CN114256374B - Avalanche photodetector and preparation method thereof - Google Patents
Avalanche photodetector and preparation method thereof Download PDFInfo
- Publication number
- CN114256374B CN114256374B CN202111633301.4A CN202111633301A CN114256374B CN 114256374 B CN114256374 B CN 114256374B CN 202111633301 A CN202111633301 A CN 202111633301A CN 114256374 B CN114256374 B CN 114256374B
- Authority
- CN
- China
- Prior art keywords
- type doped
- doped region
- region
- semiconductor layer
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 150
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 239000002019 doping agent Substances 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 23
- 239000010703 silicon Substances 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 17
- 230000007423 decrease Effects 0.000 claims description 14
- 229910052732 germanium Inorganic materials 0.000 claims description 14
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 14
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 13
- 229910000676 Si alloy Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 162
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 21
- 238000010521 absorption reaction Methods 0.000 description 18
- 230000005684 electric field Effects 0.000 description 13
- 239000000969 carrier Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013455 disruptive technology Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/225—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes
- H10F30/2255—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers form heterostructures, e.g. SAM structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
技术领域Technical field
本发明涉及光子集成芯片探测技术领域,具体涉及一种雪崩光电探测器及其制备方法。The invention relates to the field of photonic integrated chip detection technology, and in particular to an avalanche photoelectric detector and a preparation method thereof.
背景技术Background technique
雪崩光电探测器作为硅光子架构的核心器件之一,具有实现低功率光信号到电信号转换的功能,其工作原理是通过光电效应产生的光生载流子(空穴电子对),在高电场区运动时被迅速加速,运动过程中可能发生一次或多次碰撞,通过碰撞电离效应产生二次、三次新的空穴电子对,产生雪崩倍增效应,使载流子数量迅速增加,从而形成比较大的光信号电流。As one of the core devices of the silicon photonic architecture, the avalanche photodetector has the function of converting low-power optical signals into electrical signals. Its working principle is that photogenerated carriers (hole-electron pairs) generated through the photoelectric effect, in high electric fields The area is rapidly accelerated when moving, and one or more collisions may occur during the movement. Secondary and third new hole-electron pairs are generated through the collision ionization effect, resulting in an avalanche multiplication effect, which rapidly increases the number of carriers, thereby forming a comparison large optical signal current.
目前,在硅光子集成芯片中广泛采用兼容CMOS工艺的锗硅材料实现雪崩光电探测,它是利用硅材料作为光波导,同时作为雪崩增益区(也称为倍增区),而锗材料吸收光子。目前该锗硅雪崩光电探测器结构的不足如下:一是需要外延单晶硅工艺,制作相对复杂;二是吸收区通常会被P或N型掺杂,这些掺杂都会造成光吸收损耗,继而降低探测器量子效率;三是吸收区和倍增区不易独立调节,对掺杂区浓度精度要过较高,工艺容忍度低,容易导致增益带宽不理想。因此采用锗硅材料的雪崩光电探测器有待进一步的改进。Currently, germanium-silicon materials compatible with CMOS technology are widely used in silicon photonic integrated chips to achieve avalanche photoelectric detection. It uses silicon material as an optical waveguide and as an avalanche gain area (also called a multiplication area), while the germanium material absorbs photons. The current shortcomings of the germanium-silicon avalanche photodetector structure are as follows: First, it requires an epitaxial monocrystalline silicon process, which is relatively complex to manufacture; second, the absorption area is usually doped by P or N type, and these dopings will cause light absorption loss, and then Reduce the quantum efficiency of the detector; thirdly, the absorption region and the multiplication region are not easy to adjust independently. The concentration accuracy of the doped region must be too high, and the process tolerance is low, which can easily lead to unsatisfactory gain bandwidth. Therefore, avalanche photodetectors using germanium-silicon materials need further improvement.
发明内容Contents of the invention
有鉴于此,本发明实施例为解决背景技术中存在的至少一个问题而提供一种雪崩光电探测器及其制备方法。In view of this, embodiments of the present invention provide an avalanche photodetector and a preparation method thereof to solve at least one problem existing in the background art.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above objects, the technical solution of the present invention is implemented as follows:
本发明实施例一方面提供了一种雪崩光电探测器,包括:On the one hand, embodiments of the present invention provide an avalanche photodetector, including:
衬底,所述衬底的表面包括第一半导体层;a substrate, a surface of which includes a first semiconductor layer;
位于所述第一半导体层之上的第二半导体层,所述第二半导体层的材料不同于所述第一半导体层的材料;其中,a second semiconductor layer located above the first semiconductor layer, the material of the second semiconductor layer being different from the material of the first semiconductor layer; wherein,
所述第一半导体层包括在第一方向上依次排列的第一P型掺杂区、第二P型掺杂区、第三N型掺杂区、第一本征区、第三P型掺杂区、第二本征区、第二N型掺杂区和第一N型掺杂区,所述第一至第三P型掺杂区的掺杂剂浓度依次递减,且所述第一至第三N型掺杂区的掺杂剂浓度依次递减,所述第一方向为所述雪崩光电探测器的电子流动方向;The first semiconductor layer includes a first P-type doped region, a second P-type doped region, a third N-type doped region, a first intrinsic region, and a third P-type doped region arranged sequentially in a first direction. impurity region, a second intrinsic region, a second N-type doping region and a first N-type doping region, the dopant concentrations of the first to third P-type doping regions decrease in sequence, and the first The dopant concentration to the third N-type doped region decreases successively, and the first direction is the electron flow direction of the avalanche photodetector;
所述第二半导体层沿所述第一方向依次覆盖部分所述第二P型掺杂区、第三N型掺杂区、所述第一本征区和部分所述第三P型掺杂区,The second semiconductor layer sequentially covers part of the second P-type doped region, the third N-type doped region, the first intrinsic region and part of the third P-type doped region along the first direction. district,
所述第一N型掺杂区连接有第一电极;所述第三P型掺杂区连接有第二电极;所述第一P型掺杂区连接有第三电极。The first N-type doped region is connected to a first electrode; the third P-type doped region is connected to a second electrode; and the first P-type doped region is connected to a third electrode.
上述方案中,所述第一电极和第三电极之间设置有第一反向偏置电压V1,且所述第一电极和第二电极之间设置有第二反向偏置电压V2。In the above solution, a first reverse bias voltage V 1 is set between the first electrode and the third electrode, and a second reverse bias voltage V 2 is set between the first electrode and the second electrode. .
上述方案中,所述第一半导体层的材料为硅,且所述第二半导体层的材料为锗、锗硅合金、III-V族材料及其合金。In the above solution, the material of the first semiconductor layer is silicon, and the material of the second semiconductor layer is germanium, germanium-silicon alloy, III-V group materials and alloys thereof.
上述方案中,所述第一P型掺杂区或所述第一N型掺杂区的掺杂剂浓度为1×1020/cm3~5×1020/cm3,所述第二P型掺杂区或所述第二N型掺杂区的掺杂剂浓度为2×1017/cm3~5×1018/cm3,所述第三P型掺杂区或所述第三N型掺杂区的掺杂剂浓度为1.2×1017~4×1017/cm3。In the above scheme, the dopant concentration of the first P-type doped region or the first N-type doped region is 1×10 20 /cm 3 ~ 5×10 20 /cm 3 , and the second P-type doped region The dopant concentration of the N-type doped region or the second N-type doped region is 2×10 17 /cm 3 to 5×10 18 /cm 3 , and the third P-type doped region or the third The dopant concentration of the N-type doped region is 1.2×10 17 to 4×10 17 /cm 3 .
上述方案中,所述第二本征区在所述第一方向上的尺寸为50nm至800nm。In the above solution, the size of the second intrinsic region in the first direction is 50 nm to 800 nm.
上述方案中,所述第二半导体层在所述第一方向上的尺寸为150nm至1500nm,在所述第二方向上的尺寸为1μm至100μm,并且在所述第三方向上的尺寸为150nm至600nm,其中,所述第三方向为垂直于所述衬底的方向,且所述第二方向垂直于所述第三方向且垂直于所述第一方向。In the above solution, the size of the second semiconductor layer in the first direction is 150 nm to 1500 nm, the size in the second direction is 1 μm to 100 μm, and the size in the third direction is 150 nm to 1500 nm. 600 nm, wherein the third direction is a direction perpendicular to the substrate, and the second direction is perpendicular to the third direction and perpendicular to the first direction.
本发明实施例还提供了一种雪崩光电探测器的制备方法,包括:Embodiments of the present invention also provide a method for preparing an avalanche photodetector, which includes:
提供衬底,所述衬底的表面上包括第一半导体层;providing a substrate including a first semiconductor layer on a surface thereof;
执行选择性掺杂工艺,以在所述第一半导体层上沿第一方向上形成依次排列的第一P型掺杂区、第二P型掺杂区、第三N型掺杂区、第一本征区、第三P型掺杂区、第二本征区、第二N型掺杂区和第一N型掺杂区,所述第一至第三P型掺杂区的掺杂剂浓度依次递减,且所述第一至第三N型掺杂区的掺杂剂浓度依次递减;A selective doping process is performed to form a first P-type doped region, a second P-type doped region, a third N-type doped region, and a third N-type doped region arranged sequentially along a first direction on the first semiconductor layer. An intrinsic region, a third P-type doped region, a second intrinsic region, a second N-type doped region and a first N-type doped region, the doping of the first to third P-type doped regions The dopant concentration decreases in sequence, and the dopant concentration of the first to third N-type doped regions decreases in sequence;
形成第二半导体层,所述第二半导体层的材料不同于所述第一半导体层材料,且在所述第一方向上依次覆盖部分所述第二P型掺杂区、第三N型掺杂区、所述第一本征区和部分所述第三P型掺杂区;Form a second semiconductor layer, the material of the second semiconductor layer is different from the material of the first semiconductor layer, and cover part of the second P-type doped region, the third N-type doped region in the first direction. impurity region, the first intrinsic region and part of the third P-type doped region;
形成垂直所述衬底平面方向而设置的第一电极、第二电极和第三电极,所述第一电极与所述第一N型掺杂区电连接;所述第二电极与所述第三P型掺杂区电连接,且所述第三电极与所述第一P型掺杂区电连接;A first electrode, a second electrode and a third electrode are formed perpendicular to the plane direction of the substrate. The first electrode is electrically connected to the first N-type doped region; the second electrode is connected to the first N-type doped region. Three P-type doping regions are electrically connected, and the third electrode is electrically connected to the first P-type doping region;
所述第一方向为所述雪崩光电探测器的电子流动方向。The first direction is the electron flow direction of the avalanche photodetector.
上述方案中,所述第一半导体层的材料为硅,且所述第二半导体层的材料为锗、锗硅合金、III-V族材料及其合金。In the above solution, the material of the first semiconductor layer is silicon, and the material of the second semiconductor layer is germanium, germanium-silicon alloy, III-V group materials and alloys thereof.
上述方案中,所述第一P型掺杂区或所述第一N型掺杂区的掺杂剂浓度为1×1020/cm3~5×1020/cm3,所述第二P型掺杂区或所述第二N型掺杂区的掺杂剂浓度为2×1017/cm3~5×1018/cm3,所述第三P型掺杂区或所述第三N型掺杂区的掺杂剂浓度为1.2×1017~4×1017/cm3。In the above scheme, the dopant concentration of the first P-type doped region or the first N-type doped region is 1×10 20 /cm 3 ~ 5×10 20 /cm 3 , and the second P-type doped region The dopant concentration of the N-type doped region or the second N-type doped region is 2×10 17 /cm 3 to 5×10 18 /cm 3 , and the third P-type doped region or the third The dopant concentration of the N-type doped region is 1.2×10 17 to 4×10 17 /cm 3 .
上述方案中,所述形成垂直所述衬底平面方向而设置的第一电极、第二电极和第三电极包括:In the above solution, forming the first electrode, the second electrode and the third electrode arranged perpendicularly to the plane direction of the substrate include:
形成覆盖所述第一半导体层和所述第二半导体层的覆盖层;forming a covering layer covering the first semiconductor layer and the second semiconductor layer;
形成分别对应于所述第一N型掺杂区、所述第三P型掺杂区和所述第一P型掺杂区的第一窗口、第二窗口和第三窗口;Forming first, second and third windows respectively corresponding to the first N-type doped region, the third P-type doped region and the first P-type doped region;
在所述第一窗口、第二窗口和第三窗口填充金属以形成第一电极、第二电极和第三电极。The first, second and third windows are filled with metal to form first, second and third electrodes.
本发明实施例提供的雪崩光电探测器包括:衬底,所述衬底的表面包括第一半导体层;位于所述第一半导体层之上的第二半导体层,所述第二半导体层的材料不同于所述第一半导体层的材料;其中,所述第一半导体层包括在第一方向上依次排列的第一P型掺杂区、第二P型掺杂区、第三N型掺杂区、第一本征区、第三P型掺杂区、第二本征区、第二N型掺杂区和第一N型掺杂区,所述第一至第三P型掺杂区的掺杂剂浓度依次递减,且所述第一至第三N型掺杂区的掺杂剂浓度依次递减,所述第一方向为所述雪崩光电探测器的电子流动方向;所述第二半导体层沿所述第一方向依次覆盖部分所述第二P型掺杂区、第三N型掺杂区、所述第一本征区和部分所述第三P型掺杂区,所述第一N型掺杂区连接有第一电极;所述第三P型掺杂区连接有第二电极;所述第一P型掺杂区连接有第三电极。由于多个被掺杂的电荷区以及作为雪崩区的第二本征区均在第一半导体层中,因此不需要额外外延制作单晶硅,制作相对简单,利于降低成本;此外,由于第一N型掺杂区连接有第一电极,第三P型掺杂区连接有第二电极,第一P型掺杂区连接有第三电极,后续可以通过在这三个电极上独立地施加偏置电压,因此能够使位于作为吸收区的第二半导体层和作为雪崩区的第二本征区的电场可以独立调节,对掺杂区浓度精度容忍度较好,有利于实现低噪声、高增益带宽。The avalanche photodetector provided by the embodiment of the present invention includes: a substrate, the surface of the substrate includes a first semiconductor layer; a second semiconductor layer located on the first semiconductor layer, the material of the second semiconductor layer Different materials from the first semiconductor layer; wherein the first semiconductor layer includes a first P-type doped region, a second P-type doped region, and a third N-type doped region arranged sequentially in the first direction. region, a first intrinsic region, a third P-type doped region, a second intrinsic region, a second N-type doped region and a first N-type doped region, the first to third P-type doped regions The dopant concentration of the first to third N-type doping regions decreases in sequence, and the first direction is the electron flow direction of the avalanche photodetector; the second The semiconductor layer sequentially covers part of the second P-type doped region, the third N-type doped region, the first intrinsic region and part of the third P-type doped region along the first direction, The first N-type doped region is connected to a first electrode; the third P-type doped region is connected to a second electrode; and the first P-type doped region is connected to a third electrode. Since the multiple doped charge regions and the second intrinsic region as the avalanche region are both in the first semiconductor layer, there is no need for additional epitaxial production of single crystal silicon, and the production is relatively simple, which is beneficial to reducing costs; in addition, since the first The N-type doping region is connected to the first electrode, the third P-type doping region is connected to the second electrode, and the first P-type doping region is connected to the third electrode. Subsequently, bias can be applied independently on these three electrodes. Therefore, the electric field located in the second semiconductor layer as the absorption region and the second intrinsic region as the avalanche region can be adjusted independently, and the tolerance for the concentration accuracy of the doping region is better, which is conducive to achieving low noise and high gain. bandwidth.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
图1为本发明实施例提供的一种雪崩光电探测器的轴测示意图;Figure 1 is a schematic isometric view of an avalanche photodetector provided by an embodiment of the present invention;
图2为本发明实施例提供的一种雪崩光电探测器的俯视示意图;Figure 2 is a schematic top view of an avalanche photodetector provided by an embodiment of the present invention;
图3为本发明实施例提供的一种雪崩光电探测器沿Y方向的示意图;Figure 3 is a schematic diagram along the Y direction of an avalanche photodetector provided by an embodiment of the present invention;
图4为本发明实施例提供的雪崩光电探测器的制备方法的流程示意图;Figure 4 is a schematic flow chart of a method for preparing an avalanche photodetector provided by an embodiment of the present invention;
图5a至图5e为本发明实施例提供的雪崩光电探测器的制备过程中的器件结构剖视图。5a to 5e are cross-sectional views of the device structure during the preparation process of the avalanche photodetector provided by the embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的技术方案和优点更加清楚,以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述。In order to make the technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
在本发明实施例中,术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。In the embodiment of the present invention, the terms "first", "second", etc. are used to distinguish similar objects, but are not used to describe a specific order or sequence.
在本发明实施例中,除非另有明确的规定和限定,半导体结构中的两层之间的“上”或“下”关系可以是两层之间直接接触,或两层通过中间层间接接触。In embodiments of the present invention, unless otherwise explicitly stated and limited, the “upper” or “lower” relationship between two layers in the semiconductor structure may be direct contact between the two layers, or indirect contact between the two layers through an intermediate layer. .
在本发明实施例中,术语“层”是指包括具有厚度的区域的材料部分。层可以在下方或上方结构的整体之上延伸,或者可以具有小于下方或上方结构范围的范围。此外,层可以是厚度小于连续结构厚度的均质或非均质连续结构的区域。例如,层可位于连续结构的顶面和底面之间,或者层可在连续结构顶面和底面处的任何水平面对之间。层可以水平、垂直和/或沿倾斜表面延伸。并且,层可以包括多个子层。In embodiments of the present invention, the term "layer" refers to a portion of material that includes a region having a thickness. A layer may extend over the entirety of the underlying or overlying structure, or may have an extent that is less than the extent of the underlying or overlying structure. Furthermore, a layer may be a region of a homogeneous or non-homogeneous continuous structure having a thickness less than the thickness of the continuous structure. For example, the layer may be located between the top and bottom surfaces of the continuous structure, or the layer may be between any horizontal surfaces at the top and bottom surfaces of the continuous structure. Layers may extend horizontally, vertically and/or along inclined surfaces. Also, a layer may include multiple sub-layers.
在本发明实施例中,空间相对术语,例如“之下”、“下方”、“下”、“上方”、“上”、“朝上”、“朝下”等在本文中为了便于描述可以描述一个元素或特征与另一个(多个)元素或(多个)特征的关系,如图中所示。空间相对术语旨在涵盖在使用或操作中的除了图中描绘的取向之外的器件的不同取向。装置可以以其它方式取向(旋转90度或在其它取向下),并且本文所使用的空间相对描述符也可以相应地进行解释。In the embodiment of the present invention, spatially relative terms, such as “below”, “below”, “down”, “above”, “up”, “upward”, “downward”, etc. may be used herein for convenience of description. Describes the relationship of one element or feature to another element(s) or feature(s), as shown in the figure. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
硅光子技术是基于硅和硅基衬底材料(如SiGe/Si、绝缘体上硅等),利用现有互补金属氧化物半导体(CMOS)工艺进行光器件开发和集成的新一代技术。硅光子技术结合了集成电路技术的超大规模、超高精度制造的特性和光子技术超高速率、超低功耗的优势,是应对摩尔定律失效的颠覆性技术。这种结合得益于半导体晶圆制造的可扩展性,因而能够降低成本。光电探测器作为硅光子架构的核心器件之一,具有实现光信号到电信号转换的功能。目前该锗硅雪崩光电探测器结构的不足如下:一是需要外延单晶硅工艺,制作相对复杂;二是吸收区通常会被P或N型掺杂,这些掺杂都会造成光吸收损耗,继而降低探测器量子效率;三是吸收区和雪崩区(也称为倍增区)不易独立调节,对掺杂区浓度精度要过较高,工艺容忍度低,容易导致增益带宽不理想。。Silicon photonics technology is a new generation technology based on silicon and silicon-based substrate materials (such as SiGe/Si, silicon-on-insulator, etc.) and using the existing complementary metal oxide semiconductor (CMOS) process to develop and integrate optical devices. Silicon photonics technology combines the ultra-large-scale, ultra-high-precision manufacturing characteristics of integrated circuit technology with the ultra-high speed and ultra-low power consumption of photonic technology. It is a disruptive technology to cope with the failure of Moore's Law. This combination benefits from the scalability of semiconductor wafer manufacturing, which reduces costs. As one of the core devices of silicon photonic architecture, photodetectors have the function of converting optical signals into electrical signals. The current shortcomings of the germanium-silicon avalanche photodetector structure are as follows: First, it requires an epitaxial monocrystalline silicon process, which is relatively complex to manufacture; second, the absorption area is usually doped by P or N type, and these dopings will cause light absorption loss, and then Reduce the quantum efficiency of the detector; third, the absorption region and avalanche region (also called the multiplication region) are not easy to adjust independently. The concentration accuracy of the doping region must be too high, and the process tolerance is low, which can easily lead to unsatisfactory gain bandwidth. .
基于此,提出了本申请实施例的以下技术方案。Based on this, the following technical solutions of the embodiments of the present application are proposed.
本发明实施例提供了一种雪崩光电探测器,包括:An embodiment of the present invention provides an avalanche photodetector, which includes:
衬底,所述衬底的表面包括第一半导体层;a substrate, a surface of which includes a first semiconductor layer;
位于所述第一半导体层之上的第二半导体层,所述第二半导体层的材料不同于所述第一半导体层的材料;其中,a second semiconductor layer located above the first semiconductor layer, the material of the second semiconductor layer being different from the material of the first semiconductor layer; wherein,
所述第一半导体层包括在第一方向上依次排列的第一P型掺杂区、第二P型掺杂区、第三N型掺杂区、第一本征区、第三P型掺杂区、第二本征区、第二N型掺杂区和第一N型掺杂区,所述第一至第三P型掺杂区的掺杂剂浓度依次递减,且所述第一至第三N型掺杂区的掺杂剂浓度依次递减,所述第一方向为所述雪崩光电探测器的电子流动方向;The first semiconductor layer includes a first P-type doped region, a second P-type doped region, a third N-type doped region, a first intrinsic region, and a third P-type doped region arranged sequentially in a first direction. impurity region, a second intrinsic region, a second N-type doping region and a first N-type doping region, the dopant concentrations of the first to third P-type doping regions decrease in sequence, and the first The dopant concentration to the third N-type doped region decreases successively, and the first direction is the electron flow direction of the avalanche photodetector;
所述第二半导体层沿所述第一方向依次覆盖部分所述第二P型掺杂区、第三N型掺杂区、所述第一本征区和部分所述第三P型掺杂区,The second semiconductor layer sequentially covers part of the second P-type doped region, the third N-type doped region, the first intrinsic region and part of the third P-type doped region along the first direction. district,
所述第一N型掺杂区连接有第一电极;所述第三P型掺杂区连接有第二电极;所述第一P型掺杂区连接有第三电极。The first N-type doped region is connected to a first electrode; the third P-type doped region is connected to a second electrode; and the first P-type doped region is connected to a third electrode.
以下,请具体参见图1至图3,其中,图1为本发明实施例提供的一种雪崩光电探测器的轴测示意图;图2为本发明实施例提供的一种雪崩光电探测器的俯视示意图;图3为本发明实施例提供的一种雪崩光电探测器沿Y方向的示意图。Please refer specifically to FIGS. 1 to 3 below. FIG. 1 is a schematic isometric view of an avalanche photodetector provided by an embodiment of the present invention; FIG. 2 is a top view of an avalanche photodetector provided by an embodiment of the present invention. Schematic diagram; Figure 3 is a schematic diagram along the Y direction of an avalanche photodetector provided by an embodiment of the present invention.
结合图1至图3,所述雪崩光电探测器包括:With reference to Figures 1 to 3, the avalanche photodetector includes:
衬底10,所述衬底包括第一半导体层300;在所述第一半导体层300中形成有所述雪崩光电探测器的雪崩区以实现雪崩效果;Substrate 10, the substrate includes a first semiconductor layer 300; an avalanche region of the avalanche photodetector is formed in the first semiconductor layer 300 to achieve an avalanche effect;
第二半导体层400,其采用不同于第一半导体层300的材料。The second semiconductor layer 400 uses a different material from the first semiconductor layer 300 .
这里,衬底可为多层结构,其中,衬底的顶部为第一半导体层,之下可以包括单质半导体材料(例如为硅(Si)、锗(Ge)等)、复合半导体材料(例如为锗硅(SiGe)等)构成的层以及其氧化物构成的绝缘层。该实例中,衬底10可以是绝缘体上硅(SOI)或绝缘体上锗(GeOI)等。Here, the substrate may be a multi-layer structure, wherein the top of the substrate is the first semiconductor layer, and the bottom may include a single semiconductor material (such as silicon (Si), germanium (Ge), etc.), a compound semiconductor material (such as A layer composed of silicon germanium (SiGe, etc.) and an insulating layer composed of its oxide. In this example, the substrate 10 may be silicon-on-insulator (SOI) or germanium-on-insulator (GeOI), or the like.
本申请实施例以所述衬底表面下方的层为SOI为例进行说明。可以理解,所述第一半导体层300位于本发明衬底10的顶部。The embodiment of the present application is described by taking the layer below the substrate surface as SOI as an example. It can be understood that the first semiconductor layer 300 is located on the top of the substrate 10 of the present invention.
在一些实施例中,第一半导体层300的材料包括硅。位于第一半导体层300下方的层依次包括绝缘层200和底层100。In some embodiments, the material of first semiconductor layer 300 includes silicon. The layers located below the first semiconductor layer 300 include the insulating layer 200 and the bottom layer 100 in sequence.
实际应用中,底层100可以是硅晶圆,也可以是其他材料形成的晶圆。因此底层100的材料可以是硅、锗或蓝宝石等。In practical applications, the bottom layer 100 may be a silicon wafer or a wafer made of other materials. Therefore, the material of the bottom layer 100 may be silicon, germanium, sapphire, etc.
在一些实施例中,底层100的材料是硅,对应地,绝缘层200的材料则可以硅的氧化物,例如二氧化硅In some embodiments, the material of the bottom layer 100 is silicon. Correspondingly, the material of the insulating layer 200 can be an oxide of silicon, such as silicon dioxide.
所述底层100与所述第一半导体层300相比可以具有更厚的厚度。应当理解,图中为了使得各层结构均能被清晰地示出,可能造成各层结构的尺寸比例关系与实际结构不符。The bottom layer 100 may have a thicker thickness than the first semiconductor layer 300 . It should be understood that in order to clearly illustrate each layer structure in the figure, the dimensional proportional relationship of each layer structure may be inconsistent with the actual structure.
需要说明的是,为了便于描述,如图1所示,本发明实施例中借助第一方向(X)、第二方向(Y)和第三方向(Z)来描述(参见图1所示)。It should be noted that, for convenience of description, as shown in Figure 1 , the embodiment of the present invention is described with reference to the first direction (X), the second direction (Y) and the third direction (Z) (see Figure 1 ). .
这里,衬底10可以包括处于正面的顶表面以及处于与正面相对的背面的底表面;在忽略顶表面和底表面的平整度的情况下,定义垂直衬底顶表面和底表面的方向为第三方向(Z)。第三方向Z也为后续在衬底上沉积各层结构的层叠方向,或称器件的高度方向。衬底顶表面和底表面所在的面,或者严格意义上讲衬底厚度方向上的中心面,确定为衬底平面。在所述衬底平面方向上定义两彼此相交的(例如为彼此垂直的)第一方向(X)和第二方向(Y)。在本实施例中,所述第一方向X为电子流动方向;所述第二方向Y为光信号的传播方向。Here, the substrate 10 may include a top surface on the front side and a bottom surface on the back side opposite to the front side; when flatness of the top surface and the bottom surface is ignored, the direction perpendicular to the top surface and the bottom surface of the substrate is defined as Three directions (Z). The third direction Z is also the stacking direction of each layer structure subsequently deposited on the substrate, or the height direction of the device. The plane where the top surface and the bottom surface of the substrate are located, or strictly speaking, the center plane in the thickness direction of the substrate, is determined as the substrate plane. Two first directions (X) and second directions (Y) that intersect each other (for example, are perpendicular to each other) are defined in the substrate plane direction. In this embodiment, the first direction X is the direction of electron flow; the second direction Y is the propagation direction of the optical signal.
由于理论上,在雪崩光电探测器中的第一半导体层300的材料可采用任何半导体材料,因此这里并不对第一半导体材料进行严格限定。在所述衬底10包括单质Si底层100的实施例中,所述第一半导体材料为Si。Since in theory, any semiconductor material can be used as the material of the first semiconductor layer 300 in the avalanche photodetector, the first semiconductor material is not strictly limited here. In an embodiment in which the substrate 10 includes a single Si bottom layer 100, the first semiconductor material is Si.
为了使所述雪崩光电探测器实现雪崩效应,所述雪崩光电探测器的第一半导体层300形成的不同的区域具有不同的掺杂区域,包括掺杂不同浓度的P型掺杂剂、N型掺杂剂,以及未被掺杂的区域(本征区)。In order to achieve the avalanche effect in the avalanche photodetector, different regions formed in the first semiconductor layer 300 of the avalanche photodetector have different doping regions, including doping with P-type dopants, N-type dopants with different concentrations. dopants, and undoped regions (intrinsic regions).
以下将详细说明根据本公开实施例的雪崩光电探测器的第一半导体层300的结构。在一些实施例中,雪崩光电探测器中第一半导体层300包括在第一方向X上依次排列的第一P型掺杂区301、第二P型掺杂区302、第三N型掺杂区303、第一本征区304、第三P型掺杂区305、第二本征区306、第二N型掺杂区307和第一N型掺杂区308。第一P型掺杂区、第二P型掺杂区、第三P型掺杂区的P型掺杂剂浓度依次递减,且第一N型掺杂区、第二N型掺杂区、第三N型掺杂区的N型掺杂剂浓度依次递减。The structure of the first semiconductor layer 300 of the avalanche photodetector according to the embodiment of the present disclosure will be described in detail below. In some embodiments, the first semiconductor layer 300 in the avalanche photodetector includes a first P-type doped region 301, a second P-type doped region 302, and a third N-type doped region arranged sequentially in the first direction X. region 303, first intrinsic region 304, third P-type doped region 305, second intrinsic region 306, second N-type doped region 307 and first N-type doped region 308. The P-type dopant concentrations of the first P-type doped region, the second P-type doped region, and the third P-type doped region decrease in sequence, and the first N-type doped region, the second N-type doped region, The N-type dopant concentration of the third N-type doped region decreases successively.
在一些实施例中,P型掺杂剂可为硼(B),N型掺杂剂可为磷(P)或砷(As)。In some embodiments, the P-type dopant may be boron (B), and the N-type dopant may be phosphorus (P) or arsenic (As).
在一些实施例中,第一P型掺杂区301或第一N型掺杂区308的掺杂剂浓度为1×1020/cm3~5×1020/cm3,第二P型掺杂区302或第二N型掺杂区307的掺杂剂浓度为2×1017/cm3~5×1018/cm3,第三P型掺杂区305或第三N型掺杂区303的掺杂剂浓度为1.2×1017~4×1017/cm3。In some embodiments, the dopant concentration of the first P-type doped region 301 or the first N-type doped region 308 is 1×10 20 /cm 3 ~ 5×10 20 /cm 3 , and the second P-type doped region 308 has a dopant concentration of 1 The dopant concentration of the impurity region 302 or the second N-type doping region 307 is 2×10 17 /cm 3 ~ 5×10 18 /cm 3 , and the third P-type doping region 305 or the third N-type doping region The dopant concentration of 303 is 1.2×10 17 ~ 4×10 17 /cm 3 .
实用应用中,由于本征区被未掺杂或者是轻掺杂的,其浓度一般小于预定值,例如,小于1×1017/cm3。In practical applications, since the intrinsic region is undoped or lightly doped, its concentration is generally less than a predetermined value, for example, less than 1×10 17 /cm 3 .
需要说明的是,第一P型掺杂区和第一N型掺杂区的掺杂剂浓度可以相同或不同,只要它们的掺杂浓度在上述范围即可。It should be noted that the dopant concentrations of the first P-type doped region and the first N-type doped region may be the same or different, as long as their doping concentrations are within the above range.
同理,第二P型掺杂区和第二N型掺杂区,以及第三P型掺杂区和第三N型掺杂区的掺杂剂浓度也分别可以相同或不同。Similarly, the dopant concentrations of the second P-type doped region and the second N-type doped region, and the third P-type doped region and the third N-type doped region may also be the same or different respectively.
对于本征区而言,其可以是未被掺杂或被轻掺杂的第一半导体材料。其中,本征区是具体发生碰撞电离从而产生电子-空穴对的区域。For the intrinsic region, it may be an undoped or lightly doped first semiconductor material. Among them, the intrinsic region is the region where impact ionization specifically occurs to generate electron-hole pairs.
在本发明的雪崩光电探测器中的第一半导体层300中,雪崩区可以是第二本征区306。In the first semiconductor layer 300 in the avalanche photodetector of the present invention, the avalanche region may be the second intrinsic region 306.
应当理解,雪崩光电探测器是基于在雪崩区之间施加电压,产生电场,从而通过电场抽取光生载流子而形成电流。具体地,所述雪崩区沿第一方向的两侧施加偏置电压,实现光电探测。It should be understood that the avalanche photodetector is based on applying a voltage between avalanche regions to generate an electric field, thereby extracting photogenerated carriers through the electric field to form a current. Specifically, a bias voltage is applied to both sides of the avalanche zone along the first direction to achieve photoelectric detection.
在本发明的实施例中,第一半导体层300之上包括第二半导体层400,所述第二半导体层400的材料不同于第一半导体层的材料。In an embodiment of the present invention, a second semiconductor layer 400 is included above the first semiconductor layer 300, and the material of the second semiconductor layer 400 is different from the material of the first semiconductor layer.
在一些实施例中,第一半导体层300的材料为硅,且第二半导体层400的材料为锗、锗硅合金、III-V族材料及其合金。In some embodiments, the material of the first semiconductor layer 300 is silicon, and the material of the second semiconductor layer 400 is germanium, germanium-silicon alloy, III-V group materials and alloys thereof.
在进一步的实施例中,第一半导体层300的材料为硅,且第二半导体层的材料为锗。由此形成的雪崩光电探测器为锗硅光电探测器。In a further embodiment, the material of the first semiconductor layer 300 is silicon, and the material of the second semiconductor layer is germanium. The resulting avalanche photodetector is a silicon germanium photodetector.
这里,由于本发明的提供的雪崩光电探测器中的作为吸收区的第二半导体层400未被P或N型掺杂且不涉及欧姆接触,能够尽可能地降低光吸收损耗,利于提高量子吸收效率。Here, since the second semiconductor layer 400 as the absorption region in the avalanche photodetector provided by the present invention is not doped with P or N type and does not involve ohmic contact, the light absorption loss can be reduced as much as possible, which is beneficial to improving quantum absorption. efficiency.
本实施例的雪崩光电探测器的第二半导体层400沿所述第一方向依次覆盖部分第二P型掺杂区302、第三N型掺杂区303、第一本征区304和部分第三P型掺杂区305。第二半导体层400形成为所述雪崩光电探测器的吸收区。The second semiconductor layer 400 of the avalanche photodetector in this embodiment sequentially covers part of the second P-type doped region 302, the third N-type doped region 303, the first intrinsic region 304 and part of the third doped region along the first direction. Three P-type doped regions 305. The second semiconductor layer 400 is formed as the absorption region of the avalanche photodetector.
这里,当在雪崩光电探测器的Y方向上施加光信号时,第二半导体层400吸收光信号中的光子。由爱因斯坦提出的光电效应可知,一个光子产生一个光生电子。因此,第二半导体层400吸收光子并且产生电子,所产生的电子即为光生电子。Here, when a light signal is applied in the Y direction of the avalanche photodetector, the second semiconductor layer 400 absorbs photons in the light signal. According to the photoelectric effect proposed by Einstein, one photon produces one photogenerated electron. Therefore, the second semiconductor layer 400 absorbs photons and generates electrons, and the generated electrons are photogenerated electrons.
请结合图1至图3,第二半导体层400覆盖部分第二P型掺杂区302和部分第三P型掺杂区305,从而将第二P型掺杂区302和第三P型掺杂区305桥接起来,形成载流子的通路。上述光生电子在电场的作用上能够从第二P型掺杂区302移动到第三P型掺杂区305。Please refer to FIGS. 1 to 3 . The second semiconductor layer 400 covers part of the second P-type doped region 302 and part of the third P-type doped region 305 , thereby doping the second P-type doped region 302 and the third P-type doped region 305 . The hybrid regions 305 are bridged to form a path for carriers. The above-mentioned photogenerated electrons can move from the second P-type doped region 302 to the third P-type doped region 305 under the action of the electric field.
继续参考图1至图3,本实施例的雪崩光电探测器还包括第一电极501、第二电极502和第三电极503。所述第一电极501与所述第一N型掺杂区308电连接;所述第二电极502与所述第三P型掺杂区305电连接,且所述第三电极503与所述第一P型掺杂区301电连接。Continuing to refer to FIGS. 1 to 3 , the avalanche photodetector of this embodiment further includes a first electrode 501 , a second electrode 502 and a third electrode 503 . The first electrode 501 is electrically connected to the first N-type doped region 308; the second electrode 502 is electrically connected to the third P-type doped region 305, and the third electrode 503 is electrically connected to the The first P-type doped region 301 is electrically connected.
与第一N型掺杂区308、第三P型掺杂区305和第一P型掺杂区301电连接的第一电极501、第二电极502和第三电极503,能够通过在第一电极501与第三电极503之间提供第一偏置电压V1从而在第一N型掺杂区308和第一P型掺杂区301之间提供第一偏置电压V1,同时通过在第一电极501与第二电极502之间提供第二偏置电压V2从而在第一N型掺杂区308和第三P型掺杂区305之间提供外加第二偏置电压V2。The first electrode 501, the second electrode 502 and the third electrode 503 electrically connected to the first N-type doped region 308, the third P-type doped region 305 and the first P-type doped region 301 can pass through the first A first bias voltage V 1 is provided between the electrode 501 and the third electrode 503 to provide a first bias voltage V 1 between the first N-type doped region 308 and the first P-type doped region 301 , and at the same time, by A second bias voltage V 2 is provided between the first electrode 501 and the second electrode 502 to provide an external second bias voltage V 2 between the first N-type doped region 308 and the third P-type doped region 305 .
如上所述,作为吸收区的第二半导体层400将第二P型掺杂区302和第三P型掺杂区305连接起来,形成载流子的通路。因此,通过在第一N型掺杂区308和第一P型掺杂区301之间施加电场(即,通过第一偏置电压V1)时,能够用于调节上述光生电子的能量。As mentioned above, the second semiconductor layer 400 as an absorption region connects the second P-type doped region 302 and the third P-type doped region 305 to form a path for carriers. Therefore, by applying an electric field between the first N-type doped region 308 and the first P-type doped region 301 (ie, through the first bias voltage V 1 ), the energy of the above-mentioned photogenerated electrons can be adjusted.
而对于在第三P型掺杂区305和所述第一N型掺杂区308之间提供第二偏置电压V2,由于其位于第二本征区306的两端,第二本征区306用作雪崩区,因此第二偏置电压V2可调控雪崩区的电场分布。雪崩光电探测器的雪崩区是指发生载流子(这里为电子)倍增的区域,因此也可以称为倍增区。雪崩光电探测器的吸收区能够将入射的光信号转换成多个电子,这些电子对在电场作用下发生流动而形成光电流;雪崩区能够通过雪崩效应将吸收区形成的少量电子进一步激发,形成大量的电子以实现放大作用;最后通过一对金属电极传导光电流,实现光电探测。As for providing the second bias voltage V 2 between the third P-type doped region 305 and the first N-type doped region 308, since it is located at both ends of the second intrinsic region 306, the second intrinsic Region 306 serves as an avalanche region, so the second bias voltage V 2 can regulate the electric field distribution in the avalanche region. The avalanche region of the avalanche photodetector refers to the region where carriers (here, electrons) are multiplied, so it can also be called the multiplication region. The absorption area of the avalanche photodetector can convert the incident light signal into multiple electrons. These electron pairs flow under the action of the electric field to form a photocurrent; the avalanche area can further excite the small amount of electrons formed in the absorption area through the avalanche effect to form A large number of electrons are used to achieve amplification; finally, the photocurrent is conducted through a pair of metal electrodes to achieve photoelectric detection.
上述光生电子在存在电场的情况下(由于施加到雪崩光电探测器的第一偏置电压V1),这些光生电子被加速去往第二本征区306进行倍增。当光生电子穿过第二本征区306时,它们与结合在半导体原子晶格中的其他载流子碰撞,从而通过称为“碰撞电离”的过程产生更多的自由载流子。这些新的自由载流子也被施加的电场加速并产生更多的自由载流子。In the presence of an electric field (due to the first bias voltage V 1 applied to the avalanche photodetector), these photogenerated electrons are accelerated to the second intrinsic region 306 for multiplication. As the photogenerated electrons pass through the second intrinsic region 306, they collide with other carriers bound in the semiconductor atomic lattice, thereby generating more free carriers through a process called "impact ionization." These new free carriers are also accelerated by the applied electric field and create more free carriers.
此外,本发明实施例中雪崩光电探测器的第三N掺杂区303、第一本征区304和第三P掺杂区305这三个区域的排布方式,以及第三N掺杂区303和第三P掺杂区305各自的掺杂剂的浓度范围,对于作为吸收区的第二半导体层400内的电场分布是有利的。由于第一本征区304的存在,即使在第一偏置电压V1的作用下,电子也无法通过第一本征区304,第一本征区304起到了一定的阻隔作用。来自第二P掺杂区302方向的电子可通过第三N掺杂区303,经由第二半导体层400,再经过第三P掺杂区305去往雪崩区。In addition, the arrangement of the third N-doped region 303, the first intrinsic region 304 and the third P-doped region 305 of the avalanche photodetector in the embodiment of the present invention, as well as the third N-doped region The respective dopant concentration ranges of 303 and the third P-doped region 305 are beneficial to the electric field distribution in the second semiconductor layer 400 as the absorption region. Due to the existence of the first intrinsic region 304, even under the action of the first bias voltage V1 , electrons cannot pass through the first intrinsic region 304, and the first intrinsic region 304 plays a certain blocking role. Electrons from the direction of the second P-doped region 302 can pass through the third N-doped region 303, pass through the second semiconductor layer 400, and then pass through the third P-doped region 305 to the avalanche region.
为实现上述雪崩效果,现有的雪崩光电探测器仅在雪崩区的两端施加偏置电压,这种做法存在一些缺点,例如,吸收区和雪崩区(也称为倍增区)不易独立调节,对掺杂区浓度精度要过较高,工艺容忍度低,容易导致增益带宽不理想。为此,本发明在雪崩光电探测器的吸收区和雪崩区的两端同时设置偏置电压,即,在第一P掺杂区301和第一N掺杂区308之间提供有第一偏置电压V1,且在第一N掺杂区308和第三P型掺杂区305之间提供有第二偏置电压V2。由此,实现吸收区和雪崩区对应的电场的独立调节,并能够进一步提高增益带宽。In order to achieve the above-mentioned avalanche effect, existing avalanche photodetectors only apply bias voltages at both ends of the avalanche zone. This approach has some shortcomings. For example, the absorption zone and avalanche zone (also known as the multiplication zone) are not easy to adjust independently. The concentration accuracy of the doped region is too high and the process tolerance is low, which can easily lead to unsatisfactory gain bandwidth. To this end, the present invention sets bias voltages at both ends of the absorption region and the avalanche region of the avalanche photodetector at the same time, that is, a first bias voltage is provided between the first P-doped region 301 and the first N-doped region 308. The voltage V 1 is set, and the second bias voltage V 2 is provided between the first N-doped region 308 and the third P-type doped region 305 . As a result, independent adjustment of the electric fields corresponding to the absorption region and the avalanche region is achieved, and the gain bandwidth can be further improved.
需要说明的是,第一偏置电压V1和所述偏置电压V2是相对独立的,第一偏置电压V1作用于吸收区,其值为可为1至4伏。而第二偏置电压V2作用于雪崩区,其值可以为3至20伏。It should be noted that the first bias voltage V 1 and the bias voltage V 2 are relatively independent. The first bias voltage V 1 acts on the absorption region, and its value may be 1 to 4 volts. The second bias voltage V 2 acts on the avalanche zone, and its value can be 3 to 20 volts.
在一些实施例中,第二本征区306在第一方向X上的尺寸为50nm至800nm,也就是说第二本征区306的宽度在上述区间内。由此,在实现较高增益的同时实现大的带宽。由于第二本征区306为本发明实施例的雪崩光电探测器的雪崩区,因此,第二本征区306第一方向X上的尺寸不宜太小。例如,小于50nm时,从吸收区运动过来的电子没有充分的雪崩空间,不能有效地被吸收,倍增效果较差。其尺寸也不宜过大,否则雪崩区两端所需的电压要求过高,电子发生雪崩的时间过长,响应降低,影响探测效果。In some embodiments, the size of the second intrinsic region 306 in the first direction X ranges from 50 nm to 800 nm, that is to say, the width of the second intrinsic region 306 is within the above interval. Thus, a large bandwidth is achieved while achieving higher gain. Since the second intrinsic region 306 is the avalanche region of the avalanche photodetector according to the embodiment of the present invention, the size of the second intrinsic region 306 in the first direction X should not be too small. For example, when it is less than 50nm, the electrons moving from the absorption area do not have sufficient avalanche space, so they cannot be effectively absorbed, and the multiplication effect is poor. Its size should not be too large, otherwise the voltage requirements required at both ends of the avalanche zone will be too high, the avalanche time for electrons will be too long, the response will be reduced, and the detection effect will be affected.
在一些实施例中,所述第二半导体层在第一方向X上的尺寸为150nm至1500nm,在第二方向Y上的尺寸为1μm至100μm,并且在第三方向Z上的尺寸为150nm至600nm。本发明实施例中的第二半导体层的尺寸限定在上述范围内,能够降低噪声的同时,减少暗电流的产生。In some embodiments, the size of the second semiconductor layer in the first direction X is 150 nm to 1500 nm, the size in the second direction Y is 1 μm to 100 μm, and the size in the third direction Z is 150 nm to 600nm. The size of the second semiconductor layer in the embodiment of the present invention is limited to the above range, which can reduce noise and reduce the generation of dark current.
这里,在描述所述第二半导体层的尺寸时,可以不考虑第二半导体层在外延生长过程中的上下表面的尺寸差异。Here, when describing the size of the second semiconductor layer, the size difference between the upper and lower surfaces of the second semiconductor layer during the epitaxial growth process may not be considered.
需要说明的是,所述第二半导体层400在平行于所述衬底10的形状可以是规则的矩形,也可以具有沿所述第一方向X具有一定尺寸的倒角的梯形,参见图1。It should be noted that the shape of the second semiconductor layer 400 parallel to the substrate 10 may be a regular rectangle, or may have a trapezoid with a certain size of chamfer along the first direction X, see FIG. 1 .
本发明的雪崩光电探测器还可以包括覆盖所述第一半导体层300、第二半导体层400、第一电极501、第二电极502和第三电极503的覆盖层(参见图5e)。The avalanche photodetector of the present invention may further include a covering layer covering the first semiconductor layer 300, the second semiconductor layer 400, the first electrode 501, the second electrode 502 and the third electrode 503 (see Figure 5e).
需要说明的是,本发明的雪崩光电探测器的结构也可以为其自身的镜像结构,例如,参考图3,本发明实施例中的第一方向X为从右到左,则镜像结构的第一方向X’为从左到右。因此,本发明实施例所提供的雪崩光电探测器及其镜像结构均在本发明保护的范围之内。It should be noted that the structure of the avalanche photodetector of the present invention can also be its own mirror structure. For example, referring to Figure 3, the first direction X in the embodiment of the present invention is from right to left, then the third direction of the mirror structure is One direction X' is from left to right. Therefore, the avalanche photodetector and its mirror structure provided by the embodiments of the present invention are within the scope of protection of the present invention.
本发明实施例提供的雪崩光电探测器包括:衬底,所述衬底的表面包括第一半导体层;位于所述第一半导体层之上的第二半导体层,所述第二半导体层的材料不同于所述第一半导体层的材料;其中,所述第一半导体层包括在第一方向上依次排列的第一P型掺杂区、第二P型掺杂区、第三N型掺杂区、第一本征区、第三P型掺杂区、第二本征区、第二N型掺杂区和第一N型掺杂区,所述第一至第三P型掺杂区的掺杂剂浓度依次递减,且所述第一至第三N型掺杂区的掺杂剂浓度依次递减,所述第一方向为所述雪崩光电探测器的电子流动方向;所述第二半导体层沿所述第一方向依次覆盖部分所述第二P型掺杂区、第三N型掺杂区、所述第一本征区和部分所述第三P型掺杂区,所述第一N型掺杂区连接有第一电极;所述第三P型掺杂区连接有第二电极;所述第一P型掺杂区连接有第三电极。由于多个被掺杂的电荷区以及作为雪崩区的第二本征区均在第一半导体层中,因此不需要额外外延制作单晶硅,制作相对简单,利于降低成本;此外,由于第一N型掺杂区连接有第一电极,第三P型掺杂区连接有第二电极,第一P型掺杂区连接有第三电极,后续可以通过在这三个电极上独立地施加偏置电压,因此能够使位于作为吸收区的第二半导体层和作为作为雪崩区的第二本征区的电场可以独立调节,对掺杂区浓度精度容忍度较好,有利于实现低噪声、高增益带宽。The avalanche photodetector provided by the embodiment of the present invention includes: a substrate, the surface of the substrate includes a first semiconductor layer; a second semiconductor layer located on the first semiconductor layer, the material of the second semiconductor layer Different materials from the first semiconductor layer; wherein the first semiconductor layer includes a first P-type doped region, a second P-type doped region, and a third N-type doped region arranged sequentially in the first direction. region, a first intrinsic region, a third P-type doped region, a second intrinsic region, a second N-type doped region and a first N-type doped region, the first to third P-type doped regions The dopant concentration of the first to third N-type doping regions decreases in sequence, and the first direction is the electron flow direction of the avalanche photodetector; the second The semiconductor layer sequentially covers part of the second P-type doped region, the third N-type doped region, the first intrinsic region and part of the third P-type doped region along the first direction, The first N-type doped region is connected to a first electrode; the third P-type doped region is connected to a second electrode; and the first P-type doped region is connected to a third electrode. Since the multiple doped charge regions and the second intrinsic region as the avalanche region are both in the first semiconductor layer, there is no need for additional epitaxial production of single crystal silicon, and the production is relatively simple, which is beneficial to reducing costs; in addition, since the first The N-type doping region is connected to the first electrode, the third P-type doping region is connected to the second electrode, and the first P-type doping region is connected to the third electrode. Subsequently, bias can be applied independently on these three electrodes. Therefore, the electric field in the second semiconductor layer as the absorption region and the second intrinsic region as the avalanche region can be adjusted independently, and the tolerance to the concentration accuracy of the doped region is better, which is beneficial to achieving low noise and high performance. gain bandwidth.
本发明实施例还提供了一种雪崩光电探测器的制备方法;具体请参见附图5a至5e。如图所示,所述方法包括以下步骤:An embodiment of the present invention also provides a method for preparing an avalanche photodetector; for details, please see Figures 5a to 5e. As shown in the figure, the method includes the following steps:
步骤201:提供衬底,所述衬底的表面上包括第一半导体层;Step 201: Provide a substrate, including a first semiconductor layer on the surface of the substrate;
步骤202:执行选择性掺杂工艺,以在所述第一半导体层上沿第一方向上形成依次排列的第一P型掺杂区、第二P型掺杂区、第三N型掺杂区、第一本征区、第三P型掺杂区、第二本征区、第二N型掺杂区和第一N型掺杂区;Step 202: Perform a selective doping process to form a first P-type doping region, a second P-type doping region, and a third N-type doping region arranged sequentially along the first direction on the first semiconductor layer. region, a first intrinsic region, a third P-type doped region, a second intrinsic region, a second N-type doped region and a first N-type doped region;
步骤203:形成第二半导体层,所述第二半导体层的材料不同于所述第一半导体层材料,且在所述第一方向上依次覆盖部分所述第二P型掺杂区、第三N型掺杂区、所述第一本征区和部分所述第三P型掺杂区;Step 203: Form a second semiconductor layer. The material of the second semiconductor layer is different from the material of the first semiconductor layer, and covers part of the second P-type doped region, the third P-type doped region, and the third semiconductor layer in the first direction. N-type doped region, the first intrinsic region and part of the third P-type doped region;
步骤204:形成垂直所述衬底平面方向而设置的第一电极、第二电极和第三电极,所述第一电极与所述第一N型掺杂区电连接;所述第二电极与所述第三P型掺杂区电连接,且所述第三电极与所述第一P型掺杂区电连接。Step 204: Form a first electrode, a second electrode and a third electrode arranged perpendicular to the plane direction of the substrate. The first electrode is electrically connected to the first N-type doped region; the second electrode is The third P-type doped region is electrically connected, and the third electrode is electrically connected to the first P-type doped region.
上述第一方向为所述雪崩光电探测器的电子流动方向。The above-mentioned first direction is the electron flow direction of the avalanche photodetector.
下面,结合图5a至图5e中雪崩光电探测器的制备过程中的器件结构剖视图,对本发明实施例提供的雪崩光电探测器及其制备方法再作进一步详细的说明。Next, the avalanche photodetector and its preparation method provided by the embodiment of the present invention will be further described in detail with reference to the cross-sectional view of the device structure during the preparation process of the avalanche photodetector shown in Figures 5a to 5e.
首先,执行步骤201。提供衬底,所述衬底包括第一半导体层。First, perform step 201. A substrate is provided, the substrate including a first semiconductor layer.
请参考图5a,提供衬底10;衬底10可以包括多层结构,而多层结构之上进一步生长有功能层。因此,本发明的衬底10可包括多层结构,其中,衬底10的表面包括第一半导体层300,而位于表面之下的层可以包括单质半导体材料(例如为硅(Si)、锗(Ge)等)、复合半导体材料(例如为锗硅(SiGe)等)以及其氧化物构成的绝缘层,因此,衬底10可以是或绝缘体上硅(SOI)或绝缘体上锗(GeOI)等。Referring to FIG. 5a, a substrate 10 is provided; the substrate 10 may include a multi-layer structure, and functional layers are further grown on the multi-layer structure. Therefore, the substrate 10 of the present invention may include a multi-layer structure, wherein the surface of the substrate 10 includes the first semiconductor layer 300, and the layer located below the surface may include a simple semiconductor material (for example, silicon (Si), germanium ( Ge), etc.), a composite semiconductor material (such as silicon germanium (SiGe), etc.) and an insulating layer composed of its oxide. Therefore, the substrate 10 may be silicon-on-insulator (SOI) or germanium-on-insulator (GeOI).
本申请实施例以所述衬底10为SOI为例进行说明。可以理解,所述第一半导体层300位于本发明衬底10的表面。This embodiment of the present application takes the substrate 10 as SOI as an example for description. It can be understood that the first semiconductor layer 300 is located on the surface of the substrate 10 of the present invention.
衬底10还包括位于第一半导体层300下的中间层200(实际应用中可以是绝缘层)以及底层100(实际应用中可以是硅层)。所述绝缘层200例如为二氧化硅层,其可以直接通过对底层100进行热氧化而获得。底层100与所述第一半导体层300相比可以具有更厚的厚度。The substrate 10 also includes an intermediate layer 200 (which may be an insulating layer in practical applications) and a bottom layer 100 (which may be a silicon layer in practical applications) located under the first semiconductor layer 300 . The insulating layer 200 is, for example, a silicon dioxide layer, which can be directly obtained by thermally oxidizing the bottom layer 100 . The bottom layer 100 may have a thicker thickness than the first semiconductor layer 300 .
接下来,执行步骤202。这里,参考图5b。执行选择性掺杂工艺,以在所述第一半导体层300上沿第一方向上形成依次排列的第一P型掺杂区301、第二P型掺杂区302、第三N型掺杂区303、第一本征区304、第三P型掺杂区305、第二本征区306、第二N型掺杂区307和第一N型掺杂区308。Next, step 202 is performed. Here, reference is made to Figure 5b. A selective doping process is performed to form a first P-type doped region 301, a second P-type doped region 302, and a third N-type doped region sequentially arranged along the first direction on the first semiconductor layer 300. region 303, first intrinsic region 304, third P-type doped region 305, second intrinsic region 306, second N-type doped region 307 and first N-type doped region 308.
在实际工艺中,可利用掩膜版光刻工艺,依次对需要掺杂的区域进行开窗口。随后在窗口中进行离子注入,以形成上述掺杂浓度不同的掺杂区。In the actual process, the mask photolithography process can be used to sequentially open windows in the areas that need to be doped. Ions are then implanted in the window to form doped regions with different doping concentrations.
具体地,上述所述第一P型掺杂区或所述第一N型掺杂区的掺杂浓度为1×1020/cm3~5×1020/cm3,所述第二P型掺杂区或所述第二N型掺杂区的掺杂浓度为2×1017/cm3~5×1018/cm3,所述第三P型掺杂区或所述第三N型掺杂区的掺杂浓度为1.2×1017~4×1017/cm3。在一些实施例中,以第一P型掺杂区301、第二P型掺杂区302、第三P型掺杂区305中掺杂剂为硼(B)元素;而第一N型掺杂区308、第二N型掺杂区307、第三N型掺杂区303的掺杂剂为磷(P)元素或砷(As)元素。Specifically, the doping concentration of the first P-type doped region or the first N-type doped region is 1×10 20 /cm 3 to 5×10 20 /cm 3 , and the second P-type doped region has a doping concentration of 1×10 20 /cm 3 to 5×10 20 /cm 3 . The doping concentration of the doping region or the second N-type doping region is 2×10 17 /cm 3 ~ 5×10 18 /cm 3 , and the third P-type doping region or the third N-type doping region The doping concentration of the doped region is 1.2×10 17 to 4×10 17 /cm 3 . In some embodiments, the dopant in the first P-type doped region 301, the second P-type doped region 302, and the third P-type doped region 305 is boron (B) element; and the first N-type doped region The dopant of the impurity region 308, the second N-type doping region 307, and the third N-type doping region 303 is phosphorus (P) element or arsenic (As) element.
接下来,执行步骤203。请参考图5c,形成第二半导体层400,且在第一方向X上覆盖所述第一本征区304和第三N型掺杂区303,且覆盖部分第二P型掺杂区302和第三P型掺杂区305。Next, step 203 is performed. Referring to FIG. 5c, a second semiconductor layer 400 is formed, covering the first intrinsic region 304 and the third N-type doped region 303 in the first direction X, and covering part of the second P-type doped region 302 and The third P-type doped region 305.
在一些实施例中,首先形成覆盖第一半导体材料的初始第二半导体层400’(图中未示出),然后利用图形化的光刻胶层对初始第二半导体层400’进行刻蚀以形成第二半导体层400,再除去光刻胶层。In some embodiments, an initial second semiconductor layer 400' (not shown in the figure) covering the first semiconductor material is first formed, and then the initial second semiconductor layer 400' is etched using a patterned photoresist layer. The second semiconductor layer 400 is formed, and then the photoresist layer is removed.
这里,所形成的第二半导体层400为梯形结构(其形状可参考图1中第二半导体层400)。其中,梯形结构在在靠近光入射端具有较小的边长。Here, the formed second semiconductor layer 400 has a ladder structure (the shape thereof can be referred to the second semiconductor layer 400 in FIG. 1 ). Among them, the trapezoidal structure has a smaller side length near the light incident end.
在一些实施例中,第一半导体层的材料不同于第二半导体层的材料。例如,在第一半导体层的材料为Si的情况下,第二半导体层的材料为锗、锗硅合金、III-V族材料及其合金。In some embodiments, the first semiconductor layer is made of a different material than the second semiconductor layer. For example, when the material of the first semiconductor layer is Si, the material of the second semiconductor layer is germanium, germanium-silicon alloy, III-V group materials and alloys thereof.
本发明实施例的雪崩光电探测器中的一个具体实施例中,第一半导体层的材料为硅,第二半导体层的材料为锗,换句话说,本发明实施例的雪崩光电探测器为锗硅雪崩光电探测器。In a specific embodiment of the avalanche photodetector according to the embodiment of the present invention, the material of the first semiconductor layer is silicon, and the material of the second semiconductor layer is germanium. In other words, the avalanche photodetector according to the embodiment of the present invention is made of germanium. Silicon avalanche photodetector.
可利用分子束外延生长等工艺外延生长高质量多晶锗材料,即形成第二半导体层。Processes such as molecular beam epitaxial growth can be used to epitaxially grow high-quality polycrystalline germanium materials to form the second semiconductor layer.
接下来进行步骤204。可参考图5d。形成垂直所述衬底平面方向而设置的第一电极501、第二电极502和第三电极503,所述第一电极501与所述第一N型掺杂区308电连接;所述第二电极502与所述第三P型掺杂区305电连接,且所述第三电极503与所述第一P型掺杂区301电连接。Next, step 204 is performed. See Figure 5d. A first electrode 501, a second electrode 502 and a third electrode 503 are formed perpendicular to the plane direction of the substrate. The first electrode 501 is electrically connected to the first N-type doped region 308; the second electrode 501 is electrically connected to the first N-type doped region 308; The electrode 502 is electrically connected to the third P-type doped region 305 , and the third electrode 503 is electrically connected to the first P-type doped region 301 .
在一些实施例中,所述形成垂直所述衬底平面方向而设置的第一电极501、第二电极502和第三电极503包括:In some embodiments, forming the first electrode 501, the second electrode 502 and the third electrode 503 arranged perpendicularly to the plane direction of the substrate includes:
形成覆盖所述第一半导体层300和所述第二半导体层400的覆盖层600;Forming a covering layer 600 covering the first semiconductor layer 300 and the second semiconductor layer 400;
分别在第一N型掺杂区308、第三P型掺杂区305和第一N型掺杂区308上方形成第一窗口、第二窗口和第三窗口;Forming a first window, a second window and a third window respectively above the first N-type doped region 308, the third P-type doped region 305 and the first N-type doped region 308;
在所述第一窗口、第二窗口和第三窗口填充金属材料以形成第一电极501、第二电极502和第三电极503。The first window, the second window and the third window are filled with metal material to form the first electrode 501 , the second electrode 502 and the third electrode 503 .
在一个实施例中,覆盖层600可直接采用绝缘材料形成。参考图5e,可首先利用绝缘材料,例如二氧化硅形成覆盖层600以覆盖已掺杂的第一半导体层300和第二半导体层400。然后利用光刻与电感等离子刻蚀在所述覆盖层600上进行开窗口,形成第一窗口、第二窗口和第三窗口以暴露出第一半导体层300中的第一N型掺杂区308、第三P型掺杂区305和第一P型掺杂区301的表面,然后利用例如磁控溅射工艺在第一窗口、第二窗口和第三窗口中沉积金属材料,以分别形成与第一N型掺杂区308、第三P型掺杂区305和第一P型掺杂区301电连接的第一电极501、第二电极502和第三电极503。In one embodiment, the covering layer 600 may be directly formed of insulating material. Referring to FIG. 5e , a capping layer 600 may first be formed using an insulating material, such as silicon dioxide, to cover the doped first semiconductor layer 300 and the second semiconductor layer 400 . Then, photolithography and inductive plasma etching are used to open windows on the covering layer 600 to form a first window, a second window and a third window to expose the first N-type doped region 308 in the first semiconductor layer 300 , the surfaces of the third P-type doped region 305 and the first P-type doped region 301, and then use, for example, a magnetron sputtering process to deposit metal materials in the first window, the second window and the third window to form respective The first N-type doped region 308, the third P-type doped region 305 and the first P-type doped region 301 are electrically connected to the first electrode 501, the second electrode 502 and the third electrode 503.
在形成电极后,还可以对覆盖层600的上表面进行平坦化的步骤,具体可以采用化学机械研磨(CMP)工艺。如此,可通过外部引线在第一电极501和第二电极502之间,以及第一电极501和第三电极503之间施加不同的电压,从而在第一电极501和第三电极503之间,以及在第一电极501和第三电极503提供偏置电压。After the electrodes are formed, the upper surface of the covering layer 600 may also be planarized. Specifically, a chemical mechanical polishing (CMP) process may be used. In this way, different voltages can be applied between the first electrode 501 and the second electrode 502 and between the first electrode 501 and the third electrode 503 through external leads, so that between the first electrode 501 and the third electrode 503, And providing a bias voltage to the first electrode 501 and the third electrode 503 .
需要说明的是,本发明提供的雪崩光电探测器实施例与雪崩光电探测器的制备方法实施例属于同一构思;各实施例所记载的技术方案中各技术特征之间,在不冲突的情况下,可以任意组合。但需要进一步说明的是,本发明实施例提供的雪崩光电探测器,其各技术特征组合已经可以解决本发明所要解决的技术问题;因而,本发明实施例所提供的雪崩光电探测器可以不受本发明实施例提供的雪崩光电探测器的制备方法的限制,任何能够形成本发明实施例所提供的雪崩光电探测器结构的制备方法所制备的雪崩光电探测器均在本发明保护的范围之内。It should be noted that the avalanche photodetector embodiments and the avalanche photodetector preparation method embodiments provided by the present invention belong to the same concept; the technical features in the technical solutions recorded in each embodiment shall not conflict with each other unless there is any conflict. , can be combined in any way. However, it needs further explanation that the combination of technical features of the avalanche photodetector provided by the embodiment of the present invention can already solve the technical problems to be solved by the present invention; therefore, the avalanche photodetector provided by the embodiment of the present invention can be There are limitations to the preparation method of the avalanche photodetector provided by the embodiment of the present invention. Any avalanche photodetector prepared by a preparation method that can form the avalanche photodetector structure provided by the embodiment of the present invention is within the scope of protection of the present invention. .
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not used to limit the protection scope of the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in within the protection scope of the present invention.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111633301.4A CN114256374B (en) | 2021-12-29 | 2021-12-29 | Avalanche photodetector and preparation method thereof |
US18/716,537 US20250048750A1 (en) | 2021-12-29 | 2022-12-23 | Avalanche photodetector and preparation method therefor |
PCT/CN2022/141400 WO2023125283A1 (en) | 2021-12-29 | 2022-12-23 | Avalanche photodetector and preparation method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111633301.4A CN114256374B (en) | 2021-12-29 | 2021-12-29 | Avalanche photodetector and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114256374A CN114256374A (en) | 2022-03-29 |
CN114256374B true CN114256374B (en) | 2023-12-05 |
Family
ID=80795505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111633301.4A Active CN114256374B (en) | 2021-12-29 | 2021-12-29 | Avalanche photodetector and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114256374B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023125283A1 (en) * | 2021-12-29 | 2023-07-06 | 武汉光谷信息光电子创新中心有限公司 | Avalanche photodetector and preparation method therefor |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5994474A (en) * | 1982-11-19 | 1984-05-31 | Nec Corp | Hetero junction photodetector |
DE3921028A1 (en) * | 1989-06-27 | 1991-01-10 | Siemens Ag | Avalanche photodiode with mesa structure - including guard ring preventing edge breakdown |
JPH07312442A (en) * | 1994-03-22 | 1995-11-28 | Nec Corp | Superlattice avalanche photodiode |
CN103262264A (en) * | 2010-11-22 | 2013-08-21 | 英特尔公司 | Monolithic three terminal photodetector |
CN105428353A (en) * | 2015-12-17 | 2016-03-23 | 江南大学 | High-voltage ESD protective device provided with fin type LDMOS structure |
CN111933742A (en) * | 2020-07-30 | 2020-11-13 | 武汉光谷信息光电子创新中心有限公司 | Avalanche photodetector and preparation method thereof |
CN112018211A (en) * | 2020-08-31 | 2020-12-01 | 武汉光谷信息光电子创新中心有限公司 | Avalanche photodetector and preparation method thereof |
JP6793786B1 (en) * | 2019-06-28 | 2020-12-02 | 沖電気工業株式会社 | Manufacturing method of semiconductor light receiving element, photoelectric fusion module and avalanche photodiode |
WO2021038768A1 (en) * | 2019-08-28 | 2021-03-04 | 日本電信電話株式会社 | Photodetector |
CN113270507A (en) * | 2021-04-16 | 2021-08-17 | 中国航天科工集团第二研究院 | Avalanche photodiode and photomultiplier detector |
CN113707751A (en) * | 2021-08-31 | 2021-11-26 | 中国科学院半导体研究所 | Single photon avalanche photoelectric detector and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3038167B1 (en) * | 2014-12-22 | 2017-07-19 | IMEC vzw | Integrated avalanche germanium photodetector |
US10797193B2 (en) * | 2018-01-23 | 2020-10-06 | Lumentum Operations Llc | Bias control structure for avalanche photodiodes |
JP7090479B2 (en) * | 2018-06-06 | 2022-06-24 | 富士通株式会社 | Optical semiconductor devices and optical transmission devices |
US10901150B2 (en) * | 2019-06-12 | 2021-01-26 | Elenion Technologies, Llc | Metal contact free photodetector with sidewall doping |
-
2021
- 2021-12-29 CN CN202111633301.4A patent/CN114256374B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5994474A (en) * | 1982-11-19 | 1984-05-31 | Nec Corp | Hetero junction photodetector |
DE3921028A1 (en) * | 1989-06-27 | 1991-01-10 | Siemens Ag | Avalanche photodiode with mesa structure - including guard ring preventing edge breakdown |
JPH07312442A (en) * | 1994-03-22 | 1995-11-28 | Nec Corp | Superlattice avalanche photodiode |
CN103262264A (en) * | 2010-11-22 | 2013-08-21 | 英特尔公司 | Monolithic three terminal photodetector |
CN105428353A (en) * | 2015-12-17 | 2016-03-23 | 江南大学 | High-voltage ESD protective device provided with fin type LDMOS structure |
JP6793786B1 (en) * | 2019-06-28 | 2020-12-02 | 沖電気工業株式会社 | Manufacturing method of semiconductor light receiving element, photoelectric fusion module and avalanche photodiode |
WO2021038768A1 (en) * | 2019-08-28 | 2021-03-04 | 日本電信電話株式会社 | Photodetector |
CN111933742A (en) * | 2020-07-30 | 2020-11-13 | 武汉光谷信息光电子创新中心有限公司 | Avalanche photodetector and preparation method thereof |
CN112018211A (en) * | 2020-08-31 | 2020-12-01 | 武汉光谷信息光电子创新中心有限公司 | Avalanche photodetector and preparation method thereof |
CN113270507A (en) * | 2021-04-16 | 2021-08-17 | 中国航天科工集团第二研究院 | Avalanche photodiode and photomultiplier detector |
CN113707751A (en) * | 2021-08-31 | 2021-11-26 | 中国科学院半导体研究所 | Single photon avalanche photoelectric detector and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114256374A (en) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11335725B2 (en) | High efficiency wide spectrum sensor | |
CN111933742B (en) | A kind of avalanche photodetector and preparation method thereof | |
JP5404858B2 (en) | Structure and fabrication method of high-speed CMOS coexisting Ge-on-insulator photodetector | |
US9224902B2 (en) | Solar cell having silicon nano-particle emitter | |
CN101002326B (en) | Photonic devices monolithically integrated with cmos | |
CN112018211B (en) | Avalanche photodetector and preparation method thereof | |
CN111952399A (en) | A waveguide-coupled photodetector and method of making the same | |
CN118538821A (en) | Optical device and imaging system | |
CN111628036B (en) | A photodetector with a resonant waveguide structure | |
CN112038441A (en) | A waveguide-coupled silicon-based photodetector and preparation method thereof | |
CN114256375B (en) | Avalanche photodetector and its preparation method | |
CN105051914A (en) | Photoactive devices having low bandgap active layers configured for improved efficiency and related methods | |
US20120222737A1 (en) | Hot carrier energy conversion structure and method of fabricating the same | |
CN114256376B (en) | Avalanche photodetector and preparation method thereof | |
CN111640813A (en) | Broad-spectrum high-absorption solar cell | |
CN113707751A (en) | Single photon avalanche photoelectric detector and preparation method thereof | |
CN114256374B (en) | Avalanche photodetector and preparation method thereof | |
CN108039389A (en) | Waveguide coupled mode single file carrier detector | |
KR20230172028A (en) | Planar InP-based SPAD and its applications | |
US20250048750A1 (en) | Avalanche photodetector and preparation method therefor | |
JPH0656900B2 (en) | Semiconductor optical device | |
CN119092569A (en) | Photodetectors | |
CN120129319A (en) | Charge coupling type single-pixel detector spectrum chip and driving method thereof | |
CN114497265A (en) | an avalanche photodetector | |
CN118712258A (en) | Photoelectric detector and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |