CN114277164B - MNP marker combination, primer pair combination, test kit and application of Streptococcus pneumoniae - Google Patents
MNP marker combination, primer pair combination, test kit and application of Streptococcus pneumoniae Download PDFInfo
- Publication number
- CN114277164B CN114277164B CN202111309341.3A CN202111309341A CN114277164B CN 114277164 B CN114277164 B CN 114277164B CN 202111309341 A CN202111309341 A CN 202111309341A CN 114277164 B CN114277164 B CN 114277164B
- Authority
- CN
- China
- Prior art keywords
- streptococcus pneumoniae
- mnp
- marker
- combination
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical Field
本发明实施例涉及生物技术领域,特别涉及一种肺炎链球菌的MNP标记组 合、引物对组合、试剂盒及其应用。The embodiments of the present invention relate to the field of biotechnology, and in particular to a MNP labeling combination, a primer pair combination, a kit and applications thereof for Streptococcus pneumoniae.
背景技术Background Art
肺炎链球菌(Streptococcus pneumonia)是一种人类致病性革兰氏阳性细菌,主要引起人 类大叶性肺炎,是感染性肺炎重要的病原微生物之一;也可侵入机体其他部位,引起继发性胸 膜炎、中耳炎、乳突炎、心内膜炎及化脓性脑膜炎等。可借助飞沫传播,冬季与初春多见,常与呼吸道病毒感染并行。因此,快速、准确地诊断肺炎链球菌感染性疾病在临床上具有重要意 义。Streptococcus pneumonia is a human pathogenic Gram-positive bacterium that mainly causes lobar pneumonia in humans and is one of the important pathogenic microorganisms of infectious pneumonia. It can also invade other parts of the body and cause secondary pleurisy, otitis media, mastoiditis, endocarditis and purulent meningitis. It can be spread through droplets and is more common in winter and early spring, often in conjunction with respiratory viral infections. Therefore, rapid and accurate diagnosis of pneumococcal infectious diseases is of great clinical significance.
另外,肺炎链球菌也是实验室进行研究常用的模式病原微生物。其作为群 体生物,在和宿主、环境的互作中,群体内个体会发生变异。对于实验室的研 究来说,这种不易被察觉的变异会导致不同实验室或同一实验室不同时期相同 命名的菌株实际上并不相同,导致实验结果的不可重现和不可比较。人Hella 细胞实验室间的异质性已经导致大量的实验结果的不可比较和数据浪费。因此, 开发快速、准确的肺炎链球菌检测分析方法对于肺炎链球菌的临床诊断、疾控监测和科学研究都具有重要意义。In addition, Streptococcus pneumoniae is also a common model pathogen for laboratory research. As a group organism, individuals in the group will mutate in the interaction with the host and the environment. For laboratory research, this subtle variation will cause the strains with the same name in different laboratories or in different periods of the same laboratory to be actually different, resulting in irreproducible and incomparable experimental results. The heterogeneity of human Hella cell laboratories has led to a large number of incomparable experimental results and data waste. Therefore, the development of rapid and accurate Streptococcus pneumoniae detection and analysis methods is of great significance for the clinical diagnosis, disease control monitoring and scientific research of Streptococcus pneumoniae.
经典的培养方法是检测肺炎链球菌的金标准,但耗时长、操作复杂,远不 能满足大样本和快速检测的需求。近年来,分子检测技术发展迅速,荧光多重 PCR技术是检测微生物最常用的分子方法之一,也是现行微生物检测国家和行 业标准中常用的检测技术之一。但其检测的靶标数目有限,不能检测变异,少 数几个标记的检测容易检测失败。宏基因组测序技术是另一种检测肺炎链球菌 的技术,但宏基因组测序往往包括大量的宿主测序数据,带来的大量数据浪费 和背景噪音,尤其对低丰度菌的样本进行检测时,需要超深度的测序,想要检 测变异,区分变种,会导致超高的测序成本。The classic culture method is the gold standard for detecting Streptococcus pneumoniae, but it is time-consuming and complicated to operate, and is far from meeting the needs of large samples and rapid detection. In recent years, molecular detection technology has developed rapidly. Fluorescence multiplex PCR technology is one of the most commonly used molecular methods for detecting microorganisms, and it is also one of the commonly used detection technologies in the current national and industry standards for microbial detection. However, the number of targets it detects is limited, and it cannot detect mutations. The detection of a few markers is prone to detection failure. Metagenomic sequencing technology is another technology for detecting Streptococcus pneumoniae, but metagenomic sequencing often includes a large amount of host sequencing data, which brings a lot of data waste and background noise. Especially when testing samples of low-abundance bacteria, ultra-deep sequencing is required. If you want to detect mutations and distinguish variants, it will lead to extremely high sequencing costs.
超多重PCR扩增结合高通量测序技术,可以在低微生物含量的样本中靶向 的富集目标微生物,避免了全基因组依赖的病原菌分离培养步骤和宏基因组测 序带来的大量数据浪费和背景噪音,低成本就可达到深度测序,通过深度测序 检测碱基变异,将物种区分到最精细的分类学水平,具有样本需要量少、高灵敏度、高准确性和精细分型的优势。现有的靶向检测技术检测的分子标记主要 包括SNP和SSR标记。SSR标记是公认的多态性最高的标记,但在微生物中数 量少;SNP标记数量巨大,分布密集,是二态性标记,单个SNP标记的多态性 不足以捕获微生物种群中潜在的等位基因多样性。因此,开发高多态性的肺炎 链球菌的新型分子标记及其高通量、准确、灵敏的检测技术,成为亟待解决的 技术问题。Super-multiplex PCR amplification combined with high-throughput sequencing technology can enrich target microorganisms in samples with low microbial content, avoiding the large amount of data waste and background noise caused by the whole genome-dependent pathogen isolation and culture steps and metagenomic sequencing. Deep sequencing can be achieved at a low cost. By detecting base variations through deep sequencing, species can be distinguished to the most refined taxonomic level, with the advantages of small sample requirements, high sensitivity, high accuracy and fine typing. The molecular markers detected by existing targeted detection technologies mainly include SNP and SSR markers. SSR markers are recognized as the most polymorphic markers, but their number is small in microorganisms; SNP markers are huge in number and densely distributed, and are dimorphic markers. The polymorphism of a single SNP marker is not enough to capture the potential allele diversity in microbial populations. Therefore, the development of new molecular markers of highly polymorphic Streptococcus pneumoniae and their high-throughput, accurate and sensitive detection technology has become a technical problem that needs to be solved urgently.
本发明提供了肺炎链球菌的MNP标记组合、引物组合物、检测方法及应用。 其中,MNP标记是一种新型的分子标记,指在基因组上一段区域内由多个核苷 酸变异引起的多态性标记。The present invention provides a MNP marker combination, a primer combination, a detection method and an application of Streptococcus pneumoniae, wherein the MNP marker is a new type of molecular marker, which refers to a polymorphic marker caused by multiple nucleotide variations in a region of a genome.
鉴于以上优点和特性,MNP标记及其检测技术MNP标记法在肺炎链球菌 的检测、变异监测、指纹数据库构建等方面都具有应用潜力。MNP标记法的开 发、筛选和应用在植物中具有较好的应用基础。本发明在肺炎链球菌领域属于 首创,并未见相关文献报道。In view of the above advantages and characteristics, MNP labeling and its detection technology MNP labeling method has application potential in the detection of Streptococcus pneumoniae, mutation monitoring, fingerprint database construction, etc. The development, screening and application of MNP labeling method have a good application basis in plants. The present invention is the first in the field of Streptococcus pneumoniae and has not been reported in relevant literature.
发明内容Summary of the invention
本发明目的是提供一种肺炎链球菌的MNP标记组合、引物对组合、试剂盒 及其应用,可以对肺炎链球菌进行定性的鉴定和变异检测,具有多靶标、高通 量、高灵敏和精细分型的效果。The purpose of the present invention is to provide a MNP marker combination, a primer pair combination, a kit and applications thereof for Streptococcus pneumoniae, which can be used for qualitative identification and variation detection of Streptococcus pneumoniae, and have the effects of multi-target, high throughput, high sensitivity and fine typing.
为实现上述效果,本发明采用了以下技术方案:In order to achieve the above effects, the present invention adopts the following technical solutions:
在本发明的第一方面,提供了一种肺炎链球菌的MNP标记组合,所述MNP 标记组合是指在肺炎链球菌基因组上筛选的区分于其他物种且在肺炎链球菌物 种内部具有多个核苷酸多态性的基因组区域,包括以肺炎链球菌基因组序列 AE007317为参考核苷酸序列上MNP-1~MNP-15的15个标记。In a first aspect of the present invention, a MNP marker combination for Streptococcus pneumoniae is provided, wherein the MNP marker combination refers to a genomic region screened on the Streptococcus pneumoniae genome that is distinguished from other species and has multiple nucleotide polymorphisms within the Streptococcus pneumoniae species, including 15 markers MNP-1 to MNP-15 on the Streptococcus pneumoniae genome sequence AE007317 as a reference nucleotide sequence.
上述技术方案中,MNP-1~MNP-15的标记核苷酸序列具体如SEQ ID NO.1-SEQ IDNO.15所示,其中ID NO.16-SEQ ID NO.30为上引物ID NO.31-SEQ ID NO.45为下引物。说明书表1进一步作出说明,表1中标注的所述MNP标记的起始和终止位置是基于参考序列AE007317确定的。In the above technical solution, the labeled nucleotide sequences of MNP-1 to MNP-15 are specifically shown as SEQ ID NO.1-SEQ ID NO.15, wherein ID NO.16-SEQ ID NO.30 are upper primers and ID NO.31-SEQ ID NO.45 are lower primers. Table 1 of the specification further illustrates that the start and end positions of the MNP labels marked in Table 1 are determined based on the reference sequence AE007317.
在本发明的第二方面,提供了一种用于检测所述MNP标记组合的多重PCR 引物对组合,所述多重PCR引物对组合包括15对引物,具体的引物核苷酸序 列如SEQ ID NO.16-SEQ ID NO.45所示。In the second aspect of the present invention, a multiplex PCR primer pair combination for detecting the MNP marker combination is provided, the multiplex PCR primer pair combination comprises 15 pairs of primers, and the specific primer nucleotide sequences are shown in SEQ ID NO.16-SEQ ID NO.45.
上述技术方案中,每个MNP标记的引物包括上引物和下引物,具体如说 明书表1所示。In the above technical solution, each MNP-labeled primer includes an upper primer and a lower primer, as shown in Table 1 of the specification.
在本发明的第三方面,提供了一种用于检测所述肺炎链球菌的MNP标记组 合的检测试剂盒,所述试剂盒包括所述的引物对组合。In a third aspect of the present invention, a detection kit for detecting the MNP marker combination of Streptococcus pneumoniae is provided, wherein the kit comprises the primer pair combination.
进一步地,所述试剂盒还包括多重PCR预混液。Furthermore, the kit also includes a multiplex PCR premix.
在本发明的第四方面,提供了所述的肺炎链球菌的核心MNP标记组合或所 述的引物对组合或所述的检测试剂盒在非疹断目的肺炎链球菌定性检测中的应 用,在制备肺炎链球菌定性检测产品中的应用。In the fourth aspect of the present invention, the use of the core MNP marker combination of Streptococcus pneumoniae or the primer pair combination or the detection kit in the qualitative detection of Streptococcus pneumoniae for non-diagnostic purposes and in the preparation of a qualitative detection product for Streptococcus pneumoniae is provided.
在本发明的第五方面,提供了所述的肺炎链球菌的MNP标记组合或者所述 的多重PCR引物对组合或者所述的检测试剂盒在肺炎链球菌的DNA指纹数据库 的构建、遗传变异检测和分型中的应用。In the fifth aspect of the present invention, there is provided the use of the MNP marker combination of Streptococcus pneumoniae or the multiplex PCR primer pair combination or the detection kit in the construction of a DNA fingerprint database of Streptococcus pneumoniae, genetic variation detection and typing.
以上所述的应用中,首先利用本发明的引物组合对待测肺炎链球菌菌株的 DNA进行第一轮多重PCR扩增,循环数不高于25个;对扩增产物进行纯化后, 进行基于第二轮PCR扩增的样本标签和二代测序接头添加;对第二轮扩增产物 纯化后定量;检测多个菌株时通过将第二轮扩增产物等量混合后进行高通量测 序;测序结果比对到所述的肺炎链球菌的参考序列上,获取待测菌株在所述15 个MNP标记上的基因型数据。In the above application, the primer combination of the present invention is first used to perform a first round of multiplex PCR amplification on the DNA of the strain to be tested, and the number of cycles is not higher than 25; after the amplification products are purified, sample labels and second-generation sequencing adapters based on the second round of PCR amplification are added; the second round of amplification products are purified and quantified; when multiple strains are detected, the second round of amplification products are mixed in equal amounts and then subjected to high-throughput sequencing; the sequencing results are aligned to the reference sequence of the Streptococcus pneumoniae to obtain the genotype data of the strain to be tested on the 15 MNP markers.
当用于肺炎链球菌定性鉴定时,根据在待测样品和空白对照中检出的肺炎 链球菌的测序序列数量和检出MNP标记的数目,进行质控后判定待测样品中是 否含有肺炎链球菌的核酸。其中,所述的质控方案和判定方法是以拷贝数已知 的肺炎链球菌的DNA为检测样本,评估所述试剂盒检测肺炎链球菌的灵敏度、 准确性和特异性,制定所述试剂盒检测肺炎链球菌时的质控方案和判定方法。When used for qualitative identification of Streptococcus pneumoniae, the number of sequencing sequences of Streptococcus pneumoniae detected in the sample to be tested and the blank control and the number of MNP markers detected are used to determine whether the sample to be tested contains Streptococcus pneumoniae nucleic acid after quality control. The quality control scheme and determination method are to use DNA of Streptococcus pneumoniae with a known copy number as the test sample, evaluate the sensitivity, accuracy and specificity of the kit for detecting Streptococcus pneumoniae, and formulate the quality control scheme and determination method for the kit for detecting Streptococcus pneumoniae.
当用于肺炎链球菌DNA指纹数据库时,是将所有从参考序列获得的肺炎链 球菌的基因型数据和实测获得的新的类型菌株的所述MNP标记的基因型数据, 录入数据库文件,即构成肺炎链球菌的DNA指纹数据库。因此利用所述的引物 组合,可以不断的丰富DNA指纹数据库。When used for the DNA fingerprint database of Streptococcus pneumoniae, all the genotype data of Streptococcus pneumoniae obtained from the reference sequence and the genotype data of the MNP marker of the new type strain obtained by actual measurement are entered into the database file, that is, the DNA fingerprint database of Streptococcus pneumoniae is formed. Therefore, the DNA fingerprint database can be continuously enriched by using the primer combination.
当用于肺炎链球菌分型时,是将获得待测菌株在所述MNP标记的基因型和 由公开的肺炎链球菌的参考序列和已构建的DNA指纹数据库组成的参考序列库进行基因型比对,鉴定样本中的肺炎链球菌是已有的菌株还是新的变异株。When used for typing Streptococcus pneumoniae, the genotype of the strain to be tested obtained at the MNP marker is compared with a reference sequence library consisting of a public reference sequence of Streptococcus pneumoniae and a constructed DNA fingerprint database to identify whether the Streptococcus pneumoniae in the sample is an existing strain or a new variant.
当用于肺炎链球菌遗传变异检测时,包括菌株间和菌株内部的遗传变异检 测。菌株间的遗传变异检测包括利用所述的MNP引物组合对待测肺炎链球菌的 基因组DNA进行扩增和测序,获得菌株各自在所述MNP标记的基因型数据。 通过两两比对,分析待测菌株在所述MNP标记上的主基因型是否存在差异。存 在差异,则说明待测菌株存在变异。作为一种备选方案,也可以通过单重PCR 对待测菌株的15个标记分别进行扩增,然后对扩增产物进行Sanger测序,获 得序列后,将基因型进行两两比对。如果存在基因型不一致的标记,则说明待测菌株间存在变异。当检测菌株内部的遗传变异时,则通过统计模型判定在待 测菌株所述的MNP标记是否检出主基因型以外的次基因型。若待测菌株在至少 一个MNP标记存在次基因型,则判定待测菌株内部存在遗传变异。When used for detecting genetic variation of Streptococcus pneumoniae, it includes genetic variation detection between strains and within strains. The genetic variation detection between strains includes using the MNP primer combination to amplify and sequence the genomic DNA of the Streptococcus pneumoniae to be tested, and obtain the genotype data of each strain on the MNP marker. By comparing two by two, analyze whether there is a difference in the main genotype of the strain to be tested on the MNP marker. If there is a difference, it means that the strain to be tested has variation. As an alternative, the 15 markers of the strain to be tested can also be amplified separately by single PCR, and then the amplified products are Sanger sequenced. After obtaining the sequence, the genotypes are compared two by two. If there are markers with inconsistent genotypes, it means that there is variation between the strains to be tested. When detecting genetic variation within the strain, a statistical model is used to determine whether the MNP marker of the strain to be tested detects a secondary genotype other than the main genotype. If the strain to be tested has a secondary genotype in at least one MNP marker, it is determined that there is genetic variation within the strain to be tested.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明提供的一种肺炎链球菌的MNP标记组合、引物对组合、试剂盒及其 应用。The present invention provides a Streptococcus pneumoniae MNP labeling combination, a primer pair combination, a kit and applications thereof.
与现有标记和标记检测技术相比,本发明提供的技术方案具有以下优点:Compared with existing labeling and labeling detection technologies, the technical solution provided by the present invention has the following advantages:
与传统的SSR标记和SNP标记相比,MNP标记具有以下优势:(1)等位基 因型丰富,单个MNP标记上有2n种等位基因型,高于传统常用的SSR和SNP, 可以满足微生物中广泛存在的多等位基因型的检测;(2)物种区分能力强,只 需要少量的MNP标记就能实现物种鉴定,减少了检测错误率。MNP标记主要 基于参考序列开发,根据已报道的肺炎链球菌代表菌株的重测序数据可以挖掘 大规模的区分于其他物种、在物种内部多态、两侧序列保守的MNP标记;通过 MNP标记两侧的保守序列可以设计适用于于多重PCR扩增的MNP标记检测引物;再根据标准品的测试结果,可筛选出一套多态性最大、覆盖程度最广的一 套MNP标记、兼容性最好的引物组合。Compared with traditional SSR markers and SNP markers, MNP markers have the following advantages: (1) Rich alleles, with 2n alleles on a single MNP marker, which is higher than the traditional commonly used SSR and SNP, and can meet the detection of multi-allelic genotypes widely present in microorganisms; (2) Strong species differentiation ability, only a small number of MNP markers are needed to achieve species identification, reducing the detection error rate. MNP markers are mainly developed based on reference sequences. According to the resequencing data of the reported representative strains of Streptococcus pneumoniae, a large number of MNP markers that are distinguished from other species, polymorphic within the species, and conservative on both sides can be mined; the conservative sequences on both sides of the MNP marker can be used to design MNP marker detection primers suitable for multiple PCR amplification; and according to the test results of the standard, a set of MNP markers with the largest polymorphism, the widest coverage, and the best compatible primer combination can be screened.
MNP标记组合通过所述引物对组合进行超多重PCR扩增,扩增产物经二代 高通量测序技术进行序列分析,具有以下检测优势:(1)精细分型,利用多重 PCR一次检测多个肺炎链球菌特异的靶标,采用二代测序技术对多靶标进行检 测,根据序列特征对肺炎链球菌进行精细分型,且无需平行实验。(2)高效率, 利用样品DNA条形码,突破测序样品数量的局限,可一次性对成百上千份样本 的数万个MNP标记检测;(3)高灵敏度,利用多重PCR一次检测多个靶标, 避免单个靶标扩增失败导致高的假阴性和低的灵敏度;(4)高准确性,利用二代高通量测序仪对扩增产物测序数百次,获得精准的基因型。(5)免培养,基 于PCR技术对靶标进行富集,无需病原菌的分离培养。The MNP marker combination is amplified by super multiplex PCR through the primer pair combination, and the amplified product is sequenced by the second-generation high-throughput sequencing technology, which has the following detection advantages: (1) Fine typing, using multiple PCR to detect multiple pneumococcal specific targets at one time, using the second-generation sequencing technology to detect multiple targets, fine typing of pneumococcal according to sequence characteristics, and no parallel experiments are required. (2) High efficiency, using sample DNA barcodes to break through the limitation of the number of sequencing samples, and tens of thousands of MNP markers of hundreds of samples can be detected at one time; (3) High sensitivity, using multiple PCR to detect multiple targets at one time, avoiding high false negatives and low sensitivity caused by failure of amplification of a single target; (4) High accuracy, using the second-generation high-throughput sequencer to sequence the amplified product hundreds of times to obtain accurate genotypes. (5) No culture, based on PCR technology to enrich the target, no need to isolate and culture the pathogen.
鉴于以上优点和特性,本发明所述MNP标记组合、引物对组合和试剂盒对 费链球菌的鉴定具有多靶标、高通量、高效率、高准确性和高灵敏度的特点, 满足对大量样本中的肺炎链球菌鉴定的需求;满足监测肺炎链球菌菌株间和菌 株内部遗传变异的需求;满足构建肺炎链球菌标准的、可共享的DNA指纹数据 库的需求;满足肺炎链球菌精准分型的需求。因此本发明所提供的15个MNP 标记组合、引物对组合和试剂盒可为肺炎链球菌的科学研究和流行株监测提供 技术支撑。In view of the above advantages and characteristics, the MNP marker combination, primer pair combination and kit of the present invention have the characteristics of multi-target, high throughput, high efficiency, high accuracy and high sensitivity for the identification of Streptococcus pneumoniae, meeting the needs of identifying Streptococcus pneumoniae in a large number of samples; meeting the needs of monitoring genetic variation between and within strains of Streptococcus pneumoniae; meeting the needs of building a standard and shareable DNA fingerprint database of Streptococcus pneumoniae; and meeting the needs of accurate typing of Streptococcus pneumoniae. Therefore, the 15 MNP marker combinations, primer pair combinations and kits provided by the present invention can provide technical support for scientific research and epidemic strain monitoring of Streptococcus pneumoniae.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为MNP标记多态性原理图;Figure 1 is a schematic diagram of the MNP labeling polymorphism;
图2为肺炎链球菌MNP标记组合的筛选和引物设计流程图;FIG2 is a flow chart of the screening and primer design of MNP marker combinations for Streptococcus pneumoniae;
图3为MNP标记组合的检测流程图;FIG3 is a flow chart of the detection of MNP labeling combinations;
图4为待测样本中肺炎链球菌的拷贝数和有效测序序列数的关系图。FIG. 4 is a graph showing the relationship between the copy number of Streptococcus pneumoniae in the sample to be tested and the number of valid sequencing sequences.
具体实施方式DETAILED DESCRIPTION
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细 的说明。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同 的形式来实现,并不限于本说明书所描述的实施例。相反地,提供这些实施例 的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the present invention is described in more detail below in conjunction with the accompanying drawings and specific embodiments. The accompanying drawings provide preferred embodiments of the present invention. However, the present invention can be implemented in many different forms and is not limited to the embodiments described in this specification. On the contrary, the purpose of providing these embodiments is to make the understanding of the disclosure of the present invention more thorough and comprehensive.
需要说明的是,除非另有定义,本说明书所使用的所有的技术和科学术语 与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书 中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。It should be noted that, unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as those commonly understood by those skilled in the art of the present invention. The terms used in the specification of the present invention are only for the purpose of describing specific embodiments and are not intended to limit the present invention.
除非另有特别说明,本发明实施例中用到的各种原材料、试剂、仪器和设 备等,均可通过市场购买得到或者可通过现有方法制备得到。Unless otherwise specified, various raw materials, reagents, instruments and equipment used in the embodiments of the present invention can be purchased from the market or prepared by existing methods.
实施例1肺炎链球菌MNP标记组合的筛选和多重PCR扩增引物的设计Example 1 Screening of Streptococcus pneumoniae MNP marker combinations and design of multiplex PCR amplification primers
S1、肺炎链球菌MNP标记组合的筛选S1. Screening of MNP labeling combinations for Streptococcus pneumoniae
基于网上公开的538个肺炎链球菌不同分离株的基因组完整或部分序列, 通过序列比对,获得15个MNP标记。对于网上不存在基因组数据的物种,也可以通过高通量测序获得待检测微生物物种代表菌株的基因组序列信息,其中 高通量测序可以是全基因组或简化基因组测序。为了保证所筛选标记的多态性, 一般使用至少10个遗传上具有代表性的分离株的基因组序列作为参考。Based on the complete or partial genome sequences of 538 different isolates of Streptococcus pneumoniae published online, 15 MNP markers were obtained by sequence alignment. For species for which no genome data exists online, genome sequence information of representative strains of the microbial species to be detected can also be obtained by high-throughput sequencing, where high-throughput sequencing can be whole genome or simplified genome sequencing. In order to ensure the polymorphism of the markers screened, the genome sequences of at least 10 genetically representative isolates are generally used as references.
筛选的15个MNP标记如表1所示:The 15 MNP markers screened are shown in Table 1:
表1所述MNP标记以及检测引物在参考序列上的起始位置Table 1 The starting positions of the MNP markers and detection primers on the reference sequence
所述步骤S1具体包括:The step S1 specifically includes:
选择所述肺炎链球菌的一个代表株的基因组序列作为参考基因组,将所述 基因组序列和所述参考基因组进行序列比对,获得所述肺炎链球菌各菌株的单 核苷酸多态性标记;Selecting a genome sequence of a representative strain of the Streptococcus pneumoniae as a reference genome, performing sequence alignment between the genome sequence and the reference genome, and obtaining single nucleotide polymorphism markers of each strain of the Streptococcus pneumoniae;
在所述参考基因组上,以100-300bp为窗口,以1bp为步长进行窗口平移, 筛选获得多个候选MNP标记区域,其中,所述候选MNP标记区域含有≥2个所 述单核苷酸变异标记,且两端各30bp的序列上均不存在所述单核苷酸多态性标 记;On the reference genome, a window of 100-300 bp is used and a window shift is performed with a step length of 1 bp to screen and obtain multiple candidate MNP marker regions, wherein the candidate MNP marker region contains ≥2 of the single nucleotide variation markers, and the single nucleotide polymorphism markers do not exist in the sequences of 30 bp at both ends;
在所述候选多核苷酸多态性标记区域中筛选区分度DP≥0.2的区域作为 MNP标记;其中,DP=d/t,t是在所述候选多核苷酸多态性标记区域中所有小 种两两比较时的比较对数,d是在所述候选多核苷酸多态性标记区域中至少两 个单核苷酸多态性差异的样品对数。In the candidate polynucleotide polymorphism marker region, a region with a discrimination degree DP≥0.2 is screened as an MNP marker; wherein DP=d/t, t is the comparison logarithm when all species in the candidate polynucleotide polymorphism marker region are compared pairwise, and d is the sample logarithm of at least two single nucleotide polymorphism differences in the candidate polynucleotide polymorphism marker region.
作为一种可选的实施方式,在所述参考基因组上,以100-300bp为窗口进 行筛选时,也可选用其他步长,本实施方式采用步长为1bp,有利于全面的筛 选。As an optional implementation, when screening is performed on the reference genome with a window of 100-300bp, other step sizes may also be selected. This implementation adopts a step size of 1bp, which is conducive to comprehensive screening.
S2、多重PCR扩增引物的设计S2. Design of primers for multiplex PCR amplification
通过引物设计软件设计所述MNP标记的多重PCR扩增引物,引物设计遵循 引物间互不干扰,所有引物可以组合成引物池进行多重PCR扩增,即所有设计 的引物可以在一个扩增反应中均正常扩增。The MNP-labeled multiple PCR amplification primers are designed by primer design software. The primer design follows the principle that primers do not interfere with each other. All primers can be combined into a primer pool for multiple PCR amplification, that is, all designed primers can be amplified normally in one amplification reaction.
该实施方式中,用于鉴定所述MNP标记组合的引物,如表1所示。In this embodiment, the primers used to identify the MNP marker combination are shown in Table 1.
S3、引物组合的检测效率评估S3. Evaluation of detection efficiency of primer combinations
所述MNP标记的检测方法是通过多重PCR对所有MNP标记一次性进行扩 增,通过二代高通量测序对扩增产物进行测序,对测序数据进行分析,根据检 出的标记评价所述引物组合的兼容性。The method for detecting the MNP markers is to amplify all the MNP markers at once by multiplex PCR, sequence the amplified products by second-generation high-throughput sequencing, analyze the sequencing data, and evaluate the compatibility of the primer combination according to the detected markers.
使用湖北省疾控预防控制中心提供的拷贝数已知的肺炎链球菌ATCC6303 菌株的DNA,制备肺炎链球菌模拟样本,即将已知拷贝数的肺炎链球菌加入到 人基因组DNA(2ng/反应)中,制备成1000拷贝/反应的模板,使用所述的引 物组合,通过所述的MNP标记检测方法进行检测,构建了4个重复的测序文库。 根据在4个文库中的检测结果,最终筛选出本发明提供的物种特异性高、种内 区分度高的15个MNP标记以及其扩增效率高、兼容性好的检测引物对组合。Using the DNA of the Streptococcus pneumoniae ATCC6303 strain with a known copy number provided by the Hubei Provincial Center for Disease Control and Prevention, a simulated Streptococcus pneumoniae sample was prepared, that is, the Streptococcus pneumoniae with a known copy number was added to human genomic DNA (2ng/reaction) to prepare a template of 1000 copies/reaction, and the primer combination was used to detect by the MNP marker detection method, and 4 repeated sequencing libraries were constructed. According to the detection results in the 4 libraries, 15 MNP markers with high species specificity and high intraspecies discrimination provided by the present invention and their detection primer pair combinations with high amplification efficiency and good compatibility were finally screened out.
实施例2所述MNP标记和试剂盒对肺炎链球菌的鉴定的性能评估和阈值设置Example 2 Performance evaluation and threshold setting of the MNP marker and kit for identification of Streptococcus pneumoniae
将实施例1的肺炎链球菌DNA,加入到人基因组DNA中,制备1拷贝/反 应、10拷贝/反应和100拷贝/反应的肺炎链球菌模拟样本,同时设置的等体积 的无菌水作为空白对照,共计4个样本。每个样本每天构建4个重复文库,连 续检测3天,即每个样本获得12组测序数据,具体如表2所示。根据在12次 重复实验中,在空白对照和肺炎链球菌核苷酸标准品中检出的肺炎链球菌MNP 标记的测序片段数和MNP标记数目,评估所述MNP标记和试剂盒对肺炎链球 菌鉴定的重现性、准确性、灵敏度,制定质控体系污染和目标病原体检出的阈 值。The pneumococcal DNA of Example 1 was added to human genomic DNA to prepare pneumococcal simulation samples of 1 copy/reaction, 10 copies/reaction and 100 copies/reaction, and an equal volume of sterile water was set as a blank control, for a total of 4 samples. Four replicate libraries were constructed for each sample every day, and the test was continued for 3 consecutive days, that is, 12 sets of sequencing data were obtained for each sample, as shown in Table 2. According to the number of sequencing fragments and the number of MNP markers of pneumococcal MNP markers detected in the blank control and pneumococcal nucleotide standards in 12 repeated experiments, the reproducibility, accuracy and sensitivity of the MNP marker and the kit for pneumococcal identification were evaluated, and the thresholds for quality control system contamination and target pathogen detection were established.
MNP标记的检测流程如图3所示。The detection process of MNP labeling is shown in Figure 3.
1、MNP标记法检测肺炎链球菌的检测灵敏度和稳定性分析1. Analysis of the sensitivity and stability of MNP labeling method for detecting Streptococcus pneumoniae
如表2所示,所述试剂盒能在10拷贝/反应的样本中稳定的检出7个以上 MNP标记,而在0拷贝/反应的少数样本中最多检出2个MNP标记,所述试剂 盒能够明显区分10拷贝/反应和0拷贝/反应的样品,具有技术稳定性和低至10 拷贝/反应的检测灵敏度。As shown in Table 2, the kit can stably detect more than 7 MNP markers in samples with 10 copies/reaction, and can detect at most 2 MNP markers in a few samples with 0 copies/reaction. The kit can clearly distinguish between samples with 10 copies/reaction and 0 copies/reaction, and has technical stability and a detection sensitivity as low as 10 copies/reaction.
表2肺炎链球菌的MNP标记法的引物兼容性和检测灵敏度分析Table 2 Primer compatibility and detection sensitivity analysis of MNP labeling method for Streptococcus pneumoniae
2、MNP标记检测方法定性检测肺炎链球菌的重现性和准确性评估2. Evaluation of the reproducibility and accuracy of the MNP-labeled detection method for qualitative detection of Streptococcus pneumoniae
对3个肺炎链球菌100拷贝/反应的模板获得4组测序数据的测序结果,分 别进行两两比较,结果如表3所示,主基因型存在差异的MNP标记数目都为0; 依据2次重复实验间可重现的基因型认为是准确的原则,准确率a=1-(1-r)/2=0.5+0.5r,r代表重现率,即主基因型可重现的标记数目占共有标记数目的比率。 本项目重现性试验中每个样品不同文库间、不同测序批次间MNP标记主基因型 的差异对数为0,重现率r=100%,准确率a=100%。The sequencing results of 4 sets of sequencing data were obtained for 3 templates of 100 copies/reaction of Streptococcus pneumoniae. The results were compared pairwise, as shown in Table 3. The number of MNP markers with differences in the main genotype was 0. According to the principle that the reproducible genotype between two repeated experiments is considered accurate, the accuracy rate a = 1-(1-r)/2 = 0.5+0.5r, where r represents the reproducibility, that is, the ratio of the number of reproducible markers of the main genotype to the number of common markers. In the reproducibility test of this project, the difference logarithm of the main genotype of MNP markers between different libraries and different sequencing batches of each sample is 0, the reproducibility r = 100%, and the accuracy a = 100%.
表3肺炎链球菌MNP标记法的准确率分析Table 3 Analysis of the accuracy of MNP labeling method for Streptococcus pneumoniae
3、MNP标记检测方法检测肺炎链球菌的阈值设置3. Threshold setting for detecting Streptococcus pneumoniae using MNP labeling detection method
由于MNP标记检测方法的极度灵敏,因此检测过中的数据污染容易导致假 阳性的产生,因此需要对产生的测序数据进行质控,质控后分析每个样本中检 出的肺炎链球菌MNP标记、内标DNA标记的测序片段数和检出标记数。Due to the extreme sensitivity of the MNP marker detection method, data contamination during the detection process can easily lead to false positives. Therefore, it is necessary to perform quality control on the generated sequencing data. After quality control, the number of sequencing fragments and the number of detected markers of the MNP marker and internal standard DNA marker of Streptococcus pneumoniae detected in each sample are analyzed.
本发明采用的质控方案具体如下:The quality control scheme adopted by the present invention is as follows:
1)测序数据量大于4.5百万碱基。测算依据是每个样品检测MNP标记的 数目是15个,一条测序片段的长度是300个碱基,所以当数据量大于4.5百万 碱基时,大部分样品一次实验可以保证覆盖每个标记的测序片段数量达到1000 倍,保证对每个MNP标记碱基序列的精准分析。1) The amount of sequencing data is greater than 4.5 million bases. The calculation is based on the number of MNP markers detected for each sample is 15, and the length of a sequencing fragment is 300 bases. Therefore, when the amount of data is greater than 4.5 million bases, most samples can ensure that the number of sequencing fragments covering each marker reaches 1000 times in one experiment, ensuring accurate analysis of the base sequence of each MNP marker.
2)根据测试样品中的肺炎链球菌的信号指数S和空白对照中肺炎链球菌的 噪音指数P判定污染是否可接受,其中:2) Determine whether the contamination is acceptable based on the signal index S of Streptococcus pneumoniae in the test sample and the noise index P of Streptococcus pneumoniae in the blank control, where:
空白对照噪音指数P=nc/Nc,其中nc和Nc分别代表空白对照中,肺炎链球菌 的测序片段的数量和总测序片段数量。The blank control noise index P = nc/Nc, where nc and Nc represent the number of sequencing fragments of Streptococcus pneumoniae and the total number of sequencing fragments in the blank control, respectively.
测试样品的信号指数S=nt/Nt,其中nt和Nt分别代表测试样品中,肺炎链球菌 的测序片段的数量和总测序片段数量。The signal index S of the test sample is nt/Nt, wherein nt and Nt represent the number of sequenced fragments of Streptococcus pneumoniae and the total number of sequenced fragments in the test sample, respectively.
3)计算测试样品中MNP标记的检出率,指的是检出标记数和总设计标记 数的比值。3) Calculate the detection rate of MNP markers in the test sample, which refers to the ratio of the number of detected markers to the total number of designed markers.
如表4所示,肺炎链球菌在1个拷贝的样品和空白对照的信噪比的平均值 是4.3,因此,本发明规定当信噪比大于10倍时,可判定检测体系中的污染是 可接受的。As shown in Table 4, the average signal-to-noise ratio of Streptococcus pneumoniae in 1 copy sample and blank control is 4.3. Therefore, the present invention stipulates that when the signal-to-noise ratio is greater than 10 times, it can be determined that the contamination in the detection system is acceptable.
如表4所示,在10个拷贝的样品和空白对照的信噪比的平均值是54.8,最 低值是41.4在10拷贝/反应的12组数据中,能稳定的检出至少7个MNP标记, 占总标记的46.7%。因此,在保证准确性的情况下,本标准规定肺炎链球菌的 信噪比判定阈值是41,即当样品中肺炎链球菌的信噪比大于41,且标记检出率 大于等于40%时,判定样本中检出了肺炎链球菌的核苷酸。因此本发明所提供 的试剂盒能灵敏的检测到10拷贝/反应的肺炎链球菌。As shown in Table 4, the average value of the signal-to-noise ratio of the sample with 10 copies and the blank control is 54.8, and the minimum value is 41.4. In the 12 sets of data with 10 copies/reaction, at least 7 MNP markers can be stably detected, accounting for 46.7% of the total markers. Therefore, under the condition of ensuring accuracy, this standard stipulates that the signal-to-noise ratio judgment threshold of Streptococcus pneumoniae is 41, that is, when the signal-to-noise ratio of Streptococcus pneumoniae in the sample is greater than 41, and the marker detection rate is greater than or equal to 40%, it is determined that the nucleotides of Streptococcus pneumoniae are detected in the sample. Therefore, the kit provided by the present invention can sensitively detect Streptococcus pneumoniae with 10 copies/reaction.
表44个样本各12次检测中肺炎链球菌的信噪比Table 4 Signal-to-noise ratio of Streptococcus pneumoniae in 12 tests for each of the 4 samples
4、MNP标记检测方法检测肺炎链球菌的特异性评估4. Evaluation of the specificity of MNP-labeled detection method for detecting Streptococcus pneumoniae
人为的将肺炎链球菌和结核分枝杆菌、不动杆菌属菌株、百日咳鲍特菌、 霍氏鲍特菌、肺炎衣原体、肺炎支原体、EB病毒、流感嗜血杆菌、水痘带状疱 疹病毒、巨细胞病毒、单纯疱疹病毒、人博卡病毒、肺炎克雷伯杆菌、军团菌 属、卡他莫拉菌、铜绿假单胞菌、立克次氏体属、金黄色葡萄球菌、酿脓链球 菌的DNA按照等摩尔量的混在一起,制备混合模板,以空白模板作为对照,采 用本发明所提供的方法对混合模板中的肺炎链球菌进行检测,进行3个重复实 验。结果在3个重复中获得的测序序列都能检出肺炎链球菌的15个MNP标记。按照所述的质控方案和判定阈值进行分析后,在3个重复实验中都判定肺炎链 球菌的核酸阳性,表明所述MNP标记和所述试剂盒在复杂模板中检测肺炎链球菌的高特异性。The DNA of Streptococcus pneumoniae and Mycobacterium tuberculosis, Acinetobacter strains, Bordetella pertussis, Bordetella hominis, Chlamydia pneumoniae, Mycoplasma pneumoniae, Epstein-Barr virus, Haemophilus influenzae, varicella zoster virus, cytomegalovirus, herpes simplex virus, human bocavirus, Klebsiella pneumoniae, Legionella, Moraxella catarrhalis, Pseudomonas aeruginosa, Rickettsia, Staphylococcus aureus, and Streptococcus pyogenes were artificially mixed in equimolar amounts to prepare a mixed template, and a blank template was used as a control. The Streptococcus pneumoniae in the mixed template was detected by the method provided by the present invention, and three repeated experiments were performed. As a result, the sequencing sequences obtained in the three repeated experiments could detect 15 MNP markers of Streptococcus pneumoniae. After analysis according to the quality control scheme and judgment threshold, the nucleic acid of Streptococcus pneumoniae was judged to be positive in all three repeated experiments, indicating that the MNP marker and the kit have high specificity in detecting Streptococcus pneumoniae in complex templates.
综上可见,本发明所提供的肺炎链球菌的MNP标记组合、引物对组合和试 剂盒可以高灵敏度、高准确性和特异的检测肺炎链球菌。In summary, the MNP labeling combination, primer pair combination and reagent kit for Streptococcus pneumoniae provided by the present invention can detect Streptococcus pneumoniae with high sensitivity, high accuracy and specificity.
实施例3肺炎链球菌DNA指纹数据库的构建Example 3 Construction of Streptococcus pneumoniae DNA fingerprint database
利用常规CTAB法、商业化试剂盒等方法提取用于构建肺炎链球菌DNA指 纹数据库的所有菌株或是样本的DNA,采用琼脂糖凝胶和紫外分光光度计检测 DNA的质量。若所提取的DNA在260nm与230nm处的吸光度值的比值大于 2.0,260nm与280nm吸光度值比值介于1.6与1.8之间,DNA电泳主带明显, 无明显降解和RNA残留,则说明基因组DNA达到相关的质量要求,可进行后续 实验。The DNA of all strains or samples used to construct the DNA fingerprint database of Streptococcus pneumoniae was extracted using conventional CTAB method, commercial kits, etc., and the quality of DNA was tested by agarose gel and UV spectrophotometer. If the ratio of the absorbance value of the extracted DNA at 260nm and 230nm is greater than 2.0, the ratio of the absorbance value at 260nm and 280nm is between 1.6 and 1.8, the main band of DNA electrophoresis is obvious, and there is no obvious degradation and RNA residue, it means that the genomic DNA meets the relevant quality requirements and subsequent experiments can be carried out.
利用所述的引物组合和MNP标记组合检测方法对湖北省疾控预防控制中 心提供的1个肺炎链球菌菌株在不同时期保存的6个子代菌株进行检测,样本依次命名为S-1~S-6,每个样品的测序平均覆盖倍数达2032倍,每个菌株均可 以检出全部15个MNP标记(表5)。将6个菌株的测序数据进行序列比对后获 得每个菌株每个标记的主基因型,形成每个菌株的MNP指纹图谱。将主基因型 存在差异的菌株的MNP指纹图谱录入数据库,构建肺炎链球菌的MNP指纹数据库;将在新的样本中检测到的肺炎链球菌的MNP指纹图谱,同构建的MNP 指纹数据库进行比对,将主基因型存在差异的样本的MNP指纹图谱录入已构建 的MNP指纹数据库。所构建的MNP指纹数据库基于检测的菌株的基因序列, 因此和所有的高通量测序数据兼容,具有完全可共建共享、随时可更新的特征。The primer combination and MNP marker combination detection method were used to detect 6 progeny strains of a Streptococcus pneumoniae strain provided by the Hubei Provincial Center for Disease Control and Prevention. The samples were named S-1 to S-6, and the average sequencing coverage of each sample reached 2032 times. All 15 MNP markers can be detected for each strain (Table 5). The main genotype of each marker of each strain was obtained after sequence alignment of the sequencing data of the 6 strains, forming the MNP fingerprint map of each strain. The MNP fingerprint maps of strains with different main genotypes were entered into the database to construct the MNP fingerprint database of Streptococcus pneumoniae; the MNP fingerprint maps of Streptococcus pneumoniae detected in the new samples were compared with the constructed MNP fingerprint database, and the MNP fingerprint maps of samples with different main genotypes were entered into the constructed MNP fingerprint database. The constructed MNP fingerprint database is based on the gene sequence of the detected strain, so it is compatible with all high-throughput sequencing data, and has the characteristics of being fully co-constructed and shared and updatable at any time.
表5 6个肺炎链球菌菌株的检测分析Table 5 Detection and analysis of 6 strains of Streptococcus pneumoniae
实施例4、在肺炎链球菌精细分型中的应用Example 4: Application in fine typing of Streptococcus pneumoniae
利用所述的引物组合和MNP标记组合检测方法,获得每个菌株的MNP指 纹图谱;将获得的每个菌株的MNP指纹图谱同已经公开的肺炎链球菌的基因组 序列和已构建的肺炎链球菌的MNP指纹数据库进行比对;和已有菌株的基因型100%相同的,判定为已有的菌株的极近似株,在一个以上MNP标记存在主基 因型差异的,判定为新的变异株。对6份肺炎链球菌菌株的检测和分型如表5 所示,所检测的6份肺炎链球菌S-4和其他5份在1个MNP标记的主基因型存 在差异,判为2种菌株。5份基因型一致的菌株和NCTC7465菌株的基因型保持一致,可能为该菌株的子代株。S-4和参考序列库中菌株均在2个MNP标记的 主基因型不一致,判定为新的变异株。可见,所述的方法对肺炎链球菌的分辨 率达到了单碱基的水平,可以实现对样本中肺炎链球菌的精细分型。The MNP fingerprint of each strain was obtained by using the primer combination and MNP marker combination detection method; the MNP fingerprint of each strain was compared with the published genome sequence of Streptococcus pneumoniae and the constructed MNP fingerprint database of Streptococcus pneumoniae; strains with 100% identical genotypes to the existing strains were determined to be very similar strains of the existing strains, and strains with major genotype differences in more than one MNP marker were determined to be new variants. The detection and typing of 6 Streptococcus pneumoniae strains are shown in Table 5. The 6 Streptococcus pneumoniae S-4 and the other 5 strains detected had differences in the major genotype of 1 MNP marker and were determined to be 2 strains. The 5 strains with the same genotype were consistent with the genotype of the NCTC7465 strain and may be the progeny of the strain. The strains in S-4 and the reference sequence library were inconsistent in the major genotypes of 2 MNP markers and were determined to be new variants. It can be seen that the resolution of the method described above for Streptococcus pneumoniae has reached the level of single bases, and the fine typing of Streptococcus pneumoniae in the sample can be achieved.
实施例5、肺炎链球菌的菌株间的遗传变异检测Example 5: Detection of genetic variation among strains of Streptococcus pneumoniae
肺炎链球菌的遗传变异检测,包括菌株间和菌株内部的变异。由于肺炎链 球菌寄生在宿主体内,即检测宿主间和宿主内部肺炎链球菌的遗传变异。宿主 间的变异通过比较主基因型进行检测,通过将获得的肺炎链球菌的指纹图谱进 行两两比对,基于MNP标记法鉴定主基因型100%的重现率和准确率,两个菌 株存在一个标记的主基因型差异即可被检出。Genetic variation detection of Streptococcus pneumoniae includes variation between strains and within strains. Since Streptococcus pneumoniae parasitizes in the host, the genetic variation of Streptococcus pneumoniae between hosts and within hosts is detected. Variation between hosts is detected by comparing the main genotype. The fingerprints of Streptococcus pneumoniae obtained are compared pairwise. Based on the 100% reproducibility and accuracy of the main genotype identification by the MNP labeling method, a difference in the main genotype of one marker between two strains can be detected.
如表5所示,6份子代菌株中有5份基因型一致,不存在菌株间遗传变异; 而S-4编号的菌株和其他菌株存在菌株间遗传变异。As shown in Table 5, 5 of the 6 progeny strains had the same genotype and no genetic variation among the strains; however, there was genetic variation among the strains numbered S-4 and other strains.
由此可见,所述的试剂盒通过检测MNP标记鉴定菌株间遗传变异的应用可 以用于保证不同实验室相同命名菌株的遗传一致性,从而保证研究结果的可比 较性,这对于肺炎链球菌的科学研究具有重要意义。It can be seen that the application of the kit for identifying genetic variation between strains by detecting MNP markers can be used to ensure the genetic consistency of the same named strains in different laboratories, thereby ensuring the comparability of research results, which is of great significance for scientific research on Streptococcus pneumoniae.
实施例6、肺炎链球菌的菌株内部的遗传变异检测Example 6: Detection of genetic variation within strains of Streptococcus pneumoniae
作为群体生物,肺炎链球菌在宿主体内或群体内发生变异,在对群体进行 分子标记检测时,表现为标记的主基因型外的等位基因型。当变异个体还未累 积时,只占群体的极少部分,表现为低频率的等位基因型,是现有技术难以检 测的。低频率的等位基因型往往和技术错误混在一起,导致现有技术难以区分。 本发明检测的是高多态性的MNP标记。基于多个错误同时发生的几率低于一个 错误发生的几率,MNP标记的技术错误率显著低于SNP标记。本发明通过统计 模型区分真实的次等位基因型和技术错误导致的错误基因型。具体地:As a group organism, Streptococcus pneumoniae mutates in the host or in the group. When the group is tested for molecular markers, it manifests as an allele type other than the main genotype of the marker. When the mutant individuals have not yet accumulated, they only account for a very small part of the group and manifest as a low-frequency allele type, which is difficult to detect with the existing technology. Low-frequency allele types are often mixed with technical errors, making it difficult to distinguish with the existing technology. The present invention detects highly polymorphic MNP markers. Based on the fact that the probability of multiple errors occurring simultaneously is lower than the probability of one error occurring, the technical error rate of MNP markers is significantly lower than that of SNP markers. The present invention distinguishes between true secondary allele types and erroneous genotypes caused by technical errors through statistical models. Specifically:
本实施例次等位基因型的真实性评估按如下进行:首先按照以下规则排除 具有链偏好性(在DNA双链上覆盖的测序序列数的比值)的等位基因型:链偏 好性大于10倍,或者与主等位基因型的链偏好性之差大于5倍。The authenticity evaluation of the secondary allele type in this embodiment is carried out as follows: first, the allele type with chain preference (the ratio of the number of sequencing sequences covered on the DNA double strands) is excluded according to the following rules: the chain preference is greater than 10 times, or the difference in chain preference with the major allele type is greater than 5 times.
不存在链偏好性的基因型再利用统计模型其真实性。统计模型的原理是假 定候选次等位基因是主等位基因型由于PCR或测序错误的产物。在此假设下, 候选次等位基因型支持的测序序列数(c)符合基于标记测序深度以及扩增子测 序错误率e(n)的二项分布,其中n指的是候选次等位基因型和主基因型差异的 SNP数目。若候选等位基因型的支持测序序列数超过临界值,则推翻该等位基 因型是主等位基因型由于PCR或测序错误产生的假设,判定为真实的次等位基 因型。当存在多个候选次等位基因时,对各候选等位基因型的P值进行多重校 正,FDR<0.5%的候选等位基因被认为是真实的次等位基因型。Genotypes without strand bias are re-used to verify their authenticity using statistical models. The principle of the statistical model is to assume that the candidate minor allele is the product of the major allele due to PCR or sequencing errors. Under this assumption, the number of sequencing sequences (c) supported by the candidate minor allele conforms to the binomial distribution based on the marker sequencing depth and the amplicon sequencing error rate e(n), where n refers to the number of SNPs that differ between the candidate minor allele and the major genotype. If the number of sequencing sequences supporting the candidate allele exceeds the critical value, the assumption that the allele is the product of the major allele due to PCR or sequencing errors is overturned and it is determined to be the true minor allele. When there are multiple candidate minor alleles, the P value of each candidate allele is multi-corrected, and the candidate allele with FDR<0.5% is considered to be the true minor allele.
统计模型涉及到的参数扩增子测序错误率e(n)指的是携带n个SNP的错误 等位基因的测序序列数占该标记总测序序列数的最高比例。本实施例通过计算 预期纯合的MNP标记中,检测到的次等位基因型的频率,也即这些基因型的错误率,来获得统计模型中emax(n=1)和emax(n≥2)。The parameter involved in the statistical model, the error rate of amplicon sequencing, e(n), refers to the highest ratio of the number of sequencing sequences carrying the wrong allele of n SNPs to the total number of sequencing sequences of the marker. In this embodiment, the frequency of the minor allele genotypes detected in the expected homozygous MNP marker, that is, the error rate of these genotypes, is calculated to obtain e max (n=1) and e max (n≥2) in the statistical model.
计算方式如下:The calculation is as follows:
第i个次等位基因型与主基因型的差异碱基数为ni,其支持测序序列数为 ci,其错误率ei为该次等位基因型的测序序列数ci与该标记总测序序列数N的 比值,即ei=ci/N;The number of bases that differ between the ith minor allele and the major genotype is ni, the number of sequencing sequences it supports is ci, and the error rate ei is the ratio of the number of sequencing sequences ci of the minor allele to the total number of sequencing sequences N of the marker, that is, ei = ci/N;
计算不同测序深度下的emax(n)。本实施例汇总所有930个纯合MNP标记 的所有次等位基因型的错误率。当测序深度>=1000X,emax(n=1)和emax(n≥2)分别 为1.03%和0.0994%。Calculate e max (n) at different sequencing depths. This example summarizes the error rates of all minor alleles of all 930 homozygous MNP markers. When the sequencing depth is >= 1000X, e max (n=1) and e max (n≥2) are 1.03% and 0.0994%, respectively.
为了检测群体性的微生物中的低频变异,测序深度需要达到1000X以上。 然后基于BINOM.INV函数计算在α=99.9999%的概率保障下,emax(n=1)和emax(n≥2) 分别为1.03%和0.0994%时,在各个标记中次等位基因型测序序列数目的临界 值,只有次等位基因型的测序序列数目超过临界值时判定为真实的次等位基因 型(表4)。当存在多个候选次等位基因时,对各候选等位基因型的P值进行多 重校正,FDR<0.5%的候选等位基因判定是真实的次等位基因型。In order to detect low-frequency variations in microorganisms in a population, the sequencing depth needs to reach more than 1000X. Then, based on the BINOM.INV function, the critical value of the number of sequencing sequences of the sub-allele type in each marker is calculated under the probability guarantee of α=99.9999%, when e max (n=1) and e max (n≥2) are 1.03% and 0.0994% respectively. Only when the number of sequencing sequences of the sub-allele type exceeds the critical value is it determined to be a true sub-allele type (Table 4). When there are multiple candidate sub-alleles, the P value of each candidate allele type is multi-corrected, and the candidate allele with FDR<0.5% is determined to be a true sub-allele type.
表4部分测序深度下进行判定次等位基因型的临界值Table 4 Critical values for determining minor allele types at certain sequencing depths
按照上述参数,将表5中存在菌株间变异的S-1和S-4菌株的DNA按照以 下8个比例1/1000,3/1000,5/1000,7/1000,1/100,3/100,5/100,7/100混合,制备人工杂合样本,每个样本检测3次重复,获得共计24个测序数据。通过和 两种变型的肺炎链球菌的MNP标记的基因型进行精准比对,在24个人工杂合 样本中均能检测到了杂合基因型标记,说明了所开发的肺炎链球菌的MNP标记检测方法在检测菌株遗传变异的适用性。According to the above parameters, DNA of S-1 and S-4 strains with inter-strain variation in Table 5 were mixed according to the following 8 ratios: 1/1000, 3/1000, 5/1000, 7/1000, 1/100, 3/100, 5/100, 7/100, to prepare artificial heterozygous samples, and each sample was tested 3 times to obtain a total of 24 sequencing data. By accurately comparing the genotypes of the MNP markers of the two variants of Streptococcus pneumoniae, the heterozygous genotype markers were detected in all 24 artificial heterozygous samples, indicating the applicability of the developed MNP marker detection method for Streptococcus pneumoniae in detecting genetic variation of strains.
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵 盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不 仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种 过程、方法、物品或者设备所固有的要素。Finally, it should be noted that the terms "comprises", "includes" or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, article or apparatus that includes a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or apparatus.
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得 知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附 权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和 修改。Although the preferred embodiments of the present invention have been described, other changes and modifications may be made to these embodiments once those skilled in the art have learned the basic creative concept. Therefore, the appended claims are intended to be interpreted as including the preferred embodiments and all changes and modifications that fall within the scope of the embodiments of the present invention.
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱 离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属 于本发明实施例权利要求及其等同技术的范围之内,则本发明实施例也意图包 含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the embodiments of the present invention without departing from the spirit and scope of the embodiments of the present invention. Thus, if these modifications and variations of the embodiments of the present invention fall within the scope of the claims of the embodiments of the present invention and their equivalents, the embodiments of the present invention are also intended to include these modifications and variations.
序列表Sequence Listing
<110> 江汉大学<110> Jianghan University
<120> 一种肺炎链球菌的MNP标记组合、引物对组合、试剂盒及应用<120> A MNP labeling combination, primer pair combination, kit and application of Streptococcus pneumoniae
<130> 20210925<130> 20210925
<160> 45<160> 45
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 148<211> 148
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
cgtttctaca aagactggaa cctatattgg taggaggaga aatatgacaa tgccaaatat 60cgtttctaca aagactggaa cctatattgg taggaggaga aatatgacaa tgccaaatat 60
tattatgacc cgtatcgatg aacggttgat tcatggacaa ggacaacttt gggtaaaata 120tattatgacc cgtatcgatg aacggttgat tcatggacaa ggacaacttt gggtaaaata 120
cctaggttgt aatacggtca ttgttgcc 148cctaggttgt aatacggtca ttgttgcc 148
<210> 2<210> 2
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
tcgctttgtt gctggtagcg aacttctgaa atgaggagct gactcatagc ttgaaaaagg 60tcgctttgtt gctggtagcg aacttctgaa atgaggagct gactcatagc ttgaaaaagg 60
agtaatcccc cactgatgac aatgagggca agcagggatt ctaacaaggt aaaagccttg 120agtaatcccc cactgatgac aatgagggca agcagggatt ctaacaaggt aaaagccttg 120
accttatggc tctttgattg ccaacaactg 150accttatggc tctttgattg ccaacaactg 150
<210> 3<210> 3
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
ttggtctgaa atagccatgg cttcttcttg gtcgtgggtt acataaacag ttgtaattcc 60ttggtctgaa atagccatgg cttcttcttg gtcgtgggtt acataaacag ttgtaattcc 60
cacttcgtgt tggatttctc ggatggtttg acgcatatcc aagcgaagtt tggcctccag 120cacttcgtgt tggatttctc ggatggtttg acgcatatcc aagcgaagtt tggcctccag 120
attactaagt ggctcgtcca tgaggagaac 150attactaagt ggctcgtcca tgaggagaac 150
<210> 4<210> 4
<211> 146<211> 146
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
tgttagcaga tggtattttg caatcaagat attttgaaaa tttgaaaaat agttggaaag 60tgttagcaga tggtattttg caatcaagat attttgaaaa tttgaaaaat agttggaaag 60
atttagatat agctgtagtc ggaattggtg attttagcaa taaaggaaag catcaatggt 120atttagatat agctgtagtc ggaattggtg attttagcaa taaaggaaag catcaatggt 120
tagacatgct tacagaggat gacttt 146tagacatgct tacagaggat gacttt 146
<210> 5<210> 5
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
acttttgtca aggttctgtc gcgtgtcata ggtaaaaaac tagatcagca aggtctggaa 60acttttgtca aggttctgtc gcgtgtcata ggtaaaaaac tagatcagca aggtctggaa 60
aatccagcta tcccaaccag tccaagcagc aagaccttag ccaaggacac cttgcaagct 120aatccagcta tcccaaccag tccaagcagc aagaccttag ccaaggacac cttgcaagct 120
ctctatcctg ccaaacagga gttttacctg 150ctctatcctg ccaaacagga gttttacctg 150
<210> 6<210> 6
<211> 141<211> 141
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
cctgcttcat cgtgtccatg tacttgttga tgattttaac ccaagtgtct gtatcacttg 60cctgcttcat cgtgtccatg tacttgttga tgattttaac ccaagtgtct gtatcacttg 60
gagctctctt gctcttattt acatattccc agttctcaac atcataatag atagggtaag 120gagctctctt gctcttattt acatattccc agttctcaac atcataatag atagggtaag 120
acaggttcat attgtatttc t 141acaggttcat attgtatttc t 141
<210> 7<210> 7
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
aaacaagctc cgaatatctc tccccttggt agctgcaccg atagacagac gcagattttc 60aaacaagctc cgaatatctc tccccttggt agctgcaccg atagacagac gcagattttc 60
atcttctgag tgaatagtca gctctaagcc actatccaaa gccttgtcat tgagcagggt 120atcttctgag tgaatagtca gctctaagcc actatccaaa gccttgtcat tgagcagggt 120
gacatatttg gttagggttg cttttgaaaa 150gacatatttg gttagggttg cttttgaaaa 150
<210> 8<210> 8
<211> 149<211> 149
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
ttcacctcgt taatcaatcc tttgatgtca atctttccat ttggagttag tggcaaactg 60ttcacctcgt taatcaatcc tttgatgtca atctttccat ttggagttag tggcaaactg 60
tctcggtaaa ggaatttaga tggcatcata taggacatca tgatgtctgt caggtcttcc 120tctcggtaaa ggaatttaga tggcatcata taggacatca tgatgtctgt caggtcttcc 120
ttgatggcct tggtaatatc gatatctcg 149ttgatggcct tggtaatatc gatatctcg 149
<210> 9<210> 9
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
agaattccaa gaattttgca aggatacggt cctagttgcc cacaatgcta cctttgacgt 60agaattccaa gaattttgca aggatacggt cctagttgcc cacaatgcta cctttgacgt 60
tggctttatg aatgctaatt atgagcgtca tgatcttcca aagattagtc agccagttat 120tggctttatg aatgctaatt atgagcgtca tgatcttcca aagattagtc agccagttat 120
tgatacgctg gagtttgcta gaaacctcta 150tgatacgctg gagtttgcta gaaacctcta 150
<210> 10<210> 10
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
caaagtggaa gccttctgga ttttcaacca tggttccagc taccaaagct cgagtatctg 60caaagtggaa gccttctgga ttttcaacca tggttccagc taccaaagct cgagtatctg 60
catctgtgat ttcttacttc ttatcggcca gtgccttgaa cttagcaaag agtggtttga 120catctgtgat ttcttacttc ttatcggcca gtgccttgaa cttagcaaag agtggtttga 120
tatcctcttc tgtaaaatct agggccaatt 150tatcctcttc tgtaaaatct agggccaatt 150
<210> 11<210> 11
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
cactagggct ccgatgacaa tacttgcgat aaatagaagg acagttccag ggtttggagc 60cactagggct ccgatgacaa tacttgcgat aaatagaagg acagttccag ggtttggagc 60
gaccatgata cggtcgatat attcttggga ttttcctctt gccagaagag tagccatata 120gaccatgata cggtcgatat attcttggga ttttcctctt gccagaagag tagccatata 120
ggctttgggc gcaatccaca taagcaagat 150ggctttgggc gcaatccaca taagcaagat 150
<210> 12<210> 12
<211> 146<211> 146
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
aggttctgaa tatgcaaata ctgtcactca aggtatcgta tccagtctca atagaaatgt 60aggttctgaa tatgcaaata ctgtcactca aggtatcgta tccagtctca atagaaatgt 60
atccttaaaa tcggaagatg gacaagctat ttctacaaaa gccatccaaa ctgatactgc 120atccttaaaa tcggaagatg gacaagctat ttctacaaaa gccatccaaa ctgatactgc 120
tattaaccca ggtaactctg gcggcc 146tattaaccca ggtaactctg gcggcc 146
<210> 13<210> 13
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
tgattcctca tcagcagtag caaagtgggt aaagattcct tcaacacaaa caccgtgttg 60tgattcctca tcagcagtag caaagtgggt aaagattcct tcaacacaaa caccgtgttg 60
ttggagcaaa tcttgagcct gctcaacctc acttgcctct ctaaaaccaa tccgtcccat 120ttggagcaaa tcttgagcct gctcaacctc acttgcctct ctaaaaccaa tccgtcccat 120
ccctgaatca atcttgaggt ggactgtcaa 150ccctgaatca atcttgaggt ggactgtcaa 150
<210> 14<210> 14
<211> 143<211> 143
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
tcgctaatac catattagta tcctttcttt tatctacaca aagaataaca cacttatgtt 60tcgctaatac catattagta tcctttcttt tatctacaca aagaataaca cacttatgtt 60
aaccctatat gaactttaat aaaaaactaa tctgtctaca agctaatctt aaattccata 120aaccctatat gaactttaat aaaaaactaa tctgtctaca agctaatctt aaattccata 120
ccgtgttcat aagggagaaa act 143ccgtgttcat aagggagaaa act 143
<210> 15<210> 15
<211> 150<211> 150
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
agtaccagta attcctttgg tttgagatca atttcttcat ttttataatg tgctttgtaa 60agtaccagta attcctttgg tttgagatca atttcttcat ttttataatg tgctttgtaa 60
gaggtaaaat ccactgttac atcctgatat cgccaaatat cctctatgac gtagtaacgt 120gaggtaaaat ccactgttac atcctgatat cgccaaatat cctctatgac gtagtaacgt 120
ctgataagcg ccttaatacg cttgacaagc 150ctgataagcg ccttaatacg cttgacaagc 150
<210> 16<210> 16
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
cgtttctaca aagactggaa cctat 25cgtttctaca aagactggaa cctat 25
<210> 17<210> 17
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 17<400> 17
tcgctttgtt gctggtagc 19tcgctttgtt gctggtagc 19
<210> 18<210> 18
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 18<400> 18
ttggtctgaa atagccatgg c 21ttggtctgaa atagccatgg c 21
<210> 19<210> 19
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 19<400> 19
tgttagcaga tggtattttg caatca 26tgttagcaga tggtattttg caatca 26
<210> 20<210> 20
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 20<400> 20
acttttgtca aggttctgtc gc 22acttttgtca aggttctgtc gc 22
<210> 21<210> 21
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 21<400> 21
cctgcttcat cgtgtccatg ta 22cctgcttcat cgtgtccatg ta 22
<210> 22<210> 22
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 22<400> 22
aaacaagctc cgaatatctc tccc 24aaacaagctc cgaatatctc tccc 24
<210> 23<210> 23
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 23<400> 23
ttcacctcgt taatcaatcc tttga 25ttcacctcgt taatcaatcc tttga 25
<210> 24<210> 24
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 24<400> 24
agaattccaa gaattttgca aggat 25agaattccaa gaattttgca aggat 25
<210> 25<210> 25
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 25<400> 25
caaagtggaa gccttctgga ttttc 25caaagtggaa gccttctgga ttttc 25
<210> 26<210> 26
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 26<400> 26
cactagggct ccgatgacaa tac 23cactagggct ccgatgacaa tac 23
<210> 27<210> 27
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 27<400> 27
aggttctgaa tatgcaaata ctgtc 25aggttctgaa tatgcaaata ctgtc 25
<210> 28<210> 28
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 28<400> 28
tgattcctca tcagcagtag caa 23tgattcctca tcagcagtag caa 23
<210> 29<210> 29
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 29<400> 29
tcgctaatac catattagta tcctttct 28tcgctaatac catattagta tcctttct 28
<210> 30<210> 30
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 30<400> 30
agtaccagta attcctttgg tttga 25agtaccagta attcctttgg tttga 25
<210> 31<210> 31
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 31<400> 31
ggcaacaatg accgtattac aa 22ggcaacaatg accgtattac aa 22
<210> 32<210> 32
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 32<400> 32
cagttgttgg caatcaaaga gc 22cagttgttgg caatcaaaga gc 22
<210> 33<210> 33
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 33<400> 33
gttctcctca tggacgagcc 20gttctcctca tggacgagcc 20
<210> 34<210> 34
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 34<400> 34
aaagtcatcc tctgtaagca tgtct 25aaagtcatcc tctgtaagca tgtct 25
<210> 35<210> 35
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 35<400> 35
caggtaaaac tcctgtttgg cag 23caggtaaaac tcctgtttgg cag 23
<210> 36<210> 36
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 36<400> 36
agaaatacaa tatgaacctg tcttaccc 28agaaatacaa tatgaacctg tcttaccc 28
<210> 37<210> 37
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 37<400> 37
ttttcaaaag caaccctaac caaat 25ttttcaaaag caaccctaac caaat 25
<210> 38<210> 38
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 38<400> 38
cgagatatcg atattaccaa ggcca 25cgagatatcg atattaccaa ggcca 25
<210> 39<210> 39
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 39<400> 39
tagaggtttc tagcaaactc cagc 24tagaggtttc tagcaaactc cagc 24
<210> 40<210> 40
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 40<400> 40
aattggccct agattttaca gaaga 25aattggccct agattttaca gaaga 25
<210> 41<210> 41
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 41<400> 41
atcttgctta tgtggattgc gc 22atcttgctta tgtggattgc gc 22
<210> 42<210> 42
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 42<400> 42
ggccgccaga gttacctg 18ggccgccaga gttacctg 18
<210> 43<210> 43
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 43<400> 43
ttgacagtcc acctcaagat tgatt 25ttgacagtcc acctcaagat tgatt 25
<210> 44<210> 44
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 44<400> 44
agttttctcc cttatgaaca cggta 25agttttctcc cttatgaaca cggta 25
<210> 45<210> 45
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 45<400> 45
gcttgtcaag cgtattaagg cg 22gcttgtcaag cgtattaagg cg 22
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111309341.3A CN114277164B (en) | 2021-11-06 | 2021-11-06 | MNP marker combination, primer pair combination, test kit and application of Streptococcus pneumoniae |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111309341.3A CN114277164B (en) | 2021-11-06 | 2021-11-06 | MNP marker combination, primer pair combination, test kit and application of Streptococcus pneumoniae |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114277164A CN114277164A (en) | 2022-04-05 |
CN114277164B true CN114277164B (en) | 2023-11-03 |
Family
ID=80868819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111309341.3A Active CN114277164B (en) | 2021-11-06 | 2021-11-06 | MNP marker combination, primer pair combination, test kit and application of Streptococcus pneumoniae |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114277164B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117965765A (en) * | 2024-01-24 | 2024-05-03 | 深圳国家感染性疾病临床医学研究中心 | PCR-RFLP identification method for six phase subtypes of streptococcus pneumoniae type I methylation modification system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6800744B1 (en) * | 1997-07-02 | 2004-10-05 | Genome Therapeutics Corporation | Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics |
WO2011048104A1 (en) * | 2009-10-19 | 2011-04-28 | Azienda Ospedaliero-Universitaria Meyer | Method for streptococcus pneumoniae diagnosis and serotyping |
CN112481408A (en) * | 2020-12-16 | 2021-03-12 | 武汉市农业科学院 | MNP core primer combination for molecular identification of eggplant DNA varieties and application thereof |
CN112501343A (en) * | 2020-12-19 | 2021-03-16 | 中国农业科学院油料作物研究所 | MNP (MNP) marker primer combination for identifying rape varieties and substantive derived varieties thereof and application of MNP marker primer combination |
-
2021
- 2021-11-06 CN CN202111309341.3A patent/CN114277164B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6800744B1 (en) * | 1997-07-02 | 2004-10-05 | Genome Therapeutics Corporation | Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics |
WO2011048104A1 (en) * | 2009-10-19 | 2011-04-28 | Azienda Ospedaliero-Universitaria Meyer | Method for streptococcus pneumoniae diagnosis and serotyping |
CN112481408A (en) * | 2020-12-16 | 2021-03-12 | 武汉市农业科学院 | MNP core primer combination for molecular identification of eggplant DNA varieties and application thereof |
CN112501343A (en) * | 2020-12-19 | 2021-03-16 | 中国农业科学院油料作物研究所 | MNP (MNP) marker primer combination for identifying rape varieties and substantive derived varieties thereof and application of MNP marker primer combination |
Non-Patent Citations (3)
Title |
---|
Comparative genomic analysis of multidrug-resistant Streptococcus pneumoniae isolates;Fen Pan等;Infection and Drug Resistance;第11卷;659-670 * |
DNA身份精准鉴定技术MNP标记法在蕲艾鉴定中的应用初探;张英等;2019中国针灸学会年会暨40周年回顾;摘要 * |
Multiple nucleotide polymorphism DNA markers for the accurate evaluation of genetic variations;Zhiwei Fang等;BioRxiv;1-29 * |
Also Published As
Publication number | Publication date |
---|---|
CN114277164A (en) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113718057A (en) | MNP (MNP protein) marker site of EB (Epstein-Barr) virus, primer composition, kit and application | |
CN113862384B (en) | MNP (MNP) marking site of Francisella tularensis, primer composition, kit and application | |
CN114277164B (en) | MNP marker combination, primer pair combination, test kit and application of Streptococcus pneumoniae | |
CN114214435B (en) | MNP (MNP) labeling combination of mycoplasma pneumoniae, primer pair combination, kit and application of MNP labeling combination | |
WO2023077489A1 (en) | Mnp marker combination of yersinia pestis, primer pair combination, kit, and application thereof | |
CN115029454B (en) | A MNP marker site, primer composition, kit and application of Moraxella catarrhalis | |
CN115029452B (en) | MNP (MNP) marking site of Legionella, primer composition, kit and application of MNP marking site | |
WO2023077488A1 (en) | Mnp marker combination of streptococcus pneumonia, primer pair combination, kit and uses thereof | |
CN114015793B (en) | MNP (MNP) marking site of rickettsia, primer composition, kit and application of MNP marking site | |
CN114277185B (en) | An adenovirus MNP label combination, primer pair combination, kit and application thereof | |
CN114277162B (en) | MNP (MNP) labeling combination of mycobacterium tuberculosis, primer pair combination, kit and application of kit | |
CN114790487B (en) | MNP (MNP) marking site of Huo Shibao terylen, primer composition, kit and application of MNP marking site | |
CN114277163B (en) | MNP (MNP) labeling combination of chlamydia pneumoniae, primer pair combination, kit and application of kit | |
CN114836574B (en) | MNP (MNP) marking site of mumps virus, primer composition, kit and application of MNP marking site | |
CN115029453B (en) | MNP (MNP) marking site of streptococcus pyogenes, primer composition, kit and application of MNP marking site | |
CN114277165B (en) | A kind of MNP marker combination of Yersinia pestis, primer pair combination, kit and application thereof | |
WO2023077486A1 (en) | Mnp marker combination for mycoplasma pneumoniae, primer pair combination, kit, and use | |
CN114790488B (en) | MNP (MNP) marking site of staphylococcus aureus, primer composition, kit and application of MNP marking site | |
WO2023077482A1 (en) | Combination of mnp markers of mycobacterium tuberculosis, primer pair combination, kit, and uses of combination, primer pair combination and kit | |
WO2023077485A1 (en) | Mnp marker combination of chlamydia pneumoniae, primer pair combination, kit, and application thereof | |
CN114836572B (en) | MNP (MNP) marker locus of paraenterovirus, primer composition, kit and application of MNP marker locus | |
CN114790489B (en) | A kind of MNP marker site of Haemophilus influenzae, primer composition, kit and application thereof | |
CN114107525B (en) | MNP (MNP) marking site of pseudomonas aeruginosa, primer composition, kit and application of MNP marking site | |
CN114836550B (en) | MNP (MNP) marking site of klebsiella pneumoniae, primer composition, kit and application of MNP marking site | |
CN114790494B (en) | MNP marking site, primer composition, test kit and application of varicella-zoster virus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |