[go: up one dir, main page]

CN114282421B - A superstructure optimization method, system and device - Google Patents

A superstructure optimization method, system and device Download PDF

Info

Publication number
CN114282421B
CN114282421B CN202111647640.8A CN202111647640A CN114282421B CN 114282421 B CN114282421 B CN 114282421B CN 202111647640 A CN202111647640 A CN 202111647640A CN 114282421 B CN114282421 B CN 114282421B
Authority
CN
China
Prior art keywords
superstructure
optimization
optimized
thermal expansion
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111647640.8A
Other languages
Chinese (zh)
Other versions
CN114282421A (en
Inventor
韦凯
韩征彤
王开禹
陈嘉馨
黄荣政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202111647640.8A priority Critical patent/CN114282421B/en
Publication of CN114282421A publication Critical patent/CN114282421A/en
Application granted granted Critical
Publication of CN114282421B publication Critical patent/CN114282421B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明的一种超结构的优化方法、系统及设备,本实施例的所述方法中,超结构的拓扑构型由两种实体材料及一种虚拟材料的材料分布描述,其中虚拟材料用于描述材料为空的分布。通过判断基础材料组合动态调整优化目标,对材料均为实体材料的组合时,设定为进行包括热膨胀系数优化处理的第一优化处理,对包含虚拟材料的组合时,设定为进行包括泊松比处理的第二优化处理,从而实现了对待优化的超结构进行热膨胀系数以及泊松比的迭代优化,进而有效地解决了现有技术中超结构的优化方法存在着的主要集中于单功能,如只能实现对负泊松比进行优化,导致优化后的超结构的功能过于单一的技术问题。

The present invention provides a superstructure optimization method, system and device. In the method of this embodiment, the topological configuration of the superstructure is described by the material distribution of two physical materials and one virtual material, wherein the virtual material is used to describe the distribution of empty materials. The optimization target is dynamically adjusted by judging the basic material combination. When the materials are all physical materials, the first optimization process including the thermal expansion coefficient optimization process is set. When the materials are virtual materials, the second optimization process including the Poisson's ratio process is set. Thus, iterative optimization of the thermal expansion coefficient and Poisson's ratio of the superstructure to be optimized is achieved, thereby effectively solving the technical problem that the optimization method of the superstructure in the prior art mainly focuses on a single function, such as only being able to optimize the negative Poisson's ratio, resulting in the function of the optimized superstructure being too single.

Description

一种超结构的优化方法、系统及设备A superstructure optimization method, system and device

技术领域Technical Field

本发明涉及超材料的技术领域,尤其涉及一种超结构的优化方法、系统及设备。The present invention relates to the technical field of metamaterials, and in particular to a method, system and device for optimizing a metastructure.

背景技术Background Art

超结构是由传统材料构建的具有新颖功能的人工结构;近年来,典型的超结构如左手结构、“隐身斗篷”以及完美透镜等,已在机械、光学、通信等等应用领域渐露头角,其特殊的性能主要依赖于由基础材料形成的特殊构型。为数众多的电磁超结构、力学超结构、声学超结构、热学超结构以及基于超结构与常规材料融合的新型结构相继出现,形成了新材料、新结构的重要生长点。Superstructures are artificial structures with novel functions built from traditional materials. In recent years, typical superstructures such as left-handed structures, "invisibility cloaks" and perfect lenses have gradually emerged in the fields of mechanics, optics, communications and other applications. Their special properties mainly depend on the special configuration formed by the basic materials. A large number of electromagnetic superstructures, mechanical superstructures, acoustic superstructures, thermal superstructures and new structures based on the fusion of superstructures and conventional materials have emerged one after another, forming an important growth point for new materials and new structures.

其中,对于力学超结构而言,泊松比和热膨胀是两个重要的基础参数;负泊松比材料在被拉伸时横向膨胀,反之亦然,这种独特的功能,可以提高结构的抗断裂、抗冲击、声音吸收等性能;热膨胀系数是表征材料在温度增加时尺寸变化的参数,负热膨胀系数以及零膨胀系数可以抑制和消除温度变化产生的结构变形,在高精密仪器以及航天航空中有着广泛的需求;目前,超结构优化方法主要集中于单功能的优化,如只能实现对负泊松比进行优化,导致优化后的超结构的功能过于单一,无法胜任机械场、温度场多场耦合的复杂环境需求。Among them, for mechanical superstructures, Poisson's ratio and thermal expansion are two important basic parameters; negative Poisson's ratio materials expand laterally when stretched, and vice versa. This unique function can improve the structure's resistance to fracture, impact, sound absorption and other properties; the thermal expansion coefficient is a parameter that characterizes the dimensional change of a material when the temperature increases. Negative thermal expansion coefficient and zero expansion coefficient can suppress and eliminate structural deformation caused by temperature changes, and are widely needed in high-precision instruments and aerospace; currently, superstructure optimization methods mainly focus on single-function optimization, such as only being able to optimize the negative Poisson's ratio, resulting in the optimized superstructure having too single function and being unable to meet the complex environmental requirements of multi-field coupling of mechanical fields and temperature fields.

发明内容Summary of the invention

本发明提供了一种超结构的优化方法、系统及设备,用于解决现有技术的超结构的优化方法中存在着的主要集中于单功能,如只能实现对负泊松比进行优化,导致优化后的超结构的功能过于单一的技术问题。The present invention provides a superstructure optimization method, system and device for solving the technical problem that the superstructure optimization methods in the prior art mainly focus on a single function, such as only being able to optimize the negative Poisson's ratio, resulting in the function of the optimized superstructure being too single.

本发明的实施例中提供了一种超结构的优化方法,所述方法包括:An embodiment of the present invention provides a superstructure optimization method, the method comprising:

获取待优化的超结构,所述待优化的超结构内的材料分布包括实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3;Acquire a superstructure to be optimized, wherein the material distribution in the superstructure to be optimized includes a physical material Mat-1, a physical material Mat-2, and a virtual material Mat-3;

建立循环优化流程并将所述待优化的超结构输入到循环优化流程内进行优化,生成优化的超结构,Establishing a loop optimization process and inputting the superstructure to be optimized into the loop optimization process for optimization to generate an optimized superstructure.

其中,所述循环优化流程为实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3中的任两个进行组合,生成三种组合,根据三种所述组合依次对所述待优化的超结构进行优化处理;The cyclic optimization process is to combine any two of the physical material Mat-1, the physical material Mat-2 and the virtual material Mat-3 to generate three combinations, and optimize the superstructure to be optimized in turn according to the three combinations;

在材料均为实体材料的组合中,对所述待优化的超结构进行n次第一优化处理;在包含有虚拟材料的组合中,所述待优化的超结构进行m次第二优化处理,对所述待优化的超结构完成所述第一优化处理以及所述第二优化处理时,则生成优化的超结构;所述第一优化处理包括对所述待优化的超结构进行热膨胀系数优化处理,所述第二优化处理包括对所述超结构进行泊松比优化处理。In a combination where all materials are solid materials, the superstructure to be optimized is subjected to n first optimization processes; in a combination where virtual materials are included, the superstructure to be optimized is subjected to m second optimization processes, and when the first optimization process and the second optimization process are completed on the superstructure to be optimized, an optimized superstructure is generated; the first optimization process includes performing a thermal expansion coefficient optimization process on the superstructure to be optimized, and the second optimization process includes performing a Poisson's ratio optimization process on the superstructure.

在本申请的在一些实施例中,所述根据三种所述组合依次对所述待优化的超结构进行优化处理具体包括:In some embodiments of the present application, the optimizing the superstructure to be optimized in sequence according to the three combinations specifically includes:

依次分别对三种所述组合进行材料是否均为实体材料的组合的判断,The three combinations are judged in turn as to whether all the materials are combinations of solid materials.

若是,则对所述待优化的超结构进行d次第一优化处理,生成第一优化处理的超结构;If yes, performing the first optimization process d times on the superstructure to be optimized to generate a superstructure subjected to the first optimization process;

若否,则对所述待优化的超结构进行e次第二优化处理,生成第二优化处理的超结构;遍历三种组合的优化过程,每次优化均以前次优化结果为输入;If not, the superstructure to be optimized is subjected to second optimization processing e times to generate a superstructure subjected to second optimization processing; the optimization process of the three combinations is traversed, and each optimization is inputted with the result of the previous optimization;

循环以上优化过程k次,共进行n次第一优化处理与m次第二优化处理,则生成优化的超结构。The above optimization process is repeated k times, with n first optimization processes and m second optimization processes performed in total, to generate an optimized superstructure.

在本申请的在一些实施例中,所述获取待优化的超结构包括:In some embodiments of the present application, obtaining the superstructure to be optimized includes:

获取超结构,其中,所述超结构中包含Ne个单元的有限元模型,对于任意单元e,其设计变量为材料的相对密度ρe=[ρe1 ρe2 ρe3];Obtain a superstructure, wherein the superstructure includes a finite element model of Ne units, and for any unit e, its design variable is the relative density of the material ρ e =[ρ e1 ρ e2 ρ e3 ];

通过优化每个单元的超结构的材料相对密度,获取待优化的超结构。The superstructure to be optimized is obtained by optimizing the relative density of the materials of each unit superstructure.

在本申请的在一些实施例中,所述对所述待优化的超结构进行热膨胀系数优化处理包括:In some embodiments of the present application, the step of optimizing the thermal expansion coefficient of the superstructure to be optimized includes:

获取所述待优化的超结构内的基础材料的参数,其中,所述参数包括弹性模量、泊松比、热膨胀系数、体积约束以及材料相对密度;Acquiring parameters of a basic material in the superstructure to be optimized, wherein the parameters include elastic modulus, Poisson's ratio, thermal expansion coefficient, volume constraint, and relative density of the material;

基于第一目标函数对所述待优化的超结构的参数进行处理,获取第一优化处理后的超结构;Processing the parameters of the superstructure to be optimized based on the first objective function to obtain the superstructure after the first optimization process;

其中,在材料均为实体材料的组合中,所述第一目标函数为热膨胀系数的平方和极小化,所述第一目标函数具体为:Among them, in the combination where all materials are solid materials, the first objective function is to minimize the sum of squares of thermal expansion coefficients, and the first objective function is specifically:

Find:ρea(e∈Ne)Find: ρea (e∈Ne)

其中,为超结构在不同方向上的热膨胀系数,i起始值为1,角标H代表超结构的等效性能,ve为单元e的体积,Va *为材料a的最大体积分数;ρea为材料相对密度矩阵ρe=[ρe1 ρe2 ρe3]中,a=1时的取值;ft为第一目标函数;fv为约束函数。in, is the thermal expansion coefficient of the superstructure in different directions, the initial value of i is 1, the subscript H represents the equivalent performance of the superstructure, ve is the volume of unit e, Va * is the maximum volume fraction of material a; ρea is the value when a=1 in the material relative density matrix ρe =[ ρe1ρe2ρe3 ]; ft is the first objective function; fv is the constraint function.

在本申请的在一些实施例中,所述对所述超结构进行泊松比优化处理包括:In some embodiments of the present application, performing Poisson's ratio optimization processing on the superstructure includes:

获取所述待优化的超结构内的基础材料的参数,其中,所述参数包括弹性模量、泊松比、热膨胀系数、体积约束以及材料相对密度;Acquiring parameters of a basic material in the superstructure to be optimized, wherein the parameters include elastic modulus, Poisson's ratio, thermal expansion coefficient, volume constraint, and relative density of the material;

基于所述待优化的超结构的参数优化,通过第二目标函数对所述待优化的超结构的泊松比进行优化,获取第二优化处理后的超结构,Based on the parameter optimization of the superstructure to be optimized, the Poisson's ratio of the superstructure to be optimized is optimized by a second objective function to obtain a superstructure after a second optimization process.

其中,在包含有虚拟材料的组合中,所述第二目标函数为泊松比平方的极小化,所述第二目标函数具体为:Among them, in the combination including the virtual material, the second objective function is the minimization of the square of Poisson's ratio, and the second objective function is specifically:

Find:ρea(e∈Ne)Find: ρea (e∈Ne)

其中,为超结构在不同方向上的等效泊松比,角标H代表超结构的等效性能,ve为单元e的体积,Va *为材料a的最大体积分数;ρea为材料相对密度矩阵ρe=[ρe1 ρe2 ρe3]中,a=1时的取值;fp为第二目标函数;fv为约束函数。in, is the equivalent Poisson's ratio of the superstructure in different directions, the subscript H represents the equivalent performance of the superstructure, ve is the volume of unit e, Va * is the maximum volume fraction of material a; ρea is the value when a= 1 in the material relative density matrix ρe =[ ρe1ρe2ρe3 ]; fp is the second objective function; fv is the constraint function.

在本申请的在一些实施例中,所述第一优化处理以及第二优化处理中均还包括有限元分析处理以及灵敏度计算处理。In some embodiments of the present application, the first optimization process and the second optimization process both further include finite element analysis processing and sensitivity calculation processing.

在本申请的在一些实施例中,所述有限元分析处理包括:In some embodiments of the present application, the finite element analysis process includes:

获取当前的超结构内的基础材料的力学参数,所述力学参数包括弹性模量、泊松比以及热膨胀系数;Acquire mechanical parameters of basic materials in the current superstructure, wherein the mechanical parameters include elastic modulus, Poisson's ratio and thermal expansion coefficient;

基于均匀化理论对所述力学参数进行处理,获取当前超结构在不同方向上的等效泊松比以及当前超结构在不同方向上的等效热膨胀系数 The mechanical parameters are processed based on the homogenization theory to obtain the equivalent Poisson's ratio of the current superstructure in different directions. And the equivalent thermal expansion coefficient of the current superstructure in different directions

在本申请的在一些实施例中,所述灵敏度计算处理包括:In some embodiments of the present application, the sensitivity calculation process includes:

获取有限元分析处理的结果,所述结果包括当前超结构在不同方向上的等效泊松比当前超结构在不同方向上的等效热膨胀系数均匀化等效弹性张量CH以及等效热应力张量βHObtain the results of the finite element analysis process, including the equivalent Poisson's ratio of the current superstructure in different directions Equivalent thermal expansion coefficient of the current superstructure in different directions Homogenized equivalent elastic tensor C H and equivalent thermal stress tensor β H ;

根据链式法则对所述结果进行处理,获取第一目标函数ft的灵敏度第二目标函数fp的灵敏度及体积约束fv的灵敏度 The result is processed according to the chain rule to obtain the sensitivity of the first objective function ft The sensitivity of the second objective function fp and the sensitivity of the volume constraint fv

本发明的实施例还提供了一种超结构的优化系统,所述系统包括:An embodiment of the present invention further provides a superstructure optimization system, the system comprising:

获取模块,所述获取模块用于获取待优化的超结构,所述待优化的超结构内的基础材料包括实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3;An acquisition module, the acquisition module is used to acquire a super structure to be optimized, wherein the basic materials in the super structure to be optimized include a physical material Mat-1, a physical material Mat-2 and a virtual material Mat-3;

生成模块,所述生成模块用于建立循环优化流程并将所述待优化的超结构输入到循环优化流程内进行优化,生成优化的超结构,A generation module, the generation module is used to establish a loop optimization process and input the super structure to be optimized into the loop optimization process for optimization, thereby generating an optimized super structure.

其中,所述循环优化流程为实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3中的任两个进行组合,生成三种组合,根据三种所述组合依次对所述待优化的超结构进行优化处理;The cyclic optimization process is to combine any two of the physical material Mat-1, the physical material Mat-2 and the virtual material Mat-3 to generate three combinations, and optimize the superstructure to be optimized in turn according to the three combinations;

在材料均为实体材料的组合中,对所述待优化的超结构进行n次第一优化处理;在包含有虚拟材料的组合中,所述待优化的超结构进行m次第二优化处理,对所述待优化的超结构完成所述第一优化处理以及所述第二优化处理时,则生成优化的超结构;所述第一优化处理包括对所述待优化的超结构进行热膨胀系数优化处理,所述第二优化处理包括对所述超结构进行泊松比优化处理。In a combination where all materials are solid materials, the superstructure to be optimized is subjected to n first optimization processes; in a combination where virtual materials are included, the superstructure to be optimized is subjected to m second optimization processes, and when the first optimization process and the second optimization process are completed on the superstructure to be optimized, an optimized superstructure is generated; the first optimization process includes performing a thermal expansion coefficient optimization process on the superstructure to be optimized, and the second optimization process includes performing a Poisson's ratio optimization process on the superstructure.

本发明的实施例提供了一种超结构的优化设备,包括处理器以及存储器;An embodiment of the present invention provides a superstructure optimization device, including a processor and a memory;

所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;The memory is used to store program code and transmit the program code to the processor;

所述处理器用于根据所述程序代码中的指令执行上述的一种超结构的优化方法。The processor is used to execute the above-mentioned superstructure optimization method according to the instructions in the program code.

从以上技术方案可以看出,本发明实施例具有以下优点:It can be seen from the above technical solutions that the embodiments of the present invention have the following advantages:

本发明实施例提供了一种超结构的优化方法、系统以及优化设备,所述方法包括:获取待优化的超结构,所述待优化的超结构内的材料分布包含实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3;建立循环优化流程并将所述待优化的超结构输入到循环优化流程内进行优化,生成优化的超结构,其中,所述循环优化流程为实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3中的任两个进行组合,生成三种组合,根据三种所述组合依次对所述待优化的超结构进行优化处理;在材料均为实体材料的组合中,对所述待优化的超结构进行n次第一优化处理;在包含有虚拟材料的组合中,所述待优化的超结构进行m次第二优化处理,对所述待优化的超结构完成所述第一优化处理以及所述第二优化处理时,则生成优化的超结构;所述第一优化处理包括对所述待优化的超结构进行热膨胀系数优化处理,所述第二优化处理包括对所述超结构进行泊松比优化处理。The embodiment of the present invention provides a superstructure optimization method, system and optimization device, the method comprising: obtaining a superstructure to be optimized, wherein the material distribution in the superstructure to be optimized includes a physical material Mat-1, a physical material Mat-2 and a virtual material Mat-3; establishing a cyclic optimization process and inputting the superstructure to be optimized into the cyclic optimization process for optimization to generate an optimized superstructure, wherein the cyclic optimization process combines any two of the physical material Mat-1, the physical material Mat-2 and the virtual material Mat-3 to generate three combinations, and sequentially optimizes the superstructure to be optimized according to the three combinations; in a combination in which the materials are all physical materials, the superstructure to be optimized is subjected to n times of first optimization processing; in a combination including virtual materials, the superstructure to be optimized is subjected to m times of second optimization processing, and when the first optimization processing and the second optimization processing are completed on the superstructure to be optimized, an optimized superstructure is generated; the first optimization processing includes performing thermal expansion coefficient optimization processing on the superstructure to be optimized, and the second optimization processing includes performing Poisson's ratio optimization processing on the superstructure.

本实施例的所述方法中,通过待优化的超结构内的基础材料的基础上,引入在虚拟材料,以达到根据实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3中任两个组合,从而能够形成三种不同的组合,在三种组合中,对材料均为实体材料的组合时,设定为进行包括热膨胀系数优化处理的第一优化处理,以及对包含虚拟材料的组合时,设定为进行包括泊松比处理的第二优化处理,从而实现了对待优化的超结构进行热膨胀系数以及泊松比的优化,进而有效地解决了现有技术的超结构的优化方法中存在着的主要集中于单功能,如只对负泊松比进行优化,导致优化后的超结构的功能过于单一的技术问题。In the method of the present embodiment, virtual materials are introduced on the basis of the basic materials in the superstructure to be optimized, so as to form three different combinations according to any two combinations of the physical material Mat-1, the physical material Mat-2 and the virtual material Mat-3. Among the three combinations, when the materials are all physical materials, the first optimization treatment including the thermal expansion coefficient optimization treatment is set, and when the materials are the combination including the virtual materials, the second optimization treatment including the Poisson's ratio treatment is set, thereby realizing the optimization of the thermal expansion coefficient and the Poisson's ratio of the superstructure to be optimized, thereby effectively solving the technical problem that the optimization method of the superstructure in the prior art mainly focuses on a single function, such as optimizing only the negative Poisson's ratio, resulting in the function of the optimized superstructure being too single.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative labor.

图1为本发明实施例提供的一种超结构的优化方法、系统及设备的方法流程图。FIG1 is a method flow chart of a superstructure optimization method, system and device provided by an embodiment of the present invention.

图2为本发明实施例提供的一种超结构的优化方法、系统及设备的方法流程框图。FIG. 2 is a flowchart of a method, system, and device for optimizing a superstructure provided by an embodiment of the present invention.

图3为本发明实施例提供的一种超结构的优化方法、系统及设备的内凹构型初始化结构图。FIG. 3 is a diagram of an initialization structure of a concave configuration of a superstructure optimization method, system, and device provided by an embodiment of the present invention.

图4为本发明实施例提供的一种超结构的优化方法、系统及设备的零泊松比&零热膨胀内凹超结构拓扑优化过程及目标函数变化曲线图。FIG4 is a graph showing a zero Poisson's ratio & zero thermal expansion concave superstructure topology optimization process and an objective function variation curve of a superstructure optimization method, system and device provided by an embodiment of the present invention.

图5为本发明实施例提供的一种超结构的优化方法、系统及设备的第一内凹以及手性多功能超结构拓扑优化结果图。FIG. 5 is a diagram showing the first concave and chiral multifunctional superstructure topology optimization results of a superstructure optimization method, system, and device provided by an embodiment of the present invention.

图6为本发明实施例提供的一种超结构的优化方法、系统及设备的第二内凹以及手性多功能超结构拓扑优化结果图。FIG. 6 is a diagram showing the second concave and chiral multifunctional superstructure topology optimization results of a superstructure optimization method, system, and device provided by an embodiment of the present invention.

图7为本发明实施例提供的一种超结构的优化方法、系统及设备的第三内凹以及手性多功能超结构拓扑优化结果图。FIG. 7 is a diagram showing the topological optimization results of the third concave and chiral multifunctional superstructure of a superstructure optimization method, system and device provided by an embodiment of the present invention.

图8为本发明实施例提供的一种超结构的优化方法、系统及设备的第四内凹以及手性多功能超结构拓扑优化结果图。FIG8 is a diagram showing the fourth concave and chiral multifunctional superstructure topology optimization results of a superstructure optimization method, system, and device provided by an embodiment of the present invention.

图9为本发明实施例提供的一种超结构的优化方法、系统及设备的第五内凹以及手性多功能超结构拓扑优化结果图。FIG. 9 is a diagram showing the topological optimization results of the fifth concave and chiral multifunctional superstructure of a superstructure optimization method, system and device provided by an embodiment of the present invention.

图10为本发明实施例提供的一种超结构的优化方法、系统及设备的第六内凹以及手性多功能超结构拓扑优化结果图。FIG. 10 is a diagram showing the sixth concave and chiral multifunctional superstructure topology optimization results of a superstructure optimization method, system, and device provided by an embodiment of the present invention.

图11为本发明实施例提供的一种超结构的优化方法、系统及设备的第七内凹以及手性多功能超结构拓扑优化结果图。FIG. 11 is a diagram showing the seventh concave and chiral multifunctional superstructure topology optimization results of a superstructure optimization method, system, and device provided by an embodiment of the present invention.

图12为本发明实施例提供的一种超结构的优化方法、系统及设备的系统构造图。FIG. 12 is a system configuration diagram of a superstructure optimization method, system, and device provided in an embodiment of the present invention.

图13为本发明实施例提供的一种超结构的优化方法、系统及设备的设备框架图。FIG. 13 is a device framework diagram of a superstructure optimization method, system, and device provided in an embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

本发明实施例提供了一种超结构的优化方法、系统及设备,用于解决现有技术的超结构的优化方法中存在着的主要集中于单功能,如只对负泊松比进行优化,导致优化后的超结构的功能过于单一的技术问题。The embodiments of the present invention provide a superstructure optimization method, system and device for solving the technical problem that the superstructure optimization methods in the prior art mainly focus on a single function, such as optimizing only the negative Poisson's ratio, resulting in the function of the optimized superstructure being too single.

为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the purpose, features and advantages of the present invention more obvious and easy to understand, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the embodiments described below are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

除非另有定义,本发明实施例所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本发明中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。Unless otherwise defined, all technical and scientific terms used in the embodiments of the present invention have the same meanings as those commonly understood by those skilled in the art of the technical field of the embodiments of the present invention. The terms used in the present invention are only for the purpose of describing specific embodiments and are not intended to limit the present invention.

在对本发明实施例进行进一步详细说明之前,先对本发明实施例中涉及的名词和术语进行说明,本发明实施例中涉及的名词和术语适用于如下的解释。Before further describing the embodiments of the present invention in detail, the nouns and terms involved in the embodiments of the present invention are described first. The nouns and terms involved in the embodiments of the present invention are subject to the following explanations.

超结构:由传统材料构建的具有新颖功能的人工结构。Superstructures: Artificial structures with novel functions built from traditional materials.

泊松比:是指材料在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数;绝大多数自然材料的泊松比为正,意味着受压横向扩张,而零泊松受压横向不变性,负泊松受压横向膨胀。正泊松、负泊松及零泊松可以调节结构在机械载荷下的形变,因而在工程中均有广泛的应用。Poisson's ratio: refers to the ratio of the absolute value of the lateral normal strain to the axial normal strain when the material is subjected to unidirectional tension or compression, also called the lateral deformation coefficient. It is an elastic constant that reflects the lateral deformation of the material. The Poisson's ratio of most natural materials is positive, which means that they expand laterally under pressure, while zero Poisson is lateral invariant under pressure, and negative Poisson expands laterally under pressure. Positive Poisson, negative Poisson and zero Poisson can adjust the deformation of structures under mechanical loads, and therefore are widely used in engineering.

热膨胀系数:单位温度变化所导致的长度量值的变化;大多数情况之下,此系数为正值;也就是说温度变化与长度变化成正比,温度升高体积扩大;而零膨胀代表受热不变形,负膨胀代表受热收缩。正热膨胀、负热膨胀及零膨胀可以调节结构在热场载荷下的形变,因此在航空航天、高精密仪器中有着迫切的应用需求。Thermal expansion coefficient: the change in length caused by a unit temperature change; in most cases, this coefficient is positive; that is, the temperature change is proportional to the length change, and the volume expands as the temperature rises; while zero expansion means no deformation due to heat, and negative expansion means contraction due to heat. Positive thermal expansion, negative thermal expansion, and zero expansion can adjust the deformation of the structure under thermal field loads, so there is an urgent application demand in aerospace and high-precision instruments.

直接设计法:根据经验及灵感设计的结构设计方法。Direct design method: structural design method based on experience and inspiration.

拓扑优化:是一种根据给定的负载情况、约束条件和性能指标,在给定的区域内对材料分布进行优化的数学方法,是结构优化方法的一种。Topology optimization: It is a mathematical method to optimize the material distribution in a given area according to given load conditions, constraints and performance indicators. It is a kind of structural optimization method.

材料属性一般指弹性模量、热膨胀系数以及泊松比;Material properties generally refer to elastic modulus, thermal expansion coefficient, and Poisson’s ratio;

请参阅图1,图1为本发明实施例提供的一种超结构的优化方法、系统及设备的方法流程图。Please refer to FIG. 1 , which is a method flow chart of a superstructure optimization method, system, and device provided by an embodiment of the present invention.

如图1-11所示,本发明提供的一种超结构的优化方法,所述方法包括:As shown in FIG. 1-11 , the present invention provides a superstructure optimization method, the method comprising:

获取待优化的超结构,所述待优化的超结构内的材料分布包含实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3;Acquire a superstructure to be optimized, wherein the material distribution in the superstructure to be optimized includes a physical material Mat-1, a physical material Mat-2, and a virtual material Mat-3;

建立循环优化流程并将所述待优化的超结构输入到循环优化流程内进行优化,生成优化的超结构,Establishing a loop optimization process and inputting the superstructure to be optimized into the loop optimization process for optimization to generate an optimized superstructure.

其中,所述循环优化流程为实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3中的任两个进行组合,生成三种组合,根据三种所述组合依次对所述待优化的超结构进行优化处理;The cyclic optimization process is to combine any two of the physical material Mat-1, the physical material Mat-2 and the virtual material Mat-3 to generate three combinations, and optimize the superstructure to be optimized in turn according to the three combinations;

在材料均为实体材料的组合中,对所述待优化的超结构进行n次第一优化处理;在包含有虚拟材料的组合中,所述待优化的超结构进行m次第二优化处理,遍历所有材料组合对所述待优化的超结构完成所述第一优化处理以及所述第二优化处理时,则生成优化的超结构;所述第一优化处理包括对所述待优化的超结构进行热膨胀系数优化处理,所述第二优化处理包括对所述超结构进行泊松比优化处理。In a combination where all materials are solid materials, the superstructure to be optimized is subjected to n first optimization processes; in a combination containing virtual materials, the superstructure to be optimized is subjected to m second optimization processes, and when the first optimization process and the second optimization process are completed on the superstructure to be optimized by traversing all material combinations, an optimized superstructure is generated; the first optimization process includes performing thermal expansion coefficient optimization process on the superstructure to be optimized, and the second optimization process includes performing Poisson's ratio optimization process on the superstructure.

本实施例的所述方法中,超结构的拓扑构型由两种实体材料及一种虚拟材料的材料分布描述,其中虚拟材料用于描述材料为空的分布。通过判断基础材料组合动态调整优化目标,任意选取两种材料共存在三种组合,在三种组合中,对材料均为实体材料的组合时,设定为进行包括热膨胀系数优化处理的第一优化处理,以及对包含虚拟材料的组合时,设定为进行包括泊松比处理的第二优化处理,从而实现了对待优化的超结构进行热膨胀系数以及泊松比的优化,进而有效地解决了现有技术的超结构的优化方法中存在着的主要集中于单功能,如只对负泊松比进行优化,导致优化后的超结构的功能过于单一的技术问题。In the method of this embodiment, the topological configuration of the superstructure is described by the material distribution of two physical materials and one virtual material, wherein the virtual material is used to describe the distribution of empty materials. By judging the basic material combination to dynamically adjust the optimization target, two materials are randomly selected to exist in three combinations. Among the three combinations, when the materials are all physical materials, it is set to perform the first optimization process including the thermal expansion coefficient optimization process, and when the combination includes virtual materials, it is set to perform the second optimization process including the Poisson's ratio process, thereby realizing the optimization of the thermal expansion coefficient and the Poisson's ratio of the superstructure to be optimized, thereby effectively solving the technical problem that the optimization method of the superstructure in the prior art mainly focuses on a single function, such as only optimizing the negative Poisson's ratio, resulting in the function of the optimized superstructure being too single.

本实施例的所述超结构的优化方法,所述方法包括如下步骤:The superstructure optimization method of this embodiment comprises the following steps:

S1:获取待优化的超结构,所述待优化的超结构内的材料分布包括实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3;S1: obtaining a superstructure to be optimized, wherein the material distribution in the superstructure to be optimized includes a physical material Mat-1, a physical material Mat-2, and a virtual material Mat-3;

所述待优化的超结构的基础材料分布包括两种不同热膨胀系数的实体材料Mat-1、实体材料Mat-2与一种代表空材料的虚拟材料Mat-3,通过设定模型内的材料分布建立初始几何特征;The basic material distribution of the superstructure to be optimized includes two solid materials Mat-1 and Mat-2 with different thermal expansion coefficients and a virtual material Mat-3 representing an empty material, and the initial geometric features are established by setting the material distribution in the model;

其中,所述获取待优化的超结构包括:Wherein, obtaining the superstructure to be optimized includes:

获取超结构,其中,所述超结构中包含Ne个单元的有限元模型,对于任意单元e,其设计变量为材料的相对密度ρe=[ρe1 ρe2 ρe3];Obtain a superstructure, wherein the superstructure includes a finite element model of Ne units, and for any unit e, its design variable is the relative density of the material ρ e =[ρ e1 ρ e2 ρ e3 ];

通过优化每个单元的超结构的材料相对密度,获取待优化的超结构。The superstructure to be optimized is obtained by optimizing the relative density of the materials of each unit superstructure.

具体的,所述超结构可以采用四节点平面单元离散,形成包含Ne个单元的有限元模型,对于任意单元e,其设计变量为材料的相对密度ρe=[ρe1 ρe2 ρe3];通过优化每个单元的材料相对密度即可实现不同性能超结构的设计即待优化的超结构,例如:为了获得内凹或手性构型的超结构,需提前设定设计区域内的初始材料分布,以诱导产生相应的几何特征,通过修改优化设计区域中每个单元的材料相对密度实现获得内凹或手性构型的超结构。Specifically, the superstructure can be discretized using four-node planar units to form a finite element model containing Ne units. For any unit e, its design variable is the relative density of the material ρ e = [ρ e1 ρ e2 ρ e3 ]; by optimizing the relative density of the material of each unit, the design of superstructures with different performances, that is, the superstructure to be optimized, can be achieved. For example, in order to obtain a superstructure with a concave or chiral configuration, the initial material distribution in the design area needs to be set in advance to induce the corresponding geometric features, and the superstructure with a concave or chiral configuration can be achieved by modifying the relative density of the material of each unit in the optimized design area.

S2:建立循环优化流程并将所述待优化的超结构输入到循环优化流程内进行优化,生成优化的超结构,S2: Establishing a loop optimization process and inputting the superstructure to be optimized into the loop optimization process for optimization to generate an optimized superstructure.

其中,所述循环优化流程为实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3中的任两个进行组合,生成三种组合,根据三种所述组合依次对所述待优化的超结构进行优化处理;The cyclic optimization process is to combine any two of the physical material Mat-1, the physical material Mat-2 and the virtual material Mat-3 to generate three combinations, and optimize the superstructure to be optimized in turn according to the three combinations;

在材料均为实体材料的组合中,对所述待优化的超结构进行n次第一优化处理;在包含有虚拟材料的组合中,所述待优化的超结构进行m次第二优化处理,对所述待优化的超结构完成所述第一优化处理以及所述第二优化处理时,则生成优化的超结构;所述第一优化处理包括对所述待优化的超结构进行热膨胀系数优化处理,所述第二优化处理包括对所述超结构进行泊松比优化处理。In a combination where all materials are solid materials, the superstructure to be optimized is subjected to n first optimization processes; in a combination where virtual materials are included, the superstructure to be optimized is subjected to m second optimization processes, and when the first optimization process and the second optimization process are completed on the superstructure to be optimized, an optimized superstructure is generated; the first optimization process includes performing a thermal expansion coefficient optimization process on the superstructure to be optimized, and the second optimization process includes performing a Poisson's ratio optimization process on the superstructure.

通过本实施例实现了构型包含内凹和手性超结构的热膨胀系数以及泊松比的优化,而且可以根据需求来对内凹和手性超结构进行调整。This embodiment achieves the optimization of the thermal expansion coefficient and Poisson's ratio of the configuration including the concave and chiral superstructure, and the concave and chiral superstructure can be adjusted according to requirements.

本实施的所述优化方法通过引入虚拟材料mat-3,来形成交替相场法的交替目标函数,在交替相场法中,每个循环的优化子问题是相同的,这将导致收敛不稳定性。因此,本实施例的所述方法,是在交替相场法以及目标法中,每个循环优化子问题的建立根据材料组合设定不同的优化目标;若当前组合的材料均为实体材料时,子问题的优化目标为热膨胀系数,若当前材料组合存在虚拟材料,子问题的优化目标为泊松比,从而实现泊松比以及热膨胀系数的双功能耦合,达到对所述超结构进行泊松比以及热膨胀系数的双优化效果。The optimization method of this embodiment forms the alternating objective function of the alternating phase field method by introducing the virtual material mat-3. In the alternating phase field method, the optimization sub-problems of each cycle are the same, which will lead to convergence instability. Therefore, the method of this embodiment is to set different optimization targets according to the material combination in the establishment of each cycle optimization sub-problem in the alternating phase field method and the target method; if the materials of the current combination are all solid materials, the optimization target of the sub-problem is the thermal expansion coefficient, and if there is a virtual material in the current material combination, the optimization target of the sub-problem is the Poisson's ratio, thereby realizing the dual-functional coupling of the Poisson's ratio and the thermal expansion coefficient, and achieving the dual optimization effect of the Poisson's ratio and the thermal expansion coefficient of the superstructure.

例如,材料组合设定预置材料a和预置材料b,将实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3任两个代入预置材料a和预置材料b中,形成三种组合分别为(1)a=mat-1,b=mat-2,(2)a=mat-2,b=mat-3,(3)a=mat-1,b=mat-3;其中,(1)a=mat-1,b=mat-2的组合中预置材料a和预置材料b都是属于实体材料,而(2)a=mat-2,b=mat-3和(3)a=mat-1,b=mat-3的组合中,预置材料a和预置材料b中存在有一个虚拟材料,通过将三种组合分为上述预置材料a和预置材料b都是属于实体材料以及预置材料a和预置材料b中存在有一个虚拟材料的两种情况进行分别处理,当预置材料a和预置材料b中存在有一个虚拟材料时,对所述待优化的超结构进行泊松比优化处理,当预置材料a和预置材料b都是实体材料时,对所述超结构进行热膨胀系数优化处理,遍历所有材料组合对所述待优化的超结构进行完全的第一优化处理以及第二优化处理,能够得到泊松比以及热膨胀系数的双功能耦合的优化的超结构,从而实现泊松比以及热膨胀系数的双功能耦合,达到对所述超结构进行泊松比以及热膨胀系数的双优化效果。For example, the material combination sets preset material a and preset material b, and substitutes any two of the physical material Mat-1, the physical material Mat-2, and the virtual material Mat-3 into the preset material a and the preset material b to form three combinations: (1) a = mat-1, b = mat-2, (2) a = mat-2, b = mat-3, and (3) a = mat-1, b = mat-3; among which, in the combination of (1) a = mat-1, b = mat-2, both the preset material a and the preset material b are physical materials, while in the combinations of (2) a = mat-2, b = mat-3 and (3) a = mat-1, b = mat-3, there is a virtual material in the preset material a and the preset material b. By combining the three combinations The two situations are divided into two cases: the preset material a and the preset material b are both physical materials and there is a virtual material in the preset material a and the preset material b, and they are processed separately. When there is a virtual material in the preset material a and the preset material b, the Poisson's ratio optimization processing is performed on the superstructure to be optimized. When the preset material a and the preset material b are both physical materials, the thermal expansion coefficient optimization processing is performed on the superstructure. All material combinations are traversed to perform a complete first optimization processing and a second optimization processing on the superstructure to be optimized, and an optimized superstructure with dual functional coupling of Poisson's ratio and thermal expansion coefficient can be obtained, thereby realizing dual functional coupling of Poisson's ratio and thermal expansion coefficient, and achieving dual optimization effect of Poisson's ratio and thermal expansion coefficient on the superstructure.

在本申请的一些实施例中,所述根据三种所述组合依次对所述待优化的超结构进行优化处理具体包括:In some embodiments of the present application, the optimizing the superstructure to be optimized in sequence according to the three combinations specifically includes:

依次分别对三种所述组合进行材料是否均为实体材料的组合的判断,The three combinations are judged in turn as to whether all the materials are combinations of solid materials.

若是,则对所述待优化的超结构进行d次第一优化处理,生成第一优化处理的超结构;If yes, performing the first optimization process d times on the superstructure to be optimized to generate a superstructure subjected to the first optimization process;

若否,则对所述待优化的超结构进行e次第二优化处理,生成第二优化处理的超结构;遍历三种组合的优化过程,每次优化均以前次优化结果为输入;If not, the superstructure to be optimized is subjected to second optimization processing e times to generate a superstructure subjected to second optimization processing; the optimization process of the three combinations is traversed, and each optimization is inputted with the result of the previous optimization;

循环以上优化过程k次,共进行n次第一优化处理与m次第二优化处理,则生成优化的超结构。The above optimization process is repeated k times, with n first optimization processes and m second optimization processes performed in total, to generate an optimized superstructure.

其中热膨胀系数处理以及泊松比处理到达一定的次数时,即k为80-150次,优选为120次时,所述超结构会形成收敛,逐渐从开始稳定到形成稳定。When the thermal expansion coefficient processing and the Poisson's ratio processing reach a certain number of times, that is, when k is 80-150 times, preferably 120 times, the superstructure will converge and gradually become stable from the beginning to the end.

通过设置内外循环的方式来实现,例如,先构建内循环,根据材料均为实体材料的(1)a=mat-1,b=mat-2组合,先对待优化的超结构进行d次第一优化处理,完成d次的第一优化处理后,再根据包含虚拟材料的(2)a=mat-2,b=mat-3组合对完成d次第一优化处理后的超结构进行e次第二优化处理后输出,再根据包含虚拟材料的(3)a=mat-1,b=mat-3组合对完成e次第二优化处理后的超结构进行e次第二优化处理,当完成e次第二优化处理输出,此处形成一个内循环流程,所述内循环是通过依次分别对三种所述组合进行材料是否均为实体材料的组合的判断的方式来进行第一优化处理或是第二优化处理的选择顺序选择;This is achieved by setting up an inner and outer loop. For example, an inner loop is first constructed. According to the combination (1) a=mat-1, b=mat-2 in which all materials are solid materials, the superstructure to be optimized is first optimized d times. After the d times of first optimization are completed, the superstructure that has completed the d times of first optimization is subjected to e times of second optimization according to the combination (2) a=mat-2, b=mat-3 containing virtual materials, and then output. Then, according to the combination (3) a=mat-1, b=mat-3 containing virtual materials, the superstructure that has completed the e times of second optimization is subjected to e times of second optimization. After the e times of second optimization are completed and output, an inner loop process is formed here. The inner loop selects the first optimization process or the second optimization process in a sequential manner by judging whether the materials of the three combinations are all solid materials.

外循环是:判断e次第二优化处理后的超结构进行判断是否进行了k次内循环,当未进行,则重新回到根据材料均为实体材料的(1)a=mat-1,b=mat-2组合,先对待优化的超结构进行d次第一优化处理的步骤重新开始,直至完成g次内循环则是时,就从所述内循环结束,从而输出优化后的超结构。其中,d为3-6次,优选为5次,e为2-5次,优选为3次,k为80-150次,优选为120次。The outer loop is: judging whether the superstructure after the second optimization process e times has been processed by the inner loop k times, if not, returning to the combination of (1) a=mat-1, b=mat-2 according to the material being a solid material, firstly performing the first optimization process d times on the superstructure to be optimized and restarting, until the inner loop is completed g times, then the inner loop ends, thereby outputting the optimized superstructure. Wherein, d is 3-6 times, preferably 5 times, e is 2-5 times, preferably 3 times, and k is 80-150 times, preferably 120 times.

对于三种组合中两种情况分别进行第一优化处理和第二优化处理的方式较多,在此不再列举,可以通过合理的推导即可得出,通过这些优化处理后,能够生成优化后的超结构。There are many ways to perform the first optimization process and the second optimization process respectively for two of the three combinations, which will not be listed here. It can be concluded through reasonable deduction that after these optimization processes, an optimized superstructure can be generated.

其中,第一优化处理包括热膨胀系数处理,所述对所述待优化的超结构进行热膨胀系数优化处理包括:The first optimization process includes thermal expansion coefficient processing, and the thermal expansion coefficient optimization process for the superstructure to be optimized includes:

获取所述待优化的超结构内的基础材料的参数,其中,所述参数包括弹性模量、泊松比、热膨胀系数、体积约束以及材料相对密度;Acquiring parameters of a basic material in the superstructure to be optimized, wherein the parameters include elastic modulus, Poisson's ratio, thermal expansion coefficient, volume constraint, and relative density of the material;

基于第一目标函数对所述待优化的超结构的参数进行处理,获取第一优化处理后的超结构;Processing the parameters of the superstructure to be optimized based on the first objective function to obtain the superstructure after the first optimization process;

其中,在材料均为实体材料的组合中,所述第一目标函数为热膨胀系数相关的函数,以零热膨胀系数优化为例,所述第一目标函数为热膨胀系数的平方和极小化,所述第一目标函数具体为:Among them, in the combination where all materials are solid materials, the first objective function is a function related to the thermal expansion coefficient. Taking the optimization of zero thermal expansion coefficient as an example, the first objective function is to minimize the sum of squares of thermal expansion coefficients. The first objective function is specifically:

Find:ρea(e∈Ne)Find: ρea (e∈Ne)

其中,为超结构在不同方向上的热膨胀系数(不同方向包括水平方向和竖直方向),i起始值为1,角标H代表超结构的等效性能,ve为单元e的体积,Va *为材料a的最大体积分数;ρea为材料相对密度矩阵ρe=[ρe1 ρe2 ρe3]中,a=1时的取值;ft为第一目标函数;fv为约束函数;in, is the thermal expansion coefficient of the superstructure in different directions (different directions include horizontal and vertical directions), the initial value of i is 1, the subscript H represents the equivalent performance of the superstructure, ve is the volume of unit e, Va * is the maximum volume fraction of material a; ρea is the value when a=1 in the material relative density matrix ρe =[ ρe1ρe2ρe3 ] ; ft is the first objective function; fv is the constraint function;

通过第一目标函数能够进行优化的热膨胀系数,从而来调整所述待优化的超结构的相对密度矩阵ρe=[ρe1 ρe2 ρe3],以实现对所述待优化的超结构的热膨胀系数的优化;The thermal expansion coefficient that can be optimized by the first objective function is used to adjust the relative density matrix ρ e =[ρ e1 ρ e2 ρ e3 ] of the superstructure to be optimized, so as to optimize the thermal expansion coefficient of the superstructure to be optimized;

其中,当所述热膨胀系数为非零时,可对上述公式进行对应的变形。When the thermal expansion coefficient is non-zero, the above formula may be modified accordingly.

其中,第二优化处理包括泊松比处理,所述对所述超结构进行泊松比优化处理包括:The second optimization process includes Poisson's ratio processing, and the Poisson's ratio optimization process performed on the superstructure includes:

获取所述待优化的超结构内的基础材料的参数,其中,所述参数包括弹性模量、泊松比、热膨胀系数、体积约束以及材料相对密度;Acquiring parameters of a basic material in the superstructure to be optimized, wherein the parameters include elastic modulus, Poisson's ratio, thermal expansion coefficient, volume constraint, and relative density of the material;

基于所述待优化的超结构的参数优化,通过第二目标函数对所述待优化的超结构的泊松比进行优化,获取第二优化处理后的超结构,Based on the parameter optimization of the superstructure to be optimized, the Poisson's ratio of the superstructure to be optimized is optimized by a second objective function to obtain a superstructure after a second optimization process.

其中,在包含有虚拟材料的组合中,所述第二目标函数为泊松比的相关的函数,以零泊松比优化为例,所述第二目标函数为泊松比平方的极小化,所述第二目标函数具体为:Among them, in the combination including virtual materials, the second objective function is a function related to Poisson's ratio. Taking zero Poisson's ratio optimization as an example, the second objective function is the minimization of the square of Poisson's ratio. The second objective function is specifically:

Find:ρea(e∈Ne)Find: ρea (e∈Ne)

其中,为超结构在不同方向上的等效泊松比(所述不同方向包括水平方向与竖直方向),角标H代表超结构的等效性能,ve为单元e的体积,Va *为材料a的最大体积分数;ρea为材料相对密度矩阵ρe=[ρe1 ρe2 ρe3]中,a=1时的取值;fp为第二目标函数;fv为约束函数。in, is the equivalent Poisson's ratio of the superstructure in different directions (the different directions include horizontal and vertical directions), the subscript H represents the equivalent performance of the superstructure, ve is the volume of unit e, Va * is the maximum volume fraction of material a; ρea is the value when a=1 in the material relative density matrix ρe =[ ρe1ρe2ρe3 ]; fp is the second objective function; and fv is the constraint function.

通过第二目标函数能够得到优化的泊松比,从而来调整所述待优化的超结构的相对密度矩阵ρe=[ρe1 ρe2 ρe3],以实现对所述待优化的超结构的泊松比的优化。The optimized Poisson's ratio can be obtained through the second objective function, so as to adjust the relative density matrix ρ e =[ρ e1 ρ e2 ρ e3 ] of the superstructure to be optimized, so as to optimize the Poisson's ratio of the superstructure to be optimized.

其中,当所述泊松比为非零时,可对上述公式进行对应的变形。When the Poisson's ratio is non-zero, the above formula may be modified accordingly.

其中,在n次的第一优化处理中超结构在不同方向上的热膨胀系数第一目标函数ft的灵敏度及体积约束fv的灵敏度都是需要根据当前优化的超结构来实际得到的;同理,当前超结构在不同方向上的等效泊松比第二目标函数fp的灵敏度及体积约束fv的灵敏度也是要根据当前优化的超结构实际得到的,对于当前超结构在不同方向上的热膨胀系数以及当前超结构在不同方向上的等效泊松比是通过有限元分析得到,第一目标函数ft的灵敏度第二目标函数fp的灵敏度及体积约束fv的灵敏度是通过灵敏度得到;即所述第一优化处理以及第二优化处理中均还包括有限元分析处理以及灵敏度计算处理;Among them, the thermal expansion coefficient of the superstructure in different directions in the first optimization process of n times is The sensitivity of the first objective function ft and the sensitivity of the volume constraint fv All of them need to be actually obtained according to the currently optimized superstructure; similarly, the equivalent Poisson's ratio of the current superstructure in different directions The sensitivity of the second objective function fp and the sensitivity of the volume constraint fv It is also based on the actual results of the currently optimized superstructure. For the thermal expansion coefficient of the current superstructure in different directions And the equivalent Poisson's ratio of the current superstructure in different directions The sensitivity of the first objective function ft is obtained through finite element analysis. The sensitivity of the second objective function fp and the sensitivity of the volume constraint fv is obtained through sensitivity; that is, the first optimization process and the second optimization process both include finite element analysis and sensitivity calculation;

在每次进行热膨胀系数优化处理的时候,都是需要通过有限元分析处理以及灵敏度计算处理,得到当前的超结构在不同方向上的热膨胀系数第一目标函数ft的灵敏度及体积约束fv的灵敏度在代入上述热膨胀系数优化处理的过程中,实现第一目标函数的优化过程,即热膨胀系数优化处理是n次就需进行n次的有限元分析处理以及灵敏度计算处理;Each time the thermal expansion coefficient is optimized, it is necessary to perform finite element analysis and sensitivity calculation to obtain the thermal expansion coefficient of the current superstructure in different directions. Sensitivity of the first objective function ft and the sensitivity of the volume constraint fv In the process of substituting the above-mentioned thermal expansion coefficient optimization processing, the optimization process of the first objective function is realized, that is, if the thermal expansion coefficient optimization processing is n times, the finite element analysis processing and sensitivity calculation processing need to be performed n times;

同理,在每次进行泊松比优化处理的时候,都是需要通过有限元分析处理以及灵敏度计算处理来计算得到当前超结构在不同方向上的等效泊松比第二目标函数fp的灵敏度及体积约束fv的灵敏度在代入上述泊松比优化处理的过程中,实现第二目标函数的优化过程,即泊松比优化处理是m次就需进行m次的有限元分析处理以及灵敏度计算处理。Similarly, each time the Poisson's ratio optimization process is performed, it is necessary to calculate the equivalent Poisson's ratio of the current superstructure in different directions through finite element analysis and sensitivity calculation. The sensitivity of the second objective function fp and the sensitivity of the volume constraint fv In the process of substituting the above Poisson's ratio optimization processing, the optimization process of the second objective function is realized, that is, if the Poisson's ratio optimization processing is performed m times, then m times of finite element analysis processing and sensitivity calculation processing need to be performed.

其中,所述有限元分析处理包括:Wherein, the finite element analysis process includes:

获取当前的超结构内的基础材料的力学参数,所述力学参数包括弹性模量、泊松比以及热膨胀系数;Acquire mechanical parameters of basic materials in the current superstructure, wherein the mechanical parameters include elastic modulus, Poisson's ratio and thermal expansion coefficient;

基于均匀化理论对所述力学参数进行处理,获取当前超结构在不同方向上的等效泊松比以及当前超结构在不同方向上的等效热膨胀系数 The mechanical parameters are processed based on the homogenization theory to obtain the equivalent Poisson's ratio of the current superstructure in different directions. And the equivalent thermal expansion coefficient of the current superstructure in different directions

具体地,首先,基于SIMP材料插值函数建立超结构的材料属性(力学参数)与变量ρea之间的关系,其公式如下:Specifically, firstly, the relationship between the material properties (mechanical parameters) of the superstructure and the variable ρ ea is established based on the SIMP material interpolation function, and the formula is as follows:

其中为任意基础材料m的弹性模量及为任意基础材料m的热膨胀系数;p为惩罚函数,一般范围为3~5。注意,单元材料相对密度的总和应该为1,即:in is the elastic modulus of any base material m and is the thermal expansion coefficient of any base material m; p is the penalty function, generally ranging from 3 to 5. Note that the sum of the relative densities of the unit materials should be 1, that is:

之后,基于均匀化理论,依次求解当前超结构在不同方向上的等效泊松比当前超结构在不同方向上的等效热膨胀系数均匀化等效弹性张量CH以及等效热应力张量βHThen, based on the homogenization theory, the equivalent Poisson's ratio of the current superstructure in different directions is solved in turn: Equivalent thermal expansion coefficient of the current superstructure in different directions Homogenized equivalent elastic tensor CH and equivalent thermal stress tensor βH :

(a)均匀化等效弹性张量CH(a) Homogenized equivalent elastic tensor CH :

以二维问题为例,|Y|为超结构的面积;i,j,k,l=1,2,…,d表示索引向量;为初始独立单元单位应变向量,包括水平方向竖直方向及剪切方向为在初始应变作用下微结构内产生的未知应变场,可基于线弹性平衡方程求解:Taking the two-dimensional problem as an example, |Y| is the area of the superstructure; i, j, k, l = 1, 2, ..., d represents the index vector; is the initial independent unit unit strain vector, including the horizontal direction Vertical direction and shear direction is the unknown strain field generated in the microstructure under the action of the initial strain, which can be solved based on the linear elastic equilibrium equation:

其中,v为虚位移场。Where v is the virtual displacement field.

(b)当前超结构在不同方向上的等效泊松比 (b) Equivalent Poisson’s ratio of the current superstructure in different directions

(c)等效热应力张量βH (c) Equivalent thermal stress tensor β H

其中,τpq为施加的热载荷;为单位热载荷作用下的单胞应变场,通过求解线弹性平衡方程可得:Where τ pq is the applied heat load; is the unit cell strain field under unit thermal load, and by solving the linear elastic equilibrium equation, we can get:

其中,v为虚位移场。Where v is the virtual displacement field.

(d)当前超结构在不同方向上的等效热膨胀系数 (d) Equivalent thermal expansion coefficient of the current superstructure in different directions

其中,所述灵敏度计算处理包括:The sensitivity calculation process includes:

获取有限元分析处理的结果,所述结果包括当前超结构在不同方向上的等效泊松比当前超结构在不同方向上的等效热膨胀系数均匀化等效弹性张量CH以及等效热应力张量βHObtain the results of the finite element analysis process, including the equivalent Poisson's ratio of the current superstructure in different directions Equivalent thermal expansion coefficient of the current superstructure in different directions Homogenized equivalent elastic tensor C H and equivalent thermal stress tensor β H ;

根据链式法则对所述结果进行处理,获取第一目标函数ft的灵敏度第二目标函数fp的灵敏度及体积约束fv的灵敏度 The result is processed according to the chain rule to obtain the sensitivity of the first objective function ft The sensitivity of the second objective function fp and the sensitivity of the volume constraint fv

具体的,如上所述,将所述材料定义为预置材料a以及预置材料b,对于泊松比优化处理或热膨胀系数优化处理的过程,基于SIMP材料插值函数的变密度法插值形式得到材料属性Specifically, as described above, the materials are defined as preset material a and preset material b. For the process of Poisson's ratio optimization or thermal expansion coefficient optimization, the material properties are obtained by the variable density method interpolation form based on the SIMP material interpolation function.

其中,为预置材料a的弹性模量,为材料a的热膨胀系数,为预置材料b的弹性模量,为预置材料b的热膨胀系数,p为惩罚参数(范围在1~5之间);基于均匀化理论,对于变量ρea,等效弹性模量及等效热应力张量灵敏度的灵敏度分别为:in, is the elastic modulus of the preset material a, is the thermal expansion coefficient of material a, is the elastic modulus of the preset material b, is the thermal expansion coefficient of the preset material b, p is the penalty parameter (ranging from 1 to 5); based on the homogenization theory, for the variable ρ ea , the equivalent elastic modulus and the equivalent thermal stress tensor sensitivity The sensitivities are:

其中,灵敏度通过材料插值公式计算得Eq:in, and The sensitivity is calculated by the material interpolation formula Eq:

最终,目标函数ft灵敏度fp的灵敏度及体积约束fv的灵敏度分别可得:Finally, the objective function ft sensitivity Sensitivity of fp and the sensitivity of the volume constraint fv We can get:

其中,ve为第e个单元的体积与V所有单元的体积。Where ve is the volume of the e-th unit and the volume of all units in V.

其中,根据内循环的有限元分析与灵敏度计算结果,更新设计变量ρea,满足收敛条件时结束算法运行,输出优化后的超结构。Among them, according to the finite element analysis and sensitivity calculation results of the inner loop, the design variable ρ ea is updated, and the algorithm operation is terminated when the convergence condition is met, and the optimized superstructure is output.

具体的,可通过移动渐近线法更新变量,当达到收敛性判断条件后,输出拓扑优化设计结果。Specifically, the variables can be updated by the moving asymptote method, and when the convergence judgment condition is reached, the topology optimization design results are output.

基于本实施例的方法,进行具体实施如下:Based on the method of this embodiment, the specific implementation is as follows:

实例1:Example 1:

本实例采用两种常见的工程塑料PVA作为实体材料mat-1、Nylon作为实体材料mat-2(材料属性见表1)设计内凹型零泊松比零热膨胀多功能超结构。In this example, two common engineering plastics PVA are used as the solid material mat-1 and Nylon is used as the solid material mat-2 (material properties are shown in Table 1) to design an inward-concave zero Poisson's ratio and zero thermal expansion multifunctional superstructure.

表1工程材料PVA、Nylon材料属性表Table 1 Engineering material PVA, Nylon material properties

首先,建立多材料拓扑优化模型,基础材料为PVA、Nylon与设定的虚拟材料,分别以深色、浅色和白色代表。通过设定模型内的材料分布建立初始几何特征,如图3所示;First, a multi-material topology optimization model is established, with the basic materials being PVA, Nylon, and the set virtual materials, represented by dark, light, and white, respectively. The initial geometric features are established by setting the material distribution within the model, as shown in Figure 3;

如图4所示,执行上述超结构的优化方法,在零泊松比目标函数(第二目标函数)的驱动下,在执行如上所述泊松比优化处理,复杂内凹几何构型逐渐出现;在零热膨胀目标函数(第一目标函数)的驱动下,材料分布发生变化;随着优化过程的推进,结构几何构型逐渐清晰,孤立及不连通的材料分布被抑制并消除;n和m都为60左右时;out为n和m同时完成的步数,第一目标函数以及第二目标函数逐渐平稳,结构构型逐渐稳定,几乎未再发生变化,达到收敛条件终止;拓扑优化产生的超结构的泊松比数值为0.057,热膨胀系数为-0.571ppm/℃。可见,采用本实施例提出的超结构优化方法,可以通过两种常见的不同性能的材料实现近零超结构的优化。As shown in FIG4 , the above-mentioned superstructure optimization method is executed. Under the drive of the zero Poisson's ratio objective function (second objective function), the complex concave geometric configuration gradually appears when the Poisson's ratio optimization process is executed as described above; under the drive of the zero thermal expansion objective function (first objective function), the material distribution changes; as the optimization process progresses, the structural geometric configuration gradually becomes clear, and the isolated and disconnected material distribution is suppressed and eliminated; when n and m are both about 60; out is the number of steps completed by n and m at the same time, the first objective function and the second objective function gradually become stable, the structural configuration gradually becomes stable, and almost no changes occur, and the convergence condition is reached and terminated; the Poisson's ratio value of the superstructure generated by topology optimization is 0.057, and the thermal expansion coefficient is -0.571ppm/℃. It can be seen that by adopting the superstructure optimization method proposed in this embodiment, the optimization of near-zero superstructure can be achieved by using two common materials with different properties.

实例2Example 2

通过执行上述优化方法中的泊松比优化处理以及热膨胀优化处理,实现泊松比与热膨胀系数多种组合功能的拓扑优化,优化结果包含内凹构型与手性构型,功能组合包括:负泊松比&负热膨胀,负泊松比&正热膨胀,正泊松比&负热膨胀,正泊松比&正热膨胀等,具体如下表所示,泊松比(PR)为无量纲数值,热膨胀系数(CTE)单位为ppm/℃。By executing the Poisson's ratio optimization processing and thermal expansion optimization processing in the above optimization method, the topological optimization of various combination functions of Poisson's ratio and thermal expansion coefficient is realized. The optimization results include concave configuration and chiral configuration. The functional combinations include: negative Poisson's ratio & negative thermal expansion, negative Poisson's ratio & positive thermal expansion, positive Poisson's ratio & negative thermal expansion, positive Poisson's ratio & positive thermal expansion, etc., as shown in the following table. Poisson's ratio (PR) is a dimensionless value, and the unit of thermal expansion coefficient (CTE) is ppm/℃.

表2内凹以及手性多功能超结构拓扑优化结果Table 2 Topology optimization results of concave and chiral multifunctional superstructures

如图12本实施例还提供了一种超结构的优化系统,所述系统包括如下模块:As shown in FIG12 , this embodiment also provides a superstructure optimization system, the system comprising the following modules:

获取模块201,所述获取模块201用于获取待优化的超结构,所述待优化的超结构内的基础材料包括实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3;An acquisition module 201, the acquisition module 201 is used to acquire a super structure to be optimized, wherein the basic materials in the super structure to be optimized include a physical material Mat-1, a physical material Mat-2 and a virtual material Mat-3;

生成模块202,所述生成模块202用于建立循环优化流程并将所述待优化的超结构输入到循环优化流程内进行优化,生成优化的超结构,A generation module 202 is used to establish a loop optimization process and input the super structure to be optimized into the loop optimization process for optimization, thereby generating an optimized super structure.

其中,所述循环优化流程为实体材料Mat-1、实体材料Mat-2以及虚拟材料Mat-3中的任两个进行组合,生成三种组合,根据三种所述组合依次对所述待优化的超结构进行优化处理;The cyclic optimization process is to combine any two of the physical material Mat-1, the physical material Mat-2 and the virtual material Mat-3 to generate three combinations, and optimize the superstructure to be optimized in turn according to the three combinations;

在材料均为实体材料的组合中,对所述待优化的超结构进行n次第一优化处理;在包含有虚拟材料的组合中,所述待优化的超结构进行m次第二优化处理,遍历所有材料组合对所述待优化的超结构完成所述第一优化处理以及所述第二优化处理,则生成优化的超结构;所述第一优化处理包括对所述待优化的超结构进行热膨胀系数优化处理,所述第二优化处理包括对所述超结构进行泊松比优化处理。In a combination where all materials are solid materials, the superstructure to be optimized is subjected to n first optimization processes; in a combination containing virtual materials, the superstructure to be optimized is subjected to m second optimization processes, and all material combinations are traversed to complete the first optimization process and the second optimization process on the superstructure to be optimized, thereby generating an optimized superstructure; the first optimization process includes performing thermal expansion coefficient optimization process on the superstructure to be optimized, and the second optimization process includes performing Poisson's ratio optimization process on the superstructure.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working processes of the systems, devices and units described above can refer to the corresponding processes in the aforementioned method embodiments and will not be repeated here.

如图13所示,本实施例还提供了一种超结构的优化设备,所述设备包括处理器300以及存储器301;As shown in FIG13 , this embodiment further provides a superstructure optimization device, the device comprising a processor 300 and a memory 301 ;

所述存储器301用于存储程序代码302,并将所述程序代码302传输给所述处理器;The memory 301 is used to store program code 302 and transmit the program code 302 to the processor;

所述处理器300用于根据所述程序代码302中的指令执行上述的一种超结构的优化方法中的步骤。The processor 300 is used to execute the steps in the above-mentioned superstructure optimization method according to the instructions in the program code 302 .

示例性的,所述计算机程序302可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器301中,并由所述处理器300执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序302在所述终端设备30中的执行过程。Exemplarily, the computer program 302 may be divided into one or more modules/units, which are stored in the memory 301 and executed by the processor 300 to complete the present application. The one or more modules/units may be a series of computer program instruction segments capable of completing specific functions, which are used to describe the execution process of the computer program 302 in the terminal device 30.

所述终端设备30可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端设备可包括,但不仅限于,处理器300、存储器301。本领域技术人员可以理解,图5仅仅是终端设备30的示例,并不构成对终端设备30的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备还可以包括输入输出设备、网络接入设备、总线等。The terminal device 30 may be a computing device such as a desktop computer, a notebook, a PDA, a cloud server, etc. The terminal device may include, but not limited to, a processor 300 and a memory 301. Those skilled in the art may understand that FIG. 5 is only an example of the terminal device 30 and does not constitute a limitation on the terminal device 30. The terminal device 30 may include more or fewer components than shown in the figure, or may combine certain components, or different components. For example, the terminal device may also include input and output devices, network access devices, buses, etc.

所称处理器300可以是中央处理单元CentralProcessingUnit,CPU),还可以是其他通用处理器、数字信号处理器DigitalSignalProcessor,DSP)、专用集成电路ApplicationSpecificIntegratedCircuit,ASIC)、现成可编程门阵列(Field-ProgrammaBleGateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The processor 300 may be a central processing unit (CPU), other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general-purpose processor may be a microprocessor or any conventional processor, etc.

所述存储器301可以是所述终端设备30的内部存储单元,例如终端设备30的硬盘或内存。所述存储器301也可以是所述终端设备30的外部存储设备,例如所述终端设备30上配备的插接式硬盘,智能存储卡(SmartMediaCard,SMC),安全数字(SecureDigital,SD)卡,闪存卡(FlashCard)等。进一步地,所述存储器301还可以既包括所述终端设备30的内部存储单元也包括外部存储设备。所述存储器301用于存储所述计算机程序以及所述终端设备所需的其他程序和数据。所述存储器301还可以用于暂时地存储已经输出或者将要输出的数据。The memory 301 may be an internal storage unit of the terminal device 30, such as a hard disk or memory of the terminal device 30. The memory 301 may also be an external storage device of the terminal device 30, such as a plug-in hard disk, a smart memory card (SmartMediaCard, SMC), a secure digital (SecureDigital, SD) card, a flash card (FlashCard), etc. equipped on the terminal device 30. Further, the memory 301 may also include both an internal storage unit of the terminal device 30 and an external storage device. The memory 301 is used to store the computer program and other programs and data required by the terminal device. The memory 301 may also be used to temporarily store data that has been output or is to be output.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working processes of the systems, devices and units described above can refer to the corresponding processes in the aforementioned method embodiments and will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in the present application, it should be understood that the disclosed systems, devices and methods can be implemented in other ways. For example, the device embodiments described above are only schematic. For example, the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. The above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention is essentially or partly contributed to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions to enable a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk and other media that can store program codes.

以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。As described above, the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit the same. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features thereof may be replaced by equivalents. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (9)

1. A method of optimizing a superstructure, the method comprising:
acquiring a super structure to be optimized, wherein the material distribution in the super structure to be optimized comprises a physical material Mat-1, a physical material Mat-2 and a virtual material Mat-3;
Establishing a cyclic optimization flow, inputting the superstructure to be optimized into the cyclic optimization flow for optimization to generate an optimized superstructure,
The cyclic optimization flow is formed by combining any two of a physical material Mat-1, a physical material Mat-2 and a virtual material Mat-3 to generate three combinations, and optimizing the superstructure to be optimized according to the three combinations in sequence;
In the combination that the materials are solid materials, carrying out first optimization treatment on the super structure to be optimized n times; in the combination containing virtual materials, the super structure to be optimized is subjected to m times of second optimization processing, and when the first optimization processing and the second optimization processing are completed on the super structure to be optimized, an optimized super structure is generated; the first optimization processing comprises thermal expansion coefficient optimization processing on the super structure to be optimized, and the second optimization processing comprises poisson ratio optimization processing on the super structure;
The optimizing processing of the to-be-optimized superstructure according to the three combinations in turn specifically comprises:
sequentially and respectively judging whether the materials are all combinations of solid materials or not for the three combinations,
If yes, performing d times of first optimization processing on the superstructure to be optimized, and generating a first optimized superstructure;
if not, performing e times of second optimization processing on the superstructure to be optimized, and generating a superstructure subjected to the second optimization processing; traversing the optimization processes of three combinations, wherein each optimization takes the previous optimization result as input;
and (3) circulating the optimization process k times, and carrying out n times of first optimization processing and m times of second optimization processing, so as to generate an optimized superstructure.
2. The method for optimizing a superstructure according to claim 1, wherein said obtaining a superstructure to be optimized comprises:
obtaining a superstructure, wherein the superstructure comprises a finite element model of Ne units, for any one
Italian unit e, the design variable of which is the relative density ρ e=[ρe1 ρe2 ρe3 of the material;
And obtaining the super structure to be optimized by optimizing the material relative density of the super structure of each unit.
3. The method for optimizing a superstructure according to claim 2, wherein said performing a thermal expansion coefficient optimization process on said superstructure to be optimized comprises:
Obtaining parameters of a base material in the super structure to be optimized, wherein the parameters comprise elastic modulus, poisson ratio, thermal expansion coefficient, volume constraint and relative material density;
Processing parameters of the superstructure to be optimized based on a first objective function, and obtaining a first optimized superstructure;
Wherein, in the combination that the materials are solid materials, the first objective function is a function related to the thermal expansion coefficient, specifically, the minimization of the sum of squares of the thermal expansion coefficients may be:
Find:ρea(e∈Ne)
min:
s.t.:
wherein, For the thermal expansion coefficients of the super structure in different directions, the initial value of i is 1, the angle sign H represents the equivalent performance of the super structure, V e is the volume of the unit e, and V a * is the maximum volume fraction of the material a; ρ ea is the value of a=1 in the relative density matrix ρ e=[ρe1 ρe2 ρe3 of the material; ft is a first objective function; fv is a constraint function.
4. The method of claim 1, wherein said poisson's ratio optimization of said superstructure comprises:
Obtaining parameters of a base material in the super structure to be optimized, wherein the parameters comprise elastic modulus, poisson ratio, thermal expansion coefficient, volume constraint and relative material density;
optimizing the Poisson's ratio of the superstructure to be optimized through a second objective function based on the parameter optimization of the superstructure to be optimized, obtaining a superstructure after a second optimization process,
Wherein, in the combination containing the virtual material, the second objective function is a poisson ratio related function, and specifically may be a minimization of poisson ratio square:
Find:ρea(e∈Ne)
min:
s.t.:
wherein, For the equivalent poisson ratio of the superstructure in different directions, the angle sign H represents the equivalent performance of the superstructure, V e is the volume of the unit e, and V a * is the maximum volume fraction of the material a; ρ ea is the value of a=1 in the relative density matrix ρ e=[ρe1 ρe2 ρe3 of the material; fp is the second objective function; fv is a constraint function.
5. The method of claim 1, wherein the first optimization process and the second optimization process each further comprise a finite element analysis process and a sensitivity calculation process.
6. The method of claim 5, wherein the finite element analysis process comprises:
Obtaining the mechanical parameters of a base material in the current super structure, wherein the mechanical parameters comprise elastic modulus, poisson ratio and thermal expansion coefficient;
based on a homogenization theory, the mechanical parameters are processed to obtain equivalent Poisson ratios of the current superstructure in different directions Equivalent thermal expansion coefficients of current superstructures in different directions
7. The method of optimizing a superstructure according to claim 6, wherein said sensitivity calculation process comprises:
Obtaining a result of finite element analysis processing, the result comprising equivalent poisson ratios of the current superstructure in different directions Equivalent thermal expansion coefficients of current superstructures in different directionsHomogenizing the equivalent elastic tensor C H and the equivalent thermal stress tensor β H;
Processing the result according to the chain rule to obtain the sensitivity of the first objective function ft Sensitivity of the second objective function fpSensitivity of volume constraint fv
8. A system for optimizing a superstructure, said system comprising:
The acquisition module is used for acquiring a super structure to be optimized, and the basic materials in the super structure to be optimized comprise a physical material Mat-1, a physical material Mat-2 and a virtual material Mat-3;
The generation module is used for establishing a circulation optimization flow and inputting the superstructure to be optimized into the circulation optimization flow for optimization to generate an optimized superstructure,
The cyclic optimization flow is formed by combining any two of a physical material Mat-1, a physical material Mat-2 and a virtual material Mat-3 to generate three combinations, and optimizing the superstructure to be optimized according to the three combinations in sequence;
In the combination that the materials are solid materials, carrying out first optimization treatment on the super structure to be optimized n times; in the combination containing virtual materials, the super structure to be optimized is subjected to m times of second optimization processing, and when the first optimization processing and the second optimization processing are completed on the super structure to be optimized, an optimized super structure is generated; the first optimization processing comprises thermal expansion coefficient optimization processing on the super structure to be optimized, and the second optimization processing comprises poisson ratio optimization processing on the super structure;
The optimizing processing of the to-be-optimized superstructure according to the three combinations in turn specifically comprises:
sequentially and respectively judging whether the materials are all combinations of solid materials or not for the three combinations,
If yes, performing d times of first optimization processing on the superstructure to be optimized, and generating a first optimized superstructure;
if not, performing e times of second optimization processing on the superstructure to be optimized, and generating a superstructure subjected to the second optimization processing; traversing the optimization processes of three combinations, wherein each optimization takes the previous optimization result as input;
and (3) circulating the optimization process k times, and carrying out n times of first optimization processing and m times of second optimization processing, so as to generate an optimized superstructure.
9. A super-structure optimizing device, comprising a processor and a memory;
the memory is used for storing program codes and transmitting the program codes to the processor;
The processor is configured to execute a method of optimizing a superstructure according to any one of claims 1-7 according to instructions in the program code.
CN202111647640.8A 2021-12-30 2021-12-30 A superstructure optimization method, system and device Active CN114282421B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111647640.8A CN114282421B (en) 2021-12-30 2021-12-30 A superstructure optimization method, system and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111647640.8A CN114282421B (en) 2021-12-30 2021-12-30 A superstructure optimization method, system and device

Publications (2)

Publication Number Publication Date
CN114282421A CN114282421A (en) 2022-04-05
CN114282421B true CN114282421B (en) 2024-11-08

Family

ID=80878550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111647640.8A Active CN114282421B (en) 2021-12-30 2021-12-30 A superstructure optimization method, system and device

Country Status (1)

Country Link
CN (1) CN114282421B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109657284A (en) * 2018-11-27 2019-04-19 华中科技大学 A kind of equal geometry Topology Optimization Method towards Meta Materials
CN113158519A (en) * 2021-04-08 2021-07-23 北京工业大学 Multi-objective optimization design method for folded paper superstructure based on response surface method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578296B (en) * 2018-10-19 2022-03-16 Univ Cranfield Materials with structures exhibiting zero Poisson's ratio
CN113808684B (en) * 2020-06-16 2024-07-02 湖南大学 Three-dimensional metamaterial structure with simultaneously controllable thermal expansion and poisson ratio, and design method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109657284A (en) * 2018-11-27 2019-04-19 华中科技大学 A kind of equal geometry Topology Optimization Method towards Meta Materials
CN113158519A (en) * 2021-04-08 2021-07-23 北京工业大学 Multi-objective optimization design method for folded paper superstructure based on response surface method

Also Published As

Publication number Publication date
CN114282421A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
CN108701250B (en) Data fixed-point method and device
CN107844676A (en) A kind of Structural Topology Optimization Design method based on more performance constraints
WO2021139287A1 (en) Method, system and apparatus for analyzing nonlinear constitutive relationship of negative poisson's ratio structure
Herath et al. Smoothed finite element and genetic algorithm based optimization for shape adaptive composite marine propellers
CN107590325A (en) A kind of fiber-reinforced composite materials structures optimization method based on Shepard interpolation
TW202147188A (en) Method of training neural network model and related product
CN116136938B (en) Quick fitting method, system and related equipment for simulation parameters of surface acoustic wave device
CN107729648A (en) A kind of wavy fiber composite structural design Waterfall type multilevel optimization method based on Shepard interpolation
CN107315872A (en) A kind of efficient structure frequency response Topology Optimization Method
JP4776571B2 (en) Execution control program, execution control method, and execution control apparatus
CN106294975A (en) A kind of girder structure free vibration analysis method based on reduced-order model
CN114282421B (en) A superstructure optimization method, system and device
Groenwold et al. Approximated approximations for SAO
Jing et al. An investigation on design of signs in composite laminates to control bending-twisting coupling effects using sign optimization algorithm
Ferreira et al. Reduced-order strategy for meshless solution of plate bending problems with the generalized finite difference method
CN111723932A (en) Training methods and related products of neural network models
Baxter Existence of topological hairy dyons and dyonic black holes in anti-de Sitter 𝔰𝔲 (N) Einstein-Yang-Mills theory
CN111737260A (en) Method and system for data replication consistency check
Garambois et al. Multi-objective structural robust optimization under stress criteria based on mixed plate super-elements and genetic algorithms
CN115359211A (en) Model loading method and device, storage medium and electronic equipment
Pholdee et al. Surrogate-assisted evolutionary optimizers for multiobjective design of a torque arm structure
CN107463462A (en) Data recovery method and data prosthetic device
Köke et al. BESO with strain controlled material assignment
Cebrian Carcavilla et al. Effective Superelastic Domains of Schwarz Primitive Shape Memory Alloy Lattices Subjected to Cyclic Loading
Saffari et al. A finite circular arch element based on trigonometric shape functions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant