CN114263664B - High-efficient coupling mechanism who compromises to bear and thermal-insulated demand - Google Patents
High-efficient coupling mechanism who compromises to bear and thermal-insulated demand Download PDFInfo
- Publication number
- CN114263664B CN114263664B CN202111215069.2A CN202111215069A CN114263664B CN 114263664 B CN114263664 B CN 114263664B CN 202111215069 A CN202111215069 A CN 202111215069A CN 114263664 B CN114263664 B CN 114263664B
- Authority
- CN
- China
- Prior art keywords
- square
- cross
- same
- metal
- gasket
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Gasket Seals (AREA)
Abstract
Description
技术领域technical field
本发明属于结构设计领域,尤其涉及一种高效兼顾承载需求与隔热需求的连接机构。The invention belongs to the field of structural design, and in particular relates to a connecting mechanism that efficiently takes into account both bearing requirements and thermal insulation requirements.
背景技术Background technique
航空航天技术尤其是高超音速飞行器的快速发展对飞行器结构的承载能力和隔热能力均提出了很高的需求,承载隔热一体化结构因同时具有承载和隔热的功能成为高超音速飞行器的绝佳选择。研究表明,由金属材料和隔热材料经设计组成的承载隔热一体化可同时具有承载和隔热的功能。通过合理布置金属材料和隔热材料同时提高结构的承载能力和隔热能力。The rapid development of aerospace technology, especially hypersonic aircraft, has put forward high demands on the bearing capacity and heat insulation capacity of the aircraft structure. best choice. Research shows that the design of load-bearing and heat-insulation integration composed of metal materials and heat-insulating materials can have the functions of load-bearing and heat insulation at the same time. Through reasonable arrangement of metal materials and thermal insulation materials, the bearing capacity and thermal insulation capacity of the structure are simultaneously improved.
目前,已有多种承载隔热一体化构型在实际工程中得到应用,这些构型一般由金属材料和隔热材料组成。然而,由于隔热材料不具有承载能力,因此用于承载的金属材料和用于热防护的隔热材料往往是分置的。At present, a variety of load-bearing and heat-insulating integrated configurations have been applied in practical engineering, and these configurations are generally composed of metal materials and heat-insulating materials. However, since the heat insulating material does not have load bearing capacity, the metal material for load bearing and the heat insulating material for thermal protection are often separated.
在现有的承载隔热一体化构型中,采用的多是金属材料与隔热材料分置的波纹夹芯板结构,例如文献“Performance improvement of integrated thermal protectionsystem using shaped-stabilized composite phase change material”采用了将隔热石棉填满金属夹芯板空隙的方式。在实际应用中发现金属材料和用于热防护的隔热材料分置的设计方式所得结构极易出现热短路现象,原因是:由于所用隔热材料不具有承载能力且结构需要承受较大的外部载荷,金属材料连接了外部热源与内部结构,外部载荷通过金属部件传递到内部结构,而相较于隔热材料,金属材料具有很高的导热系数,导致热量也很容易沿着力的传递路径传递,由于所用隔热材料不具有承载能力,因此力的传递路径上没有隔热材料,无法阻止热量传递到结构内部,导致热短路现象。In the existing integrated configuration of load-bearing and thermal insulation, the corrugated sandwich panel structure in which the metal material and the thermal insulation material are separated is mostly adopted. For example, the document "Performance improvement of integrated thermal protection system using shaped-stabilized composite phase change material" The method of filling the gap of the metal sandwich panel with insulating asbestos is adopted. In practical applications, it is found that the structure obtained by the design method of separating the metal material and the thermal insulation material for thermal protection is very prone to thermal short circuit. Load, the metal material connects the external heat source and the internal structure, and the external load is transmitted to the internal structure through the metal parts, and compared with the thermal insulation material, the metal material has a high thermal conductivity, so that the heat is also easily transferred along the force transmission path. , Since the heat insulating material used has no bearing capacity, there is no heat insulating material on the force transmission path, which cannot prevent the heat from being transferred to the interior of the structure, resulting in a thermal short circuit phenomenon.
但是,并非所有的隔热材料都不具备承载能力,某些隔热材料对某种特定形式的载荷具有很强的承载能力,比如陶瓷材料具有很好的热防护能力的同时也具有很强的承压能力。若能将金属部件的某一部分进行结构设计,能够将通过该部分的任意形式的载荷均变为压力载荷,然后将隔热陶瓷材料制成的垫片填充于受压区就能够在力的传递路径上布置隔热材料,这样既能阻断热量沿金属部件的传递,又能在一定程度上提高结构的承载能力。However, not all thermal insulation materials have no bearing capacity. Some thermal insulation materials have strong bearing capacity for a certain form of load. For example, ceramic materials have good thermal protection ability and also have strong bearing capacity. Pressure endurance. If a certain part of the metal part can be structurally designed, any form of load passing through the part can be turned into a pressure load, and then the gasket made of insulating ceramic material can be filled in the pressure zone to transmit the force. Insulation materials are arranged on the path, which can not only block the transfer of heat along the metal parts, but also improve the bearing capacity of the structure to a certain extent.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供一种高效兼顾承载与隔热需求的连接机构,通过将金属部件的某一部位设计为可将任意形式的载荷均变为压力的结构并在承压区域填充隔热效果好、承压能力强的隔热陶瓷的方法阻断热量的传递路径,从而防止热短路现象的发生,达到热防护的目的;另外,由于陶瓷材料具有很强的抗压刚度,结构的承载能力也将得到一定程度的提升。本发明采用的技术方案如下:In order to solve the above-mentioned technical problems, the present invention provides a connection mechanism that takes into account both load bearing and heat insulation requirements. By designing a certain part of the metal part into a structure that can convert any form of load into pressure and filling it in the pressure-bearing area The method of insulating ceramics with good heat insulation effect and strong pressure bearing capacity blocks the heat transfer path, thereby preventing the occurrence of thermal short circuit and achieving the purpose of thermal protection; in addition, due to the strong compressive stiffness of ceramic materials, the structure The carrying capacity will also be improved to a certain extent. The technical scheme adopted in the present invention is as follows:
一种高效兼顾承载与隔热需求的连接机构,包括金属接头和隔热垫片3和两个矩形金属杆A;An efficient connection mechanism that takes into account both load bearing and heat insulation requirements, including metal joints and
两个矩形金属杆A间设有金属接头,金属接头与矩形金属杆A的间隙中填充隔热垫片3;金属接头为榫卯结构,主要由十字型榫结构1与正方体框卯结构2组成;十字型榫结构1由连杆4和十字型榫头5组成,连杆4自由端与一矩形金属杆A连接;正方体框卯结构2由正方形金属环6与四个相同的金属杆7组成,金属杆7自由端与另一矩形金属杆A连接;正方形金属环6、金属杆7和矩形金属杆A构成一正方形孔洞8,正方形孔洞8的体积大于十字型榫结构1的体积,二者拼合后留有空隙,且其正方形孔洞8的边长大于十字型榫头5的厚度;隔热垫片3包括上部垫片9、中部连接垫片10和底部垫片11,均由隔热陶瓷制成,填充于金属接头的连接空隙,使得金属接头的十字型榫结构1与正方体框卯结构2之间不互相接触;金属接头与隔热垫片3的连接方式为无摩擦接触。A metal joint is arranged between the two rectangular metal rods A, and the gap between the metal joint and the rectangular metal rod A is filled with a
所述连杆4横截面为正方形,其截面小于矩形金属杆A截面,二者截面中心重合;十字型榫头5截面为一个正方形与四个矩形组成,矩形与正方形共边;The cross-section of the connecting
十字型榫头5宽度同矩形金属杆A边长相同;其中正方形与连杆4横截面完全重合,十字型榫头5的厚度与矩形长边相同。The width of the
所述金属杆7横截面为正方形;正方形金属环6的外环边长与矩形金属杆A边长相同,内环边长与中部连接垫片10的外径边长相同,正方形金属环6的厚度、环宽与金属杆7截面边长相同。The cross section of the metal rod 7 is square; the side length of the outer ring of the
所述上部垫片9和中部连接垫片10均呈正方形环;上部垫片9外径边长与矩形金属杆A边长相同,其内径边长与连杆4长度相同,其厚度为十字型榫结构1中矩形金属杆A与正方体框卯结构2的间距;中部连接垫片10厚度与外径边长分别同正方形金属环6的厚度与外环边长相同,其内径边长与连杆4边长相同;所述底部垫片11包括一个正方体框和四个相同的正方形环;正方体框外边长与正方形孔洞8的边长相同;正方体框顶部开有一孔洞,孔洞呈正方形,孔洞边长与连杆4边长相同;正方体框的四侧面中心分别开有相同的正方形孔,正方形孔边长与十字型榫头5的厚度相同;底部垫片11的正方形环的外径边长与正方形孔洞8边长相同,内径边长与十字型榫头5厚度相同,厚度与金属杆7横截面边长相同。The
所述十字型榫结构1与正方体框卯结构2之间的相互作用形式均为挤压;所述隔热垫片3与金属接头之间无任何粘接处理。The form of interaction between the
连接机构具体拼接时,金属接头十字型榫结构1与正方体框卯结构2相套后,二者另一端分别拼接矩形金属杆A。When the connection mechanism is specifically spliced, after the metal joint
所述部件通过对金属结构的某一部分进行结构设计,将通过该部分的任意形式的载荷均变为压力载荷,然后将隔热陶瓷材料制成的垫片填充于受压区就能够在力的传递路径上布置具有很强抗压刚度的隔热材料;此方法实现了将隔热材料布置于热量传递路径上的目的,这样既能够阻断热量沿金属部件的传递,又能在一定程度上提高结构的承载能力。The component is designed by structurally designing a certain part of the metal structure, turning any form of load passing through the part into a pressure load, and then filling the gasket made of insulating ceramic material in the pressure area to be able to withstand the force. The heat insulating material with strong compressive rigidity is arranged on the transfer path; this method achieves the purpose of arranging the heat insulating material on the heat transfer path, which can not only block the heat transfer along the metal parts, but also to a certain extent Improve the bearing capacity of the structure.
本发明的有益效果:Beneficial effects of the present invention:
1) 本发明通过将隔热材料布置于热量的传输路径有效阻断了热量沿力的传递路径向内部结构的传递,消除了热短路现象。1) The present invention effectively blocks the heat transfer to the internal structure along the force transfer path by arranging the heat insulating material on the heat transfer path, thereby eliminating the thermal short circuit phenomenon.
2) 本发明隔热材料与金属材料的布置方式是将隔热材料布置于金属材料接头的空隙区域,用少量的材料即取得良好的热防护效果,与传统金属材料和隔热材料分置的方法相比大大减少了隔热材料的用量,使得结构的重量大大下降。2) The arrangement of the thermal insulation material and the metal material of the present invention is to arrange the thermal insulation material in the gap area of the metal material joint, and a good thermal protection effect can be achieved with a small amount of material, which is separated from the traditional metal material and thermal insulation material. Compared with the method, the amount of heat insulating material is greatly reduced, and the weight of the structure is greatly reduced.
3) 本发明通过对金属结构的某一部分进行结构设计,将通过该部分的任意形式的载荷均变为压力载荷,然后将隔热陶瓷材料制成的垫片填充于受压区,在力的传递路径上布置具有很强抗压刚度的隔热材料的方法实现了将隔热材料布置于热量传递路径上的目的。这种设计将承受压力的部分金属部件替换为了具有很强抗压刚度的陶瓷材料,可在一定程度上提高结构的承载能力。3) In the present invention, through the structural design of a certain part of the metal structure, any form of load passing through the part is transformed into a pressure load, and then the gasket made of insulating ceramic material is filled in the pressure area, and the pressure The method of arranging the heat insulating material with strong compressive rigidity on the transfer path achieves the purpose of arranging the heat insulating material on the heat transfer path. This design replaces some of the metal parts under pressure with ceramic materials with strong compressive stiffness, which can improve the load-bearing capacity of the structure to a certain extent.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明的高效兼顾承载与隔热需求的连接机构的结构示意图。FIG. 1 is a schematic structural diagram of a connecting mechanism with high efficiency and both load bearing and heat insulation requirements according to the present invention.
图2(a)为本发明中矩形金属杆的示意图;Figure 2(a) is a schematic diagram of a rectangular metal rod in the present invention;
图2(b)为本发明的金属接头榫接头示意图;Figure 2(b) is a schematic diagram of the metal joint tenon joint of the present invention;
图2(c)为本发明的正方体框卯结构示意图;Figure 2 (c) is a schematic diagram of the structure of the cube frame 90 of the present invention;
图2(d)为本发明的隔热陶瓷垫片构型图;Figure 2(d) is a configuration diagram of the thermal insulation ceramic gasket of the present invention;
图3为本发明的金属接头榫接头结构构型图;3 is a structural configuration diagram of a metal joint tenon joint of the present invention;
图4为本发明的矩形金属杆与连杆的关系示意图;4 is a schematic diagram of the relationship between a rectangular metal rod and a connecting rod of the present invention;
图5(a)为本发明十字型榫结构示意图;Figure 5(a) is a schematic diagram of the cross-shaped tenon structure of the present invention;
图5(b)为本发明十字型榫结构的立体图;Figure 5(b) is a perspective view of the cross tenon structure of the present invention;
图6(a)为本发明金属接头卯接头结构立体图;Figure 6 (a) is a perspective view of the structure of the metal joint socket joint of the present invention;
图6(b)为本发明正方体框卯结构俯视图;Figure 6(b) is a top view of the cube frame 90 structure of the present invention;
图6(c)为本发明正方体框卯结构形成的正方形孔洞示意图;FIG. 6(c) is a schematic diagram of a square hole formed by the cube frame 90 structure of the present invention;
图7为本发明的金属榫卯连接接头拼接方式图;Fig. 7 is the splicing mode diagram of the metal tenon and mortise joint of the present invention;
图8(a)为本发明的隔热陶瓷垫片结构构型图;Figure 8(a) is a structural configuration diagram of the thermal insulation ceramic gasket of the present invention;
图8(b)为本发明的上部垫片俯视图;Figure 8(b) is a top view of the upper gasket of the present invention;
图8(c)为本发明的隔热陶瓷垫片正视图;Figure 8(c) is a front view of the thermal insulation ceramic gasket of the present invention;
图8(d)为本发明的本发明的金属榫卯连接接头间隙示意图;Figure 8(d) is a schematic diagram of the gap between the metal tenon and mortise joints of the present invention;
图8(e)为本发明正方形环的示意图;Figure 8(e) is a schematic diagram of the square ring of the present invention;
图8(f)为本发明底部垫片正方体框示意图Figure 8(f) is a schematic diagram of the square frame of the bottom gasket of the present invention
图8(g)为本发明底部垫片四个正方形环拼装示意图;Figure 8(g) is a schematic diagram of the assembly of four square rings of the bottom gasket of the present invention;
图9(a)为本发明的金属榫接头和隔热陶瓷垫片的组合方式图;Figure 9(a) is a diagram showing the combination of the metal tenon joint and the heat insulating ceramic gasket of the present invention;
图9(b)为本发明的金属卯接头和隔热陶瓷垫片的组合方式图。Figure 9(b) is a diagram showing the combination of the metal socket joint and the thermal insulating ceramic gasket of the present invention.
图中标识:1-十字型榫结构;2-正方体框卯结构;3-隔热垫片;A-矩形金属杆;4-连杆;5-十字型榫头;6-正方形金属环;7-金属杆;8-正方形孔洞;9-上部垫片;10-中部连接垫片;11-底部垫片。Identification in the picture: 1- cross tenon structure; 2- cube frame and socket structure; 3- heat insulation gasket; A- rectangular metal rod; 4- connecting rod; 5- cross tenon; 6- square metal ring; 7- Metal rod; 8-square hole; 9-upper spacer; 10-middle connection spacer; 11-bottom spacer.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
如图1-图2所示,一种高效兼顾承载与隔热需求的连接机构,其包括金属接头、隔热垫片3和两个矩形金属杆A;As shown in Fig. 1-Fig. 2, an efficient connection mechanism that takes both load bearing and heat insulation requirements into consideration includes a metal joint, a
所述榫卯结构主要由十字型榫结构1与正方体框卯结构2组成,所述十字型榫结构由连杆4和十字型榫头5组成,连杆4横截面为正方形,其截面小于矩形金属杆A截面。连杆4和十字型榫头5截面中心重合,十字型榫头5截面由一个正方形与四个矩形组成,其中正方形与连杆4横截面完全重合,四个矩形的长边与正方形的边重合,矩形短边长度等于正方形的边到金属杆的距离,所述十字型榫头5的厚度与正方形的边长相同;The tenon-and-mortise structure is mainly composed of a
所述正方体框卯结构2由正方形金属环6与四根完全相同的金属杆7组成,正方形金属环6的外环边长与矩形金属杆A截面的边长相同,正方形金属环6的内环边长与隔热垫片3的中部连接垫片10的外径边长相同;金属杆7的横截面为正方形,横截面的边长与中部垫片10的正方形环的厚度相同;正方形金属环6、金属杆7和矩形金属杆A构成了正方形孔洞8,正方形孔洞8的边大于十字型榫头5的厚度;The square frame 90
金属接头榫结构与金属接头卯结构的拼接方式如图7所示进行无摩擦接触;The splicing method of the metal joint tenon structure and the metal joint socket structure is shown in Figure 7 for frictionless contact;
所述隔热垫片3由上部垫片9、中部连接垫片10和底部垫片11组成;所述上部垫片9为一正方形环,其外径边长与矩形金属杆A截面边长相同,其内径边长连杆4截面边长相同,其厚度为十字型榫结构1中的矩形金属杆A与正方体框卯结构2的间距。The insulating
所述中部连接垫片10为一正方形环,其厚度与外径边长分别同正方形金属环6的厚度以及外环边长相同,中部连接垫片10的内径边长与连杆4截面边长相同。The
所述底部垫片11由一正方体框和四个完全相同的正方形环组成,正方体框外边长与正方形孔洞8的边长相同,正方体框顶部开有一孔洞,呈正方形,孔洞边长与连杆4截面的边长相同;正方体框四周开有四个完全相同且中心与十字型榫头5中心重合的正方形孔,正方形孔边长与十字型榫头5的厚度相同;正方形环外径边长与正方形孔的边长相同,内径边长与十字型榫头5的厚度相同,其厚度与金属杆7的横截面边长相同;The
所述连接结构组合后,隔热垫片3完全包络十字型榫结构1和正方体框卯结构2,其组合效果如图8(a)所示,使得十字型榫结构1和正方体框卯结构2不接触,达到热防护的目的。After the connection structure is combined, the
所述隔热垫片3由承载能力强且隔热效果好的隔热陶瓷制成,填充于金属接头的连接空隙,使得金属接头之间不互相接触。The
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111215069.2A CN114263664B (en) | 2021-10-19 | 2021-10-19 | High-efficient coupling mechanism who compromises to bear and thermal-insulated demand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111215069.2A CN114263664B (en) | 2021-10-19 | 2021-10-19 | High-efficient coupling mechanism who compromises to bear and thermal-insulated demand |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114263664A CN114263664A (en) | 2022-04-01 |
CN114263664B true CN114263664B (en) | 2022-09-13 |
Family
ID=80824685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111215069.2A Active CN114263664B (en) | 2021-10-19 | 2021-10-19 | High-efficient coupling mechanism who compromises to bear and thermal-insulated demand |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114263664B (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1082990A (en) * | 1993-07-20 | 1994-03-02 | 武汉工业大学 | Design approach for relaxing thermostress of metal-ceramic gradient functional material |
JP2001123533A (en) * | 1999-10-27 | 2001-05-08 | Kanai:Kk | Jointing device |
JP2003095761A (en) * | 2001-09-20 | 2003-04-03 | Meidensha Corp | Method for manufacturing ceramic structure |
CN201836636U (en) * | 2010-05-07 | 2011-05-18 | 山东大学 | Wear-resistant composite material inlaying ceramic in rubber |
CN102257304A (en) * | 2008-10-16 | 2011-11-23 | 伍德沃德公司 | Multi-tubular fluid transfer conduit |
CN102317065A (en) * | 2008-09-15 | 2012-01-11 | 蒂恩塞玛尔巴利尔斯有限公司 | Thermal resistor material |
WO2012152875A1 (en) * | 2011-05-10 | 2012-11-15 | Technip France | Device and method for thermally insulating a region of connection of connection end fittings of two lagged underwater pipes |
CN202946516U (en) * | 2012-10-18 | 2013-05-22 | 北京临近空间飞行器系统工程研究所 | Screw thermal protection device |
CN203796708U (en) * | 2013-11-28 | 2014-08-27 | 内蒙古欧意德发动机有限公司 | Bolt and bolt connection component |
CN105605078A (en) * | 2016-03-11 | 2016-05-25 | 大连理工大学 | Intelligent gasket device for monitoring bolt connecting interface |
CN105667837A (en) * | 2015-09-15 | 2016-06-15 | 大连理工大学 | A Pyramid Microtruss Sandwich Plate Integrated Structure with Flow Channels for Bearing and Thermal Protection |
CN109184014A (en) * | 2018-10-10 | 2019-01-11 | 东北林业大学 | A kind of wooden base sound insulation, electromagnetic shielding intersection double X-type truss core structure preparation method |
CN210240209U (en) * | 2019-07-09 | 2020-04-03 | 赣州森泰竹木有限公司 | Cylindrical right-angle joggling structure |
CN111853039A (en) * | 2020-07-06 | 2020-10-30 | 华中科技大学 | A self-reset energy dissipation device for shield tunnel shock absorption |
CN112399744A (en) * | 2020-11-10 | 2021-02-23 | 北京动力机械研究所 | Composite high-temperature-resistant heat-resistant support structure |
CN112724451A (en) * | 2021-03-18 | 2021-04-30 | 先端微纳(北京)科技有限公司 | Aerogel heat insulation film prepared by mortise and tenon assembly technology and method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010230137A (en) * | 2009-03-30 | 2010-10-14 | Across Corp | Connecting structure of structural member |
CN205013461U (en) * | 2015-06-10 | 2016-02-03 | 胡彦泽 | Tenon fourth of twelve earthly branches and bolt built -up connection's easy dismouting structural element connected node |
TWI801368B (en) * | 2017-03-17 | 2023-05-11 | 法商維蘇威法國公司 | Kit of parts for mechanically coupling a ceramic element to a rod and conveyor roller assembly for a conveyor system |
CN209909535U (en) * | 2019-05-13 | 2020-01-07 | 浙江捷峰环境科技有限公司 | Aluminum profile frame |
CN211009535U (en) * | 2019-11-22 | 2020-07-14 | 中国兵器工业第五九研究所 | Fastener structure with thermal bridge blocking function |
-
2021
- 2021-10-19 CN CN202111215069.2A patent/CN114263664B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1082990A (en) * | 1993-07-20 | 1994-03-02 | 武汉工业大学 | Design approach for relaxing thermostress of metal-ceramic gradient functional material |
JP2001123533A (en) * | 1999-10-27 | 2001-05-08 | Kanai:Kk | Jointing device |
JP2003095761A (en) * | 2001-09-20 | 2003-04-03 | Meidensha Corp | Method for manufacturing ceramic structure |
CN102317065A (en) * | 2008-09-15 | 2012-01-11 | 蒂恩塞玛尔巴利尔斯有限公司 | Thermal resistor material |
CN102257304A (en) * | 2008-10-16 | 2011-11-23 | 伍德沃德公司 | Multi-tubular fluid transfer conduit |
CN201836636U (en) * | 2010-05-07 | 2011-05-18 | 山东大学 | Wear-resistant composite material inlaying ceramic in rubber |
WO2012152875A1 (en) * | 2011-05-10 | 2012-11-15 | Technip France | Device and method for thermally insulating a region of connection of connection end fittings of two lagged underwater pipes |
CN202946516U (en) * | 2012-10-18 | 2013-05-22 | 北京临近空间飞行器系统工程研究所 | Screw thermal protection device |
CN203796708U (en) * | 2013-11-28 | 2014-08-27 | 内蒙古欧意德发动机有限公司 | Bolt and bolt connection component |
CN105667837A (en) * | 2015-09-15 | 2016-06-15 | 大连理工大学 | A Pyramid Microtruss Sandwich Plate Integrated Structure with Flow Channels for Bearing and Thermal Protection |
CN105605078A (en) * | 2016-03-11 | 2016-05-25 | 大连理工大学 | Intelligent gasket device for monitoring bolt connecting interface |
CN109184014A (en) * | 2018-10-10 | 2019-01-11 | 东北林业大学 | A kind of wooden base sound insulation, electromagnetic shielding intersection double X-type truss core structure preparation method |
CN210240209U (en) * | 2019-07-09 | 2020-04-03 | 赣州森泰竹木有限公司 | Cylindrical right-angle joggling structure |
CN111853039A (en) * | 2020-07-06 | 2020-10-30 | 华中科技大学 | A self-reset energy dissipation device for shield tunnel shock absorption |
CN112399744A (en) * | 2020-11-10 | 2021-02-23 | 北京动力机械研究所 | Composite high-temperature-resistant heat-resistant support structure |
CN112724451A (en) * | 2021-03-18 | 2021-04-30 | 先端微纳(北京)科技有限公司 | Aerogel heat insulation film prepared by mortise and tenon assembly technology and method thereof |
Non-Patent Citations (3)
Title |
---|
Design and analysis of dual-constituent lattice sandwich panel with in-plane zero thernal expansion and high structural siffness;Zihao Yang等;《MECHANICS OF ADVANCED MATERIALS AND STRUCTURES》;20191218;第28卷(第17期);1743-1754 * |
含流道微桁架夹层面板隔热性能评估方法;张南等;《复合材料学报》;20170430;第34卷(第04期);622-630 * |
榫卯式小型混凝土空心砌块剪力墙结构体系研究;韩忠民等;《山西建筑》;20150131;第41卷(第02期);23-25 * |
Also Published As
Publication number | Publication date |
---|---|
CN114263664A (en) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6109405B2 (en) | Cargo hold of cryogenic material carrier | |
WO2016140203A1 (en) | Heat exchanger | |
CN110107777A (en) | A kind of adiabatic supporting device | |
CN114263664B (en) | High-efficient coupling mechanism who compromises to bear and thermal-insulated demand | |
CN104129110B (en) | A metal corrugated plate with large span and thick panel and its preparation method | |
CN107528080A (en) | The manufacture method of fuel cell and fuel cell | |
CN109264663B (en) | High-temperature pressure sensor rear end packaging structure and packaging method thereof | |
CN103241391A (en) | Heat insulation component for heat control of a Mars landing machine, and manufacturing method thereof | |
CN112002773B (en) | Large area array infrared detector and its chip low-stress cold head structure | |
CN112922992B (en) | Negative Poisson's Ratio-Honeycomb Composite Energy Absorption Structure with Flat Small Half-Circumferential Interface | |
CN217105803U (en) | Double-core cladding type square cabin large plate with composite heat insulation structure | |
CN203015144U (en) | Heating plate | |
CN212153901U (en) | A buffer node member for prefabricated building truss | |
CN118849544A (en) | Low thermal expansion sandwich panel structure for metal thermal protection systems | |
JPS6014695A (en) | Vacuum heat-insulating material | |
CN211000248U (en) | thermoplastic composites | |
JP4822699B2 (en) | Storage container | |
KR20190083138A (en) | Vacumm Insulation Panel | |
CN114370220A (en) | Hollow glass spacing strip and processing method thereof, spacing assembly, door and window | |
CN105083591A (en) | Integrated machine heat insulation device based on nanometer aerogel | |
CN210553373U (en) | Heat-insulation aluminum honeycomb plate | |
CN108482714A (en) | A kind of enhanced Bearing cylinder upper ledge and its strengthen connection structure | |
CN215898040U (en) | Heat conduction metal tube structure of PTC heating tube | |
CN214466726U (en) | Heat-insulating pipe | |
CN109653381A (en) | Consume energy the cross steel reinforcement node that junction steel plate connects at right angle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |