelium powder in the Erlenmeyer flask, mix the mycelium powder and petroleum ether according to the solid-to-liquid ratio of 1:1 (V:Vg/mL), shake on the shaker for 48 hours, centrifuge to save the precipitate, and repeat this step once . The obtained precipitate was dried at 60°C and placed in a drying oven for later use;
(3)热水浸提:将步骤(2)中脱脂烘干后的白蜡多年菌菌丝体用热水浸提,收集浸提液;其中:提取温度为80℃,提取次数2次,提取时间2h,料液比为1:30(g:ml);(3) Hot water leaching: extract the mycelia of the perennial mycelia after degreasing and drying in step (2) with hot water, and collect the extract; wherein: the extraction temperature is 80°C, the extraction times are 2 times, and the extraction Time 2h, the ratio of solid to liquid is 1:30(g:ml);
(4)采用苯酚硫酸法对浸提液总糖得率进行测定,得到浸提液中总糖得率为:9.22%;(4) The yield of total sugar in the extract was measured by the phenol-sulfuric acid method, and the yield of total sugar in the extract was 9.22%;
(5)浓缩:用旋转蒸发仪将步骤(3)中收集的浸提液在60℃的恒温水浴锅中减压浓缩至原体积的1/5,得到白蜡多年菌浸提浓缩液;(5) Concentration: use a rotary evaporator to concentrate the extract collected in step (3) under reduced pressure in a constant temperature water bath at 60°C to 1/5 of the original volume to obtain a concentrated extract of the perennial bacteria;
(6)胰蛋白酶和sevage法除蛋白、离心:称取2.0g胰蛋白酶溶于100mL蒸馏水中,得到胰蛋白酶溶液;再把1000mL的白蜡多年菌浸提浓缩液调pH至8.0,将胰蛋白酶溶液加入白蜡多年菌浸提浓缩液中,后放入37℃水浴锅中预热10min,把酶液与两种浓缩液分别充分混合,并120rpm振荡保持30min后放入100℃水浴锅中灭酶10min,冷却至室温;加入0.2倍体积的氯仿正丁醇混合液(氯仿:正丁醇(V:V)=5:1),剧烈震荡30min。然后8000rpm离心10min,弃取蛋白层及有机溶液,回收上清液,此过程重复2次,直至不再出现蛋白层,得到除蛋白后的粗多糖提取液;(6) Trypsin and sevage method for protein removal and centrifugation: Weigh 2.0g of trypsin and dissolve it in 100mL of distilled water to obtain a trypsin solution; Add it to the extract concentrate of white wax perennial bacteria, and then put it in a 37°C water bath to preheat for 10 minutes, fully mix the enzyme solution and the two concentrates separately, and shake at 120rpm for 30 minutes, then put it in a 100°C water bath for 10 minutes to inactivate the enzyme , cooled to room temperature; 0.2 times volume of chloroform-n-butanol mixture (chloroform:n-butanol (V:V)=5:1) was added, and vigorously shaken for 30 min. Then centrifuge at 8000rpm for 10min, discard the protein layer and organic solution, reclaim the supernatant, repeat this process twice until the protein layer no longer appears, and obtain the crude polysaccharide extract after protein removal;
(7)乙醇沉淀多糖:将除蛋白后的白蜡多年菌多糖浸提液加入4倍体积的质量分数为95%的乙醇,混合均匀,于4℃静置12h,待析出白蜡多年菌多糖,离心收集沉淀;(7) Precipitation of polysaccharides with ethanol: add 4 times the volume of ethanol with a mass fraction of 95% to the extract solution of perennial perennial polysaccharides after protein removal, mix evenly, let stand at 4°C for 12 hours, and centrifuge to separate the perennial perennial polysaccharides collect sediment;
(8)多糖透析、干燥:(8) Polysaccharide dialysis and drying:
①白蜡多年菌多糖沉淀用纯水溶解,装入截留分子量为6000~8000Da的透析袋中透析72h,每8h更换一次去离子水;①Dissolve the polysaccharide precipitate of perennial bacteria in pure water, put it into a dialysis bag with a molecular weight cut-off of 6000-8000Da and dialyze for 72 hours, and replace the deionized water every 8 hours;
②透析后的白蜡多年菌多糖提取液进行旋蒸浓缩至多糖提取液体积的1/3,并进行真空冷冻干燥,得到白蜡多年菌胞内粗多糖;② After dialysis, the polysaccharide extract of Perenia cerevisiae was concentrated by rotary evaporation to 1/3 of the volume of the extract of polysaccharide, and then vacuum freeze-dried to obtain the crude polysaccharide in the cells of Perennial cerevisiae;
实施例2:白蜡多年菌胞内多糖的制备Embodiment 2: Preparation of intracellular polysaccharide of perennial bacteria
(1)白蜡多年菌经菌种活化,斜面菌种培养和液体深层发酵培养,获得白蜡多年菌菌丝体,具体方法如下:(1) Perennial perennial ash is activated by bacterial classification, cultured on a slanted surface and submerged in liquid fermentation to obtain mycelium of perennial perennial ash. The specific methods are as follows:
①斜面菌种培养:将白蜡多年菌斜面母种活化培养后接种于灭菌的斜面固体培养基中,于28℃培养8d,备用;①Cultivation of slant strains: After activation and cultivation of the slant parent species of Perennial spp., inoculate in sterilized slant solid medium, culture at 28°C for 8 days, and set aside;
②液体深层发酵培养:从白蜡多年菌斜面菌种上挑取4~6块黄豆大小的菌块,接种于150mL无菌的液体发酵培养基中,于30℃、转速180rpm条件下避光恒温振荡培养9d,制得白蜡多年菌液体发酵产物,经离心和真空抽滤分离,60℃烘干得到白蜡多年菌菌丝体;② Liquid submerged fermentation culture: pick 4 to 6 soybean-sized bacteria blocks from the slant of the slanted strain of the white wax perennial bacteria, inoculate in 150mL sterile liquid fermentation medium, and shake at 30°C and 180rpm at a constant temperature in the dark Cultivate for 9 days to obtain the liquid fermentation product of Perennial aceriformis, which is separated by centrifugation and vacuum filtration, and dried at 60°C to obtain the mycelium of Perennial perennial asteraceae;
(2)脱脂:菌丝体烘干至恒重后,粉粹机粉粹过40目筛,收集40目以上的菌丝体粉末。将菌丝体粉末置于三角瓶中,菌丝体粉末与石油醚按照固液比1:1(V:Vg/mL)搅匀,置于摇床上振荡48h,离心留沉淀,此步骤重复一次。所得沉淀于60℃烘干,置于干燥箱中备用。(2) Degreasing: After the mycelium is dried to a constant weight, it is pulverized by a pulverizer to pass through a 40-mesh sieve, and the mycelium powder above 40 mesh is collected. Put the mycelium powder in the Erlenmeyer flask, mix the mycelium powder and petroleum ether according to the solid-to-liquid ratio of 1:1 (V:Vg/mL), shake on the shaker for 48 hours, centrifuge to save the precipitate, and repeat this step once . The obtained precipitate was dried at 60°C and placed in a drying oven for later use.
(3)热水浸提:将步骤(2)中脱脂烘干后的白蜡多年菌菌丝体用热水浸提,收集浸提液;其中:提取温度为80℃,提取次数2次,提取时间2h,料液比为1:25(g:ml);(3) Hot water leaching: extract the mycelia of the perennial mycelia after degreasing and drying in step (2) with hot water, and collect the extract; wherein: the extraction temperature is 80°C, the extraction times are 2 times, and the extraction The time is 2h, the ratio of solid to liquid is 1:25(g:ml);
(4)采用苯酚硫酸法对浸提液总糖得率进行测定,得到浸提液中总糖得率为:10.75%;(4) The yield of total sugar in the extract was measured by the phenol-sulfuric acid method, and the yield of total sugar in the extract was 10.75%;
(5)浓缩:用旋转蒸发仪将步骤(3)中收集的浸提液在60℃的恒温水浴锅中减压浓缩至原体积的1/5,得到白蜡多年菌浸提浓缩液;(5) Concentration: use a rotary evaporator to concentrate the extract collected in step (3) under reduced pressure in a constant temperature water bath at 60°C to 1/5 of the original volume to obtain a concentrated extract of the perennial bacteria;
(6)胰蛋白酶和sevage法除蛋白、离心:称取2.0g胰蛋白酶溶于100mL蒸馏水中,得到胰蛋白酶溶液;再把1000mL的白蜡多年菌浸提浓缩液调pH至8.0,将胰蛋白酶溶液加入白蜡多年菌浸提浓缩液中,后放入37℃水浴锅中预热10min,把酶液与两种浓缩液分别充分混合,并120rpm振荡保持30min后放入100℃水浴锅中灭酶10min,冷却至室温;加入0.2倍体积的氯仿正丁醇混合液(氯仿:正丁醇(V:V)=5:1),剧烈震荡30min。然后8000rpm离心10min,弃取蛋白层及有机溶液,回收上清液,此过程重复2次,直至不再出现蛋白层,得到除蛋白后的粗多糖提取液;(6) Trypsin and sevage method for protein removal and centrifugation: Weigh 2.0g of trypsin and dissolve it in 100mL of distilled water to obtain a trypsin solution; Add it to the extract concentrate of white wax perennial bacteria, and then put it in a 37°C water bath to preheat for 10 minutes, fully mix the enzyme solution and the two concentrates separately, and shake at 120rpm for 30 minutes, then put it in a 100°C water bath for 10 minutes to inactivate the enzyme , cooled to room temperature; 0.2 times volume of chloroform-n-butanol mixture (chloroform:n-butanol (V:V)=5:1) was added, and vigorously shaken for 30 min. Then centrifuge at 8000rpm for 10min, discard the protein layer and organic solution, reclaim the supernatant, repeat this process twice until the protein layer no longer appears, and obtain the crude polysaccharide extract after protein removal;
(7)乙醇沉淀多糖:将除蛋白后的白蜡多年菌多糖浸提液加入4倍体积的质量分数为95%的乙醇,混合均匀,于4℃静置12h,待析出白蜡多年菌多糖,离心收集沉淀;(7) Precipitation of polysaccharides with ethanol: add 4 times the volume of ethanol with a mass fraction of 95% to the extract solution of perennial perennial polysaccharides after protein removal, mix evenly, let stand at 4°C for 12 hours, and centrifuge to separate the perennial perennial polysaccharides collect sediment;
(8)多糖透析、干燥:(8) Polysaccharide dialysis and drying:
①白蜡多年菌多糖沉淀用纯水溶解,装入截留分子量为6000~8000Da的透析袋中透析72h,每8h更换一次去离子水;①Dissolve the polysaccharide precipitate of perennial bacteria in pure water, put it into a dialysis bag with a molecular weight cut-off of 6000-8000Da and dialyze for 72 hours, and replace the deionized water every 8 hours;
②透析后的白蜡多年菌多糖提取液进行旋蒸浓缩至多糖提取液体积的1/3,并进行真空冷冻干燥,得到白蜡多年菌胞内粗多糖。② After the dialysis, the polysaccharide extract of Perennial cerevisiae was concentrated by rotary evaporation to 1/3 of the volume of the extract of polysaccharide, and then vacuum freeze-dried to obtain the intracellular crude polysaccharide of Perennial cerevisiae.
实施例3:白蜡多年菌胞内多糖的制备Embodiment 3: Preparation of intracellular polysaccharide of perennial bacteria
(1)白蜡多年菌经菌种活化,斜面菌种培养和液体深层发酵培养,获得白蜡多年菌菌丝体,具体方法如下:(1) Perennial perennial ash is activated by bacterial classification, cultured on a slanted surface and submerged in liquid fermentation to obtain mycelium of perennial perennial ash. The specific methods are as follows:
①斜面菌种培养:将白蜡多年菌斜面母种活化培养后接种于灭菌的斜面固体培养基中,于28℃培养8d,备用;①Cultivation of slant strains: After activation and cultivation of the slant parent species of Perennial spp., inoculate in sterilized slant solid medium, culture at 28°C for 8 days, and set aside;
②液体深层发酵培养:从白蜡多年菌斜面菌种上挑取4~6块黄豆大小的菌块,接种于150mL无菌的液体发酵培养基中,于30℃、转速180rpm条件下避光恒温振荡培养9d,制得白蜡多年菌液体发酵产物,经离心和真空抽滤分离,60℃烘干得到白蜡多年菌菌丝体;② Liquid submerged fermentation culture: pick 4 to 6 soybean-sized bacteria blocks from the slant of the slanted strain of the white wax perennial bacteria, inoculate in 150mL sterile liquid fermentation medium, and shake at 30°C and 180rpm at a constant temperature in the dark Cultivate for 9 days to obtain the liquid fermentation product of Perennial aceriformis, which is separated by centrifugation and vacuum filtration, and dried at 60°C to obtain the mycelium of Perennial perennial asteraceae;
(2)脱脂:菌丝体烘干至恒重后,粉粹机粉粹过40目筛,收集40目以上的菌丝体粉末。将菌丝体粉末置于三角瓶中,菌丝体粉末与石油醚按照固液比1:1(V:Vg/mL)搅匀,置于摇床上振荡48h,离心留沉淀,此步骤重复一次。所得沉淀于60℃烘干,置于干燥箱中备用。(2) Degreasing: After the mycelium is dried to a constant weight, it is pulverized by a pulverizer to pass through a 40-mesh sieve, and the mycelium powder above 40 mesh is collected. Put the mycelium powder in the Erlenmeyer flask, mix the mycelium powder and petroleum ether according to the solid-to-liquid ratio of 1:1 (V:Vg/mL), shake on the shaker for 48 hours, centrifuge to save the precipitate, and repeat this step once . The obtained precipitate was dried at 60°C and placed in a drying oven for later use.
(3)热水浸提:将步骤(2)中脱脂烘干后的白蜡多年菌菌丝体用热水浸提,收集浸提液;其中:提取温度为80℃,提取次数2次,提取时间2h,料液比为1:30(g:ml);(3) Hot water leaching: extract the mycelia of the perennial mycelia after degreasing and drying in step (2) with hot water, and collect the extract; wherein: the extraction temperature is 80°C, the extraction times are 2 times, and the extraction Time 2h, the ratio of solid to liquid is 1:30(g:ml);
(4)采用苯酚硫酸法对浸提液总糖得率进行测定,得到浸提液中总糖得率为:9.75%(4) The yield of total sugar in the extract was measured by the phenol sulfuric acid method, and the yield of total sugar in the extract was: 9.75%
(5)浓缩:用旋转蒸发仪将步骤(3)中收集的浸提液在60℃的恒温水浴锅中减压浓缩至原体积的1/5,得到白蜡多年菌浸提浓缩液;(5) Concentration: use a rotary evaporator to concentrate the extract collected in step (3) under reduced pressure in a constant temperature water bath at 60°C to 1/5 of the original volume to obtain a concentrated extract of the perennial bacteria;
(6)胰蛋白酶和sevage法除蛋白、离心:称取2.0g胰蛋白酶溶于100mL蒸馏水中,得到胰蛋白酶溶液;再把1000mL的白蜡多年菌浸提浓缩液调pH至8.0,将胰蛋白酶溶液加入白蜡多年菌浸提浓缩液中,后放入37℃水浴锅中预热10min,把酶液与两种浓缩液分别充分混合,并120rpm振荡保持30min后放入100℃水浴锅中灭酶10min,冷却至室温;加入0.2倍体积的氯仿正丁醇混合液(氯仿:正丁醇(V:V)=5:1),剧烈震荡30min。然后8000rpm离心10min,弃取蛋白层及有机溶液,回收上清液,此过程重复2次,直至不再出现蛋白层,得到除蛋白后的粗多糖提取液;(6) Trypsin and sevage method for protein removal and centrifugation: Weigh 2.0g of trypsin and dissolve it in 100mL of distilled water to obtain a trypsin solution; Add it to the extract concentrate of white wax perennial bacteria, and then put it in a 37°C water bath to preheat for 10 minutes, fully mix the enzyme solution and the two concentrates separately, and shake at 120rpm for 30 minutes, then put it in a 100°C water bath for 10 minutes to inactivate the enzyme , cooled to room temperature; 0.2 times the volume of chloroform-butanol mixture (chloroform: n-butanol (V:V) = 5:1) was added, and vigorously shaken for 30 min. Then centrifuge at 8000rpm for 10min, discard the protein layer and organic solution, reclaim the supernatant, repeat this process twice until the protein layer no longer appears, and obtain the crude polysaccharide extract after protein removal;
(7)乙醇沉淀多糖:将除蛋白后的白蜡多年菌多糖浸提液加入4倍体积的质量分数为95%的乙醇,混合均匀,于4℃静置12h,待析出白蜡多年菌多糖,离心收集沉淀;(7) Precipitation of polysaccharides with ethanol: add 4 times the volume of ethanol with a mass fraction of 95% to the extract solution of perennial perennial polysaccharides after protein removal, mix evenly, let stand at 4°C for 12 hours, and centrifuge to separate the perennial perennial polysaccharides collect sediment;
(8)多糖透析、干燥:(8) Polysaccharide dialysis and drying:
①白蜡多年菌多糖沉淀用纯水溶解,装入截留分子量为6000~8000Da的透析袋中透析72h,每8h更换一次去离子水;① Dissolve the polysaccharide precipitate of perennial bacteria in pure water, put it into a dialysis bag with a molecular weight cut-off of 6000-8000Da and dialyze for 72 hours, and replace the deionized water every 8 hours;
②透析后的白蜡多年菌多糖提取液进行旋蒸浓缩至多糖提取液体积的1/3,并进行真空冷冻干燥,得到白蜡多年菌胞内粗多糖;② After dialysis, the polysaccharide extract of Perenia cerevisiae was concentrated by rotary evaporation to 1/3 of the volume of the extract of polysaccharide, and then vacuum freeze-dried to obtain the crude polysaccharide in the cells of Perennial cerevisiae;
(9)白蜡多年菌粗多糖含量测定(9) Determination of crude polysaccharide content of perennial bacteria
采用苯酚硫酸法对浸提液总糖得率进行测定,得到胞内粗多糖含量为52.97%。The total sugar yield of the extract was determined by the phenol sulfuric acid method, and the intracellular crude polysaccharide content was 52.97%.
实施例4:白蜡多年菌胞外多糖和胞内多糖的制备Embodiment 4: Preparation of exopolysaccharide and intracellular polysaccharide of perennial bacteria
(1)白蜡多年菌经菌种活化,斜面菌种培养和液体深层发酵培养,获得白蜡多年菌发酵液和菌丝体,具体方法如下:(1) Perennial cerevisiae is activated by strains, cultured on a slant and submerged in liquid to obtain fermented liquid and mycelia of perennial perennials. The specific methods are as follows:
①斜面菌种培养:将白蜡多年菌斜面母种活化培养后接种于灭菌的斜面固体培养基中,于28℃培养8d,备用;①Cultivation of slant strains: After activation and cultivation of the slant parent species of Perennial spp., inoculate in sterilized slant solid medium, culture at 28°C for 8 days, and set aside;
②液体深层发酵培养:从白蜡多年菌斜面菌种上挑取4~6块黄豆大小的菌块,接种于150mL无菌的液体发酵培养基中,于30℃、转速180rpm条件下避光恒温振荡培养9d,制得白蜡多年菌液体发酵产物,经离心和真空抽滤分离得到发酵液和菌丝体,发酵液浓缩,菌丝体60℃烘干;② Liquid submerged fermentation culture: pick 4 to 6 soybean-sized bacteria blocks from the slant of the slanted strain of the white wax perennial bacteria, inoculate in 150mL sterile liquid fermentation medium, and shake at 30°C and 180rpm at a constant temperature in the dark Cultivate for 9 days to obtain the liquid fermentation product of perennial bacteria, which is separated by centrifugation and vacuum filtration to obtain the fermentation broth and mycelium, the fermentation broth is concentrated, and the mycelium is dried at 60°C;
(2)脱脂:菌丝体烘干至恒重后,粉粹机粉粹过40目筛,收集40目以上的菌丝体粉末。将菌丝体粉末置于三角瓶中,菌丝体粉末与石油醚按照固液比1:1(V:Vg/mL)搅匀,置于摇床上振荡48h,离心留沉淀,此步骤重复一次。所得沉淀于60℃烘干,置于干燥箱中备用。(2) Degreasing: After the mycelium is dried to a constant weight, it is pulverized by a pulverizer to pass through a 40-mesh sieve, and the mycelium powder above 40 mesh is collected. Put the mycelium powder in the Erlenmeyer flask, mix the mycelium powder and petroleum ether according to the solid-to-liquid ratio of 1:1 (V:Vg/mL), shake on the shaker for 48 hours, centrifuge to save the precipitate, and repeat this step once . The obtained precipitate was dried at 60°C and placed in a drying oven for later use.
(3)热水浸提:将步骤(2)中脱脂烘干后的白蜡多年菌菌丝体用热水浸提,收集浸提液;其中:提取温度为80℃,提取次数2次,提取时间2h,料液比为1:30(g:ml);(3) Hot water leaching: extract the mycelia of the perennial mycelia after degreasing and drying in step (2) with hot water, and collect the extract; wherein: the extraction temperature is 80°C, the extraction times are 2 times, and the extraction Time 2h, the ratio of solid to liquid is 1:30(g:ml);
(4)浓缩:用旋转蒸发仪将步骤(3)中收集的浸提液在60℃的恒温水浴锅中减压浓缩至原体积的1/5,得到白蜡多年菌浸提浓缩液;(4) Concentration: use a rotary evaporator to concentrate the extract collected in step (3) under reduced pressure in a constant temperature water bath at 60°C to 1/5 of the original volume to obtain a concentrated extract of the perennial bacteria;
(5)胰蛋白酶和sevage法除蛋白、离心:称取2.0g胰蛋白酶溶于100mL蒸馏水中,得到胰蛋白酶溶液;再把1000mL的白蜡多年菌发酵浓缩液和浸提浓缩液分别调pH至8.0,将胰蛋白酶溶液加入白蜡多年菌发酵浓缩液和浸提浓缩液中,后放入37℃水浴锅中预热10min,把酶液与两种浓缩液分别充分混合,并120rpm振荡保持30min后放入100℃水浴锅中灭酶10min,冷却至室温;加入0.2倍体积的氯仿正丁醇混合液(氯仿:正丁醇(V:V)=5:1),剧烈震荡30min。然后8000rpm离心10min,弃取蛋白层及有机溶液,回收上清液,此过程重复2次,直至不再出现蛋白层,得到除蛋白后的胞外粗多糖提取液和胞内粗多糖提取液;(5) Trypsin and sevage method for protein removal and centrifugation: Weigh 2.0g of trypsin and dissolve it in 100mL of distilled water to obtain a trypsin solution; then adjust the pH of 1000mL of perennial bacteria fermentation concentrate and extraction concentrate to 8.0 , add the trypsin solution to the fermented concentrated liquid of perennial bacteria and the concentrated liquid extracted, and then put it in a 37°C water bath to preheat for 10 minutes, then fully mix the enzyme liquid and the two concentrated liquids, shake at 120rpm for 30 minutes, and then release Inactivate the enzyme in a 100°C water bath for 10 minutes, cool to room temperature; add 0.2 times the volume of chloroform-butanol mixture (chloroform:n-butanol (V:V)=5:1), and shake vigorously for 30 minutes. Then centrifuge at 8000rpm for 10min, discard the protein layer and organic solution, and reclaim the supernatant. This process is repeated twice until the protein layer no longer appears, and the extracellular crude polysaccharide extract and intracellular crude polysaccharide extract after protein removal are obtained;
(6)乙醇沉淀多糖:将除蛋白后的白蜡多年菌胞外粗多糖和胞内粗多糖提取液分别加入4倍体积的质量分数为95%的乙醇,混合均匀,于4℃静置12h,待析出多糖沉淀后,离心收集沉淀;(6) Precipitation of polysaccharides with ethanol: add 4 times the volume of ethanol with a mass fraction of 95% to the extracted extracellular crude polysaccharides and intracellular crude polysaccharides of Perennialia cerevisiae after protein removal, mix well, and let stand at 4° C. for 12 hours. After the polysaccharide is precipitated, the precipitate is collected by centrifugation;
(7)多糖透析、干燥:(7) Polysaccharide dialysis and drying:
①白蜡多年菌胞外粗多糖和胞内粗多糖沉淀用纯水溶解,装入截留分子量为6000~8000Da的透析袋中透析72h,每8h更换一次去离子水;① Dissolve the extracellular crude polysaccharide and intracellular crude polysaccharide precipitates of perennial bacteria in pure water, put them into a dialysis bag with a molecular weight cut-off of 6000-8000Da and dialyze for 72 hours, and replace the deionized water every 8 hours;
②透析后的白蜡多年菌胞外粗多糖和胞内粗多糖提取液进行旋蒸浓缩至多糖提取液体积的1/3,并进行真空冷冻干燥,得到白蜡多年菌胞外粗多糖和胞内粗多糖;② After dialysis, the extracted solution of extracellular crude polysaccharide and intracellular crude polysaccharide of Perenia perennialis was concentrated by rotary evaporation to 1/3 of the volume of the polysaccharide extract, and then vacuum freeze-dried to obtain crude extracellular polysaccharide and crude intracellular polysaccharide of Perennium perennialis. polysaccharide;
③白蜡多年菌胞外粗多糖和胞内粗多糖经苯酚硫酸法测定含总糖质量分数分别为64.38%和52.97%;③ The mass fractions of the total sugar content of the extracellular crude polysaccharide and intracellular crude polysaccharide of Perennial cerevisiae were 64.38% and 52.97%, respectively, as determined by the phenol sulfuric acid method;
(8)DEAE-Sepharose法纯化白蜡多年菌多糖,方法如下:(8) The DEAE-Sepharose method for purifying the polysaccharide of Perennial cerevisiae, the method is as follows:
①DEAE-Sepharose的预处理①Pretreatment of DEAE-Sepharose
10g DEAE-Sepharose在蒸馏水中浸泡24h,浮选法除去过细部分,收集沉淀部分。按每克加0.5mol/L NaOH 15mL的比例加入NaOH溶液浸泡30min,间歇搅拌多次,装入层析柱(1.5cm×20cm),用蒸馏水洗至中性,倒出。再用0.5mol/L HCL溶液浸泡30min,间歇搅拌多次,装入层析柱,用蒸馏水洗至中性,重新倒出。接下来,继续用0.5mol/L NaOH溶液浸泡30min,装柱,最后用蒸馏水洗至pH中性,备用。Soak 10g of DEAE-Sepharose in distilled water for 24 hours, remove the superfine part by flotation, and collect the precipitated part. Add 15 mL of 0.5 mol/L NaOH per gram and soak in NaOH solution for 30 min, stir intermittently several times, put into a chromatography column (1.5 cm × 20 cm), wash with distilled water until neutral, and pour it out. Then soak in 0.5mol/L HCL solution for 30min, stir intermittently several times, put into a chromatography column, wash with distilled water until neutral, and pour it out again. Next, continue to soak in 0.5mol/L NaOH solution for 30 minutes, pack the column, and finally wash it with distilled water until the pH is neutral, and set it aside.
②多糖纯化② Polysaccharide purification
1)装柱:层析柱清洗干净后,垂直固定到铁架台上,先往层析柱中加入约1/3柱体积的去离子水,打开下出液口,再将DEAE-Sepharose缓慢的倒入层析柱中,使之在层析柱中自然沉降,填料的体积约为柱体积的2/3,停止装柱。层析柱上端进液口连接恒流泵。1) Column packing: After the chromatography column is cleaned, fix it vertically on the iron stand, add about 1/3 column volume of deionized water to the chromatography column, open the lower liquid outlet, and then slowly deionize the DEAE-Sepharose Pour it into the chromatographic column and allow it to settle naturally in the chromatographic column. The volume of the filler is about 2/3 of the column volume, and stop packing the column. The liquid inlet at the upper end of the chromatography column is connected with a constant flow pump.
2)平衡:利用恒流泵将蒸馏水泵入到层析柱内,打开层析柱下端的出液口,平衡缓冲液流速保持在1mL/min左右,当下端出液口流出液的pH值与平衡缓冲液的pH值相同时,证明层析柱达到了平衡。2) Equilibrium: Use a constant flow pump to pump distilled water into the chromatography column, open the liquid outlet at the lower end of the chromatography column, and keep the flow rate of the equilibrium buffer at about 1mL/min. When the pH values of the equilibration buffers are the same, it proves that the column has reached equilibrium.
3)上样和洗脱:0.1g白蜡多年菌胞外粗多糖和胞内粗多糖分别溶解于10mL蒸馏水中,5000rpm离心10min,取上清,利用恒流泵缓缓加入已平衡的层析柱中。先用缓冲液洗去未吸附的物质,再分别以0-0.5mol/L的NaCl溶液梯度洗脱,设定部分收集器的收集时间,进行收集,每个梯度收集20管,每管收集10分钟。以苯酚硫酸法测定总糖含量,合并单一吸收峰样品并浓缩后,采用蒸馏水透析72h,每8h更换蒸馏水一次。透析后,对透析液进行浓缩和真空冷冻干燥处理,得纯化多糖EPPF和IPPF。3) Loading and elution: Dissolve 0.1g of extracellular crude polysaccharide and intracellular crude polysaccharide of perennial bacteria in 10mL of distilled water, centrifuge at 5000rpm for 10min, take the supernatant, and slowly add it to the balanced chromatography column with a constant flow pump middle. First wash off the unadsorbed substances with buffer solution, and then elute them with a gradient of 0-0.5mol/L NaCl solution. Set the collection time of the partial collector to collect, collect 20 tubes for each gradient, and collect 10 tubes for each tube. minute. The total sugar content was determined by the phenol-sulfuric acid method, and the samples with a single absorption peak were combined and concentrated, then dialyzed with distilled water for 72 hours, and the distilled water was replaced every 8 hours. After dialysis, the dialysate is concentrated and vacuum freeze-dried to obtain purified polysaccharides EPPF and IPPF.
所得EPPF和IPPF易溶于纯水,不溶于无水乙醇、二甲基亚砜、无水乙醚和乙酸乙酯等有机溶剂。白蜡多年菌胞外多糖和胞内多糖经苯酚硫酸法测定含总糖质量分数分别为92.30%和87.24%。The obtained EPPF and IPPF are easily soluble in pure water, but insoluble in organic solvents such as absolute ethanol, dimethyl sulfoxide, anhydrous ether and ethyl acetate. The mass fractions of total sugar in the exopolysaccharide and intracellular polysaccharide of perennial sp. were determined by phenol-sulfuric acid method to be 92.30% and 87.24%, respectively.
实施例5:白蜡多年菌多糖(实施例4制备得到)调节肠道菌群作用评价Example 5: Evaluation of the effect of the polysaccharide of Perennial cerevisiae (prepared in Example 4) on regulating the intestinal flora
(1)昆明小鼠:SPF级别,雄性,体重16-20g,日龄28-30天,由广东省医学实验动物中心提供。许可证号:SCXK(粤)2018-0002。饲料:普通对照饲料(D12450B),高脂饲料(D12451),由广东省医学实验动物中心提供。许可证号:SCXK(粤)2018-0002。(1) Kunming mice: SPF level, male, body weight 16-20 g, age 28-30 days, provided by Guangdong Medical Experimental Animal Center. License number: SCXK (Guangdong) 2018-0002. Feed: common control feed (D12450B), high-fat feed (D12451), provided by Guangdong Medical Experimental Animal Center. License number: SCXK (Guangdong) 2018-0002.
(2)适应性喂养以及分组:小鼠购入后在动物房内分笼(9组,每组10只),于室温20-22℃,相对湿度50-60%RH,自由进食和饮水(饮用水灭菌,基础饲料紫外照射灭菌)适应喂养6天。后随机将小鼠分组,分别设正常对照组(Normal control,NC)、T2DM模型组(Diabetes model,DM)、阳性药物组(Positive control,PC,阳性药物为二甲双胍)、经白蜡多年菌多糖处理的糖尿病组(分胞外多糖和胞内多糖的低中高剂量组)。正常对照组小鼠饲喂标准对照饲料D12450B(总能量3.85kacl/g,脂肪供能比10%);其余实验组小鼠饲喂高脂饮食D12451总能量4.73kacl/g,脂肪供能比45%)。(2) Adaptive feeding and grouping: After the mice were purchased, they were divided into cages (9 groups, 10 in each group) in the animal room, at room temperature 20-22 ° C, relative humidity 50-60% RH, free to eat and drink ( Sterilization of drinking water, sterilization of basal feed by ultraviolet irradiation) to adapt to feeding for 6 days. Afterwards, the mice were randomly divided into groups, including normal control group (Normal control, NC), T2DM model group (Diabetes model, DM), positive drug group (Positive control, PC, positive drug is metformin), treated with polysaccharide Diabetic group (divided into low, middle and high dose groups of exopolysaccharide and intracellular polysaccharide). The mice in the normal control group were fed the standard control diet D12450B (total energy 3.85kacl/g, fat
(3)T2DM小鼠模型的构造:实验组小鼠喂养高脂饲料3周后于第一天和第三天分别腹腔注射链脲佐菌素(STZ,50mg/kg溶于pH 4.5的0.1mol/L的柠檬酸缓冲液中),正常对照组同时注射等剂量的0.1mol/L的柠檬酸缓冲溶液。于注射后第7天测定空腹血糖,将血糖水平>11.1mmol/L的小鼠定义为T2DM。(3) Construction of the T2DM mouse model: the mice in the experimental group were fed with a high-fat diet for 3 weeks, and then intraperitoneally injected streptozotocin (STZ, 50 mg/kg dissolved in 0.1 mol of pH 4.5) on the first and third days, respectively. /L citric acid buffer solution), and the normal control group was injected with an equal dose of 0.1mol/L citric acid buffer solution at the same time. Fasting blood glucose was measured on the 7th day after injection, and mice with blood glucose levels>11.1mmol/L were defined as T2DM.
(4)多糖给药试验:造模成功后,实验组每日经口灌胃给予受试物,灌胃容积为1%(mL/g)BW/d。灌胃量根据每周体重增减调整,实验周期为28天。白蜡多年菌胞外多糖低剂量处理组(剂量为50mg/kg/d)、白蜡多年菌胞外多糖中剂量处理组(剂量为100mg/kg/d)和白蜡多年菌胞外多糖高剂量处理组(剂量为200mg/kg/d),白蜡多年菌胞内多糖低剂量处理组(剂量为50mg/kg/d)、白蜡多年菌胞内多糖中剂量处理组(剂量为100mg/kg/d)和白蜡多年菌胞内多糖高剂量处理组(剂量为200mg/kg/d),阳性药物组(剂量为30mg/kg/d的二甲双胍),正常对照组灌胃等体积的无菌水。每天记录小鼠的进食量,并分别在灌胃前及实验第7、14、21、28天对各组实验小鼠称重,测定空腹血糖,记录它们实验前后的体重变化、血糖变化及死亡率。(4) Polysaccharide administration test: After successful modeling, the experimental group was given the test substance by oral gavage every day, and the volume of gavage was 1% (mL/g) BW/d. The amount of gavage was adjusted according to the weekly weight gain and loss, and the experimental period was 28 days. White wax perennial exopolysaccharide low-dose treatment group (50 mg/kg/d), white wax perennial exopolysaccharide medium dose treatment group (100 mg/kg/d) and white wax perennial high-dose exopolysaccharide treatment group (dose is 200mg/kg/d), white wax perennial bacteria intracellular polysaccharide low-dose treatment group (dose is 50mg/kg/d), white wax perennial bacteria intracellular polysaccharide middle dose treatment group (dose is 100mg/kg/d) and The high-dose treatment group (dose of 200 mg/kg/d) of intracellular polysaccharides of perennial bacteria, the positive drug group (30 mg/kg/d of metformin), and the normal control group were given equal volumes of sterile water. Record the food intake of the mice every day, and weigh the experimental mice in each group before gavage and on the 7th, 14th, 21st, and 28th day of the experiment, measure the fasting blood sugar, and record their body weight changes, blood sugar changes and death before and after the experiment Rate.
(5)最后一天灌胃后,小鼠禁食不禁水12h,采用逼迫法无菌采集小鼠新鲜粪便样,装于灭菌的1.5mL离心管中,迅速用液氮冷冻,进行细菌16S rRNA序列高通量测序分析、真菌ITS序列高通量测序分析以及利用气相色谱-质谱检测小鼠粪便中短链脂肪酸的含量。(5) After gavage on the last day, the mice were fasted for 12 hours without food and water, and the fresh feces samples of the mice were aseptically collected by the forced method, put in a sterilized 1.5mL centrifuge tube, and quickly frozen with liquid nitrogen, and the bacterial 16S rRNA High-throughput sequencing analysis of sequences, high-throughput sequencing analysis of fungal ITS sequences, and detection of short-chain fatty acids in mouse feces by gas chromatography-mass spectrometry.
(6)实验结果(6) Experimental results
1)白蜡多年菌多糖对肠道细菌菌群的影响1) Effects of polysaccharides from Perennial cerevisiae on intestinal bacterial flora
图1为白蜡多年菌多糖对T2DM小鼠肠道细菌在不同水平上的物种分布柱状图(NC:正常对照组,小鼠喂造模对照饲料D12450B,每天灌胃1%(mL/g)BW无菌水;DM:糖尿病模型组,小鼠喂食高脂饲料,每天灌胃1%(mL/g)BW无菌水;EPPF:白蜡多年菌胞外多糖中剂量组,小鼠喂食高脂饲料,每天灌胃100mg/kg EPPF;IPPF:白蜡多年菌胞内多糖中剂量组,小鼠喂食高脂饲料,每天灌胃100mg/kg IPPF。与正常对照组相比,#:P<0.05,##:P<0.01;与T2DM模型组相比,*:P<0.05,**:P<0.01。)Fig. 1 is the histogram of the species distribution of the polysaccharides of perennial bacteria on the intestinal tract of T2DM mice at different levels (NC: normal control group, the mice were fed the modeling control feed D12450B, and 1% (mL/g) BW was administered orally every day Sterile water; DM: Diabetes model group, mice were fed high-fat diet, fed with 1% (mL/g) BW sterile water every day; EPPF: middle-dose exopolysaccharide group of perennials perennials, mice were fed high-fat diet , 100mg/kg EPPF was administered intragastrically every day; IPPF: middle dose group of intracellular polysaccharide of white wax perennial bacteria, the mice were fed high-fat diet, and 100mg/kg IPPF was administered intragastrically every day. Compared with the normal control group, #: P<0.05, # #: P<0.01; compared with T2DM model group, *: P<0.05, **: P<0.01.)
如图1-A所示,小鼠肠道微生物菌群在门水平中,丰度水平前十门分别是:变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、疣微菌门(Verrucomicrobia)、Patescibacteria、Epsilonbacteraeota、放线菌门(Actinobacteria)、柔膜菌门(Tenericutes)、酸杆菌门(Acidobacteria)、脱铁杆菌门(Deferribacteres)。与正常对照组相比,变形菌门、Epsilonbacteraeota及柔膜菌门分别显著提高了831.28%、520.25%及29.28%;而厚壁菌门、拟杆菌门、疣微菌门、Patescibacteria、放线菌门、酸杆菌门及脱铁杆菌门分别降低了49.47%、56.48%、99.27%、17.96%、32.89%、20.70%和65.76%。其中,厚壁菌门/拟杆菌门比值较正常组提高。经过28天胞外多糖和胞内多糖给药处理后,与DM模型组相比,肠道变形菌门分别下降了10.98%、23.87%。胞内多糖组的肠道拟杆菌门提高了36.11%。Epsilonbacteraeota最早是作为一种致病菌被发现,以其致病属弯曲杆菌、螺旋杆菌属和较小程度的弧菌而闻名。白蜡多年菌胞外多糖和胞内多糖均能逆转Epsilonbacteraeota相对丰度的升高。此外,大量研究证实肠道变形菌门能够反映微生态失调或不稳定的肠道微生物菌落结构,其往往是由于变形菌门丰度的持续增加而产生的。挑选变形菌门、厚壁菌门、拟杆菌门及Epsilonbacteraeota的相对丰度作图,能够更直观的看出这几种菌门在不同处理组间的变化。从1-B图中发现,正常对照组的变形菌门丰度较低,而模型组显著升高,其异常升高是肠道微生态失调的表现。EPPF和IPPF均能降低变形菌的异常升高,但与正常对照组仍存在显著差异。As shown in Figure 1-A, the intestinal microbial flora of mice is at the phylum level, and the top ten phyla at the abundance level are: Proteobacteria, Firmicutes, and Bacteroidetes , Verrucomicrobia, Patescibacteria, Epsilonbacteraeota, Actinobacteria, Tenericutes, Acidobacteria, Deferribacteres. Compared with the normal control group, Proteobacteria, Epsilonbacteraeota and Molluscum significantly increased by 831.28%, 520.25% and 29.28% respectively; The phyla, acidobacteria and deferrobacteria decreased by 49.47%, 56.48%, 99.27%, 17.96%, 32.89%, 20.70% and 65.76%, respectively. Among them, the ratio of Firmicutes/Bacteroidetes was higher than that of normal group. After 28 days of exopolysaccharide and intracellular polysaccharide administration, compared with the DM model group, the intestinal proteobacteria decreased by 10.98% and 23.87%, respectively. The Bacteroides phylum in the intracellular polysaccharide group increased by 36.11%. Epsilonbacteraeota was first identified as a pathogenic bacterium known for its pathogenic genera Campylobacter, Helicobacter and, to a lesser extent, Vibrio. Both exopolysaccharides and intracellular polysaccharides of Perennialia cerevisiae could reverse the increase of relative abundance of Epsilonbacteraeota. In addition, a large number of studies have confirmed that the intestinal Proteobacteria can reflect dysbiosis or unstable intestinal microbial community structure, which is often due to the continuous increase in the abundance of Proteobacteria. Selecting the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes and Epsilonbacteraeota for mapping can more intuitively see the changes of these bacterial phyla between different treatment groups. From Figure 1-B, it was found that the abundance of Proteobacteria in the normal control group was low, but it was significantly increased in the model group, and the abnormal increase was a manifestation of intestinal microecological imbalance. Both EPPF and IPPF can reduce the abnormal increase of Proteobacteria, but there are still significant differences compared with the normal control group.
如图1-C所示,小鼠肠道菌群在属水平的前十分别是:大肠埃希菌-志贺菌属(Escherichia-Shigella)、麝香草属(Muribaculaceae)、Dubosiella、粪杆菌属(Faecalibaculum)、乳杆菌属(Lactobacillus)、拟杆菌属(Bacteroides)、脱硫弧菌属(Desulfovibrionaceae)、毛螺菌属(Lachnospiraceae_NK4A136_group)、拟普雷沃菌属(Alloprevotella)及气球菌属(Aerococcus)。选取其中的拟普雷沃菌属、气球菌属、Dubosiella及乳杆菌属单独作图1-D,可以更直观的看到这几种菌的变化。与正常对照组相比,模型组的大肠杆菌属及气球菌属均显著升高了2888.99%及1495.25%,而Dubosiella及乳杆菌属显著降低了73.72%及87.10%。经过IPPF给药后,大肠杆菌属及气球菌属的相对丰度分别下降了32.06%、75.35%,Dubosiella及乳杆菌属的相对丰度分别提高了200.67%及367.87%。此外,还能增加麝香草属、拟杆菌属、脱硫弧菌属和毛螺菌属的相对丰度。经过EPPF给药后,Dubosiella及乳杆菌属的相对丰度分别提高了305.00%及187.27%。As shown in Figure 1-C, the top ten of the mouse intestinal flora at the genus level are: Escherichia coli-Shigella (Escherichia-Shigella), Thyme (Muribaculaceae), Dubosiella, Faecalibacterium (Faecalibaculum), Lactobacillus, Bacteroides, Desulfovibrionaceae, Lachnospiraceae_NK4A136_group, Alloprevotella and Aerococcus . Select the genus Pseudoprevotella, Aerobacillus, Dubosiella and Lactobacillus to draw Figure 1-D separately, so that you can see the changes of these bacteria more intuitively. Compared with the normal control group, the genera of Escherichia coli and Aerobacter in the model group were significantly increased by 2888.99% and 1495.25%, while the genera of Dubosiella and Lactobacillus were significantly reduced by 73.72% and 87.10%. After IPPF administration, the relative abundances of Escherichia coli and Aerobacillus decreased by 32.06% and 75.35%, respectively, and the relative abundances of Dubosiella and Lactobacillus increased by 200.67% and 367.87%, respectively. In addition, the relative abundance of Thyme, Bacteroides, Desulfovibrio and Lachnospira genera was increased. After EPPF administration, the relative abundance of Dubosiella and Lactobacillus increased by 305.00% and 187.27%, respectively.
高脂饮食联合低剂量的STZ诱导的T2DM小鼠的肠道稳态失衡,其中以变形菌门的异常升高为标志。而EPPF和IPPF干预能够在门、纲、目、科、属及种水平有效降低小鼠肠道菌群中变形菌、产芽孢杆菌等有害菌的相对丰度,增加乳杆菌、拟杆菌等有益菌的相对丰度,使其趋向正常对照组水平,维持肠道微生物群的稳定。High-fat diet combined with low-dose STZ induced intestinal homeostasis in T2DM mice, marked by abnormally elevated Proteobacteria. However, EPPF and IPPF intervention can effectively reduce the relative abundance of harmful bacteria such as Proteobacteria and Bacillus-forming bacteria in the intestinal flora of mice at the level of phylum, class, order, family, genus and species, and increase the beneficial bacteria such as Lactobacillus and Bacteroides. The relative abundance of bacteria tends to the level of the normal control group and maintains the stability of the intestinal microbiota.
Alpha多样性(Alpha diversity)通过多种度量反映单个样本的物种丰度和的多样性。辛普森(Simpson)指数用于衡量物种多样性,受样品群落中物种丰度和物种均匀度的影响。辛普森指数值越小,表明该物种的物种多样性越高。由图2-A可看出,与正常对照组相比,DM模型组的Simpson指数升高,而EPPF和IPPF干预后的Simpson指数均有所下降,但在统计学上仍不显著。β-多样性分析可以反映样品间物种多样性差异,坐标图上距离越近的样品,相似性越大。主成分分析法(PCA)见图2-B可得,模型组肠道菌群与正常对照组的菌群有一定的距离,而IPPF干预的小鼠菌群信息与正常对照组有大部分重合,距离相对模型组较近。而EPPF干预的小鼠菌群与正常对照组有一定的距离,但有朝正常对照组靠近的趋势。说明IPPF组的菌落组成与正常组更相似。Alpha diversity (Alpha diversity) reflects the species abundance and diversity of a single sample through multiple metrics. The Simpson index is used to measure species diversity, which is affected by species abundance and species evenness in the sample community. The smaller the Simpson index value, the higher the species diversity of the species. It can be seen from Figure 2-A that compared with the normal control group, the Simpson index of the DM model group increased, while the Simpson index of both EPPF and IPPF intervention decreased, but it was still not statistically significant. The β-diversity analysis can reflect the differences in species diversity among samples, and the closer the samples on the coordinate map, the greater the similarity. Principal Component Analysis (PCA) can be seen in Figure 2-B. There is a certain distance between the intestinal flora of the model group and the flora of the normal control group, while the information on the flora of mice intervened by IPPF is mostly overlapped with that of the normal control group , which is relatively close to the model group. The EPPF-intervened mouse flora has a certain distance from the normal control group, but tends to approach the normal control group. It shows that the colony composition of the IPPF group is more similar to that of the normal group.
2)白蜡多年菌多糖对肠道真菌菌群的影响2) Effects of polysaccharides from Perennialia cerevisiae on intestinal fungal flora
对小鼠肠道OTU进行统计和比较,得到样品OTU的Veen图见图3,4个处理组小鼠肠道真菌共有的OTU数为675,胞外多糖组与正常对照组、模型组共有的OTU数目为277,而胞内多糖组与正常对照组、模型组共有的OTU数目仅为28。值得注意的是,正常对照组含有一种特定的OTU,胞外多糖干预组含有特定的OTU个数为4,而胞内多糖组含有特定的OTU数目多达70种。说明白蜡多年菌干预能够改变肠道真菌菌群的OTU种类。The OTUs in the intestinal tract of the mice were counted and compared, and the Veen diagram of the sample OTUs is shown in Figure 3. The number of OTUs shared by the intestinal fungi of the four treatment groups was 675, and the number of OTUs shared by the exopolysaccharide group, the normal control group and the model group The number of OTUs was 277, while the number of OTUs shared by the intracellular polysaccharide group, the normal control group and the model group was only 28. It is worth noting that the normal control group contained a specific OTU, the exopolysaccharide intervention group contained 4 specific OTUs, and the intracellular polysaccharide group contained up to 70 specific OTUs. It shows that the intervention of perennial bacteria can change the OTU types of intestinal fungal flora.
根据ITS序列,获得各样品在门分类学水平上的物种分布柱状图。以探究白蜡多年菌多糖对T2DM小鼠肠道真菌物种分布的影响,结果见图4。图4为白蜡多年菌多糖作用于T2DM小鼠肠道真菌在门水平上的物种分布图(注:NC:正常对照组,小鼠喂造模对照饲料D12450B,每天灌胃1%(mL/g)BW无菌水;DM:糖尿病模型组,小鼠喂食高脂饲料,每天灌胃1%(mL/g)BW无菌水;EPPF:白蜡多年菌胞外多糖中剂量组,小鼠喂食高脂饲料,每天灌胃100mg/kg EPPF;IPPF:白蜡多年菌胞内多糖中剂量组,小鼠喂食高脂饲料,每天灌胃100mg/kg IPPF。)。小鼠肠道真菌菌群在门水平上相对丰度前九门分别是:子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)、壶菌门(Chytridiomycota)、罗氏菌门(Rozellomycota)、油壶菌门(Olpidiomycota)、球囊菌门(Glomeromycota)、捕虫霉门(Zoopagomycota)及毛霉门(Mucoromycota)。According to the ITS sequence, the species distribution histogram of each sample at the taxonomic level was obtained. To explore the effect of polysaccharides from Perennial cerevisiae on the distribution of fungal species in the intestinal tract of T2DM mice, the results are shown in Figure 4. Fig. 4 is the species distribution diagram of the polysaccharides of perennial bacteria acting on the intestinal fungus of T2DM mice at the phylum level (note: NC: normal control group, mice were fed with modeling control feed D12450B, and 1% (mL/g )BW sterile water; DM: diabetic model group, mice were fed high-fat diet, fed with 1% (mL/g) BW sterile water every day; Fatty feed, 100mg/kg EPPF was intragastrically administered every day; IPPF: in the middle dose group of intracellular polysaccharide of perennial bacteria, the mice were fed high-fat diet, and 100mg/kg IPPF was intragastrically administered every day.). The top nine phylum relative abundances of the intestinal fungal flora in mice are: Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Roche Rozellomycota, Olpidiomycota, Glomeromycota, Zoopagomycota and Mucoromycota.
图5为白蜡多年菌多糖对T2DM小鼠肠道特定真菌门的影响(注:A为各处理组小鼠肠道微生物的子囊菌门、担子菌门及被孢霉门的相对丰度;B为各处理组小鼠肠道微生物担子菌门与子囊菌门数量比值。正常对照组:小鼠喂造模对照饲料D12450B,每天灌胃1%(mL/g)BW无菌水;糖尿病模型组:小鼠喂食高脂饲料,每天灌胃1%(mL/g)BW无菌水;阳性药物组(阳性药物为二甲双胍):小鼠喂食高脂饲料,每天灌胃30mg/kg二甲双胍;白蜡多年菌胞外多糖中剂量组:小鼠喂食高脂饲料,每天灌胃100mg/kg EPPF;白蜡多年菌胞内多糖中剂量组:小鼠喂食高脂饲料,每天灌胃100mg/kg IPPF。与正常对照组相比,#:P<0.05,##:P<0.01;与T2DM模型组相比,*:P<0.05,**:P<0.01。)。从图5可得,与正常对照组相比,模型组中担子菌门与被孢霉门的相对丰度分别极显著提高了203.16%及261.38%(P<0.01),而子囊菌门相对丰度极显著降低了30.57%(P<0.01)。经过28天胞内多糖给药后,担子菌门及被孢霉门的相对丰度分别降低了14.65%及61.2%(P<0.05),子囊菌门相对丰度提高了17.92%(P<0.05)。而经过胞外多糖给药后担子菌门的相对丰度降低15.69%(P>0.05),但是不能降低被孢霉门的相对丰度,且对子囊菌门相对丰度无显著性影响。此外,有研究表明肠道真菌失调的标志之一是担子菌门与子囊菌门的比值升高。与正常对照组相比,模型组担子菌门与子囊菌门相对丰度的比值极显著升高(P<0.01),经过胞外多糖和胞内多糖干预后,该比值下降,其中胞内多糖组作用显著(P<0.05)。Figure 5 shows the effect of polysaccharides from perennialia cerevisiae on specific fungal phyla in the intestinal tract of T2DM mice (Note: A is the relative abundance of Ascomycota, Basidiomycota and Mortierella in the intestinal microbiota of mice in each treatment group; B Be each treatment group mouse intestinal microorganism Basidiomycota and Ascomycota number ratio.Normal control group: mice are fed modeling contrast feed D12450B, and irritate 1% (mL/g) BW sterile water every day; Diabetes model group Mice are fed with high-fat diet, fed with 1% (mL/g) BW sterile water every day; Positive drug group (positive drug is metformin): mice are fed with high-fat diet, fed with 30mg/kg metformin every day; white wax for many years Bacterial extracellular polysaccharide medium dose group: mice were fed high-fat feed, and 100mg/kg EPPF was intragastrically administered every day; white wax perennial bacteria intracellular polysaccharide medium-dose group: mice were fed high-fat feed, and 100mg/kg IPPF was intragastrically administered every day. Compared with the control group, #: P<0.05, ##: P<0.01; compared with the T2DM model group, *: P<0.05, **: P<0.01.). It can be seen from Figure 5 that, compared with the normal control group, the relative abundances of Basidiomycota and Mortierella in the model group were significantly increased by 203.16% and 261.38% respectively (P<0.01), while Ascomycota were relatively abundant. The degree was extremely significantly reduced by 30.57% (P<0.01). After 28 days of intracellular polysaccharide administration, the relative abundance of Basidiomycota and Mortierella decreased by 14.65% and 61.2% respectively (P<0.05), and the relative abundance of Ascomycota increased by 17.92% (P<0.05 ). After exopolysaccharide administration, the relative abundance of Basidiomycota decreased by 15.69% (P>0.05), but the relative abundance of Mortierella could not be reduced, and there was no significant effect on the relative abundance of Ascomycota. Furthermore, it has been shown that one of the hallmarks of intestinal fungal dysbiosis is an elevated ratio of Basidiomycota to Ascomycota. Compared with the normal control group, the ratio of the relative abundance of Basidiomycota and Ascomycota in the model group was significantly increased (P<0.01), and after the intervention of exopolysaccharides and intracellular polysaccharides, the ratio decreased, and intracellular polysaccharides Group effect was significant (P<0.05).
3)白蜡多年菌多糖对T2DM小鼠粪便中短链脂肪酸的影响3) Effects of polysaccharides from Perennialia cerevisiae on short-chain fatty acids in feces of T2DM mice
短链脂肪酸(SCFAs)是指碳数不大于6的脂肪酸,包括三种主要的SCFAs:乙酸、丙酸、丁酸和两种不太丰富的戊酸和己酸。其中乙酸是结肠中最丰富的SCFA,在粪便中检测到的SCFA总量的一半以上。SCFAs主要由肠道中的细菌发酵产生,可积极参与宿主能量调节,在脑、肌肉、气道、白色脂肪组织、棕色脂肪组织和血管生理中发挥关键调节作用。大量证据表明,增加SCFA的产量有利于宿主发挥抗肥胖和抗糖尿病的作用。Short-chain fatty acids (SCFAs) refer to fatty acids with a carbon number of 6 or less, including three major SCFAs: acetate, propionate, butyrate, and the two less abundant valeric and caproic acids. Among them, acetate was the most abundant SCFA in the colon, accounting for more than half of the total SCFA detected in feces. Mainly produced by bacterial fermentation in the gut, SCFAs can actively participate in host energy regulation and play key regulatory roles in brain, muscle, airway, white adipose tissue, brown adipose tissue, and vascular physiology. A large amount of evidence shows that increasing the production of SCFA is beneficial to the host to exert anti-obesity and anti-diabetes effects.
根据GC-MS结果得到各组的短链脂肪酸含量见图6。图6为白蜡多年菌多糖对T2DM小鼠粪便中短链脂肪酸的影响(注:A为乙酸;B为丙酸;C为丁酸;D为异丁酸;E为戊酸;F为异戊酸;正常对照组:小鼠喂造模对照饲料D12450B,每天灌胃1%(mL/g)BW无菌水;糖尿病模型组:小鼠喂食高脂饲料,每天灌胃1%(mL/g)BW无菌水;阳性药物组(阳性药物为二甲双胍):小鼠喂食高脂饲料,每天灌胃30mg/kg二甲双胍;白蜡多年菌胞外多糖中剂量组:小鼠喂食高脂饲料,每天灌胃100mg/kg EPPF;白蜡多年菌胞内多糖中剂量组:小鼠喂食高脂饲料,每天灌胃100mg/kg IPPF。与正常对照组相比,#:P<0.05,##:P<0.01;与T2DM模型组相比,*:P<0.05,**:P<0.01。)。从图6可以看出,与正常对照组相比,模型组的乙酸、丙酸、丁酸含量均明显下降(P<0.01),异丁酸及戊酸含量也显著下降(P<0.05)。而与模型组相比,IPPF均能极显著增加乙酸、戊酸及异戊酸的含量,分别增加了48.19%、295.57%及170.67%(P<0.01),同时也能显著增加丁酸和异丁酸的含量,分别增加了199.11%及87.63%(P<0.05)。而EPPF也能增加乙酸和丁酸的含量,但效果不显著。说明白蜡多年菌多糖可以增加T2DM小鼠中部分短链脂肪酸的含量,其中胞内多糖作用明显优于胞外多糖。According to the GC-MS results, the content of short-chain fatty acids in each group is shown in Figure 6. Figure 6 shows the effect of polysaccharides from perennial bacteria on short-chain fatty acids in feces of T2DM mice (Note: A is acetic acid; B is propionic acid; C is butyric acid; D is isobutyric acid; E is valeric acid; F is isopentyl acid; normal control group: the mice were fed with modeling contrast feed D12450B, and 1% (mL/g) BW sterile water was fed by stomach every day; the diabetes model group: the mice were fed with high-fat diet, and 1% (mL/g) was fed by stomach every day ) BW sterile water; Positive drug group (positive drug is metformin): the mice are fed with high-fat feed, and 30mg/kg metformin is fed by stomach every day; Stomach 100mg/kg EPPF; white wax perennial intracellular polysaccharide medium dose group: mice were fed high-fat diet, and 100mg/kg IPPF was intragastrically administered every day. Compared with the normal control group, #: P<0.05, ##: P<0.01 ; Compared with T2DM model group, *: P<0.05, **: P<0.01.). It can be seen from Figure 6 that compared with the normal control group, the content of acetic acid, propionic acid and butyric acid in the model group decreased significantly (P<0.01), and the content of isobutyric acid and valeric acid also decreased significantly (P<0.05). Compared with the model group, IPPF can significantly increase the content of acetic acid, valeric acid and isovaleric acid by 48.19%, 295.57% and 170.67% respectively (P<0.01). The content of butyric acid increased by 199.11% and 87.63% respectively (P<0.05). While EPPF can also increase the content of acetic acid and butyric acid, but the effect is not significant. It shows that polysaccharides from Perennialia cerevisiae can increase the content of some short-chain fatty acids in T2DM mice, and the effect of intracellular polysaccharides is obviously better than that of exopolysaccharides.
实施例6:白蜡多年菌多糖(实施例4制备得到)用于降血糖研究Example 6: The polysaccharide of Perennial cerevisiae (prepared in Example 4) is used for hypoglycemic research
(1)昆明小鼠:SPF级别,雄性,体重16-20g,日龄28-30天,由广东省医学实验动物中心提供。许可证号:SCXK(粤)2018-0002。饲料:普通对照饲料(D12450B),高脂饲料(D12451),由广东省医学实验动物中心提供。许可证号:SCXK(粤)2018-0002。(1) Kunming mice: SPF level, male, body weight 16-20 g, age 28-30 days, provided by Guangdong Medical Experimental Animal Center. License number: SCXK (Guangdong) 2018-0002. Feed: common control feed (D12450B), high-fat feed (D12451), provided by Guangdong Medical Experimental Animal Center. License number: SCXK (Guangdong) 2018-0002.
(2)适应性喂养以及分组:小鼠购入后在动物房内分笼(9组,每组10只),于室温20-22℃,相对湿度50-60%RH,自由进食和饮水(饮用水灭菌,基础饲料紫外照射灭菌)适应喂养6天。后随机将小鼠分组,分别设正常对照组(Normal control,NC)、T2DM模型组(Diabetes model,DM)、阳性药物组(Positive control,PC,阳性药物为二甲双胍)、经白蜡多年菌多糖处理的糖尿病组(分胞外多糖和胞内多糖的低中高剂量组)。正常对照组小鼠饲喂标准对照饲料D12450B(总能量3.85kacl/g,脂肪供能比10%);其余实验组小鼠饲喂高脂饮食D12451总能量4.73kacl/g,脂肪供能比45%)。(2) Adaptive feeding and grouping: After the mice were purchased, they were divided into cages (9 groups, 10 in each group) in the animal room, at room temperature 20-22 ° C, relative humidity 50-60% RH, free to eat and drink ( Sterilization of drinking water, sterilization of basal feed by ultraviolet irradiation) to adapt to feeding for 6 days. Afterwards, the mice were randomly divided into groups, including normal control group (Normal control, NC), T2DM model group (Diabetes model, DM), positive drug group (Positive control, PC, positive drug is metformin), treated with polysaccharide Diabetic group (divided into low, middle and high dose groups of exopolysaccharide and intracellular polysaccharide). The mice in the normal control group were fed the standard control diet D12450B (total energy 3.85kacl/g, fat
(3)T2DM小鼠模型的构造:实验组小鼠喂养高脂饲料3周后于第一天和第三天分别腹腔注射链脲佐菌素(STZ,50mg/kg溶于pH 4.5的0.1mol/L的柠檬酸缓冲液中),正常对照组同时注射等剂量的0.1mol/L的柠檬酸缓冲溶液。于注射后第7天测定空腹血糖,将血糖水平>11.1mmol/L的小鼠定义为T2DM。(3) Construction of the T2DM mouse model: the mice in the experimental group were fed with a high-fat diet for 3 weeks, and then intraperitoneally injected streptozotocin (STZ, 50 mg/kg dissolved in 0.1 mol of pH 4.5) on the first and third days, respectively. /L citric acid buffer solution), and the normal control group was injected with an equal dose of 0.1mol/L citric acid buffer solution at the same time. Fasting blood glucose was measured on the 7th day after injection, and mice with blood glucose levels>11.1mmol/L were defined as T2DM.
(4)多糖给药试验:造模成功后,实验组每日经口灌胃给予受试物,灌胃容积为1%(mL/g)BW/d。灌胃量根据每周体重增减调整,实验周期为28天。白蜡多年菌胞外多糖低剂量处理组(剂量为50mg/kg/d)、白蜡多年菌胞外多糖中剂量处理组(剂量为100mg/kg/d)和白蜡多年菌胞外多糖高剂量处理组(剂量为200mg/kg/d),白蜡多年菌胞内多糖低剂量处理组(剂量为50mg/kg/d)、白蜡多年菌胞内多糖中剂量处理组(剂量为100mg/kg/d)和白蜡多年菌胞内多糖高剂量处理组(剂量为200mg/kg/d),阳性药物组(剂量为30mg/kg/d的二甲双胍),正常对照组灌胃等体积的无菌水。每天记录小鼠的进食量,并分别在灌胃前及实验第7、14、21、28天对各组实验小鼠称重,测定空腹血糖,记录它们实验前后的体重变化、血糖变化及死亡率。(4) Polysaccharide administration test: After successful modeling, the experimental group was given the test substance by oral gavage every day, and the volume of gavage was 1% (mL/g) BW/d. The amount of gavage was adjusted according to the weekly weight gain and loss, and the experimental period was 28 days. White wax perennial exopolysaccharide low-dose treatment group (50 mg/kg/d), white wax perennial exopolysaccharide medium dose treatment group (100 mg/kg/d) and white wax perennial high-dose exopolysaccharide treatment group (dose is 200mg/kg/d), white wax perennial bacteria intracellular polysaccharide low-dose treatment group (dose is 50mg/kg/d), white wax perennial bacteria intracellular polysaccharide middle dose treatment group (dose is 100mg/kg/d) and The high-dose treatment group (dose of 200 mg/kg/d) of intracellular polysaccharides of perennial bacteria, the positive drug group (30 mg/kg/d of metformin), and the normal control group were given equal volumes of sterile water. Record the food intake of the mice every day, and weigh the experimental mice in each group before gavage and on the 7th, 14th, 21st, and 28th day of the experiment, measure the fasting blood sugar, and record their body weight changes, blood sugar changes and death before and after the experiment Rate.
(5)小鼠空腹血糖测试(5) Fasting blood glucose test in mice
小鼠禁食不禁水12h后,将小鼠固定于小鼠固定器中,用酒精棉球对小鼠尾部消毒后,用一次性取血针扎小鼠尾静脉,待出血后用血糖仪测定空腹血糖值。After the mice were fasted for 12 hours, the mice were fixed in the mouse holder, the tail of the mice was disinfected with alcohol cotton balls, and the tail veins of the mice were pricked with a disposable blood collection needle, and measured with a blood glucose meter after bleeding fasting blood sugar level.
(6)口服葡萄糖耐量测试(6) Oral glucose tolerance test
第28d取小鼠空腹静脉血测定完空腹血糖之后,口服葡萄糖2g/(kg·bw),然后分别测定30min、60min、120min的血糖值。按下式计算血糖曲线下面积(Area Under theCurve,AUC)。On the 28th day, the fasting venous blood of the mice was taken to measure the fasting blood glucose, and 2 g/(kg·bw) of glucose was taken orally, and then the blood glucose values of 30 min, 60 min, and 120 min were measured respectively. Calculate the area under the curve (Area Under the Curve, AUC) according to the formula.
AUC=0.5×(G0 h+G0.5 h)×0.5+0.5×(G2 h+G0.5 h)×1.5AUC=0.5×(G0 h+G0.5 h)×0.5+0.5×(G2 h+G0.5 h)×1.5
(7)最后一天灌胃后,小鼠禁食不禁水12h,经4%水合氯醛麻醉小鼠后,摘眼球取血,分离得到血清后分别检测血糖相关指标的表达量,包括小鼠胰岛素(INS)、糖化血红蛋白(HbA1c)。采用稳态模型评估指数HOMA-IR和HOMA-β对胰岛素抵抗(IR)和β细胞功能进行评估,稳态评估指数采用以下公式进行计算:(7) After intragastric administration on the last day, the mice were fasted without water for 12 hours. After the mice were anesthetized with 4% chloral hydrate, the blood was collected from the eyeballs, and the serum was separated to detect the expression levels of blood glucose-related indicators, including mouse insulin. (INS), glycated hemoglobin (HbA1c). The homeostatic model assessment index HOMA-IR and HOMA-β were used to evaluate insulin resistance (IR) and β-cell function, and the homeostasis assessment index was calculated using the following formula:
HOMA-IR=[空腹胰岛素(mU/L)×空腹血糖(mmol/L)]/22.5HOMA-IR=[fasting insulin (mU/L)×fasting blood glucose (mmol/L)]/22.5
HOMA-β(%)=[20×空腹胰岛素(mU/L)]/[空腹血糖(mmol/L)-3.5]×100%HOMA-β(%)=[20×fasting insulin (mU/L)]/[fasting blood glucose (mmol/L)-3.5]×100%
取血后迅速解剖小鼠,取其肝脏,采用ELISA法测定短链脂肪酸受体GPR41和GPR43表达量。After the blood was collected, the mice were dissected quickly, and their livers were collected, and the expressions of short-chain fatty acid receptors GPR41 and GPR43 were determined by ELISA.
(8)实验结果(8) Experimental results
1)白蜡多年菌多糖的降血糖作用分析1) Analysis of the hypoglycemic effect of polysaccharides from Perennial cerevisiae
高脂饮食联合低剂量的STZ诱导造成高血糖小鼠,后经不同浓度的白蜡多年菌胞外多糖及胞内多糖灌胃28天,分别在灌胃第0、7、14、21及28天测定小鼠空腹血糖,结果表明白蜡多年菌多糖对小鼠空腹血糖具有显著影响。图7为白蜡多年菌多糖对T2DM小鼠降血糖相关指标的影响(注:A为第0、7、14、21、28天各处理组小鼠的空腹血糖值;B为各处理组小鼠的糖耐量检测值;C为血糖AUC值;D为各处理组小鼠的糖化血红蛋白水平。从每个时间点左至右组别为:NC:正常对照组,小鼠喂造模对照饲料D12450B,每天灌胃1%(mL/g)BW无菌水;DM:糖尿病模型组,小鼠喂食高脂饲料,每天灌胃1%(mL/g)BW无菌水;PC:阳性药物组(阳性药物为二甲双胍),小鼠喂食高脂饲料,每天灌胃30mg/kg二甲双胍;EPPF:白蜡多年菌胞外多糖低、中、高剂量组,小鼠喂食高脂饲料,每天灌胃50mg/kg、100mg/kg、200mg/kg的EPPF;IPPF:白蜡多年菌胞内多糖低、中、高剂量组,小鼠喂食高脂饲料,每天灌胃50mg/kg、100mg/kg、200mg/kg IPPF。与正常对照组相比,#:P<0.05,##:P<0.01;与T2DM模型组相比,*:P<0.05,**:P<0.01。)从图7-A中可以看出,白蜡多年菌胞外多糖的低、中、高剂量以及胞内多糖的中剂量均能显著降低T2DM小鼠的空腹血糖,给药28天后,与模型组相比,以上治疗组小鼠的空腹血糖分别下降了19.59%、15.76%、30.94%以及24.93%。其中,白蜡多年菌胞外多糖的高剂量治疗组效果最佳。通过葡萄糖耐受实验研究了治疗4周后小鼠对葡萄糖的耐受反应。结果见图7-B,结果表明,口服葡萄糖溶液后,小鼠血糖在30min时显著提升,90min时略有下降,到120min时基本趋于正常。其中,模型组小鼠在口服葡萄糖前以及口服30min、90min及120min的血糖值均显著高于空白对照组。而在口服葡萄糖120min后,白蜡多年菌胞外多糖低、中、高剂量组及胞内多糖中剂量小鼠的血糖值与模型组对比分别下降了36.05%、30.38%、47.95%及30.59%(P<0.01),且均接近正常对照组,说明以上多糖治疗组小鼠的葡萄糖耐受较好。此外,结合血糖线下面积AUC(图7-C)可以看出,口服葡萄糖2h后,白蜡多年菌胞外多糖低、中、高剂量及胞内多糖的中剂量组小鼠的血糖AUC均显著低于模型组(P<0.05),血糖AUC与模型组相比分别下降了26.02%(P<0.01)、22.79%(P<0.05)、35.19%(P<0.01)及27.55%(P<0.01)。且与阳性药物组相比无显著性差异,这表明白蜡多年菌胞外多糖三个剂量与胞内多糖中剂量的效果与二甲双胍接近。从糖化血红蛋白水平(图7-D)可以看出,白蜡多年菌胞外多糖的低、中剂量以及胞内多糖的低剂量治疗组可以显著降低小鼠血清中的HbA1c水平,与模型组相比分别下降了10.90%及8.48%。而模型组与正常对照组、阳性药物组的HbA1c的水平均没有显著性差异。High-fat diet combined with low-dose STZ induced hyperglycemia mice, and then gavaged with different concentrations of exopolysaccharides and intracellular polysaccharides of perennial bacteria for 28 days. The fasting blood glucose of mice was measured, and the results showed that the polysaccharide of perennial bacteria had a significant effect on the fasting blood glucose of mice. Figure 7 shows the effect of polysaccharides from perennial bacteria on the hypoglycemic indicators of T2DM mice (Note: A is the fasting blood glucose value of mice in each treatment group on
2)白蜡多年菌多糖对T2DM小鼠血清中胰岛素功能和胰岛β细胞功能分析2) Analysis of insulin function and islet β-cell function in the serum of T2DM mice by the polysaccharide of perennial bacteria
图8为白蜡多年菌多糖对T2DM小鼠胰岛素功能和胰岛β细胞功能的影响(注:A为各处理组小鼠血清中的胰岛素水平;B为各处理组小鼠的HOMA-IR值;C为各处理组小鼠的HOMA-β值。组别:NC:正常对照组,小鼠喂造模对照饲料D12450B,每天灌胃1%(mL/g)BW无菌水;DM:糖尿病模型组,小鼠喂食高脂饲料,每天灌胃1%(mL/g)BW无菌水;PC:阳性药物组(阳性药物为二甲双胍),小鼠喂食高脂饲料,每天灌胃30mg/kg二甲双胍;EPPF:白蜡多年菌胞外多糖低、中、高剂量组,小鼠喂食高脂饲料,每天灌胃50mg/kg、100mg/kg、200mg/kg的EPPF;IPPF:白蜡多年菌胞内多糖低、中、高剂量组,小鼠喂食高脂饲料,每天灌胃50mg/kg、100mg/kg、200mg/kg IPPF。与正常对照组相比,#:P<0.05,##:P<0.01;与T2DM模型组相比,*:P<0.05,**:P<0.01。)从图8-A可以看出,与正常对照组相比,模型组的胰岛素水平极显著升高了32.03%(P<0.01),说明模型组中胰岛素敏感性低,利用率差。与模型组相比,二甲双胍治疗组小鼠血清中胰岛素含量降低了13.27%(P<0.05),胞外多糖中剂量组组降低了14.90%(P<0.05),胞外多糖高级量组降低了13.84%(P<0.05),L-IPPF降低了19.91%(P<0.05)。胞外多糖低剂量组也能降低胰岛素含量,但与模型组无显著性差异。从图8-B可以看出,与正常对照组相比,模型组的HOMA-IR值极显著升高了101.23%(P<0.01)。与模型对照组相比,阳性药物组及胞外多糖的低、中、高三个剂量组以及胞内多糖中剂量组均能极显著降低HOMA-IR的值,分别降低了37.75%(P<0.01)、40.05%(P<0.01)、40.74%(P<0.01)、40.05%(P<0.01)及34.46%(P<0.01),且与正常对照组无显著性差异。说明这几个治疗组均能显著降低T2DM小鼠的胰岛素抵抗,且与降血糖结果一致。在改善胰岛β细胞功能方面,如图8-C所示,与模型组相比,胞外多糖的低剂量和高剂量组以及胞内多糖中剂量组均能显著提升HOMA-β的值,分别提升了97.7%(P<0.01)、62.63%(P<0.05)和90.35%(P<0.01),且与正常对照组无显著性差异。此外,阳性药物组及胞外多糖中剂量组也能使HOMA-β的值提升,但不显著。说明白蜡多年菌多糖可以通过降低胰岛素含量,改善胰岛素抵抗和改善胰岛β细胞功能来改善血糖水平。Figure 8 is the effect of polysaccharides from perennial bacteria on T2DM mice insulin function and islet β cell function (Note: A is the insulin level in the serum of mice in each treatment group; B is the HOMA-IR value of mice in each treatment group; C Be the HOMA-β value of each treatment group mouse.Groups: NC: normal control group, mice are fed modeling contrast feedstuff D12450B, irritate 1% (mL/g) BW sterile water every day; DM: diabetes model group , the mice were fed with a high-fat feed, and 1% (mL/g) BW sterile water was administrated every day; PC: the positive drug group (positive drug was metformin), the mice were fed with a high-fat feed, and 30mg/kg metformin was administrated every day; EPPF: low, medium, and high dose groups of perennial perennial bacteria exopolysaccharide, the mice were fed high-fat diet, and 50mg/kg, 100mg/kg, 200mg/kg of EPPF were gavaged every day; IPPF: low, In the middle and high dose groups, the mice were fed with high-fat feed, and 50mg/kg, 100mg/kg, and 200mg/kg IPPF were intragastrically administered every day. Compared with the normal control group, #: P<0.05, ##: P<0.01; Compared with the T2DM model group, *: P<0.05, **: P<0.01.) As can be seen from Figure 8-A, compared with the normal control group, the insulin level of the model group was significantly increased by 32.03% (P <0.01), indicating low insulin sensitivity and poor utilization in the model group. Compared with the model group, the serum insulin content of the mice in the metformin treatment group was reduced by 13.27% (P<0.05), the exopolysaccharide medium-dose group was reduced by 14.90% (P<0.05), and the exopolysaccharide high-dose group was reduced 13.84% (P<0.05), L-IPPF decreased by 19.91% (P<0.05). The low-dose exopolysaccharide group can also reduce the insulin content, but there is no significant difference with the model group. It can be seen from Fig. 8-B that compared with the normal control group, the HOMA-IR value of the model group was significantly increased by 101.23% (P<0.01). Compared with the model control group, the positive drug group, the low, medium and high dosage groups of exopolysaccharide and the middle dosage group of intracellular polysaccharide could significantly reduce the value of HOMA-IR by 37.75% respectively (P<0.01 ), 40.05% (P<0.01), 40.74% (P<0.01), 40.05% (P<0.01) and 34.46% (P<0.01), and there was no significant difference with the normal control group. It shows that these treatment groups can significantly reduce the insulin resistance of T2DM mice, which is consistent with the results of hypoglycemia. In terms of improving islet β-cell function, as shown in Figure 8-C, compared with the model group, the low-dose and high-dose groups of exopolysaccharides and the middle-dose group of intracellular polysaccharides could significantly increase the value of HOMA-β, respectively The increase was 97.7% (P<0.01), 62.63% (P<0.05) and 90.35% (P<0.01), and there was no significant difference with the normal control group. In addition, the positive drug group and the medium dose group of exopolysaccharide can also increase the value of HOMA-β, but not significantly. It shows that polysaccharides from perennialia can improve blood sugar level by reducing insulin content, improving insulin resistance and improving islet β-cell function.
3)白蜡多年菌多糖对短链脂肪酸受体GPR41和GPR43表达作用分析3) Analysis of the effect of polysaccharides from Perennialia cerevisiae on the expression of short-chain fatty acid receptors GPR41 and GPR43
短链脂肪酸受体GPR41和GPR43在肠道、脂肪组织、肝脏、胰腺和许多免疫细胞亚型中表达,均可以通过介导短链脂肪酸而对机体发挥重要的生理作用。GPR41主要由丁酸和戊酸等短链脂肪酸激活,而GPR43对乙酸和丙酸具有较高的亲和力。在盲肠和大肠中,产生的短链脂肪酸95%被结肠细胞迅速吸收,被吸收的SCFAs通过肝肠循环等刺激相应的受体,使其在肠道、脂肪组织、肝脏等细胞中表达。Short-chain fatty acid receptors GPR41 and GPR43 are expressed in the intestine, adipose tissue, liver, pancreas and many immune cell subtypes, and both can play important physiological roles in the body by mediating short-chain fatty acids. GPR41 is mainly activated by short-chain fatty acids such as butyrate and pentanoate, while GPR43 has a higher affinity for acetate and propionate. In the cecum and large intestine, 95% of the short-chain fatty acids produced are rapidly absorbed by colonic cells, and the absorbed SCFAs stimulate the corresponding receptors through enterohepatic circulation to express in intestinal cells, adipose tissue, liver and other cells.
对白蜡多年菌多糖调节短链脂肪酸受体GPR41和GPR43表达作用分析见图9,由图9-A可知,与DM模型组相比,阳性药物二甲双胍使GPR43的表达量显著上升了8.91%(P<0.05)。胞外多糖的中剂量和高剂量分别使GPR43的表达量极显著的上调了29.21%(P<0.01)和38.26%(P<0.01)。而胞内多糖的低、中、高剂量使GPR43的表达量分别极显著升高了31.72%(P<0.01)、34.19%(P<0.01)及34.97%(P<0.01)。由图9-B可知,与正常对照组相比,模型组的GPR41表达量极显著下降了12.28%(P<0.01)。与模型组相比,阳性药物二甲双胍使肝脏GPR41的表达量极显著上调了10.58%(P<0.01)。同样与模型组相比,胞外多糖的低、中、高剂量组分别使GPR41的表达量极显著上调了10.19%(P<0.01)、24.02%(P<0.01)及23.36%(P<0.01)。相应剂量的胞内多糖分别使GPR41的表达量极显著上调了20.17%(P<0.01)、21.38%(P<0.01)及22.26%(P<0.01),且呈剂量-效应关系。The analysis of the effect of polysaccharides on the regulation of the expression of short-chain fatty acid receptors GPR41 and GPR43 by the polysaccharide of Perennial cerevisiae is shown in Figure 9. It can be seen from Figure 9-A that compared with the DM model group, the positive drug metformin significantly increased the expression of GPR43 by 8.91% (P <0.05). The medium dose and high dose of exopolysaccharide significantly increased the expression of GPR43 by 29.21% (P<0.01) and 38.26% (P<0.01). The low, medium and high doses of intracellular polysaccharides significantly increased the expression of GPR43 by 31.72% (P<0.01), 34.19% (P<0.01) and 34.97% (P<0.01), respectively. It can be seen from Fig. 9-B that, compared with the normal control group, the expression level of GPR41 in the model group was significantly decreased by 12.28% (P<0.01). Compared with the model group, the positive drug metformin significantly increased the expression of GPR41 in the liver by 10.58% (P<0.01). Also compared with the model group, the low-, medium-, and high-dose groups of exopolysaccharides significantly increased the expression of GPR41 by 10.19% (P<0.01), 24.02% (P<0.01) and 23.36% (P<0.01 ). Corresponding doses of intracellular polysaccharides significantly up-regulated the expression of GPR41 by 20.17% (P<0.01), 21.38% (P<0.01) and 22.26% (P<0.01), and there was a dose-effect relationship.
结合实施例5和6的结果可知,白蜡多年菌多糖可作为益生元作用于肠道菌群,来提高有益菌群的比例;反过来有益菌群借助其代谢产物SCFAs调节机体代谢。结合白蜡多年菌多糖降血糖作用的探究我们发现,白蜡多年菌多糖通过调节肠道微生物菌群组成和多样性以及肠道衍生物短链脂肪酸含量等介导了糖代谢相关蛋白的表达,共同起到降血糖作用。本研究验证了白蜡多年菌多糖的降血糖活性,以及其作为益生元从调节肠道菌群的角度探究了其与降血糖之间的关联。本发明首次从肠道菌群的角度验证了白蜡多年菌多糖降血糖活性,为白蜡多年菌多糖降血糖机制研究提供新的思路,也为白蜡多年菌及其他药用真菌多糖制备调节肠道紊乱的药物以及临床治疗糖尿病开辟新的领域。Combining the results of Examples 5 and 6, it can be seen that the polysaccharides of Perennial cerevisiae can be used as a prebiotic to act on the intestinal flora to increase the proportion of beneficial flora; in turn, the beneficial flora regulates the metabolism of the body with the help of their metabolites SCFAs. Combined with the exploration of the hypoglycemic effect of perennial polysaccharides, we found that polysaccharides from perennial bacteria mediated the expression of proteins related to carbohydrate metabolism by regulating the composition and diversity of intestinal microbial flora and the content of short-chain fatty acids in intestinal derivatives, which together played a role to hypoglycemic effect. This study verified the hypoglycemic activity of perennial polysaccharides, and explored its relationship with hypoglycemia as a prebiotic from the perspective of regulating intestinal flora. For the first time, the present invention verifies the hypoglycemic activity of perennial polysaccharides from the perspective of intestinal flora, provides new ideas for the research on the hypoglycemic mechanism of perennial polysaccharides, and also regulates intestinal disorders for the preparation of polysaccharides from perennial perennials and other medicinal fungi Drugs and clinical treatment of diabetes open up new areas.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111676281.9A CN114292343B (en) | 2021-12-31 | 2021-12-31 | A method for preparing exopolysaccharide and intracellular polysaccharide of Perennial ash and its application in regulating intestinal microbial flora and lowering blood sugar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111676281.9A CN114292343B (en) | 2021-12-31 | 2021-12-31 | A method for preparing exopolysaccharide and intracellular polysaccharide of Perennial ash and its application in regulating intestinal microbial flora and lowering blood sugar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114292343A CN114292343A (en) | 2022-04-08 |
CN114292343B true CN114292343B (en) | 2022-11-04 |
Family
ID=80975960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111676281.9A Active CN114292343B (en) | 2021-12-31 | 2021-12-31 | A method for preparing exopolysaccharide and intracellular polysaccharide of Perennial ash and its application in regulating intestinal microbial flora and lowering blood sugar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114292343B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007001961A (en) * | 2005-06-27 | 2007-01-11 | Forestry & Forest Products Research Institute | Antibacterial agent, oral composition containing the same, and food and drink |
CN101440355A (en) * | 2008-10-06 | 2009-05-27 | 浙江大学 | Enterobacter cloacae, and use of polysaccharide and polysaccharide thereof |
CN111040044A (en) * | 2019-12-31 | 2020-04-21 | 华南师范大学 | Cordyceps militaris intracellular polysaccharide, preparation method and application thereof in regulating intestinal flora |
CN111172216A (en) * | 2020-01-19 | 2020-05-19 | 华南师范大学 | Cordyceps militaris polysaccharide with function of inhibiting macrophage from secreting NO, and preparation method and application thereof |
CN112843103A (en) * | 2021-03-05 | 2021-05-28 | 河南城建学院 | Method for culturing Polyporus leucoderma, extracting mycelium flavone and flavone compound product thereof |
-
2021
- 2021-12-31 CN CN202111676281.9A patent/CN114292343B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007001961A (en) * | 2005-06-27 | 2007-01-11 | Forestry & Forest Products Research Institute | Antibacterial agent, oral composition containing the same, and food and drink |
CN101440355A (en) * | 2008-10-06 | 2009-05-27 | 浙江大学 | Enterobacter cloacae, and use of polysaccharide and polysaccharide thereof |
CN111040044A (en) * | 2019-12-31 | 2020-04-21 | 华南师范大学 | Cordyceps militaris intracellular polysaccharide, preparation method and application thereof in regulating intestinal flora |
CN111172216A (en) * | 2020-01-19 | 2020-05-19 | 华南师范大学 | Cordyceps militaris polysaccharide with function of inhibiting macrophage from secreting NO, and preparation method and application thereof |
CN112843103A (en) * | 2021-03-05 | 2021-05-28 | 河南城建学院 | Method for culturing Polyporus leucoderma, extracting mycelium flavone and flavone compound product thereof |
Non-Patent Citations (3)
Title |
---|
Structural characterization of polysaccharides from Cordyceps militaris and their hypolipidemic effects in high fat diet fed mice;Zhen-feng Huang 等;《RSC Advances》;20181207;第8卷;全文 * |
液体培养条件下槐生多年卧孔菌、微酸多年卧孔菌和白蜡多年卧孔菌的抗氧化活性研究;李海蛟等;《菌物学报》;20170222(第02期);全文 * |
白蜡多年菌液体培养产胞外多糖条件的研究;梁冬秋等;《广东农业科学》;20151025(第20期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114292343A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104829738B (en) | Application of sargassum graminifolium polysaccharide extract in improvement of intestinal flora and prevention and treatment of diabetes | |
CN115462525B (en) | Blood fat regulating composition and preparation method and application thereof | |
CN111035649B (en) | NMN + GLP compound nutritional supplement and preparation method and application thereof | |
CN111040044B (en) | Cordyceps militaris intracellular polysaccharide, preparation method and application thereof in regulating intestinal flora | |
CN112535239B (en) | Compound Chinese herbal medicine feed additive for daily health care and growth promotion of livestock and preparation and application thereof | |
CN107412254A (en) | The application of anoectochilus roxburghii polyose extract | |
CN116407572A (en) | Sea buckthorn extract and preparation method and application thereof | |
CN108570116B (en) | Yellow-green Capricornis polysaccharide and preparation method and medical use in preventing and treating diabetes | |
CN113694104A (en) | Traditional Chinese medicine composition with protection effect on chemical liver injury and liver regeneration promotion function, preparation method and application thereof | |
CN114292343B (en) | A method for preparing exopolysaccharide and intracellular polysaccharide of Perennial ash and its application in regulating intestinal microbial flora and lowering blood sugar | |
CN116114876B (en) | Hypoglycemic composition containing sugarcane polyphenol and chlamydomonas reinhardtii and preparation method thereof | |
CN117180318A (en) | Metagen composite fermentation liquor, preparation method and application thereof | |
CN117618515A (en) | Traditional Chinese medicine probiotic composition for controlling weight and reducing hepatic steatosis | |
JP2947560B2 (en) | AIDS treatment and method for producing the same | |
CN114057905B (en) | A steamed polygonatum polysaccharide and its application in adjusting intestinal microorganisms | |
CN106038869B (en) | Compound guava preparation and preparation method thereof | |
CN109136151A (en) | A kind of composite plant Lemonal and its application with reduction blood glucose function | |
CN115998802A (en) | A kind of fermentation method of chicory and raspberry compound | |
CN115029284A (en) | Active probiotics and application thereof in food | |
CN106589083B (en) | A kind of Yunzhi intracellular glycopeptide active ingredient PSK-1c1 for the treatment of alcoholic liver disease | |
CN114403450B (en) | Application of black fungus polysaccharide additive in inhibiting body metabolism odor production | |
CN110664892A (en) | Stem and/or leaf extract of broad bean with red root, extraction method and application | |
CN117838776B (en) | Application of Jiangxi Penicillium and fungus tea in the preparation of blood sugar-lowering drugs and health products | |
CN118511995B (en) | Polysaccharide composition capable of improving sugar metabolism disorder and application thereof | |
CN114712485B (en) | Application of a lipopeptide surfactin in preventing or alleviating type Ⅱ diabetes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |