CN114291962A - Device and method for treating late landfill leachate by three-stage plug-flow PN-PNA-DE process - Google Patents
Device and method for treating late landfill leachate by three-stage plug-flow PN-PNA-DE process Download PDFInfo
- Publication number
- CN114291962A CN114291962A CN202111414628.2A CN202111414628A CN114291962A CN 114291962 A CN114291962 A CN 114291962A CN 202111414628 A CN202111414628 A CN 202111414628A CN 114291962 A CN114291962 A CN 114291962A
- Authority
- CN
- China
- Prior art keywords
- biochemical
- pna
- tank
- biochemical pool
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000000149 chemical water pollutant Substances 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 44
- 230000001105 regulatory effect Effects 0.000 claims abstract description 32
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 238000010992 reflux Methods 0.000 claims abstract description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 11
- 241000894006 Bacteria Species 0.000 claims abstract description 8
- 230000003647 oxidation Effects 0.000 claims abstract description 5
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 5
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 4
- 239000010802 sludge Substances 0.000 claims description 70
- 238000004062 sedimentation Methods 0.000 claims description 39
- 238000005273 aeration Methods 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 12
- 238000012806 monitoring device Methods 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000006228 supernatant Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 238000001556 precipitation Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 6
- 235000017281 sodium acetate Nutrition 0.000 claims description 6
- 239000001632 sodium acetate Substances 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 5
- 238000009825 accumulation Methods 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 abstract description 8
- 230000005764 inhibitory process Effects 0.000 abstract description 8
- 239000005416 organic matter Substances 0.000 abstract description 6
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 abstract description 4
- 230000007062 hydrolysis Effects 0.000 abstract description 3
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000002351 wastewater Substances 0.000 abstract description 2
- 230000001651 autotrophic effect Effects 0.000 abstract 1
- 230000000977 initiatory effect Effects 0.000 abstract 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 abstract 1
- 230000020477 pH reduction Effects 0.000 abstract 1
- 241001453382 Nitrosomonadales Species 0.000 description 11
- 230000003750 conditioning effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- YBVAXJOZZAJCLA-UHFFFAOYSA-N nitric acid nitrous acid Chemical compound ON=O.O[N+]([O-])=O YBVAXJOZZAJCLA-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Abstract
三级推流式PN‑PNA‑DE工艺处理晚期垃圾渗滤液的装置与方法属于高氨氮废水生物处理领域。渗滤液原水和三级生化处理出水在一级调节池混合后进入PN生化池,在其缺氧区进行有机物的水解和反硝化反应,在好氧区进行短程硝化反应,缺氧区原位FA处理和好氧区原位FNA处理是PN生化池维持稳定短程硝化和有机物水解酸化的关键,三级生化处理出水回流的启动,缓解了FA及FNA对PN生化池AOB和反硝化菌的抑制。一级生化处理出水进入PNA生化池进行自养脱氮,分段进水策略缓解了FA对AnAOB的抑制,且提高了进水有机物的利用效率,PN生化池与PNA生化池的分级设置为厌氧氨氧化过程提供了充足的亚硝态氮。本发明实现了低碳高效深度脱氮。
The device and method for treating late-stage landfill leachate by three-stage plug-flow PN-PNA-DE process belong to the field of biological treatment of high ammonia nitrogen wastewater. The leachate raw water and the effluent from the tertiary biochemical treatment are mixed in the primary regulating tank and then enter the PN biochemical tank, where the hydrolysis and denitrification of organic matter are carried out in the anoxic zone, the short-range nitrification reaction is carried out in the aerobic zone, and the in-situ FA in the anoxic zone is carried out. Treatment and in-situ FNA treatment in the aerobic zone are the keys to maintaining stable short-range nitrification and hydrolysis and acidification of organic matter in the PN biochemical pool. The initiation of the effluent reflux from the tertiary biochemical treatment relieved the inhibition of FA and FNA on AOB and denitrifying bacteria in the PN biochemical pool. The effluent from the primary biochemical treatment enters the PNA biochemical tank for autotrophic denitrification. The staged influent strategy alleviates the inhibition of FA on AnAOB and improves the utilization efficiency of the influent organic matter. The classification of the PN biochemical tank and the PNA biochemical tank is set to anaerobic ammonia. The oxidation process provides sufficient nitrous nitrogen. The invention realizes low-carbon, high-efficiency and deep denitrification.
Description
技术领域technical field
本发明是一种以三级推流式短程硝化/反硝化-短程硝化耦合厌氧氨氧化-深度反硝化技术为核心,并针对如何在实现稳定短程硝化的同时缓解原位游离氨和游离亚硝酸处理对关键功能菌的抑制,从而进行晚期垃圾渗滤液的高效率、低成本的深度脱氮,属于高氨氮废水生物处理技术领域。The invention is a three-stage plug-flow short-range nitrification/denitrification-short-range nitrification coupled anaerobic ammonium oxidation-deep denitrification technology as the core, and aims at how to achieve stable short-range nitrification while alleviating in-situ free ammonia and free nitrogen The invention relates to the inhibition of key functional bacteria by nitric acid treatment, so as to carry out high-efficiency and low-cost deep denitrification of late-stage landfill leachate, and belongs to the technical field of biological treatment of high-ammonia nitrogen wastewater.
背景技术Background technique
从2004年至2020年,我国城市生活垃圾年清运量由1.55×104增至2.35×104万吨,无害化处理率由52.1%增至99.7%,其无害化处置方式由卫生填埋逐渐转为焚烧,但二者均会产生垃圾渗滤液。其中生物处理法是垃圾渗滤液脱氮最经济、低碳的方法。From 2004 to 2020, the annual removal volume of urban domestic waste in China increased from 1.55×10 4 to 2.35×10 40,000 tons, and the harmless treatment rate increased from 52.1% to 99.7%. Landfilling is gradually being converted to incineration, but both produce landfill leachate. Among them, biological treatment is the most economical and low-carbon method for denitrification of landfill leachate.
与传统硝化-反硝化生物脱氮工艺相比,短程硝化耦合厌氧氨氧化(PNA)工艺因理论上可节省约60%的曝气能耗和100%的碳源投加量,越来越广泛的用于垃圾渗滤液生物处理研究中。然而该技术用于晚期垃圾渗滤液脱氮还面临如下问题:如何获取稳定的短程硝化效果;如何保证厌氧氨氧化过程有充足的亚硝酸盐来源;应用原位游离氨(FA)和游离亚硝酸(FNA)处理抑制亚硝酸盐氧化菌(NOB)的同时,如何缓解其对氨氧化菌(AOB)和厌氧氨氧化菌(AnAOB)的抑制;如何实现系统中AnAOB的有效持留;及如何将PNA过程产生的硝酸盐进一步去除等。Compared with the traditional nitrification-denitrification biological denitrification process, the short-range nitrification coupled anaerobic ammonium oxidation (PNA) process can theoretically save about 60% of aeration energy consumption and 100% of carbon source dosage, and is becoming more and more important. Widely used in landfill leachate biological treatment research. However, this technology for late-stage landfill leachate denitrification still faces the following problems: how to obtain a stable short-range nitrification effect; how to ensure a sufficient source of nitrite in the anammox process; use in-situ free ammonia (FA) and free nitrite Nitric acid (FNA) treatment inhibits nitrite oxidizing bacteria (NOB), how to alleviate the inhibition of ammonia oxidizing bacteria (AOB) and anaerobic ammonia oxidizing bacteria (AnAOB); how to achieve effective retention of AnAOB in the system; and how to The nitrates produced by the PNA process are further removed, etc.
发明内容SUMMARY OF THE INVENTION
本发明提出了三级推流式PN-PNA-DE工艺处理晚期垃圾渗滤液的装置与方法。渗滤液原水首先进入PN生化池,在缺氧原位FA处理和好氧原位FNA处理下,抑制、淘洗NOB,并在PN生化池缺氧区进行有机物水解及反硝化;一级生化处理出水和渗滤液原水混合后,分三段且连续进入PNA生化池,在其缺氧区进行厌氧氨氧化及反硝化反应,在其好氧区进行同步短程硝化耦合厌氧氨氧化反应;二级生化处理出水进入DE生化池进行深度脱氮;三级生化处理出水稳定后对系统进行参数优化,启动出水回流装置,将三级生化处理出水与渗滤液原水混合后泵入PN生化池,从而提高氨氮去除效率。The invention proposes a device and a method for treating late landfill leachate by a three-stage plug-flow PN-PNA-DE process. The leachate raw water first enters the PN biochemical tank. Under the anoxic in-situ FA treatment and aerobic in-situ FNA treatment, NOB is inhibited and elutriated, and organic matter hydrolysis and denitrification are carried out in the anoxic zone of the PN biochemical tank; primary biochemical treatment After the effluent and leachate raw water are mixed, they are divided into three stages and continuously enter the PNA biochemical tank, where anammox and denitrification are carried out in the anoxic zone, and the synchronous short-range nitrification coupled with anammox reaction is carried out in the aerobic zone; two The effluent from the first-stage biochemical treatment enters the DE biochemical tank for deep denitrification; after the effluent from the third-stage biochemical treatment is stabilized, the parameters of the system are optimized, and the effluent reflux device is activated to mix the effluent from the third-stage biochemical treatment with the raw leachate water and then pump it into the PN biochemical tank, thereby Improve ammonia nitrogen removal efficiency.
三级推流式PN-PNA-DE工艺处理晚期垃圾渗滤液的装置,其特征是包括以下内容:一级调节池(1);PN生化池(2);一级沉淀池(3);二级调节池(4);PNA生化池(5);二级沉淀池(6);三级调节池(7);DE生化池(8);三级沉淀池(9);The device for treating late-stage landfill leachate by the three-stage plug-flow PN-PNA-DE process is characterized by comprising the following contents: a first-level regulating tank (1); a PN biochemical tank (2); a first-level sedimentation tank (3); two Level conditioning tank (4); PNA biochemical tank (5); Secondary sedimentation tank (6); Tertiary conditioning tank (7); DE biochemical tank (8); Tertiary sedimentation tank (9);
其中,PN生化池进水泵(2.10)将渗滤液原水与三级生化处理出水1:1的混合液(1.2)从一级调节池(1)经PN生化池进水管路(2.11)连续泵入PN生化池格室一(2.1)与活性污泥混合,并从PN生化池格室九(2.9)流出,进入PN生化池出水管路(2.19)和一级沉淀池(3);沉淀后,上清液通过一级生化处理出水泵(4.3)和一级生化处理出水管路(3.1)进入二级调节池(4),一级沉淀池(3)中的污泥经一级污泥回流泵(3.2)和一级污泥回流管路(3.3)回流至PN生化池格室一(2.1);渗滤液原水经二级调节池进水泵(4.1)和二级调节池进水管路(4.2)泵入二级调节池(4)与一级生化处理出水混合;二级调节池(4)内混合液经PNA生化池进水泵一(5.10)和PNA生化池进水管路一(5.11),PNA生化池进水泵二(5.12)和PNA生化池进水管路二(5.13),PNA生化池进水泵三(5.14)和PNA生化池进水管路三(5.15),分别进入PNA生化池(5)的PNA生化池格室一(5.1)、PNA生化池格室四(5.4)及PNA生化池格室七(5.7);PNA生化池(5)的泥水混合液经PNA生化池出水管路(5.25)进入二级沉淀池(6);沉淀后,二级沉淀池(6)中上清液通过二级生化处理出水管路(6.1)进入三级调节池(7);二级沉淀池(6)底部污泥经二级污泥回流泵(6.2)和二级污泥回流管路(6.3)回流至PNA生化池格室一(5.1);乙酸钠溶液经外碳源投加泵(7.1)和外碳源投加管路(7.2)进入三级调节池(7)与二级生化处理出水混合;三级调节池(7)内混合液通过DE生化池进水泵(8.1)和DE生化池进水管路(8.2)进入DE生化池缺氧区(8.8)前端,并从DE生化池好氧区(8.9)末端出水,经DE生化池出水管路(8.10)进入三级沉淀池(9);沉淀后,上清液50%进入三级生化处理出水管路(9.1),50%上清液通过出水回流泵(9.5)和出水回流管路(9.6)进入一级调节池(1);三级沉淀池(9)内污泥经三级污泥回流泵(9.3)和三级污泥回流管路(9.4)回流至DE生化池缺氧区(8.8);Among them, the PN biochemical tank inlet pump (2.10) continuously pumps the 1:1 mixture (1.2) of the leachate raw water and the tertiary biochemical treatment effluent from the first-level adjustment tank (1) through the PN biochemical tank inlet pipeline (2.11). PN biochemical tank compartment one (2.1) is mixed with activated sludge, and flows out from the PN biochemical tank compartment nine (2.9), into the PN biochemical tank outlet pipeline (2.19) and the first-level sedimentation tank (3); after precipitation, The supernatant liquid enters the secondary regulation tank (4) through the primary biochemical treatment effluent pump (4.3) and the primary biochemical treatment effluent pipeline (3.1), and the sludge in the primary sedimentation tank (3) returns through the primary sludge The pump (3.2) and the primary sludge return pipeline (3.3) are returned to the PN biochemical tank compartment 1 (2.1); the raw leachate water passes through the secondary conditioning tank inlet pump (4.1) and the secondary conditioning tank inlet pipeline (4.2). ) is pumped into the secondary regulating tank (4) and mixed with the effluent of the primary biochemical treatment; the mixed liquid in the secondary regulating tank (4) is passed through the PNA biochemical tank inlet pump one (5.10) and the PNA biochemical tank inlet pipeline one (5.11), PNA biochemical tank inlet pump two (5.12) and PNA biochemical tank inlet pipeline two (5.13), PNA biochemical tank inlet pump three (5.14) and PNA biochemical tank inlet pipeline three (5.15), respectively enter the PNA biochemical tank (5) PNA biochemical tank compartment one (5.1), PNA biochemical tank compartment four (5.4) and PNA biochemical tank compartment seven (5.7); ) into the secondary sedimentation tank (6); after precipitation, the supernatant in the secondary sedimentation tank (6) enters the tertiary adjustment tank (7) through the secondary biochemical treatment effluent pipeline (6.1); the secondary sedimentation tank (6) ) The bottom sludge is returned to the PNA biochemical tank compartment 1 (5.1) through the secondary sludge return pump (6.2) and the secondary sludge return pipeline (6.3); the sodium acetate solution is fed by the external carbon source pump (7.1) and the external carbon source feeding pipeline (7.2) enters the tertiary adjustment tank (7) and is mixed with the effluent of the secondary biochemical treatment; the mixed liquid in the tertiary adjustment tank (7) passes through the DE biochemical tank inlet pump (8.1) and the DE biochemical tank The water inlet pipeline (8.2) enters the front end of the anoxic zone (8.8) of the DE biochemical tank, and flows out from the end of the aerobic zone (8.9) of the DE biochemical tank, and enters the tertiary sedimentation tank (9) through the water outlet pipeline (8.10) of the DE biochemical tank. ; After precipitation, 50% of the supernatant enters the tertiary biochemical treatment effluent pipeline (9.1), and 50% of the supernatant enters the first-level adjustment tank (1) through the effluent return pump (9.5) and the effluent return pipeline (9.6); The sludge in the tertiary sedimentation tank (9) is returned to the anoxic zone (8.8) of the DE biochemical tank through the tertiary sludge return pump (9.3) and the tertiary sludge return pipeline (9.4);
此外,所述一级调节池(1)还包括渗滤液原水管路(1.1);所述PN生化池(2)还包括PN生化池格室二(2.2),PN生化池格室三(2.3),PN生化池格室四(2.4),PN生化池格室五(2.5),PN生化池格室六(2.6),PN生化池格室七(2.7),PN生化池格室八(2.8),PN生化池温控装置(2.12),PN生化池加热装置(2.13),PN生化池pH和DO实时监测装置(2.14),PN生化池机械搅拌器(2.15),PN生化池曝气装置(2.16),PN生化池气体流量计(2.17),PN生化池微孔曝气盘(2.18);所述一级沉淀池还包括一级生化处理剩余污泥排放管路(3.4);所述PNA生化池(5)还包括PNA生化池格室二(5.2),PNA生化池格室三,(5.3)PNA生化池格室四(5.4),PNA生化池格室五(5.5),PNA生化池格室六(5.6),PNA生化池格室七(5.7),PNA生化池格室八(5.8),PNA生化池格室九(5.9),PNA生化池温控装置(5.16),PNA生化池加热装置(5.17),PNA生化池pH和DO实时监测装置(5.18),PNA生化池机械搅拌器(5.19),PNA生化池曝气装置(5.20),PNA生化池气体流量计(5.21),PNA生化池微孔曝气盘(5.22),生物膜载体(5.23),生物膜载体固定架(5.24);所述DE生化池(8)还包括DE生化池pH和DO实时监测装置(8.3),DE生化池机械搅拌器(8.4),DE生化池曝气装置(8.5),DE生化池气体流量计(8.6),DE生化池微孔曝气盘(8.7);所述三级沉淀池(9)还包括三级生化处理剩余污泥排放管路(9.2)。具体位置如图1所示。In addition, the first-level adjustment tank (1) further includes a leachate raw water pipeline (1.1); the PN biochemical tank (2) further includes a PN biochemical tank compartment two (2.2), a PN biochemical tank compartment three (2.3) ), PN biochemical pool compartment four (2.4), PN biochemical pool compartment five (2.5), PN biochemical pool compartment six (2.6), PN biochemical pool compartment seven (2.7), PN biochemical pool compartment eight (2.8 ), PN biochemical pool temperature control device (2.12), PN biochemical pool heating device (2.13), PN biochemical pool pH and DO real-time monitoring device (2.14), PN biochemical pool mechanical stirrer (2.15), PN biochemical pool aeration device (2.16), PN biochemical tank gas flow meter (2.17), PN biochemical tank microporous aeration disc (2.18); the first-stage sedimentation tank also includes a first-stage biochemical treatment excess sludge discharge pipeline (3.4); the The PNA biochemical pool (5) also includes the PNA biochemical pool compartment two (5.2), the PNA biochemical pool compartment three, (5.3) the PNA biochemical pool compartment four (5.4), the PNA biochemical pool compartment five (5.5), the PNA biochemical pool compartment five (5.5), and the PNA biochemical pool compartment five (5.5). Cell six (5.6), PNA biochemical cell seven (5.7), PNA biochemical cell eight (5.8), PNA biochemical cell nine (5.9), PNA biochemical cell temperature control device (5.16), PNA biochemical cell Pool heating device (5.17), PNA biochemical pool pH and DO real-time monitoring device (5.18), PNA biochemical pool mechanical stirrer (5.19), PNA biochemical pool aeration device (5.20), PNA biochemical pool gas flow meter (5.21), PNA biochemical tank microporous aeration plate (5.22), biofilm carrier (5.23), biofilm carrier fixing frame (5.24); the DE biochemical tank (8) also includes a DE biochemical tank pH and DO real-time monitoring device (8.3) , DE biochemical pool mechanical stirrer (8.4), DE biochemical pool aeration device (8.5), DE biochemical pool gas flow meter (8.6), DE biochemical pool microporous aeration disc (8.7); the three-stage sedimentation tank ( 9) Also includes a tertiary biochemical treatment excess sludge discharge pipeline (9.2). The specific location is shown in Figure 1.
利用上述装置进行晚期垃圾渗滤液处理的方法是按以下过程进行的:The method for late-stage landfill leachate treatment using the above-mentioned device is carried out according to the following process:
(1)启动PN生化池(2):(1) Start the PN biochemical pool (2):
PN生化池(2)水温为30±1℃;污泥浓度为MLSS为4500±500mg/L,污泥回流比为300%;PN生化池格室五(2.5)至PN生化池格室九(2.9)溶解氧为3.0~7.0mg/L;PN生化池(2)进水为渗滤液原水,其总无机氮浓度为2000.0±200.0mg/L,NH4 +-N浓度为1980.0±200.0mg/L,COD为3370.0±200.0mg/L;PN生化池格室一(2.1)至PN生化池格室四(2.4)的pH为7.6~7.8,PN生化池格室五(2.5)至PN生化池格室九(2.9)的pH为7.2~7.8;PN生化池格室一(2.1)至PN生化池格室四(2.4)的FA浓度为25.0~40.0mg N/L,PN生化池格室五(2.5)至PN生化池格室九(2.9)的FA浓度为5.2~28.1mg N/L;PN生化池格室一(2.1)至PN生化池格室四(2.4)的FNA浓度低于0.07mg N/L,PN生化池格室五(2.5)至PN生化池格室九(2.9)的FNA浓度低于0.22mg N/L;按上述条件运行,使PN生化池(2)的出水亚硝酸盐积累率大于90.0%,且NH4 +-N去除率大于60%;(2)构建短程硝化耦合厌氧氨氧化PNA系统:The water temperature of PN biochemical tank (2) is 30±1℃; the sludge concentration is MLSS is 4500±500mg/L, and the sludge return ratio is 300%; 2.9) Dissolved oxygen is 3.0~7.0mg/L; PN biochemical tank (2) feed water is leachate raw water, its total inorganic nitrogen concentration is 2000.0±200.0mg/L, NH 4 + -N concentration is 1980.0±200.0mg/ L, COD is 3370.0±200.0mg/L; the pH of PN biochemical pool cell one (2.1) to PN biochemical pool cell four (2.4) is 7.6-7.8, PN biochemical pool cell five (2.5) to PN biochemical pool The pH of cell nine (2.9) is 7.2 to 7.8; the FA concentration of cell one (2.1) to cell four (2.4) of PN biochemical pool is 25.0 to 40.0 mg N/L, and cell five of PN biochemical cell (2.5) The FA concentration in the PN biochemical cell compartment nine (2.9) is 5.2-28.1 mg N/L; the FNA concentration in the PN biochemical cell compartment one (2.1) to the PN biochemical cell compartment four (2.4) is lower than 0.07 mg N/L, the FNA concentration of PN biochemical pool cell five (2.5) to PN biochemical pool cell nine (2.9) is lower than 0.22 mg N/L; operating under the above conditions, the effluent of PN biochemical pool (2) The accumulation rate of nitrate is greater than 90.0%, and the removal rate of NH 4 + -N is greater than 60%; (2) The short-range nitrification coupled anammox PNA system is constructed:
在PNA生化池(5)接种厌氧氨氧化菌相对丰度大于10.0%的生物膜载体(5.23),且将生物膜载体(5.23)固定在生物膜载体固定架(5.24)上,填充比为20.0±2.0%;接种一级生化处理剩余污泥至PNA生化池(5)中,使其絮体污泥浓度为2000~2500mg/L,污泥回流比为200%;PNA生化池(5)水温为30±1℃;PNA生化池格室三(5.3),PNA生化池格室六(5.6)和PNA生化池格室九(5.9)的溶解氧浓度为0.1~0.2mg/L;二级调节池(4)内为渗滤液原水和一级生化处理出水1:1的混合液,该混合液以1:1:1的流量比,连续分段泵入PNA生化池格室一(5.1),PNA生化池格室四(5.4)和PNA生化池格室七(5.7),且进水氮负荷从0.02kg N/m3/d增至0.25kg N/m3/d;PNA生化池格室一,二,四,五,七,八(5.1,5.2,5.4,5.5,5.7,5.8)pH为7.6~7.9,FA浓度为7.8~14.6mg N/L,FNA浓度低于0.01mg N/L;PNA生化池格室三,六,九(5.3,5.6,5.9)pH为6.9~7.2,FA浓度为0~1.0mg N/L,FNA浓度低于0.005mg N/L;按上述条件运行,使PNA生化池(5)出水中总无机氮浓度低于60.0mg/L,NH4 +-N浓度低于10.0mg/L,COD低于2200mg/L;Inoculate the biofilm carrier (5.23) with a relative abundance of anammox bacteria greater than 10.0% in the PNA biochemical tank (5), and fix the biofilm carrier (5.23) on the biofilm carrier fixing frame (5.24), the filling ratio is 20.0±2.0%; inoculate the excess sludge from the primary biochemical treatment into the PNA biochemical tank (5), so that the flocculent sludge concentration is 2000-2500 mg/L, and the sludge return ratio is 200%; the PNA biochemical tank (5) The water temperature is 30±1℃; the dissolved oxygen concentration of the PNA biochemical cell three (5.3), the PNA biochemical cell six (5.6) and the PNA biochemical cell nine (5.9) is 0.1~0.2mg/L; the second stage The regulating tank (4) is a 1:1 mixture of leachate raw water and primary biochemical treatment effluent. The mixture is continuously pumped into the PNA biochemical tank compartment 1 (5.1) at a flow ratio of 1:1:1. , PNA biochemical cell compartment four (5.4) and PNA biochemical cell compartment seven (5.7), and the influent nitrogen load increased from 0.02kg N/m 3 /d to 0.25kg N/m 3 /d; PNA biochemical cell compartment Chamber one, two, four, five, seven, eight (5.1, 5.2, 5.4, 5.5, 5.7, 5.8) pH 7.6 to 7.9, FA concentration 7.8 to 14.6 mg N/L, FNA concentration below 0.01 mg N/L L; PNA biochemical pool chambers three, six and nine (5.3, 5.6, 5.9) with pH of 6.9 to 7.2, FA concentration of 0 to 1.0 mg N/L, and FNA concentration of less than 0.005 mg N/L; run according to the above conditions , so that the total inorganic nitrogen concentration in the effluent of the PNA biochemical tank (5) is lower than 60.0 mg/L, the NH 4 + -N concentration is lower than 10.0 mg/L, and the COD is lower than 2200 mg/L;
(3)PN生化池(2),PNA生化池(5)与DE生化池(8)串联运行:(3) PN biochemical pool (2), PNA biochemical pool (5) and DE biochemical pool (8) run in series:
质量分数15%的乙酸钠溶液经外碳源投加泵(7.1)和外碳源投加管路(7.2)进入三级调节池(7)与二级生化处理出水以1:550~1400的流量比例混合,三级调节池(7)中总无机氮浓度为30.0~60.0mg/L,NO3 --N浓度为20.0~50.0mg/L;DE生化池(8)的污泥浓度为4000±500mg/L,污泥回流比为100%;DE生化池好氧区(8.9)溶解氧为2.0~3.0mg/L,pH为7.0~7.5;DE生化池缺氧区(8.8)的pH为在7.5~8.0;按上述条件运行,使三级生化处理出水总无机氮低于15.0mg/L,NH4 +-N浓度低于1.5mg/L;The sodium acetate solution with a mass fraction of 15% enters the tertiary adjustment tank (7) through the external carbon source dosing pump (7.1) and the external carbon source dosing pipeline (7.2) and the effluent of the secondary biochemical treatment at a ratio of 1:550 to 1400. The flow ratio is mixed, the total inorganic nitrogen concentration in the three-stage regulating tank (7) is 30.0-60.0 mg/L, the NO 3 - -N concentration is 20.0-50.0 mg/L; the sludge concentration in the DE biochemical tank (8) is 4000 mg/L. ±500mg/L, the sludge reflux ratio is 100%; the dissolved oxygen in the aerobic zone (8.9) of the DE biochemical tank is 2.0-3.0 mg/L, and the pH is 7.0-7.5; the pH in the anoxic zone (8.8) of the DE biochemical tank is At 7.5 to 8.0; operate according to the above conditions, so that the total inorganic nitrogen in the effluent of the tertiary biochemical treatment is lower than 15.0mg/L, and the NH 4 + -N concentration is lower than 1.5mg/L;
(4)启动出水回流:(4) Start the effluent reflux:
三级生化处理出水经出水回流泵(9.5)和出水回流管路(9.6)进入一级调节池(1),和渗滤液原水以1:1流量比混合;The effluent from the tertiary biochemical treatment enters the primary regulating tank (1) through the effluent return pump (9.5) and the effluent return pipeline (9.6), and is mixed with the raw leachate water at a flow ratio of 1:1;
(5)调整PN生化池(2)运行参数:(5) Adjust the PN biochemical pool (2) operating parameters:
PN生化池(2)水温为30±1℃;污泥浓度为MLSS为4500±500mg/L,污泥回流比由300%降至200%;PN生化池(2)进水为渗滤液原水与三级生化处理出水1:1的混合液(1.2),其总无机氮浓度为1000.0±100.0mg/L,NH4 +-N浓度为990.0±100.0mg/L,COD为2700.0±200.0mg/L;PN生化池格室一(2.1)至PN生化池格室四(2.4)的pH为7.7~8.0,FA浓度为16.1~30.8mg N/L,FNA浓度低于0.02mg N/L;PN生化池格室五(2.5)至PN生化池格室九(2.9)的pH为7.0~7.5,FA浓度为0.8~8.7mg N/L,FNA浓度为0.03~0.17mg N/L,溶解氧为3.0~7.0mg/L。The water temperature of PN biochemical tank (2) is 30±1℃; the sludge concentration is MLSS of 4500±500mg/L, and the sludge return ratio is reduced from 300% to 200%; the influent of PN biochemical tank (2) is leachate raw water and The 1:1 mixed solution (1.2) of the third-stage biochemical treatment effluent has a total inorganic nitrogen concentration of 1000.0±100.0mg/L, NH 4 + -N concentration of 990.0±100.0mg/L, and COD of 2700.0±200.0mg/L ; The pH of cell one (2.1) to cell four (2.4) of PN biochemical pool is 7.7-8.0, the FA concentration is 16.1-30.8 mg N/L, and the FNA concentration is lower than 0.02 mg N/L; The pH of cell five (2.5) to cell nine (2.9) of PN biochemical cell is 7.0-7.5, the FA concentration is 0.8-8.7 mg N/L, the FNA concentration is 0.03-0.17 mg N/L, and the dissolved oxygen is 3.0 ~7.0mg/L.
本发明提供的新型连续流单级A/O工艺处理晚期垃圾渗滤液的装置与方法,其特点与优势如下:The device and method for treating late-stage landfill leachate provided by the novel continuous flow single-stage A/O process have the following features and advantages:
(1)缺氧原位FA处理和好氧原位FNA处理,有效抑制和淘洗PN生化池中的NOB,保证了稳定的短程硝化效果。(1) Anoxic in-situ FA treatment and aerobic in-situ FNA treatment can effectively inhibit and wash NOB in the PN biochemical pool, ensuring a stable short-range nitrification effect.
(2)三级生化处理出水回流并与渗滤液原水混合策略有效缓解了PN生化池中FA和FNA对AOB和反硝化菌的抑制。(2) The strategy of returning the effluent from the tertiary biochemical treatment and mixing it with the leachate raw water effectively alleviated the inhibition of AOB and denitrifying bacteria by FA and FNA in the PN biochemical tank.
(3)PNA生化池分段进水策略有效缓解了FA对AnAOB的抑制,也提高了进水有机物的利用效率。(3) The sectional influent strategy of PNA biochemical tank effectively alleviated the inhibition of FA on AnAOB, and also improved the utilization efficiency of influent organic matter.
(4)PNA生化池固定生物膜与絮体污泥并存,促进了AnAOB的有效持留,缓解了该单元不利环境因素对AnAOB的影响。(4) The coexistence of fixed biofilm and flocculent sludge in PNA biochemical tank promoted the effective retention of AnAOB and alleviated the impact of unfavorable environmental factors in this unit on AnAOB.
(5)PN生化池、PNA生化池及DE生化池的分级设置,保证了PNA生化池缺氧区具有充足的亚硝酸盐底物,并实现了在PNA过程产生的硝酸盐的深度去除。(5) The hierarchical setting of the PN biochemical pool, the PNA biochemical pool and the DE biochemical pool ensures that the anoxic area of the PNA biochemical pool has sufficient nitrite substrates, and realizes the deep removal of nitrates generated during the PNA process.
附图说明Description of drawings
图1为三级推流式PN-PNA-DE工艺处理晚期垃圾渗滤液的装置结构示意图。Figure 1 is a schematic diagram of the device structure of the three-stage plug-flow PN-PNA-DE process for treating late-stage landfill leachate.
其中,1—一级调节池;2—PN生化池;3—一级沉淀池;4—二级调节池;5—PNA生化池;6—二级沉淀池;7—三级调节池;8—DE生化池;9—三级沉淀池;1.1—渗滤液;2.1—PN生化池格室一;2.2—PN生化池格室二;2.3—PN生化池格室三;2.4—PN生化池格室四;2.5—PN生化池格室五;2.6—PN生化池格室六;2.7—PN生化池格室七;2.8—PN生化池格室八;2.9—PN生化池格室九;2.10—PN生化池进水泵;2.11—PN生化池进水管路;2.12—PN生化池温控装置;2.13—PN生化池加热装置;2.14—PN生化池pH和DO实时监测装置;2.15—PN生化池机械搅拌器;2.16—PN生化池曝气装置;2.17—PN生化池气体流量计;2.18—PN生化池微孔曝气盘;2.19—PN生化池出水管路;3.1—一级生化处理出水管路;3.2—一级污泥回流泵;3.3—一级污泥回流管路;3.4—一级生化处理剩余污泥排放管路;4.1—二级调节池进水泵;4.2—二级调节池进水管路;4.3—一级生化处理出水泵;5.1—PNA生化池格室一;5.2—PNA生化池格室二;5.3—PNA生化池格室三;5.4—PNA生化池格室四;5.5—PNA生化池格室五;5.6—PNA生化池格室六;5.7—PNA生化池格室七;5.8—PNA生化池格室八;5.9—PNA生化池格室九;5.10—PNA生化池进水泵一;5.11—PNA生化池进水管路一;5.12—PNA生化池进水泵二;5.13—PNA生化池进水管路二;5.14—PNA生化池进水泵三;5.15—PNA生化池进水管路三;5.16—PNA生化池温控装置;5.17—PNA生化池加热装置;5.18—PNA生化池pH和DO实时监测装置;5.19—PNA生化池机械搅拌器;5.20—PNA生化池曝气装置;5.21—PNA生化池气体流量计;5.22—PNA生化池微孔曝气盘;5.23—生物膜载体;5.24—生物膜载体固定架;5.25—PNA生化池出水管路;6.1—二级生化处理出水管路;6.2—二级污泥回流泵;6.3—二级污泥回流管路;7.1—外碳源投加泵;7.2—外碳源投加管路;8.1—DE生化池进水泵;8.2—DE生化池进水管路;8.3—DE生化池pH和DO实时监测装置;8.4—DE生化池机械搅拌器;8.5—DE生化池曝气装置;8.6—DE生化池气体流量计;8.7—DE生化池微孔曝气盘;8.8—DE生化池缺氧区;8.9—DE生化池好氧区;8.10—DE生化池出水管路;9.1—三级生化处理出水管路;9.2—三级生化处理剩余污泥排放管路;9.3—三级污泥回流泵;9.4—三级污泥回流管路;9.5—出水回流泵;9.6—出水回流管路。Among them, 1-first-level adjustment tank; 2-PN biochemical tank; 3-first-level sedimentation tank; 4-second-level adjustment tank; 5-PNA biochemical tank; 6-second-level sedimentation tank; 7-third-level adjustment tank; 8 —DE biochemical tank; 9—tertiary sedimentation tank; 1.1—leachate; 2.1—PN biochemical tank compartment one; 2.2—PN biochemical tank compartment two; 2.3—PN biochemical tank compartment three; 2.4—PN biochemical tank compartment Room four; 2.5—PN biochemical pool, five; 2.6—PN biochemical pool six; 2.7—PN biochemical pool seven; 2.8—PN biochemical pool eight; 2.9—PN biochemical pool nine; 2.10— 2.11—PN biochemical tank inlet water pipeline; 2.12—PN biochemical tank temperature control device; 2.13—PN biochemical tank heating device; 2.14—PN biochemical tank pH and DO real-time monitoring device; 2.15—PN biochemical tank machinery Stirrer; 2.16—PN biochemical tank aeration device; 2.17—PN biochemical tank gas flow meter; 2.18—PN biochemical tank microporous aeration plate; 2.19—PN biochemical tank outlet pipeline; 3.1—First-level biochemical treatment outlet pipeline ; 3.2—first-level sludge return pump; 3.3-first-level sludge return pipeline; 3.4-first-level biochemical treatment excess sludge discharge pipeline; 4.1-second-level adjustment tank inlet pump; Road; 4.3—first-level biochemical treatment effluent pump; 5.1—PNA biochemical tank compartment one; 5.2—PNA biochemical tank compartment two; 5.3—PNA biochemical tank compartment three; 5.4—PNA biochemical tank compartment four; 5.5—PNA biochemical tank compartment four Biochemical tank compartment five; 5.6—PNA biochemical tank compartment six; 5.7—PNA biochemical tank compartment seven; 5.8—PNA biochemical tank compartment eight; 5.9—PNA biochemical tank compartment nine; 5.10—PNA biochemical tank inlet pump one ;5.11—PNA biochemical pool inlet pipe one; 5.12—PNA biochemical tank inlet water pump two; 5.13—PNA biochemical tank water inlet pipe two; 5.14—PNA biochemical tank inlet water pump three; —PNA biochemical pool temperature control device; 5.17—PNA biochemical pool heating device; 5.18—PNA biochemical pool pH and DO real-time monitoring device; 5.19—PNA biochemical pool mechanical stirrer; 5.20—PNA biochemical pool aeration device; 5.21—PNA biochemical pool Pool gas flow meter; 5.22—PNA biochemical tank microporous aeration plate; 5.23—Biofilm carrier; 5.24—Biofilm carrier holder; 5.25—PNA biochemical tank outlet pipeline; 6.1—Secondary biochemical treatment outlet pipeline; 6.2 —Secondary sludge return pump; 6.3—Secondary sludge return pipeline; 7.1—External carbon source dosing pump; 7.2—External carbon source dosing pipeline; 8.1—DE biochemical tank inlet pump; 8.2—DE biochemical tank Water inlet pipeline; 8.3—DE biochemical tank pH and DO real-time monitoring device; 8.4—DE biochemical tank mechanical agitator; 8.5—DE biochemical tank aeration device; 8.6—DE biochemical tank gas flow 8.7—DE biochemical tank microporous aeration plate; 8.8—DE biochemical tank anoxic area; 8.9—DE biochemical tank aerobic area; 8.10—DE biochemical tank outlet pipeline; 9.1—three-stage biochemical treatment outlet pipeline 9.2—Three-stage biochemical treatment excess sludge discharge pipeline; 9.3—Three-stage sludge return pump; 9.4—Three-stage sludge return pipeline; 9.5—Effluent return pump; 9.6—Effluent return pipeline.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,三级推流式PN-PNA-DE工艺处理晚期垃圾渗滤液的装置包括:一级调节池(1);PN生化池(2);一级沉淀池(3);二级调节池(4);PNA生化池(5);二级沉淀池(6);三级调节池(7);DE生化池(8);三级沉淀池(9);As shown in Figure 1, the device for treating late-stage landfill leachate by the three-stage plug-flow PN-PNA-DE process includes: a first-stage regulating tank (1); a PN biochemical tank (2); a first-stage sedimentation tank (3); Level conditioning tank (4); PNA biochemical tank (5); Secondary sedimentation tank (6); Tertiary conditioning tank (7); DE biochemical tank (8); Tertiary sedimentation tank (9);
其中,PN生化池进水泵(2.10)将渗滤液原水与三级生化处理出水1:1的混合液(1.2)从一级调节池(1)经PN生化池进水管路(2.11)连续泵入PN生化池格室一(2.1)与活性污泥混合,并从PN生化池格室九(2.9)流出,进入PN生化池出水管路(2.19)和一级沉淀池(3);沉淀后,上清液通过一级生化处理出水泵(4.3)和一级生化处理出水管路(3.1)进入二级调节池(4),一级沉淀池(3)中的污泥经一级污泥回流泵(3.2)和一级污泥回流管路(3.3)回流至PN生化池格室一(2.1);渗滤液原水经二级调节池进水泵(4.1)和二级调节池进水管路(4.2)泵入二级调节池(4)与一级生化处理出水混合;二级调节池(4)内混合液经PNA生化池进水泵一(5.10)和PNA生化池进水管路一(5.11),PNA生化池进水泵二(5.12)和PNA生化池进水管路二(5.13),PNA生化池进水泵三(5.14)和PNA生化池进水管路三(5.15),分别进入PNA生化池(5)的PNA生化池格室一(5.1)、PNA生化池格室四(5.4)及PNA生化池格室七(5.7);PNA生化池(5)的泥水混合液经PNA生化池出水管路(5.25)进入二级沉淀池(6);沉淀后,二级沉淀池(6)中上清液通过二级生化处理出水管路(6.1)进入三级调节池(7);二级沉淀池(6)底部污泥经二级污泥回流泵(6.2)和二级污泥回流管路(6.3)回流至PNA生化池格室一(5.1);乙酸钠溶液经外碳源投加泵(7.1)和外碳源投加管路(7.2)进入三级调节池(7)与二级生化处理出水混合;三级调节池(7)内混合液通过DE生化池进水泵(8.1)和DE生化池进水管路(8.2)进入DE生化池缺氧区(8.8)前端,并从DE生化池好氧区(8.9)末端出水,经DE生化池出水管路(8.10)进入三级沉淀池(9);沉淀后,上清液50%进入三级生化处理出水管路(9.1),50%上清液通过出水回流泵(9.5)和出水回流管路(9.6)进入一级调节池(1);三级沉淀池(9)内污泥经三级污泥回流泵(9.3)和三级污泥回流管路(9.4)回流至DE生化池缺氧区(8.8);Among them, the PN biochemical tank inlet pump (2.10) continuously pumps the 1:1 mixture (1.2) of the leachate raw water and the tertiary biochemical treatment effluent from the first-level adjustment tank (1) through the PN biochemical tank inlet pipeline (2.11). PN biochemical tank compartment one (2.1) is mixed with activated sludge, and flows out from the PN biochemical tank compartment nine (2.9), into the PN biochemical tank outlet pipeline (2.19) and the first-level sedimentation tank (3); after precipitation, The supernatant liquid enters the secondary regulation tank (4) through the primary biochemical treatment effluent pump (4.3) and the primary biochemical treatment effluent pipeline (3.1), and the sludge in the primary sedimentation tank (3) returns through the primary sludge The pump (3.2) and the primary sludge return pipeline (3.3) are returned to the PN biochemical tank compartment 1 (2.1); the raw leachate water passes through the secondary conditioning tank inlet pump (4.1) and the secondary conditioning tank inlet pipeline (4.2). ) is pumped into the secondary regulating tank (4) and mixed with the effluent of the primary biochemical treatment; the mixed liquid in the secondary regulating tank (4) is passed through the PNA biochemical tank inlet pump one (5.10) and the PNA biochemical tank inlet pipeline one (5.11), PNA biochemical tank inlet pump two (5.12) and PNA biochemical tank inlet pipeline two (5.13), PNA biochemical tank inlet pump three (5.14) and PNA biochemical tank inlet pipeline three (5.15), respectively enter the PNA biochemical tank (5) PNA biochemical tank compartment one (5.1), PNA biochemical tank compartment four (5.4) and PNA biochemical tank compartment seven (5.7); ) into the secondary sedimentation tank (6); after precipitation, the supernatant in the secondary sedimentation tank (6) enters the tertiary adjustment tank (7) through the secondary biochemical treatment effluent pipeline (6.1); the secondary sedimentation tank (6) ) The bottom sludge is returned to the PNA biochemical tank compartment 1 (5.1) through the secondary sludge return pump (6.2) and the secondary sludge return pipeline (6.3); the sodium acetate solution is fed by the external carbon source pump (7.1) and the external carbon source feeding pipeline (7.2) enters the tertiary adjustment tank (7) and is mixed with the effluent of the secondary biochemical treatment; the mixed liquid in the tertiary adjustment tank (7) passes through the DE biochemical tank inlet pump (8.1) and the DE biochemical tank The water inlet pipeline (8.2) enters the front end of the anoxic zone (8.8) of the DE biochemical tank, and flows out from the end of the aerobic zone (8.9) of the DE biochemical tank, and enters the tertiary sedimentation tank (9) through the water outlet pipeline (8.10) of the DE biochemical tank. ; After precipitation, 50% of the supernatant enters the tertiary biochemical treatment effluent pipeline (9.1), and 50% of the supernatant enters the first-level adjustment tank (1) through the effluent return pump (9.5) and the effluent return pipeline (9.6); The sludge in the tertiary sedimentation tank (9) is returned to the anoxic zone (8.8) of the DE biochemical tank through the tertiary sludge return pump (9.3) and the tertiary sludge return pipeline (9.4);
此外,所述一级调节池(1)还包括渗滤液原水管路(1.1);所述PN生化池(2)还包括PN生化池格室二(2.2),PN生化池格室三(2.3),PN生化池格室四(2.4),PN生化池格室五(2.5),PN生化池格室六(2.6),PN生化池格室七(2.7),PN生化池格室八(2.8),PN生化池温控装置(2.12),PN生化池加热装置(2.13),PN生化池pH和DO实时监测装置(2.14),PN生化池机械搅拌器(2.15),PN生化池曝气装置(2.16),PN生化池气体流量计(2.17),PN生化池微孔曝气盘(2.18);所述一级沉淀池还包括一级生化处理剩余污泥排放管路(3.4);所述PNA生化池(5)还包括PNA生化池格室二(5.2),PNA生化池格室三,(5.3)PNA生化池格室四(5.4),PNA生化池格室五(5.5),PNA生化池格室六(5.6),PNA生化池格室七(5.7),PNA生化池格室八(5.8),PNA生化池格室九(5.9),PNA生化池温控装置(5.16),PNA生化池加热装置(5.17),PNA生化池pH和DO实时监测装置(5.18),PNA生化池机械搅拌器(5.19),PNA生化池曝气装置(5.20),PNA生化池气体流量计(5.21),PNA生化池微孔曝气盘(5.22),生物膜载体(5.23),生物膜载体固定架(5.24);所述DE生化池(8)还包括DE生化池pH和DO实时监测装置(8.3),DE生化池机械搅拌器(8.4),DE生化池曝气装置(8.5),DE生化池气体流量计(8.6),DE生化池微孔曝气盘(8.7);所述三级沉淀池(9)还包括三级生化处理剩余污泥排放管路(9.2)。In addition, the first-level adjustment tank (1) further includes a leachate raw water pipeline (1.1); the PN biochemical tank (2) further includes a PN biochemical tank compartment two (2.2), a PN biochemical tank compartment three (2.3) ), PN biochemical pool compartment four (2.4), PN biochemical pool compartment five (2.5), PN biochemical pool compartment six (2.6), PN biochemical pool compartment seven (2.7), PN biochemical pool compartment eight (2.8 ), PN biochemical pool temperature control device (2.12), PN biochemical pool heating device (2.13), PN biochemical pool pH and DO real-time monitoring device (2.14), PN biochemical pool mechanical stirrer (2.15), PN biochemical pool aeration device (2.16), PN biochemical tank gas flow meter (2.17), PN biochemical tank microporous aeration disc (2.18); the first-stage sedimentation tank also includes a first-stage biochemical treatment excess sludge discharge pipeline (3.4); the The PNA biochemical pool (5) also includes the PNA biochemical pool compartment two (5.2), the PNA biochemical pool compartment three, (5.3) the PNA biochemical pool compartment four (5.4), the PNA biochemical pool compartment five (5.5), the PNA biochemical pool compartment five (5.5), and the PNA biochemical pool compartment five (5.5). Cell six (5.6), PNA biochemical cell seven (5.7), PNA biochemical cell eight (5.8), PNA biochemical cell nine (5.9), PNA biochemical cell temperature control device (5.16), PNA biochemical cell Pool heating device (5.17), PNA biochemical pool pH and DO real-time monitoring device (5.18), PNA biochemical pool mechanical stirrer (5.19), PNA biochemical pool aeration device (5.20), PNA biochemical pool gas flow meter (5.21), PNA biochemical tank microporous aeration plate (5.22), biofilm carrier (5.23), biofilm carrier fixing frame (5.24); the DE biochemical tank (8) also includes a DE biochemical tank pH and DO real-time monitoring device (8.3) , DE biochemical pool mechanical stirrer (8.4), DE biochemical pool aeration device (8.5), DE biochemical pool gas flow meter (8.6), DE biochemical pool microporous aeration disc (8.7); the three-stage sedimentation tank ( 9) Also includes a tertiary biochemical treatment excess sludge discharge pipeline (9.2).
利用上述装置进行晚期垃圾渗滤液处理的方法是按以下过程进行的:The method for late-stage landfill leachate treatment using the above-mentioned device is carried out according to the following process:
(1)启动PN生化池(2):(1) Start the PN biochemical pool (2):
PN生化池(2)水温为30±1℃;污泥浓度为MLSS为4500±500mg/L,污泥回流比为300%;PN生化池格室五(2.5)至PN生化池格室九(2.9)溶解氧为3.0~7.0mg/L;PN生化池(2)进水为渗滤液原水,其总无机氮浓度为2000.0±200.0mg/L,NH4 +-N浓度为1980.0±200.0mg/L,COD为3370.0±200.0mg/L;PN生化池格室一(2.1)至PN生化池格室四(2.4)的pH为7.6~7.8,PN生化池格室五(2.5)至PN生化池格室九(2.9)的pH为7.2~7.8;PN生化池格室一(2.1)至PN生化池格室四(2.4)的FA浓度为25.0~40.0mg N/L,PN生化池格室五(2.5)至PN生化池格室九(2.9)的FA浓度为5.2~28.1mg N/L;PN生化池格室一(2.1)至PN生化池格室四(2.4)的FNA浓度低于0.07mg N/L,PN生化池格室五(2.5)至PN生化池格室九(2.9)的FNA浓度低于0.22mg N/L;按上述条件运行,使PN生化池(2)的出水亚硝酸盐积累率大于90.0%,且NH4 +-N去除率大于60%;(2)构建短程硝化耦合厌氧氨氧化PNA系统:The water temperature of PN biochemical tank (2) is 30±1℃; the sludge concentration is MLSS is 4500±500mg/L, and the sludge return ratio is 300%; 2.9) Dissolved oxygen is 3.0~7.0mg/L; PN biochemical tank (2) feed water is leachate raw water, its total inorganic nitrogen concentration is 2000.0±200.0mg/L, NH 4 + -N concentration is 1980.0±200.0mg/ L, COD is 3370.0±200.0mg/L; the pH of PN biochemical pool cell one (2.1) to PN biochemical pool cell four (2.4) is 7.6-7.8, PN biochemical pool cell five (2.5) to PN biochemical pool The pH of cell nine (2.9) is 7.2 to 7.8; the FA concentration of cell one (2.1) to cell four (2.4) of PN biochemical pool is 25.0 to 40.0 mg N/L, and cell five of PN biochemical cell (2.5) The FA concentration in the PN biochemical cell compartment nine (2.9) is 5.2-28.1 mg N/L; the FNA concentration in the PN biochemical cell compartment one (2.1) to the PN biochemical cell compartment four (2.4) is lower than 0.07 mg N/L, the FNA concentration of PN biochemical pool cell five (2.5) to PN biochemical pool cell nine (2.9) is lower than 0.22 mg N/L; operating under the above conditions, the effluent of PN biochemical pool (2) The accumulation rate of nitrate is greater than 90.0%, and the removal rate of NH 4 + -N is greater than 60%; (2) The short-range nitrification coupled anammox PNA system is constructed:
在PNA生化池(5)接种厌氧氨氧化菌相对丰度大于10.0%的生物膜载体(5.23),且将生物膜载体(5.23)固定在生物膜载体固定架(5.24)上,填充比为20.0±2.0%;接种一级生化处理剩余污泥至PNA生化池(5)中,使其絮体污泥浓度为2000~2500mg/L,污泥回流比为200%;PNA生化池(5)水温为30±1℃;PNA生化池格室三(5.3),PNA生化池格室六(5.6)和PNA生化池格室九(5.9)的溶解氧浓度为0.1~0.2mg/L;二级调节池(4)内为渗滤液原水和一级生化处理出水1:1的混合液,该混合液以1:1:1的流量比,连续分段泵入PNA生化池格室一(5.1),PNA生化池格室四(5.4)和PNA生化池格室七(5.7),且进水氮负荷从0.02kg N/m3/d增至0.25kg N/m3/d,分段进水策略目的是缓解FA对AnAOB的抑制,且提高进水中有机物的利用效率;PNA生化池格室一,二,四,五,七,八(5.1,5.2,5.4,5.5,5.7,5.8)pH为7.6~7.9,FA浓度为7.8~14.6mg N/L,FNA浓度低于0.01mg N/L;PNA生化池格室三,六,九(5.3,5.6,5.9)pH为6.9~7.2,FA浓度为0~1.0mg N/L,FNA浓度低于0.005mg N/L;按上述条件运行,使PNA生化池(5)出水中总无机氮浓度低于60.0mg/L,NH4 +-N浓度低于10.0mg/L,COD低于2200mg/L;(3)PN生化池(2),PNA生化池(5)与DE生化池(8)串联运行:Inoculate the biofilm carrier (5.23) with a relative abundance of anammox bacteria greater than 10.0% in the PNA biochemical tank (5), and fix the biofilm carrier (5.23) on the biofilm carrier fixing frame (5.24), the filling ratio is 20.0±2.0%; inoculate the excess sludge from the primary biochemical treatment into the PNA biochemical tank (5), so that the floc sludge concentration is 2000-2500 mg/L, and the sludge return ratio is 200%; the PNA biochemical tank (5) The water temperature is 30±1℃; the dissolved oxygen concentration of the PNA biochemical cell three (5.3), the PNA biochemical cell six (5.6) and the PNA biochemical cell nine (5.9) is 0.1~0.2mg/L; the second stage The regulating tank (4) is a 1:1 mixture of leachate raw water and primary biochemical treatment effluent. The mixture is continuously pumped into the PNA biochemical tank compartment 1 (5.1) at a flow ratio of 1:1:1. , PNA biochemical tank cell four (5.4) and PNA biochemical cell cell seven (5.7), and the influent nitrogen load increased from 0.02kg N/m 3 /d to 0.25kg N/m 3 /d, the purpose of the staged water inflow strategy It is to alleviate the inhibition of FA on AnAOB and improve the utilization efficiency of organic matter in the influent; PNA biochemical pool compartments one, two, four, five, seven, eight (5.1, 5.2, 5.4, 5.5, 5.7, 5.8) pH is 7.6 ~7.9, FA concentration is 7.8~14.6mg N/L, FNA concentration is lower than 0.01mg N/L; PNA biochemical cell chambers three, six, nine (5.3, 5.6, 5.9) pH is 6.9~7.2, FA concentration is 0~1.0mg N/L, the FNA concentration is lower than 0.005mg N/L; according to the above conditions, the total inorganic nitrogen concentration in the effluent of the PNA biochemical tank (5) is lower than 60.0mg/L, and the NH 4 + -N concentration is low At 10.0mg/L, COD is lower than 2200mg/L; (3) PN biochemical pool (2), PNA biochemical pool (5) and DE biochemical pool (8) run in series:
质量分数15%的乙酸钠溶液经外碳源投加泵(7.1)和外碳源投加管路(7.2)进入三级调节池(7)与二级生化处理出水以1:550~1400的流量比例混合,三级调节池(7)中总无机氮浓度为30.0~60.0mg/L,NO3 --N浓度为20.0~50.0mg/L;DE生化池(8)的污泥浓度为4000±500mg/L,污泥回流比为100%;DE生化池好氧区(8.9)溶解氧为2.0~3.0mg/L,pH为7.0~7.5;DE生化池缺氧区(8.8)的pH为在7.5~8.0;按上述条件运行,使三级生化处理出水总无机氮低于15.0mg/L,NH4 +-N浓度低于1.5mg/L;The sodium acetate solution with a mass fraction of 15% enters the tertiary adjustment tank (7) through the external carbon source dosing pump (7.1) and the external carbon source dosing pipeline (7.2) and the effluent of the secondary biochemical treatment at a ratio of 1:550 to 1400. The flow ratio is mixed, the total inorganic nitrogen concentration in the three-stage regulating tank (7) is 30.0-60.0 mg/L, the NO 3 - -N concentration is 20.0-50.0 mg/L; the sludge concentration in the DE biochemical tank (8) is 4000 mg/L. ±500mg/L, the sludge reflux ratio is 100%; the dissolved oxygen in the aerobic zone (8.9) of the DE biochemical tank is 2.0-3.0 mg/L, and the pH is 7.0-7.5; the pH in the anoxic zone (8.8) of the DE biochemical tank is At 7.5 to 8.0; operate according to the above conditions, so that the total inorganic nitrogen in the effluent of the tertiary biochemical treatment is lower than 15.0mg/L, and the NH 4 + -N concentration is lower than 1.5mg/L;
(4)启动系统出水回流:(4) Start the system effluent backflow:
三级生化处理出水经出水回流泵(9.5)和出水回流管路(9.6)进入一级调节池(1),和渗滤液原水以1:1流量比混合,作为PN生化池(2)的进水;The effluent from the tertiary biochemical treatment enters the primary regulating tank (1) through the effluent return pump (9.5) and the effluent return pipeline (9.6), and is mixed with the raw leachate water at a flow ratio of 1:1, and is used as the inlet of the PN biochemical tank (2). water;
(5)PN生化池(2)运行参数调整:(5) PN biochemical pool (2) Adjustment of operating parameters:
PN生化池(2)进水为渗滤液原水与三级生化处理出水1:1的混合液(1.2),其总无机氮浓度为1000.0±100.0mg/L,NH4 +-N浓度为990.0±100.0mg/L,COD为2700.0±200.0mg/L,用以降低FA对AOB和反硝化菌的抑制;因PN生化池(2)进水氨氮浓度降低,且该单元FA浓度也降低,故污泥回流比由300%降至200%,以节省能耗;PN生化池格室一(2.1)至PN生化池格室四(2.4)的pH为7.7~8.0,FA浓度为16.1~30.8mg N/L,FNA浓度低于0.02mg N/L;PN生化池格室五(2.5)至PN生化池格室九(2.9)的pH为7.0~7.5,FA浓度为0.8~8.7mg N/L,FNA浓度为0.03~0.17mg N/L,溶解氧为3.0~7.0mg/L;按上述条件运行,使氨氮氧化率大于90%,且亚硝酸盐积累率大于90.0%。The influent of PN biochemical tank (2) is a 1:1 mixture of leachate raw water and tertiary biochemical treatment effluent (1.2), the total inorganic nitrogen concentration is 1000.0±100.0mg/L, and the NH 4 + -N concentration is 990.0± 100.0mg/L, COD is 2700.0±200.0mg/L, which is used to reduce the inhibition of FA on AOB and denitrifying bacteria; because the ammonia nitrogen concentration of the PN biochemical pool (2) influent is reduced, and the FA concentration of this unit is also reduced, so the pollution The mud reflux ratio is reduced from 300% to 200% to save energy; the pH of the PN biochemical tank cell one (2.1) to the PN biochemical cell cell four (2.4) is 7.7~8.0, and the FA concentration is 16.1~30.8mg N /L, FNA concentration is lower than 0.02mg N/L; pH of PN biochemical cell compartment five (2.5) to PN biochemical cell compartment nine (2.9) is 7.0~7.5, FA concentration is 0.8~8.7mg N/L, The concentration of FNA is 0.03-0.17 mg N/L, and the dissolved oxygen is 3.0-7.0 mg/L; according to the above conditions, the oxidation rate of ammonia nitrogen is greater than 90%, and the accumulation rate of nitrite is greater than 90.0%.
实验结果表明:采用该三级推流式PN-PNA-DE工艺处理晚期垃圾渗滤液的装置与方法,当进水总无机氮浓度为2000.0±200.0mg/L,NH4 +-N浓度为1980.0±200.0mg/L,COD为3370.0±200.0mg/L时,总无机氮、NH4 +-N和COD去除率分别可达99.0%、99.9%和50.0%.The experimental results show that: using the three-stage plug-flow PN-PNA-DE process device and method to treat late landfill leachate, when the total inorganic nitrogen concentration of the influent is 2000.0±200.0mg/L, and the NH 4 + -N concentration is 1980.0 When the COD is ±200.0mg/L and the COD is 3370.0±200.0mg/L, the removal rates of total inorganic nitrogen, NH 4 + -N and COD can reach 99.0%, 99.9% and 50.0%, respectively.
以上对本发明所提供的三级推流式PN-PNA-DE工艺处理晚期垃圾渗滤液的装置与方法进行了详细介绍,并且应用了具体个例对本发明的原理及实施方式进行了阐述,该说明只是用于辅助理解本发明的方法及核心思想。对于本领域的一般技术人员,依据本发明的方法与思想,在具体实施方式上均会有改变之处。因此,本说明书内容不应理解为对本发明的限制。The device and method for treating late-stage landfill leachate by the three-stage plug-flow PN-PNA-DE process provided by the present invention have been described in detail above, and the principles and implementations of the present invention have been described with specific examples. It is only used to assist understanding of the method and core idea of the present invention. For those skilled in the art, according to the method and idea of the present invention, there will be changes in the specific embodiments. Therefore, the contents of this specification should not be construed as limiting the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111414628.2A CN114291962B (en) | 2021-11-26 | 2021-11-26 | Device and method for treating late landfill leachate by three-stage plug flow type PN-PNA-DE process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111414628.2A CN114291962B (en) | 2021-11-26 | 2021-11-26 | Device and method for treating late landfill leachate by three-stage plug flow type PN-PNA-DE process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114291962A true CN114291962A (en) | 2022-04-08 |
CN114291962B CN114291962B (en) | 2023-04-18 |
Family
ID=80966054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111414628.2A Active CN114291962B (en) | 2021-11-26 | 2021-11-26 | Device and method for treating late landfill leachate by three-stage plug flow type PN-PNA-DE process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114291962B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289264A (en) * | 2008-06-13 | 2008-10-22 | 北京城市排水集团有限责任公司 | Combined denitrification apparatus and method by shortcut nitrification and anaerobic ammonium oxidation of sludge-digestion liquid |
CN102515429A (en) * | 2011-12-09 | 2012-06-27 | 北京工业大学 | Device and method for combined denitrification of anoxic-oxic (A/O) shortcut nitrification and anaerobic ammonia oxidation of late-stage landfill leachate |
EP2501657A1 (en) * | 2009-11-20 | 2012-09-26 | Veolia Water Solutions & Technologies Support | Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor |
CN104860471A (en) * | 2015-05-03 | 2015-08-26 | 北京工业大学 | Half partial nitrification and anaerobic ammonia oxidation combined process late landfill leachate denitrifying device and method |
CN105481093A (en) * | 2016-01-16 | 2016-04-13 | 北京工业大学 | System and method for municipal wastewater treatment through continuous flow step-feed water partial nitrification/anaerobic ammonia oxidation |
CN106006967A (en) * | 2016-07-10 | 2016-10-12 | 北京工业大学 | Short-cut nitrification-ANAMMOX-short-cut denitrification process for advanced treatment of sludge anaerobic digestate and urban sewage |
CN106277312A (en) * | 2015-05-15 | 2017-01-04 | 清华大学 | A kind of municipal sewage nitrogen rejection facility and application thereof |
CN106830324A (en) * | 2017-03-22 | 2017-06-13 | 北京工业大学 | A kind of subsection water inflow A2The apparatus and method of/O process strengthening biological carbon and phosphorous removals |
CN109336325A (en) * | 2018-10-16 | 2019-02-15 | 浙江伍特环保科技有限公司 | A kind of apparatus and method of zero discharge treatment treatment of advanced stage landfill leachate |
CN109574218A (en) * | 2018-12-22 | 2019-04-05 | 北京工业大学 | Short distance nitration-fermentation/denitrification-anaerobic ammonia oxidation process processing treatment of advanced stage landfill leachate apparatus and method |
CN111410310A (en) * | 2020-03-26 | 2020-07-14 | 同济大学 | Method for realizing efficient denitrification by utilizing synchronous shortcut nitrification-denitrification-anaerobic ammonia oxidation coupling drive |
CN113003722A (en) * | 2021-02-09 | 2021-06-22 | 北京工业大学 | Device and method for synchronously treating landfill leachate and excess sludge through three-stage type shortcut nitrification-anaerobic ammonia oxidation process |
-
2021
- 2021-11-26 CN CN202111414628.2A patent/CN114291962B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289264A (en) * | 2008-06-13 | 2008-10-22 | 北京城市排水集团有限责任公司 | Combined denitrification apparatus and method by shortcut nitrification and anaerobic ammonium oxidation of sludge-digestion liquid |
EP2501657A1 (en) * | 2009-11-20 | 2012-09-26 | Veolia Water Solutions & Technologies Support | Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor |
CN102515429A (en) * | 2011-12-09 | 2012-06-27 | 北京工业大学 | Device and method for combined denitrification of anoxic-oxic (A/O) shortcut nitrification and anaerobic ammonia oxidation of late-stage landfill leachate |
CN104860471A (en) * | 2015-05-03 | 2015-08-26 | 北京工业大学 | Half partial nitrification and anaerobic ammonia oxidation combined process late landfill leachate denitrifying device and method |
CN106277312A (en) * | 2015-05-15 | 2017-01-04 | 清华大学 | A kind of municipal sewage nitrogen rejection facility and application thereof |
CN105481093A (en) * | 2016-01-16 | 2016-04-13 | 北京工业大学 | System and method for municipal wastewater treatment through continuous flow step-feed water partial nitrification/anaerobic ammonia oxidation |
CN106006967A (en) * | 2016-07-10 | 2016-10-12 | 北京工业大学 | Short-cut nitrification-ANAMMOX-short-cut denitrification process for advanced treatment of sludge anaerobic digestate and urban sewage |
CN106830324A (en) * | 2017-03-22 | 2017-06-13 | 北京工业大学 | A kind of subsection water inflow A2The apparatus and method of/O process strengthening biological carbon and phosphorous removals |
CN109336325A (en) * | 2018-10-16 | 2019-02-15 | 浙江伍特环保科技有限公司 | A kind of apparatus and method of zero discharge treatment treatment of advanced stage landfill leachate |
CN109574218A (en) * | 2018-12-22 | 2019-04-05 | 北京工业大学 | Short distance nitration-fermentation/denitrification-anaerobic ammonia oxidation process processing treatment of advanced stage landfill leachate apparatus and method |
CN111410310A (en) * | 2020-03-26 | 2020-07-14 | 同济大学 | Method for realizing efficient denitrification by utilizing synchronous shortcut nitrification-denitrification-anaerobic ammonia oxidation coupling drive |
CN113003722A (en) * | 2021-02-09 | 2021-06-22 | 北京工业大学 | Device and method for synchronously treating landfill leachate and excess sludge through three-stage type shortcut nitrification-anaerobic ammonia oxidation process |
Non-Patent Citations (2)
Title |
---|
刘牡: "FA与FNA对两级UASB-A/O处理垃圾渗滤液短程硝化的影响" * |
吴莉娜等: "短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液" * |
Also Published As
Publication number | Publication date |
---|---|
CN114291962B (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112158952B (en) | Apparatus and method for continuous flow AOA short-path nitrification and anammox coupled sludge fermentation and denitrification to treat low carbon nitrogen ratio wastewater | |
CN106830324B (en) | A device and method for enhancing biological denitrification and phosphorus removal by staged influent A2/O process | |
CN108298687B (en) | Biological denitrification method for landfill leachate | |
CN108545830B (en) | A process of using sludge fermentation to intensify partial short-path nitrification and anammox ammonium oxidation of continuous flow urban sewage | |
CN109721156B (en) | Apparatus and method for treatment of late-stage landfill leachate with integrated intermittent aeration/short-path denitrification-anammox | |
CN101244883B (en) | A high-efficiency and low-consumption regeneration treatment method for urban sewage | |
CN109721158B (en) | Device and method for treating late landfill leachate by using semi-shortcut nitrification/double anaerobic ammonia oxidation process | |
CN104860482B (en) | The method of up-flow anaerobic sludge blanket+anoxic/aerobic+anaerobic ammonia oxidation reactor PROCESS FOR TREATMENT treatment of advanced stage landfill leachate advanced nitrogen | |
CN113233597B (en) | Method for treating middle and late landfill leachate by endogenous denitrification combined with autotrophic nitrogen removal process | |
CN114180715B (en) | Device and method for continuous-flow short-path denitrification coupled with anaerobic ammonium oxidation to enhance bacterial enrichment | |
CN108409033A (en) | FNA enhanced short-cut nitrification device and method for deep denitrification and dephosphorization of segmented water UCT | |
CN202369444U (en) | Multi-mode constant water level sequencing batch type activated sludge sewage treatment system | |
CN105130128A (en) | Later-period landfill leachate A/O (anoxic/oxic) half short-cut nitrification and UASB (upflow anaerobic sludge blanket) anaerobic ammonia oxidation combined nitrogen removal device and method | |
CN102690019A (en) | High-efficiency nitrogen and phosphorus synchronous removal method in treating low concentration wastewater | |
CN105692902A (en) | Double-particle sludge integrated technique for treating municipal domestic sewage | |
CN104512964A (en) | Sludge side treatment-based urban sewage short-cut nitrogen removal method | |
CN202688093U (en) | Improved A/O (anoxic/oxic) four-point section-water supply high-efficiency synchronous nitrogen and phosphorus removal device | |
Beylier et al. | 6.27–Biological nitrogen removal from domestic wastewater | |
CN110002689B (en) | Device and method for realizing continuous flow shortcut nitrification-anaerobic ammonia oxidation treatment of municipal sewage | |
CN112479361A (en) | Device and method for deeply treating salt-containing wastewater | |
CN108178294A (en) | A kind of method of the low matrix anaerobic ammonia oxidation process of synchronous tandem promoter | |
CN101439903A (en) | Method for realizing semi-hitrosation under normal temperature municipal sewage condition | |
CN115490320B (en) | Method and device for reinforced double short-range coupling anaerobic ammonia oxidation deep denitrification and dephosphorization by sectional feeding of sludge fermentation mixture | |
CN112960773B (en) | Low C/N domestic sewage deep denitrification method based on normal state addition of oxidized nitrogen | |
CN114291962B (en) | Device and method for treating late landfill leachate by three-stage plug flow type PN-PNA-DE process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |