[go: up one dir, main page]

CN114249851B - Low bulk density ultra-high molecular weight polyethylene micro-powder - Google Patents

Low bulk density ultra-high molecular weight polyethylene micro-powder Download PDF

Info

Publication number
CN114249851B
CN114249851B CN202011019681.8A CN202011019681A CN114249851B CN 114249851 B CN114249851 B CN 114249851B CN 202011019681 A CN202011019681 A CN 202011019681A CN 114249851 B CN114249851 B CN 114249851B
Authority
CN
China
Prior art keywords
catalyst
molecular weight
microparticles
alkyl
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011019681.8A
Other languages
Chinese (zh)
Other versions
CN114249851A (en
Inventor
朱本虎
苏玮
谭凯
唐勇
周姣龙
李军方
孙秀丽
彭爱青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Organic Chemistry of CAS
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN202011019681.8A priority Critical patent/CN114249851B/en
Priority to PCT/CN2021/118059 priority patent/WO2022062944A1/en
Publication of CN114249851A publication Critical patent/CN114249851A/en
Application granted granted Critical
Publication of CN114249851B publication Critical patent/CN114249851B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1638Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate
    • B01D39/1653Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate of synthetic origin
    • B01D39/1661Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1669Cellular material
    • B01D39/1676Cellular material of synthetic origin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/24Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明提供了一类超高分子量聚乙烯微粒,微粒粒径小于常规市售的超高分子量聚乙烯,且颗粒堆密度小,具体地,本发明提供了具有如下所示特性的微粒:(a)粘均分子量为150‑800万范围;(b)重量比至少85%以上通过100目的网状筛;粒中径(d50)为80μm≤d50≤110μm;(c)粉料堆密度为0.20‑0.30g/cm3;(d)骨架碳原子支链含量<1/100,000C。本发明提供的超高分子量聚乙烯微粒适用于生产微孔过滤材料。The invention provides a class of ultra-high molecular weight polyethylene microparticles, the particle size of which is smaller than conventional commercially available ultra-high molecular weight polyethylene, and the particle bulk density is small. Specifically, the invention provides microparticles with the following characteristics: (a ) The viscosity-average molecular weight is in the range of 1.5-8 million; (b) At least 85% of the weight ratio passes through a 100-mesh mesh sieve; the particle diameter (d50) is 80μm≤d50≤110μm; (c) The powder bulk density is 0.20- 0.30g/cm 3 ; (d) branched chain content of carbon atoms in the skeleton <1/100,000C. The ultra-high molecular weight polyethylene particles provided by the invention are suitable for producing microporous filter materials.

Description

一类低堆密度超高分子量聚乙烯微粉A Class of Low Bulk Density Ultra High Molecular Weight Polyethylene Micropowder

技术领域technical field

本发明涉及一类适用于制造微孔过滤器材的超高分子量聚乙烯微粒。更具体地涉及一类无支化、粘均分子量150-800万克/摩尔、粒径分布集中在(d50)为80μm≤d50≤110μm,堆密度为0.20-0.30g/cm3聚乙烯微粒。The invention relates to a class of ultra-high molecular weight polyethylene particles suitable for manufacturing microporous filter materials. More specifically, it relates to a kind of unbranched polyethylene particles with a viscosity average molecular weight of 1.5-8 million g/mol, a particle size distribution centered at (d50) of 80 μm≤d50≤110 μm, and a bulk density of 0.20-0.30 g/ cm3 .

背景技术Background technique

超高分子量聚乙烯(UHMWPE)是一类粘均相对分子量150万以上的线性聚乙烯产品,具有高抗冲击性,极高的耐磨性,高耐腐蚀性,自润滑性,耐环境应力开裂能力,安全卫生等优点的热塑性工程塑料,可通过加工形成各类板材、管材、纤维、薄膜等制品,主要应用于军事如防弹衣、防弹头盔、防弹装甲、防割手套以及航空航天、航海装备、轨道交通、医用支架、精细过滤以及锂电池隔膜等高端领域。Ultra-high molecular weight polyethylene (UHMWPE) is a kind of linear polyethylene product with a viscosity-average relative molecular weight of more than 1.5 million. It has high impact resistance, extremely high wear resistance, high corrosion resistance, self-lubrication, and environmental stress cracking resistance. Thermoplastic engineering plastics with the advantages of high strength, safety and sanitation can be processed to form various products such as plates, pipes, fibers, films, etc., and are mainly used in military such as bulletproof vests, bulletproof helmets, bulletproof armor, cut-resistant gloves, and aerospace and navigation equipment. , rail transit, medical stents, fine filtration and lithium battery diaphragms and other high-end fields.

近年来,聚合物微粒的开发也有了一定的进展,各种类型的聚合物专用料被广泛地应用于不同的生产领域,材质涉及丙烯酸系列树脂类、苯乙烯树脂类、密胺树脂类以及聚烯烃树脂类,特别是超高分子量聚乙烯树脂微粒,由于其优异的性能被更多的考虑应用于各种新材料和新用途,利用其制备微孔材料用于过滤与分离过程就成为了一个超高分子量聚乙烯的新的应用方向。UHMWPE微孔滤材是指以UHMWPE为有机基体,成型过程中在基体上产生大量厚度方向的微观连通孔洞,从而可以满足各种处理过程需要的材料,目前制备UHMWPE微孔材料的方法主要有烧结法、颗粒填充法、核径迹法、熔融挤压拉伸法、TIPS法、TIPS-S法等,成型方法的不同往往对微孔材料的孔径、分布和孔隙率等重要参数影响很大,还会对其微观结构产生直接的作用;另一方面,UHMWPE颗粒粒径对微孔过滤产品性能也有着明显的影响,应用烧结工艺制备微孔过滤材料时,热量从粉体颗粒的表面逐渐进入颗粒的内部,颗粒越大,从颗粒表面软化到颗粒内部熔融的时间也就越长,就更容易形成多孔结构导致开孔率大,但微孔结构容易变得不规则,微孔分布也变得不均匀,强度随之下降;颗粒越细,熔融时间就会缩短,易粘连,就越难形成多孔结构,微孔结构越细密均匀,开孔率虽有降低,但强度有所升高;同时,粒径的大小和微粒的形貌几乎决定着所制备的制品孔径的大小,根据烧结法成孔机理,UHMWPE的颗粒互相堆砌,颗粒与颗粒之间的间隙就构成了孔的来源,故UHMWPE颗粒粒径越大,颗粒形貌越无规则,颗粒之间堆积的间隙就越大,导致产品的孔径也就越大。In recent years, the development of polymer particles has also made some progress. Various types of polymer special materials are widely used in different production fields. The materials involve acrylic series resins, styrene resins, melamine resins and poly Olefin resins, especially ultra-high molecular weight polyethylene resin particles, are more considered to be used in various new materials and new applications due to their excellent properties. It has become a new trend to use them to prepare microporous materials for filtration and separation processes. New application direction of ultra-high molecular weight polyethylene. UHMWPE microporous filter material refers to a material that uses UHMWPE as an organic matrix. During the molding process, a large number of microscopic interconnected pores in the thickness direction are produced on the matrix, so that it can meet the needs of various processing processes. At present, the methods for preparing UHMWPE microporous materials mainly include sintering. Method, particle filling method, nuclear track method, melt extrusion stretching method, TIPS method, TIPS-S method, etc. Different molding methods often have a great influence on important parameters such as pore size, distribution and porosity of microporous materials. It will also have a direct effect on its microstructure; on the other hand, the particle size of UHMWPE particles also has a significant impact on the performance of microporous filter products. When the sintering process is used to prepare microporous filter materials, heat gradually enters from the surface of the powder particles. In the inside of the particle, the larger the particle, the longer the time from the softening of the particle surface to the melting inside the particle, and the easier it is to form a porous structure resulting in a large opening rate, but the microporous structure tends to become irregular and the distribution of micropores also changes. If the particle size is not uniform, the strength will decrease; the finer the particles, the shorter the melting time, the easier to stick, the more difficult it is to form a porous structure, the finer and more uniform the microporous structure, the lower the porosity, but the higher the strength; At the same time, the size of the particle size and the shape of the particles almost determine the pore size of the prepared product. According to the pore-forming mechanism of the sintering method, the particles of UHMWPE are piled up with each other, and the gap between the particles constitutes the source of the pores. The larger the UHMWPE particle size, the more irregular the particle shape, the larger the gap between the particles, and the larger the pore size of the product.

目前,针对应用于微孔过滤材料的、差异化的、专用的超高分子量聚乙烯树脂微粒开发进展仍然较少,高堆密度(0.40-0.50g/cm3)的通用料仍然在市场占据主导,聚合物微粒树脂粒径范围(D50)主要集中在120微米到200微米之间,或600微米以上的粗大粒子。另外,三井化学公司还生产一种粒径极细的UHMWPE粉末,注册商标为MIPELONTM,该产品颗粒极细,平均粒径范围在25μm-30μm,但其堆密度高达0.44g/cm3。专利CN200580039390.2公开了乙烯类聚合物微粒及其制造用催化剂,其聚合物微粒重量比至少95%以上通过37微米的网状筛,以激光衍射散射法测定的中径(d50)为3μm≤d50≤25μm,该技术所制备的粒子的堆密度并未列出,且聚合物需要脱除无机物杂质的繁琐步骤,而且该专利方法报道的催化剂的制备过程必须要使用受到管制的甲苯作为溶剂。我们在前期发展的专利技术(202010585230.4、202010585258.8、202010583913.6)可以获得粒径为(d50)为40μm≤d50≤80μm的特高和超高分子量聚乙烯树脂微粒,该技术所制备的粒子的堆密度≥0.35g/cm3At present, there is still little progress in the development of differentiated and dedicated ultra-high molecular weight polyethylene resin particles for microporous filter materials, and general-purpose materials with high bulk density (0.40-0.50g/cm 3 ) still dominate the market , The polymer particle resin particle size range (D50) is mainly concentrated between 120 microns and 200 microns, or coarse particles above 600 microns. In addition, Mitsui Chemicals also produces a UHMWPE powder with a very fine particle size. The registered trademark is MIPELONTM . Patent CN200580039390.2 discloses ethylene-based polymer microparticles and a catalyst for their manufacture. At least 95% of the weight ratio of the polymer microparticles passes through a 37-micron mesh sieve, and the median diameter (d50) measured by the laser diffraction scattering method is 3 μm≤ d50≤25μm, the bulk density of the particles prepared by this technology is not listed, and the polymer requires cumbersome steps to remove inorganic impurities, and the preparation process of the catalyst reported by the patent method must use regulated toluene as a solvent . The patented technologies (202010585230.4, 202010585258.8, 202010583913.6) we developed in the early stage can obtain ultra-high and ultra-high molecular weight polyethylene resin particles with a particle size (d50) of 40μm≤d50≤80μm, and the bulk density of the particles prepared by this technology≥ 0.35g/cm 3 .

综上所述,本领域尚缺乏一种低堆密度、粒径细、适用于制造微孔过滤器材的超高分子量聚乙烯专用树脂粉料。To sum up, there is still a lack of a special resin powder for ultra-high molecular weight polyethylene with low bulk density and fine particle size, which is suitable for manufacturing microporous filter materials.

发明内容Contents of the invention

本发明提供了一类能够适用于制造微孔过滤器材的,无支化,粘均分子量150-800万克/摩尔,平均粒径范围略小于通用市售类型的,粒径分布集中在(d50)为80μm≤d50≤110μm,堆密度为0.20-0.30g/cm3超高分子量聚乙烯微粒。The present invention provides a class that can be applicable to the manufacture of microporous filter materials, without branching, with a viscosity-average molecular weight of 1.5-8 million g/mol, an average particle size range slightly smaller than that of the general commercially available type, and a particle size distribution concentrated in (d50 ) is 80μm≤d50≤110μm, and the bulk density is 0.20-0.30g/cm 3 ultra-high molecular weight polyethylene particles.

本发明的第一方面,提供了一种超高分子量聚乙烯微粒,所述的微粒具有如下特征:The first aspect of the present invention provides a kind of ultra-high molecular weight polyethylene microparticles, the microparticles have the following characteristics:

(a)粘均分子量为150-800万克/摩尔;(a) the viscosity-average molecular weight is 1.5-8 million g/mol;

(b)≥85wt%可通过100目的网状筛,且粒中径(d50)为80μm≤d50≤110μm。(b) ≥85 wt% can pass through a 100-mesh mesh sieve, and the median particle diameter (d50) is 80 μm≤d50≤110 μm.

在另一优选例中,所述微粒的粘均分子量为150-400万克/摩尔。In another preferred example, the viscosity-average molecular weight of the microparticles is 1.5-4 million g/mol.

在另一优选例中,所述微粒的d50为90μm≤d50≤100μm。In another preferred example, the d50 of the particles is 90 μm≤d50≤100 μm.

在另一优选例中,所述的微粒的粉料堆密度为0.20-0.30g/cm3In another preferred example, the powder bulk density of the particles is 0.20-0.30 g/cm 3 .

在另一优选例中,所述的微粒的堆密度为0.22-0.28g/cm3;更佳地为0.22-0.26g/cm3In another preferred embodiment, the bulk density of the particles is 0.22-0.28 g/cm 3 ; more preferably 0.22-0.26 g/cm 3 .

在另一优选例中,所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。In another preferred example, in the microparticles, the number of alkane branched chains on the polymer chain is <1/100,000C (ie, the number of alkane branched chains in 100,000 carbon atoms is <1).

本发明的第二方面,提供了一种如本发明第一方面所述的聚乙烯微粒的制备方法,所述方法包括步骤:用催化剂及助催化剂与乙烯接触进行催化聚合反应,从而得到所述的超高分子量聚乙烯微粒;The second aspect of the present invention provides a method for preparing polyethylene microparticles as described in the first aspect of the present invention. The method includes the steps of: contacting ethylene with a catalyst and a cocatalyst to carry out a catalytic polymerization reaction, thereby obtaining the ultra-high molecular weight polyethylene particles;

其中,所述的催化剂为催化剂微粒,或包括所述的催化剂微粒的催化剂浆液;所述催化剂的硅含量为20-40重量份,镁含量为10-30重量份,铝含量为2-4重量份,钛含量为3-5重量份,氯含量20-60重量份。Wherein, the catalyst is a catalyst particle, or a catalyst slurry comprising the catalyst particle; the silicon content of the catalyst is 20-40 parts by weight, the magnesium content is 10-30 parts by weight, and the aluminum content is 2-4 parts by weight. parts, the titanium content is 3-5 parts by weight, and the chlorine content is 20-60 parts by weight.

在另一优选例中,所述催化剂料液中的催化剂微粒固体浓度为200-250g/L。In another preferred embodiment, the solid concentration of catalyst particles in the catalyst feed liquid is 200-250 g/L.

在另一优选例中,所述的方法包括步骤:In another preference, the method includes the steps of:

(1)在惰性溶剂中,在预先加入了催化剂和助催化剂的反应釜中通入乙烯气体,使釜内压力达到0.2-1.5MPa,在40-80℃下进行聚合反应1-3h后停止通入乙烯;(1) In an inert solvent, feed ethylene gas into the reaction kettle with the catalyst and cocatalyst added in advance, so that the pressure in the kettle reaches 0.2-1.5MPa, carry out the polymerization reaction at 40-80°C for 1-3h, and then stop the ventilation into ethylene;

(2)使釜内温度降至50℃以下;(2) Make the temperature in the kettle drop below 50°C;

(3)将步骤(2)得到的浆液移除溶剂;(3) removing the solvent from the slurry obtained in step (2);

(4)负压干燥后得到如权利要求1中所述的聚乙烯微粒。(4) Obtain the polyethylene microparticles as described in claim 1 after negative pressure drying.

在另一优选例中,在所述的步骤(3)和步骤(4)之间还需要增加汽提,即步骤(3)得到的湿料经过汽提,深度去除粉料中包含的有机溶剂。In another preferred example, additional steam stripping is required between the step (3) and the step (4), that is, the wet material obtained in the step (3) is stripped to deeply remove the organic solvent contained in the powder .

在另一优选例中,所述的催化剂是通过以下方法制备的:In another preference, the catalyst is prepared by the following method:

(a)用镁源与C1-C10醇接触并在60-120℃下反应,然后加入纳米硅胶,降温至-30℃以下得到前体浆液P-I;(a) contact with C1-C10 alcohol with magnesium source and react at 60-120°C, then add nano-silica gel, cool down to below -30°C to obtain precursor slurry P-I;

(b)用步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触,随后升温至60-120℃保持2-6h得到前体浆液P-II;(b) using the precursor slurry P-I obtained in step (a) to contact with an aluminum alkyl at a temperature lower than -30°C, and then raising the temperature to 60-120°C for 2-6h to obtain the precursor slurry P-II;

(c)用步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;(c) Use the precursor slurry P-II obtained in step (b) to cool down to below -30°C, contact with the inert hydrocarbon solution of titanium compound for 0.5-3h, then raise the temperature to 60-120°C and keep it for 2-6h to obtain the catalyst Serum C-III;

(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。(d) Filtrating the catalyst slurry C-III obtained in step (c) to obtain a catalyst.

在另一优选例中,所述的镁源为氯化镁,较佳地为无水氯化镁。In another preferred example, the magnesium source is magnesium chloride, preferably anhydrous magnesium chloride.

在另一优选例中,所述的方法包括:In another preferred example, the method includes:

(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯化镁的C1-C10的醇(优选2-6当量的C1-C10的醇)的混合液中进行接触,在60-120℃下反应形成均一溶液,加入纳米硅胶进行制备复合载体,然后降温至-30℃以下得到前体浆液P-I;其中所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;上述反应中,以无水氯化镁的用量作为1当量;(a) under inert gas protection conditions, anhydrous magnesium chloride is added to the mixed solution of inert hydrocarbon solvent and ≥2 equivalents of magnesium chloride's C1-C10 alcohols (preferably 2-6 equivalents of C1-C10 alcohols) for contacting, React at 60-120°C to form a homogeneous solution, add nano-silica gel to prepare a composite carrier, and then lower the temperature to below -30°C to obtain the precursor slurry P-I; the cooling rate is preferably 1-10°C/min; more preferably 1- 5°C/min, most preferably 1°C/min; in the above reaction, the amount of anhydrous magnesium chloride is used as 1 equivalent;

(b)步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触至少1h,随后升温至60-120℃保持2-6h得到前体浆液P-II;其中所述的升温速度优选1-10℃/min;(b) The precursor slurry P-I obtained in step (a) is contacted with alkylaluminum for at least 1 h at a temperature lower than -30 ° C, and then heated to 60-120 ° C for 2-6 h to obtain the precursor slurry P-II; wherein The heating rate is preferably 1-10°C/min;

(c)将步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;其中所述的降温速度优选1-10℃/min,所述的升温速度优选1-10℃/min;(c) Cool the precursor slurry P-II obtained in step (b) to below -30°C, contact with the inert hydrocarbon solution of titanium compound for 0.5-3h, then raise the temperature to 60-120°C and keep it for 2-6h to obtain the catalyst Slurry C-III; wherein the cooling rate is preferably 1-10°C/min, and the heating rate is preferably 1-10°C/min;

(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。(d) Filtrating the catalyst slurry C-III obtained in step (c) to obtain a catalyst.

在另一优选例中,所述的纳米硅胶与氯化镁的质量比为1-3:1。In another preferred example, the mass ratio of nano-silica gel to magnesium chloride is 1-3:1.

在另一优选例中,所述的纳米硅胶外观为白色粉末,堆积密度<0.15g/cm3,粒子尺寸范围可以在15~100nm,优选30-50nm。In another preferred example, the appearance of the nano-silica gel is white powder, the bulk density is <0.15g/cm 3 , and the particle size range can be 15-100nm, preferably 30-50nm.

在另一优选例中,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。In another preferred example, the catalyst preparation method further includes the step: (e) drying the catalyst obtained in step (d) to obtain catalyst powder.

在另一优选例中,所述的催化剂制备中,步骤(a)所述的C1-C10的醇选自下组:甲醇、乙醇、正丙醇、正丁醇、正戊醇、正己醇、2-乙基己醇、正辛醇,或其组合。In another preferred example, in the preparation of the catalyst, the C1-C10 alcohol described in step (a) is selected from the group consisting of methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, 2-Ethylhexanol, n-octanol, or combinations thereof.

在另一优选例中,所述的催化剂制备中,步骤(b)中的烷基铝选自下组:二氯乙基铝、二乙基氯化铝、三乙基铝、三异丁基铝、倍半氯化乙基铝、或倍半氯化丁基铝。In another preference, in the preparation of the catalyst, the aluminum alkyl in step (b) is selected from the group consisting of ethyl aluminum dichloride, aluminum diethyl chloride, aluminum triethyl, triisobutyl Aluminum, ethylaluminum sesquichloride, or butylaluminum sesquichloride.

在另一优选例中,所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比可以为0.3-0.8:1,优选0.4-0.6:1,最优选0.5:1。In another preferred example, in the catalyst preparation, the molar ratio of titanium compound to magnesium chloride in step (c) may be 0.3-0.8:1, preferably 0.4-0.6:1, most preferably 0.5:1.

在另一优选例中,所述催化剂的制备步骤中不使用甲苯、卤代烃或芳香烃。In another preferred example, no toluene, halogenated hydrocarbons or aromatic hydrocarbons are used in the catalyst preparation step.

在另一优选例中,所述的钛化合物选自下组:TiCl4、TiR4,或结构式I-IV所示的烷基配合物;其中R是C1-C6的烷基、烯丙基、苄基、NMe2,所述的烷基优选甲基、乙基、丙基或丁基。In another preferred example, the titanium compound is selected from the following group: TiCl 4 , TiR 4 , or alkyl complexes shown in structural formula I-IV; wherein R is C1-C6 alkyl, allyl, Benzyl, NMe 2 , the alkyl is preferably methyl, ethyl, propyl or butyl.

Figure BDA0002700214750000051
Figure BDA0002700214750000051

其中,X为SR5或P(R5)2Wherein, X is SR 5 or P(R 5 ) 2 ;

R1、R2、R3、R4、R5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;R 1 , R 2 , R 3 , R 4 , and R 5 are independently substituted or unsubstituted groups selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl, C6-C10 aryl, halogenated C3-C8 cycloalkyl, 5-7 membered heteroaryl;

或R3和R4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;Or R 3 and R 4 , and the carbon atoms connected to them together form a 5-7 membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring;

R6选自下组:C1-C6的烷基、NH2、N(C1-C6的烷基)2、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;R 6 is selected from the following group: C1-C6 alkyl, NH 2 , N(C1-C6 alkyl) 2 , allyl, benzyl, C1-C6 silyl; the alkyl is preferably methyl , ethyl, propyl or butyl;

R7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;R is selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl or C3-C8 cycloalkyl;

其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P或O;Wherein, the skeleton of the heteroaryl group has 1-3 heteroatoms selected from the group consisting of N, S(O), P or O;

除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。Unless otherwise specified, the "substitution" refers to being substituted by one or more (such as 2, 3, 4, etc.) substituents selected from the following group: halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy.

在另一优选例中,钛配合物为如下结构分子:In another preferred embodiment, the titanium complex is a molecule with the following structure:

Figure BDA0002700214750000052
Figure BDA0002700214750000052

Figure BDA0002700214750000061
Figure BDA0002700214750000061

本发明的第三方面,提供了一种微孔过滤制品,所述的制品是用如本发明第一方面所述的超高分子量聚乙烯微粒制备的。The third aspect of the present invention provides a microporous filtration product, which is prepared by using the ultra-high molecular weight polyethylene particles as described in the first aspect of the present invention.

在另一优选例中,所述的微孔过滤制品的孔隙率≥40%。In another preferred example, the porosity of the microporous filter product is ≥ 40%.

在另一优选例中,所述的微孔过滤制品的过滤精度最小可以等于0.45微米。In another preferred example, the filtration precision of the microporous filter product can be at least equal to 0.45 microns.

在另一优选例中,所述的微孔过滤制品的固体不溶物过滤效率大于99.8%。In another preferred example, the solid insoluble matter filtration efficiency of the microporous filtration product is greater than 99.8%.

在另一优选例中,在0.2MPa水压条件下,所述的微孔过滤制品的水渗透量可以达到20m3/h。In another preferred example, under the condition of 0.2MPa water pressure, the water penetration of the microporous filter product can reach 20m 3 /h.

本发明的第四方面,提供了一种如本发明第三方面所述的制品的制备方法,所述方法包括步骤:A fourth aspect of the present invention provides a method for preparing a product as described in the third aspect of the present invention, said method comprising the steps of:

(i)用聚乙烯蜡和硬脂酸钙作为复合添加剂,与本发明第一方面所述的超高分子量聚乙烯微粒混合均匀,得到混合物料;(i) using polyethylene wax and calcium stearate as composite additives, mixed with the ultra-high molecular weight polyethylene microparticles described in the first aspect of the present invention, to obtain a mixed material;

(ii)将所述的装入模具进行无压烧结;(ii) carrying out pressureless sintering with described packing mold;

(iii)冷却降温,得到超高分子量聚乙烯微孔过滤制品。(iii) cooling down to obtain an ultra-high molecular weight polyethylene microporous filter product.

在另一优选例中,所述的超高分子量聚乙烯微粒:聚乙烯蜡:硬脂酸钙的质量配比为250-350:2-8:0.8-1.2。In another preferred example, the mass ratio of ultra-high molecular weight polyethylene particles: polyethylene wax: calcium stearate is 250-350:2-8:0.8-1.2.

在另一优选例中,所述的烧结温度为180-220℃。In another preferred example, the sintering temperature is 180-220°C.

在另一优选例中,所述的烧结时间为10-20min。In another preferred example, the sintering time is 10-20 minutes.

在另一优选例中,所述的降温为通水冷却降温。In another preferred example, the temperature reduction is water cooling.

应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described in the following (such as embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, we will not repeat them here.

附图说明Description of drawings

图1是代表性聚合物(实施例3)粒度分布报告;Fig. 1 is representative polymer (embodiment 3) particle size distribution report;

图2和图3是代表性聚合物(实施例3)SEM电镜图片;Fig. 2 and Fig. 3 are representative polymkeric substance (embodiment 3) SEM electron microscope pictures;

图4是超高分子量聚乙烯烧结微孔过滤管图片。Fig. 4 is a picture of ultra-high molecular weight polyethylene sintered microporous filter tube.

具体实施方式Detailed ways

本发明人经过长期而深入的研究,制备得到了一种适用于制造微孔过滤器材的超高分子量聚乙烯微粒,且制备得到的聚乙烯链无支化、粘均分子量150-800万克/摩尔、重量比至少85%以上通过100目的网状筛,粒径分布集中在(d50)为80μm≤d50≤110μm,堆密度为0.20-0.30g/cm3聚乙烯微粒。基于上述发现,发明人完成了本发明。After long-term and in-depth research, the present inventors have prepared a kind of ultra-high molecular weight polyethylene particles suitable for manufacturing microporous filter materials, and the prepared polyethylene chains are unbranched and have a viscosity-average molecular weight of 1.5-8 million g/m. At least 85% of the mole and weight ratio pass through a 100-mesh mesh sieve, the particle size distribution (d50) is 80μm≤d50≤110μm, and the bulk density is 0.20-0.30g/cm 3 polyethylene particles. Based on the above findings, the inventors have accomplished the present invention.

无支化、低堆密度的超高分子量聚乙烯微粒及其制备Unbranched, low bulk density ultra-high molecular weight polyethylene particles and its preparation

本发明提供了一类超高分子量聚乙烯微粒,所述的微粒至少满足以下特征:(a)粘均分子量为150-800万范围;(b)重量比至少85%以上通过100目的网状筛;粒中径(d50)为80μm≤d50≤110μm;(c)粉料堆密度为0.20-0.30g/cm3The invention provides a class of ultra-high molecular weight polyethylene microparticles. The microparticles at least meet the following characteristics: (a) the viscosity-average molecular weight is in the range of 1.5 million to 8 million; (b) the weight ratio is at least 85% through a 100-mesh mesh sieve ; The median particle diameter (d50) is 80 μm≤d50≤110 μm; (c) The powder bulk density is 0.20-0.30 g/cm 3 .

此外,聚合物分子结构还可以满足(d)高分子链上烷烃支链数<1/100,000C(通过熔融13C NMR测定)。In addition, the molecular structure of the polymer can also satisfy (d) the number of alkane branched chains on the polymer chain <1/100,000C (measured by melting 13C NMR).

本发明所述的超高分子量聚乙烯微粒的分子量可以方便地通过聚合条件控制,即:在催化剂和助催化剂存在下,在40-80℃、0.2-2.0MPa乙烯压力下催化乙烯聚合,从而得到上述的超高分子量聚乙烯粉料。在本申请的优选实施例中,得到聚乙烯微粒重量比至少85%以上通过100目的网状筛,且80μm≤d50≤110μm。The molecular weight of the ultra-high molecular weight polyethylene microparticles described in the present invention can be conveniently controlled by the polymerization conditions, that is, in the presence of a catalyst and a cocatalyst, catalyzing ethylene polymerization at 40-80°C and 0.2-2.0MPa ethylene pressure to obtain The above-mentioned ultra-high molecular weight polyethylene powder. In a preferred embodiment of the present application, at least 85% by weight of the polyethylene particles pass through a 100-mesh mesh sieve, and 80 μm≤d50≤110 μm.

本发明所述的超高分子量聚乙烯微粒的制备方法如下:The preparation method of ultra-high molecular weight polyethylene microparticles of the present invention is as follows:

以主催化剂和烷基铝化合物为助催化剂组成的非均相催化体系与乙烯接触,在乙烯分压为0.2至2.0Mpa、0至100℃范围内反应1-18小时获得。催化剂与助催化剂的摩尔比是1:1-5000,一般可在1:10-2000时聚合2-6小时以便使催化活性、聚合物性质与生产成本均维持在较好的范围,优选1:20~500。The heterogeneous catalytic system composed of the main catalyst and the alkyl aluminum compound as the cocatalyst is contacted with ethylene and reacted for 1-18 hours at the ethylene partial pressure of 0.2 to 2.0 Mpa and the range of 0 to 100°C. The molar ratio of catalyst and cocatalyst is 1:1-5000, generally can polymerize 2-6 hours when 1:10-2000 so that catalytic activity, polymer property and production cost are all maintained in a better range, preferably 1: 20 to 500.

聚合一般在惰性有机溶剂中进行,例如烃类、环烃类或芳烃类,也可以在卤代溶剂中进行,如二氯乙烷、氯苯,为有利于反应器操作,惰性有机溶剂可使用小于12个碳的烃类。例如但并不仅限于,丙烷、异丁烷、正戊烷、2-甲基丁烷、正己烷、环己烷、甲苯、氯苯、二氯乙烷及其混合物。Polymerization is generally carried out in inert organic solvents, such as hydrocarbons, cyclic hydrocarbons or aromatic hydrocarbons, and can also be carried out in halogenated solvents, such as dichloroethane and chlorobenzene. In order to facilitate the operation of the reactor, inert organic solvents can be used Hydrocarbons with less than 12 carbons. For example, but not limited to, propane, isobutane, n-pentane, 2-methylbutane, n-hexane, cyclohexane, toluene, chlorobenzene, dichloroethane, and mixtures thereof.

聚合温度维持在0至100℃,为达到好的催化活性与生产能力,可维持在40至80℃。The polymerization temperature is maintained at 0 to 100°C, and can be maintained at 40 to 80°C to achieve good catalytic activity and productivity.

聚合乙烯分压为0.2至1.5Mpa内操作可获得较好的反应器操作参数与聚合物。Better reactor operating parameters and polymers can be obtained by operating within the partial pressure of polymerized ethylene within the range of 0.2 to 1.5 Mpa.

助催化剂是烷基铝化合物,烷基铝氧烷或弱配位阴离子;所述的烷基铝化合物优选于AlEt3,AlMe3或Al(i-Bu)3,AlEt2Cl,烷基铝氧烷优选甲基铝氧烷,MMAO(修饰的甲基铝氧烷)等;弱配位阴离子优选于[B(3,5-(CF3)2C6H3)4]-、-OSO2CF3或((3,5-(CF3)2)C6H3)4B-。催化剂与助催化剂可以任何顺序加入体系使聚合进行,优选AlEt3。聚合所使用的催化剂与助催化剂的比例可变,通常所述的聚合时间为1-18小时,催化剂与助催化剂的摩尔比是1:1-5000,一般可在1:10-2000时聚合2-6小时以便使催化活性、聚合物性质与生产成本均维持在较好的范围,优选1:20-500。The cocatalyst is an alkylaluminum compound, an alkylaluminoxane or a weakly coordinated anion; the alkylaluminum compound is preferably AlEt 3 , AlMe 3 or Al(i-Bu) 3 , AlEt 2 Cl, an alkylaluminum oxide Alkanes are preferably methylalumoxane, MMAO (modified methylalumoxane), etc.; weakly coordinating anions are preferably [B(3,5-(CF 3 ) 2 C 6 H 3 ) 4 ]-, -OSO 2 CF 3 or ((3,5-(CF 3 ) 2 )C 6 H 3 ) 4 B-. Catalyst and cocatalyst can be added in any order to make the polymerization proceed, preferably AlEt 3 . The ratio of the catalyst and co-catalyst used in the polymerization is variable, usually the polymerization time is 1-18 hours, the molar ratio of the catalyst and the co-catalyst is 1:1-5000, generally it can be polymerized at 1:10-2000 -6 hours in order to keep catalytic activity, polymer properties and production costs in a good range, preferably 1:20-500.

在本发明的优选实施方式中,所述的催化剂在40-80℃、0.2-0.8MPa乙烯压力下催化乙烯聚合得到超高分子量聚乙烯微粒,聚合得到的粉料重量比至少85%以上通过100目的网状筛,以激光衍射散射法测定的中径(d50)为80μm≤d50≤110μm,更优的,为90μm≤d50≤100μm,聚乙烯粘均分子量150-800万;更优的,聚乙烯粘均分子量200-400万。In a preferred embodiment of the present invention, the catalyst catalyzes ethylene polymerization at 40-80°C and 0.2-0.8 MPa ethylene pressure to obtain ultra-high molecular weight polyethylene particles, and the weight ratio of the powder obtained by polymerization is at least 85% and passes through 100 The target mesh sieve has a median diameter (d50) measured by the laser diffraction scattering method of 80 μm≤d50≤110 μm, more preferably 90 μm≤d50≤100 μm, and a polyethylene viscosity-average molecular weight of 1.5-8 million; more preferably, poly The viscosity-average molecular weight of ethylene is 2-4 million.

利用熔融13C NMR可以分析其支化结构。分析结果证实,本发明提供的超高分子量聚乙烯,聚合物中每100,000个骨架碳原子中含有支链数目小于1个。The branched structure can be analyzed by melting 13 C NMR. Analysis results confirm that the ultra-high molecular weight polyethylene provided by the present invention has less than one branched chain per 100,000 skeleton carbon atoms in the polymer.

本发明创制的超高分子量聚乙烯微粒,粉料堆密度为0.20-0.30g/cm3,更优选的堆密度为0.22-0.28g/cm3,可用于制备微孔过滤材料。The ultra-high molecular weight polyethylene particles created by the invention have a powder bulk density of 0.20-0.30g/cm 3 , more preferably 0.22-0.28g/cm 3 , and can be used to prepare microporous filter materials.

聚乙烯催化剂及其制备Polyethylene catalyst and its preparation

本发明的无支化、低堆密度的超高分子量聚乙烯微粒是通过一种含有纳米硅胶和氯化镁复合载体化的钛系催化剂制备的。The non-branched and low bulk density ultra-high molecular weight polyethylene microparticles of the invention are prepared through a titanium series catalyst containing nano silica gel and magnesium chloride composite support.

其中,所述的催化剂为催化剂微粒,或包括所述的催化剂微粒的催化剂浆液;所述催化剂的硅含量为20-40重量份,镁含量为10-30重量份,铝含量为2-4重量份,钛含量为3-5重量份,氯含量20-60重量份。Wherein, the catalyst is a catalyst particle, or a catalyst slurry comprising the catalyst particle; the silicon content of the catalyst is 20-40 parts by weight, the magnesium content is 10-30 parts by weight, and the aluminum content is 2-4 parts by weight. parts, the titanium content is 3-5 parts by weight, and the chlorine content is 20-60 parts by weight.

在另一优选例中,所述催化剂料液中的催化剂微粒浓度为200-250g/L。In another preferred embodiment, the concentration of catalyst particles in the catalyst feed liquid is 200-250 g/L.

在另一优选例中,所述的催化剂是通过以下方法制备的:In another preference, the catalyst is prepared by the following method:

(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯化镁的C1-C10的醇(优选2-6当量的C1-C10的醇)的混合液中进行接触,在60-120℃下反应形成均一溶液,加入1-3当量的纳米硅胶进行负载化制备复合载体,然后降温至-30℃以下,得到前体浆液P-I;其中所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;上述反应中,以无水氯化镁的用量作为1当量;(a) under inert gas protection conditions, anhydrous magnesium chloride is added to the mixed solution of inert hydrocarbon solvent and ≥2 equivalents of magnesium chloride's C1-C10 alcohols (preferably 2-6 equivalents of C1-C10 alcohols) for contacting, React at 60-120°C to form a homogeneous solution, add 1-3 equivalents of nano-silica gel for loading to prepare a composite carrier, and then lower the temperature to below -30°C to obtain the precursor slurry P-I; the cooling rate is preferably 1-10 °C/min; more preferably 1-5 °C/min, most preferably 1 °C/min; in the above reaction, the amount of anhydrous magnesium chloride is taken as 1 equivalent;

(b)步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触至少1h,随后升温至60-120℃保持2-6h得到前体浆液P-II;其中所述的升温速度优选1-10℃/min;(b) The precursor slurry P-I obtained in step (a) is contacted with alkylaluminum for at least 1 h at a temperature lower than -30 ° C, and then heated to 60-120 ° C for 2-6 h to obtain the precursor slurry P-II; wherein The heating rate is preferably 1-10°C/min;

(c)将步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;其中所述的降温速度优选1-10℃/min,所述的升温速度优选1-10℃/min;(c) Cool the precursor slurry P-II obtained in step (b) to below -30°C, contact with the inert hydrocarbon solution of titanium compound for 0.5-3h, then raise the temperature to 60-120°C and keep it for 2-6h to obtain the catalyst Slurry C-III; wherein the cooling rate is preferably 1-10°C/min, and the heating rate is preferably 1-10°C/min;

(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。(d) Filtrating the catalyst slurry C-III obtained in step (c) to obtain a catalyst.

在另一优选例中,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。In another preferred example, the catalyst preparation method further includes the step: (e) drying the catalyst obtained in step (d) to obtain catalyst powder.

在另一优选例中,所述的催化剂制备中,步骤(a)所述的C1-C10的醇优选甲醇、乙醇、正丙醇、正丁醇、正戊醇、正己醇、2-乙基己醇或正辛醇。In another preference, in the preparation of the catalyst, the C1-C10 alcohol described in step (a) is preferably methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, 2-ethyl Hexanol or n-octanol.

在另一优选例中,所述的催化剂制备中,步骤(a)所述的纳米硅胶与氯化镁的质量比可以选为1-3:1,优选2-3:1,最优选3:1,所述的纳米硅胶外观为无定形白色粉末,微结构呈絮状和网状的准颗粒结构,堆积密度<0.15g/cm3,粒子尺寸范围可以在15~100nm,优选30-50nm。In another preference, in the preparation of the catalyst, the mass ratio of the nano silica gel and magnesium chloride described in step (a) can be selected as 1-3:1, preferably 2-3:1, most preferably 3:1, The appearance of the nano-silica gel is amorphous white powder, the microstructure is flocculent and net-like quasi-granular structure, the bulk density is <0.15g/cm 3 , and the particle size range can be 15-100nm, preferably 30-50nm.

在另一优选例中,所述的催化剂制备中,步骤(b)中的烷基铝选自下组:二氯乙基铝、二乙基氯化铝、三乙基铝、三异丁基铝、倍半氯化乙基铝或倍半氯化丁基铝。In another preference, in the preparation of the catalyst, the aluminum alkyl in step (b) is selected from the group consisting of ethyl aluminum dichloride, aluminum diethyl chloride, aluminum triethyl, triisobutyl Aluminum, ethylaluminum sesquichloride or butylaluminum sesquichloride.

在另一优选例中,所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比可以为0.3-0.8:1,优选0.4-0.6:1,最优选0.5:1。In another preferred example, in the catalyst preparation, the molar ratio of titanium compound to magnesium chloride in step (c) may be 0.3-0.8:1, preferably 0.4-0.6:1, most preferably 0.5:1.

在另一优选例中,所述催化剂的制备步骤中不使用甲苯、卤代烃或芳香烃。In another preferred example, no toluene, halogenated hydrocarbons or aromatic hydrocarbons are used in the catalyst preparation step.

在另一优选例中,所述的钛化合物是TiCl4或TiR4,或结构式I-IV所示的烷基配合物;其中R是C1-C6的烷基、烯丙基、苄基、NMe2,所述的烷基优选甲基、乙基、丙基或丁基。In another preferred example, the titanium compound is TiCl 4 or TiR 4 , or an alkyl complex shown in structural formula I-IV; wherein R is C1-C6 alkyl, allyl, benzyl, NMe 2. The alkyl group is preferably methyl, ethyl, propyl or butyl.

Figure BDA0002700214750000101
Figure BDA0002700214750000101

其中,X为SR5或P(R5)2Wherein, X is SR 5 or P(R 5 ) 2 ;

R1、R2、R3、R4、R5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;R 1 , R 2 , R 3 , R 4 , and R 5 are independently substituted or unsubstituted groups selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl, C6-C10 aryl, halogenated C3-C8 cycloalkyl, 5-7 membered heteroaryl;

或R3和R4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;Or R 3 and R 4 , and the carbon atoms connected to them together form a 5-7 membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring;

R6选自下组:C1-C6的烷基、NH2、N(C1-C6的烷基)2、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;R 6 is selected from the following group: C1-C6 alkyl, NH 2 , N(C1-C6 alkyl) 2 , allyl, benzyl, C1-C6 silyl; the alkyl is preferably methyl , ethyl, propyl or butyl;

R7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;R is selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl or C3-C8 cycloalkyl;

其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P或O。Wherein, the skeleton of the heteroaryl group has 1-3 heteroatoms selected from the group consisting of N, S(O), P or O.

除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。Unless otherwise specified, the "substitution" refers to being substituted by one or more (such as 2, 3, 4, etc.) substituents selected from the following group: halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy.

在另一优选例中,钛配合物为如下结构分子:In another preferred embodiment, the titanium complex is a molecule with the following structure:

Figure BDA0002700214750000111
Figure BDA0002700214750000111

超高分子量聚乙烯微孔过滤制品UHMWPE Microporous Filtration Products

所述的无支化、形貌无规则、低堆密度的超高分子量聚乙烯微粒,可用于制备微孔过滤材料。本发明采用聚乙烯蜡和硬脂酸钙作为复合添加剂,按照一定比例同所述的超高分子量聚乙烯微粒混合进行加工,超高分子量聚乙烯微粒:聚乙烯蜡:硬脂酸钙的质量配比为300:5:1,混合均匀后装入模具并在模压机上进行无压烧结,烧结温度为180-220℃,烧结时间10-20min,最后通水冷却降温得到超高分子量聚乙烯微孔过滤制品。The ultra-high molecular weight polyethylene microparticles with no branching, irregular appearance and low bulk density can be used to prepare microporous filter materials. The present invention adopts polyethylene wax and calcium stearate as composite additives, and mixes them with the ultra-high molecular weight polyethylene microparticles according to a certain ratio for processing, and the mass composition of ultra-high molecular weight polyethylene microparticles: polyethylene wax: calcium stearate The ratio is 300:5:1, mix evenly, put it into the mold and carry out pressureless sintering on the molding machine, the sintering temperature is 180-220°C, the sintering time is 10-20min, and finally pass water to cool down to obtain ultra-high molecular weight polyethylene micropores Filtration products.

所述的超高分子量聚乙烯微孔过滤制品的孔隙率到达40-60%,微孔分布均匀,过滤精度最小可以等于0.45微米,固体不溶物过滤效率大于99.8%,渗透性能优异,在0.2Mpa水压条件下,水渗透量可以达到20m3/h。The porosity of the ultra-high molecular weight polyethylene microporous filter product reaches 40-60%, the micropores are evenly distributed, the minimum filtration precision can be equal to 0.45 microns, the filtration efficiency of solid insolubles is greater than 99.8%, and the permeability is excellent. Under the condition of water pressure, the water penetration can reach 20m 3 /h.

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. For the experimental methods without specific conditions indicated in the following examples, the conventional conditions or the conditions suggested by the manufacturer are usually followed. Percentages and parts are by weight unless otherwise indicated.

以下实施例显示了本发明的不同侧面,所给出的实施例包括聚乙烯微粒,制备聚乙烯微粒的聚合方法,微孔过滤制品方法及其性能。The following examples show different aspects of the present invention. The examples given include polyethylene microparticles, polymerization process for making polyethylene microparticles, microfiltration article process and their properties.

聚乙烯微粒的粒度分布采用Malvern S型粒度分析仪测定,使用正己烷或者乙醇中做分散剂。The particle size distribution of polyethylene microparticles was measured by a Malvern S-type particle size analyzer, using n-hexane or ethanol as a dispersant.

聚乙烯微粒的粘均分子量采用高温粘度仪进行测定,一般称取2.5-2.8mg样品,使用15mL十氢萘溶解,其计算公式如下:The viscosity-average molecular weight of polyethylene particles is measured by a high-temperature viscometer. Generally, 2.5-2.8 mg of a sample is weighed and dissolved in 15 mL of decahydronaphthalene. The calculation formula is as follows:

ηsp=t-t0/t0ηsp=t-t0/t0

ηr=t/t0ηr=t/t0

c=100*m(g)*ρ135℃/V(ml)*ρ25℃c=100*m(g)*ρ135℃/V(ml)*ρ25℃

η1=(ηsp+5Inηr)/6cη1=(ηsp+5Inηr)/6c

η2=【2(ηsp-ηr)】0.5/cη2=【2(ηsp-ηr)】0.5/c

【η】=(η1+η2)/2【η】=(η1+η2)/2

Mv=4.55×104×【η】1.37Mv=4.55×104×【η】1.37

聚乙烯支链含量测量是利用熔融13C-NMR谱得到的(参考文献:JOURNAL OFPOLYMER SCIENCE:Polymeo Physics Edition VOL.11,275-287,1973)聚合物13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件上,140℃下测定,每个样品测量累加时间大于16小时,以满足测量精度大于1个支链/100000个碳。The measurement of polyethylene branched chain content is obtained by melting 13C-NMR spectrum (reference: JOURNAL OFPOLYMER SCIENCE: Polymeo Physics Edition VOL.11,275-287, 1973). On the magic angle rotating attachment, it is measured at 140°C, and the measurement accumulation time of each sample is more than 16 hours to meet the measurement accuracy of more than 1 branched chain/100000 carbons.

实施例1Example 1

干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加653g第四副族金属钛的烷基配合物3的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-1,取100mL该浆液催化剂经干燥得到固体催化剂质量为21.1g,故标定该浆液催化剂浓度为211g/L,测定钛含量为3.0wt%,硅含量为38.0wt%,镁含量为12.0wt%,铝含量为3.3wt%,氯含量为33.2wt%。Under dry nitrogen conditions, add 15L hexane and 1.5L n-butanol into a 30L stainless steel reactor, mix well, then add 350g magnesium chloride, then heat the oil bath to 85°C, control the stirring speed to 100rpm, and react for 2 hours until a clear and uniform solution ; Add 1050g of nano silica gel for loading to prepare a composite carrier, stir and load for 2 hours, start to set the cooling rate at 1°C/min and cool down to below -30°C, and precipitate a solid to obtain a catalyst precursor slurry; lower the temperature of the catalyst precursor slurry to - Below 30°C, slowly add 1L diethylaluminum chloride dropwise to react for 2 hours, then control the temperature rise rate to 1°C/min, raise the temperature to 85°C for 4 hours; lower the temperature to below -30°C again, add dropwise 653g of the fourth subgroup The 5 L hexane solution of metal titanium alkyl complex 3 was subjected to the complexation reaction for 1 h, and then the heating rate was controlled at 1 °C/min, and the temperature was raised to 85 °C for 4 h. After the reaction time was over, sedimentation and filtration were carried out. The filter cake was made into slurry to obtain 10L slurry type ultra-high activity catalyst CAT-1, and 100mL of the slurry catalyst was dried to obtain a solid catalyst mass of 21.1g, so the concentration of the slurry catalyst was calibrated to be 211g/L, and the titanium content was measured The silicon content is 38.0 wt%, the magnesium content is 12.0 wt%, the aluminum content is 3.3 wt%, and the chlorine content is 33.2 wt%.

Figure BDA0002700214750000131
Figure BDA0002700214750000131

实施例2Example 2

干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1361g第四副族金属钛的烷基配合物5的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-2,取100mL该浆液催化剂经干燥得到固体催化剂质量为23.2g,故标定该浆液催化剂浓度为232g/L,测定钛含量为4.3wt%,硅含量为36.0wt%,镁含量为11.6wt%,铝含量为2.8wt%,氯含量为34.9wt%。Under dry nitrogen conditions, add 15L hexane and 1.5L n-butanol into a 30L stainless steel reactor, mix well, then add 350g magnesium chloride, then heat the oil bath to 85°C, control the stirring speed to 100rpm, and react for 2 hours until a clear and uniform solution ; Add 1050g of nano silica gel for loading to prepare a composite carrier, stir and load for 2 hours, start to set the cooling rate at 1°C/min and cool down to below -30°C, and precipitate a solid to obtain a catalyst precursor slurry; lower the temperature of the catalyst precursor slurry to - Below 30°C, slowly add 1L diethylaluminum chloride to contact for 2 hours, then control the temperature rise rate to 1°C/min, raise the temperature to 85°C and react for 4 hours; lower the temperature to below -30°C again, add dropwise 1361g of the fourth subgroup The 5 L hexane solution of metal titanium alkyl complex 5 was subjected to the complexation reaction for 1 hour, and then the heating rate was controlled to be 1°C/min, and the temperature was raised to 85°C for 4 hours. The filter cake is made into slurry to obtain 10L slurry type ultra-high activity catalyst CAT-2, take 100mL of the slurry catalyst and dry to obtain a solid catalyst quality of 23.2g, so the concentration of the slurry catalyst is calibrated to be 232g/L, and the titanium content is measured The silicon content is 36.0wt%, the magnesium content is 11.6wt%, the aluminum content is 2.8wt%, and the chlorine content is 34.9wt%.

Figure BDA0002700214750000132
Figure BDA0002700214750000132

实施例3Example 3

干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1358g第四副族金属钛的烷基配合物7的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-3,取100mL该浆液催化剂经干燥得到固体催化剂质量为22.6g,故标定该浆液催化剂浓度为226g/L,测定钛含量为4.5wt%,硅含量为36.6wt%,镁含量为11.9wt%,铝含量为3.4wt%,氯含量为36.1wt%。Under the condition of dry nitrogen, add 15L hexane and 1.5L n-butanol into a 30L stainless steel reaction kettle, mix well, then add 350g magnesium chloride, then heat the oil bath to 85°C, control the stirring speed to 100rpm, and react for 2h until a clear and uniform solution ; Add 1050g of nano silica gel for loading to prepare a composite carrier, stir and load for 2 hours, start to set the cooling rate at 1°C/min and cool down to below -30°C, and precipitate a solid to obtain a catalyst precursor slurry; lower the temperature of the catalyst precursor slurry to - Below 30°C, slowly add 1L diethylaluminum chloride to contact for 2 hours, then control the temperature rise rate to 1°C/min, raise the temperature to 85°C for 4 hours; cool down to -30°C again, dropwise add 1358g of the fourth subgroup The 5 L hexane solution of metal titanium alkyl complex 7 was subjected to the complexation reaction for 1 h, and then the heating rate was controlled to be 1 °C/min, and the temperature was raised to 85 °C for 4 h. After the reaction time was over, sedimentation and filtration were carried out. 10L of slurry type ultra-high activity catalyst CAT-3 is obtained, 100mL of the slurry catalyst is taken and dried to obtain a solid catalyst mass of 22.6g, so the calibration concentration of the slurry catalyst is 226g/L, and the measured titanium content is 4.5wt %, the silicon content is 36.6wt%, the magnesium content is 11.9wt%, the aluminum content is 3.4wt%, and the chlorine content is 36.1wt%.

Figure BDA0002700214750000141
Figure BDA0002700214750000141

实施例4Example 4

干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1000g四氯化钛的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-4,取100mL该浆液催化剂经干燥得到固体催化剂质量为20.6g,故标定该浆液催化剂浓度为206g/L,测定钛含量为3.0wt%,硅含量为39.6wt%,镁含量为13.0wt%,铝含量为3.7wt%,氯含量为34.8wt%。Under dry nitrogen conditions, add 15L hexane and 1.5L n-butanol into a 30L stainless steel reactor, mix well, then add 350g magnesium chloride, then heat the oil bath to 85°C, control the stirring speed to 100rpm, and react for 2 hours until a clear and uniform solution ; Add 1050g of nano silica gel for loading to prepare a composite carrier, stir and load for 2 hours, start to set the cooling rate at 1°C/min and cool down to below -30°C, and precipitate a solid to obtain a catalyst precursor slurry; lower the temperature of the catalyst precursor slurry to - Below 30°C, slowly add 1L diethylaluminum chloride to contact for 2 hours, then control the temperature rise rate to 1°C/min, raise the temperature to 85°C for 4 hours; cool down to -30°C again, drop 1000g titanium tetrachloride 5L of hexane solution for complexation reaction for 1 hour, then control the temperature rise rate to 1°C/min, raise the temperature to 85°C for 4 hours, after the reaction time is over, settle and filter, and add hexane to the obtained filter cake to form a slurry to obtain 10L Slurry type ultra-high activity catalyst CAT-4, take 100mL of the slurry catalyst and dry to obtain a solid catalyst mass of 20.6g, so the calibration concentration of the slurry catalyst is 206g/L, and the measured titanium content is 3.0wt%, and the silicon content is 39.6wt%. , the magnesium content is 13.0wt%, the aluminum content is 3.7wt%, and the chlorine content is 34.8wt%.

实施例5Example 5

干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加760g TiBn4的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-5,取100mL该浆液催化剂经干燥得到固体催化剂质量为21.1g,故标定该浆液催化剂浓度为211g/L,测定钛含量为3.2wt%,硅含量为38.3wt%,镁含量为12.3wt%,铝含量为3.8wt%,氯含量为35.2wt%。Under dry nitrogen conditions, add 15L hexane and 1.5L n-butanol into a 30L stainless steel reactor, mix well, then add 350g magnesium chloride, then heat the oil bath to 85°C, control the stirring speed to 100rpm, and react for 2 hours until a clear and uniform solution ; Add 1050g of nano silica gel for loading to prepare a composite carrier, stir and load for 2 hours, start to set the cooling rate at 1°C/min and cool down to below -30°C, and precipitate a solid to obtain a catalyst precursor slurry; lower the temperature of the catalyst precursor slurry to - Below 30°C, slowly add 1L of diethylaluminum chloride dropwise for 2 hours, then control the temperature rise rate to 1°C/min, raise the temperature to 85°C for 4 hours; cool down to below -30°C again, drop 5L of 760g TiBn 4 The hexane solution was subjected to the complexation reaction for 1 hour, and then the heating rate was controlled at 1°C/min, and the temperature was raised to 85°C for 4 hours. After the reaction time was over, it was settled and filtered, and the obtained filter cake was added with hexane to make a slurry, and a 10L slurry type Ultra-high activity catalyst CAT-5, take 100mL of the slurry catalyst and dry to obtain a solid catalyst mass of 21.1g, so the calibration concentration of the slurry catalyst is 211g/L, and the measured titanium content is 3.2wt%, silicon content is 38.3wt%, magnesium The content is 12.3wt%, the aluminum content is 3.8wt%, and the chlorine content is 35.2wt%.

实施例6Example 6

将30L不锈钢搅拌聚合釜先后用N2置换,0.4MPa氮气下利用8kg己烷把AlEt3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.2MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物1.26kg,粘均分子量为230万,100目的网状筛过筛率为重量比88%,d50=84μm,粉料堆密度为0.21g/cm3,利用熔融13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。Replace the 30L stainless steel stirred polymerization kettle with N 2 successively, add AlEt 3 (10mL) into the kettle with 8kg hexane under 0.4MPa nitrogen, control the stirring speed at 250rpm, preheat the temperature in the kettle to about 60°C, and then use 0.4MPa Under the condition of nitrogen pressure, use 2kg hexane to flush 30mg CAT-1 into the polymerization kettle, activate for 10min, then remove the nitrogen pressure in the kettle, and then feed ethylene gas to make the pressure in the kettle reach 0.2MPa, and control the temperature in the kettle to 70 ℃, stop feeding ethylene after 2 hours of polymerization, use a circulating constant temperature oil bath to lower the temperature in the kettle to below 50 ℃, vent the gas in the system and discharge the material, and obtain 1.26kg of granular polymer after drying, with a viscosity-average molecular weight of 2.3 million , the sieving rate of 100-mesh mesh sieve is 88% by weight, d 50 = 84μm, the bulk density of powder is 0.21g/cm 3 , using melting 13 C-NMR spectrum in Agilent DD2 600MHz solid system with high temperature wide cavity magic angle Rotary attachments yield polyethylene branched content <1/100,000C.

实施例7Example 7

将30L不锈钢搅拌聚合釜先后用N2置换,0.4MPa氮气下利用8kg己烷把AlEt3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物2.37kg,粘均分子量为243万,100目的网状筛过筛率为重量比89%,d50=86μm,粉料堆密度为0.22g/cm3,利用熔融13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。Replace the 30L stainless steel stirred polymerization kettle with N 2 successively, add AlEt 3 (10mL) into the kettle with 8kg hexane under 0.4MPa nitrogen, control the stirring speed at 250rpm, preheat the temperature in the kettle to about 60°C, and then use 0.4MPa Under the condition of nitrogen pressure, use 2kg hexane to flush 30mg CAT-1 into the polymerization kettle, activate for 10min, then remove the nitrogen pressure in the kettle, and then feed ethylene gas to make the pressure in the kettle reach 0.4MPa, and control the temperature in the kettle to 70 ℃, stop feeding ethylene after 2 hours of polymerization, use a circulating constant temperature oil bath to lower the temperature in the kettle to below 50 ℃, vent the gas in the system and discharge the material, and obtain 2.37kg of granular polymer after drying, with a viscosity-average molecular weight of 2.43 million , the sieving rate of 100-mesh mesh sieve is 89% by weight, d 50 = 86μm, the bulk density of powder is 0.22g/cm 3 , using melting 13 C-NMR spectrum in Agilent DD2 600MHz solid system with high temperature wide cavity magic angle Rotary attachments yield polyethylene branched content <1/100,000C.

实施例8Example 8

将30L不锈钢搅拌聚合釜先后用N2置换,0.4MPa氮气下利用8kg己烷把AlEt3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.6MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物3.26kg,粘均分子量为328万,100目的网状筛过筛率为重量比86%,d50=101μm,粉料堆密度为0.26g/cm3,利用熔融13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。Replace the 30L stainless steel stirred polymerization kettle with N 2 successively, add AlEt 3 (10mL) into the kettle with 8kg hexane under 0.4MPa nitrogen, control the stirring speed at 250rpm, preheat the temperature in the kettle to about 60°C, and then use 0.4MPa Under the condition of nitrogen pressure, use 2kg hexane to flush 30mg CAT-1 into the polymerization kettle, activate for 10min, then remove the nitrogen pressure in the kettle, and then feed ethylene gas to make the pressure in the kettle reach 0.6MPa, and control the temperature in the kettle to 70 ℃, stop feeding ethylene after 2 hours of polymerization, use a circulating constant temperature oil bath to lower the temperature in the kettle to below 50 ℃, vent the gas in the system and discharge the material, and obtain 3.26kg of granular polymer after drying, with a viscosity-average molecular weight of 3.28 million , the sieving rate of 100-mesh mesh sieve is 86% by weight, d 50 = 101μm, the bulk density of powder is 0.26g/cm 3 , and the melting 13 C-NMR spectrum is used in Agilent DD2 600MHz solid system with high temperature and wide cavity magic angle Rotary attachments yield polyethylene branched content <1/100,000C.

实施例9Example 9

将30L不锈钢搅拌聚合釜先后用N2置换,0.4MPa氮气下利用8kg己烷把AlEt3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.8MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物4.06kg,粘均分子量为450万,100目的网状筛过筛率为重量比85%,d50=110μm,粉料堆密度为0.25g/cm3,利用熔融13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。Replace the 30L stainless steel stirred polymerization kettle with N 2 successively, add AlEt 3 (10mL) into the kettle with 8kg hexane under 0.4MPa nitrogen, control the stirring speed at 250rpm, preheat the temperature in the kettle to about 60°C, and then use 0.4MPa Under the condition of nitrogen pressure, use 2kg hexane to flush 30mg CAT-1 into the polymerization kettle, activate for 10min, then remove the nitrogen pressure in the kettle, and then feed ethylene gas to make the pressure in the kettle reach 0.8MPa, and control the temperature in the kettle to 70 ℃, stop feeding ethylene after 2 hours of polymerization, use a circulating constant temperature oil bath to lower the temperature in the kettle to below 50 ℃, vent the gas in the system and discharge the material, and obtain 4.06kg of granular polymer after drying, with a viscosity-average molecular weight of 4.5 million , the sieving rate of 100-mesh mesh sieve is 85% by weight, d 50 = 110μm, the bulk density of powder is 0.25g/cm 3 , using melting 13 C-NMR spectrum in Agilent DD2 600MHz solid system with high temperature wide cavity magic angle Rotary attachments yield polyethylene branched content <1/100,000C.

实施例10Example 10

将30L不锈钢搅拌聚合釜先后用N2置换,0.4MPa氮气下利用8kg己烷把AlEt3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为80℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物0.86kg,粘均分子量为150万,100目的网状筛过筛率为重量比90%,d50=80μm,粉料堆密度为0.20g/cm3,利用熔融13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。Replace the 30L stainless steel stirred polymerization kettle with N 2 successively, add AlEt 3 (10mL) into the kettle with 8kg hexane under 0.4MPa nitrogen, control the stirring speed at 250rpm, preheat the temperature in the kettle to about 60°C, and then use 0.4MPa Under the condition of nitrogen pressure, use 2kg hexane to flush 30mg CAT-1 into the polymerization kettle, activate for 10min, then remove the nitrogen pressure in the kettle, and then feed ethylene gas to make the pressure in the kettle reach 0.4MPa, and control the temperature in the kettle to 80 ℃, stop feeding ethylene after 2 hours of polymerization, use a circulating constant temperature oil bath to lower the temperature in the kettle to below 50 ℃, vent the gas in the system and discharge the material, and obtain a granular polymer of 0.86kg after drying, with a viscosity-average molecular weight of 1.5 million , the sieving rate of 100-mesh mesh sieve is 90% by weight, d 50 = 80μm, the bulk density of powder is 0.20g/cm 3 , using melting 13 C-NMR spectrum in Agilent DD2 600MHz solid system with high temperature wide cavity magic angle Rotary attachments yield polyethylene branched content <1/100,000C.

实施例11Example 11

将30L不锈钢搅拌聚合釜先后用N2置换,0.4MPa氮气下利用8kg己烷把AlEt3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到50℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为60℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物3.66kg,粘均分子量为580万,100目的网状筛过筛率为重量比90%,d50=100μm,粉料堆密度为0.30g/cm3,利用熔融13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。Replace the 30L stainless steel stirred polymerization kettle with N 2 successively, add AlEt 3 (10mL) into the kettle with 8kg hexane under 0.4MPa nitrogen, control the stirring speed at 250rpm, preheat the temperature in the kettle to about 50°C, and then use 0.4MPa Under the condition of nitrogen pressure, use 2kg hexane to flush 30mg CAT-1 into the polymerization kettle, activate for 10min, then remove the nitrogen pressure in the kettle, and then feed ethylene gas to make the pressure in the kettle reach 0.4MPa, and control the temperature in the kettle to 60 ℃, stop feeding ethylene after 2 hours of polymerization, use a circulating constant temperature oil bath to lower the temperature in the kettle to below 50 ℃, vent the gas in the system and discharge the material, and obtain 3.66kg of granular polymer after drying, with a viscosity-average molecular weight of 5.8 million , the sieving rate of 100-mesh mesh sieve is 90% by weight, d 50 = 100μm, the bulk density of powder is 0.30g/cm 3 , using melting 13 C-NMR spectrum in Agilent DD2 600MHz solid system with high temperature wide cavity magic angle Rotary attachments yield polyethylene branched content <1/100,000C.

实施例12Example 12

将30L不锈钢搅拌聚合釜先后用N2置换,0.4MPa氮气下利用8kg己烷把AlEt3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到30℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为40℃,聚合2h后停止通入乙烯,放空体系中的气体并出料,干燥后得到颗粒状聚合物1.06kg,粘均分子量为830万,100目的网状筛过筛率为重量比92%,d50=99μm,粉料堆密度为0.28g/cm3,利用熔融13C-NMR谱在AgilentDD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。Replace the 30L stainless steel stirred polymerization kettle with N 2 successively, add AlEt 3 (10mL) into the kettle with 8kg hexane under 0.4MPa nitrogen, control the stirring speed at 250rpm, preheat the temperature in the kettle to about 30°C, and then use 0.4MPa Under the condition of nitrogen pressure, use 2kg hexane to flush 30mg CAT-1 into the polymerization kettle, activate for 10min, then remove the nitrogen pressure in the kettle, and then feed ethylene gas to make the pressure in the kettle reach 0.4MPa, and control the temperature in the kettle to 40 ℃, stopped feeding ethylene after 2 hours of polymerization, vented the gas in the system and discharged, and obtained 1.06 kg of granular polymer after drying, with a viscosity-average molecular weight of 8.3 million, and a sieving rate of 92% by weight through a 100-mesh mesh sieve. d 50 =99μm, the powder bulk density is 0.28g/cm 3 , and the polyethylene branch content obtained by melting 13 C-NMR spectrum in AgilentDD2 600MHz solid system with high-temperature wide-cavity magic-angle rotating attachment is less than 1/100,000C.

实施例13工业化生产装置试生产实验Example 13 Trial production experiment of industrialized production equipment

将32m3不锈钢搅拌聚合釜用N2置换三次,乙烯置换两次,加入10吨己烷,加入质量浓度1%的Et3Al己烷溶液150kg,再用氮气一次性将催化剂CAT-1 330mL(约含70g固体催化剂)压入反应釜,卸去釜内氮气压力再通入乙烯并逐渐提高乙烯反应压力到0.4MPa,控制聚合反应温度波动区间69.5℃-70.5℃之间;聚合反应5.5小时后,停止通入乙烯,放料至过滤釜,在过滤釜中加油洗操作后,真空干燥约3h,放料包装得到产品聚乙烯微粒,具体结果见下表。The 32m 3 stainless steel stirring polymerization kettle was replaced with N2 three times, ethylene twice, 10 tons of hexane was added, and 150kg of Et3Al hexane solution with a mass concentration of 1% was added, and the catalyst CAT-1 330mL ( Contains about 70g of solid catalyst) into the reaction kettle, remove the nitrogen pressure in the kettle, then feed ethylene and gradually increase the ethylene reaction pressure to 0.4MPa, control the polymerization temperature fluctuation range between 69.5°C and 70.5°C; after 5.5 hours of polymerization , stop feeding ethylene, discharge to the filter kettle, add oil and wash in the filter kettle, vacuum dry for about 3 hours, discharge and pack to obtain the product polyethylene particles, the specific results are shown in the table below.

Figure BDA0002700214750000181
Figure BDA0002700214750000181

实施例14超高分子量聚乙烯微粒制备微孔过滤制品Example 14 Preparation of Microporous Filtration Products by Ultra-high Molecular Weight Polyethylene Microparticles

将实施例8批次1的超高分子量聚乙烯微粒用于制备微孔过滤材料。称取超高分子量聚乙烯微粒30g,聚乙烯蜡0.5g,硬脂酸钙0.1g置于烧杯中,搅拌混合均匀,装入模具并在模压机上进行无压烧结,烧结温度为180-220℃,烧结时间10-20min,最后通水冷却降温得到超高分子量聚乙烯微孔过滤制品(图4),固体不溶物过滤效率大于99.8%,渗透性能优异,控制过滤器前后压差小于0.2MPa,纯水通过量达到17-20m3/h,微孔过滤制品的性能检测如下:The ultra-high molecular weight polyethylene microparticles of Example 8 Batch 1 were used to prepare microporous filter materials. Weigh 30g of ultra-high molecular weight polyethylene particles, 0.5g of polyethylene wax, and 0.1g of calcium stearate, put them in a beaker, stir and mix evenly, put them into a mold and carry out pressureless sintering on a molding machine, the sintering temperature is 180-220°C , the sintering time is 10-20min, and finally the ultra-high molecular weight polyethylene microporous filter product is obtained by passing water to cool down (Figure 4). The solid insoluble matter filtration efficiency is greater than 99.8%, and the permeability is excellent. The pressure difference between the front and rear of the control filter is less than 0.2MPa, The throughput of pure water reaches 17-20m 3 /h, and the performance test of microporous filter products is as follows:

Figure BDA0002700214750000191
Figure BDA0002700214750000191

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application as if each were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

Claims (19)

1.一种超高分子量聚乙烯微粒,其特征在于,所述的微粒具有如下特征:1. A microparticle of ultra-high molecular weight polyethylene, characterized in that, the microparticle has the following characteristics: (a)粘均分子量为150 - 800万克/摩尔;(a) the viscosity-average molecular weight is 1.5-8 million g/mol; (b)≥85wt%可通过100目的网状筛,且粒中径(d50)为80μm ≤ d50 ≤ 110μm;(b) ≥85wt% can pass through a 100-mesh mesh sieve, and the particle diameter (d50) is 80μm ≤ d50 ≤ 110μm; 且所述的微粒中,高分子链上的烷烃支链数<1/100,000C,即100,000个碳原子中具有的烷烃支链<1;And in the microparticles, the number of alkane branch chains on the polymer chain is <1/100,000C, that is, the number of alkane branch chains in 100,000 carbon atoms is <1; 所述的微粒的粉料堆密度为0.20-0.30 g/cm3。The powder bulk density of the particles is 0.20-0.30 g/cm3. 2.如权利要求1所述的聚乙烯微粒,其特征在于,所述微粒的粘均分子量为150 - 400万克/摩尔。2. The polyethylene microparticle according to claim 1, characterized in that, the viscosity-average molecular weight of the microparticle is 1.5-4 million g/mol. 3.如权利要求1所述的聚乙烯微粒,其特征在于,所述微粒的d50为90μm ≤ d50 ≤100μm。3. The polyethylene microparticles according to claim 1, characterized in that, the d50 of the microparticles is 90 μm ≤ d50 ≤ 100 μm. 4.如权利要求1所述的聚乙烯微粒,其特征在于,所述的微粒的堆密度为0.22-0.28 g/cm3。4. The polyethylene microparticles according to claim 1, characterized in that, the bulk density of the microparticles is 0.22-0.28 g/cm3. 5.如权利要求1所述的聚乙烯微粒,其特征在于,所述的微粒的堆密度为0.22-0.26 g/cm3。5. The polyethylene microparticles according to claim 1, characterized in that, the bulk density of the microparticles is 0.22-0.26 g/cm3. 6.如权利要求1所述的聚乙烯微粒的制备方法,其特征在于,包括步骤:用催化剂及助催化剂与乙烯接触进行催化聚合反应,从而得到所述的超高分子量聚乙烯微粒;其中,所述的催化剂是通过以下方法制备的:6. The preparation method of polyethylene microparticles as claimed in claim 1, is characterized in that, comprises the step: contact with ethylene with catalyst and co-catalyst and carry out catalytic polymerization reaction, thereby obtain described ultrahigh molecular weight polyethylene microparticles; Wherein, Described catalyst is prepared by the following method: (a) 用镁源与C1-C10醇接触并在60-120 ℃下反应,然后加入纳米硅胶,降温至-30 ℃以下得到前体浆液P-I;(a) Use magnesium source to contact with C1-C10 alcohol and react at 60-120°C, then add nano-silica gel, cool down to below -30°C to obtain precursor slurry P-I; (b) 用步骤(a)得到的前体浆液P-I在低于-30 ℃的条件下与烷基铝接触,随后升温至60-120 ℃保持2-6 h得到前体浆液P-II;(b) Using the precursor slurry P-I obtained in step (a) to contact the alkylaluminum at a temperature lower than -30°C, and then raising the temperature to 60-120°C for 2-6 h to obtain the precursor slurry P-II; (c) 用步骤(b)得到的前体浆液P-II降温至-30 ℃以下,与钛化合物的惰性烃类溶液接触0.5-3 h后,升温至60-120 ℃保持2-6 h,得到催化剂浆液C-III;(c) Use the precursor slurry P-II obtained in step (b) to cool down to below -30 °C, contact with the inert hydrocarbon solution of titanium compound for 0.5-3 h, then raise the temperature to 60-120 °C and keep for 2-6 h, Obtain catalyst slurry C-III; (d) 将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂;(d) filter the catalyst slurry C-III obtained in step (c) to obtain a catalyst; 所述的钛化合物选自下组:TiCl4、TiR4,或结构式I-IV所示的烷基配合物;其中R是C1-C6的烷基、烯丙基、苄基、NMe2:The titanium compound is selected from the following group: TiCl4, TiR4, or alkyl complexes shown in structural formula I-IV; wherein R is C1-C6 alkyl, allyl, benzyl, NMe2:
Figure 137707DEST_PATH_IMAGE001
Figure 137707DEST_PATH_IMAGE001
其中,X为SR5或P(R5)2;Wherein, X is SR5 or P(R5)2; R1、R2、R3、R4、R5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;R1, R2, R3, R4, R5 are independently substituted or unsubstituted groups selected from the group consisting of: C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl, C6-C10 aryl , halogenated C3-C8 cycloalkyl, 5-7 membered heteroaryl; 或R3和R4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;Or R3 and R4, and the carbon atoms connected to them together form a 5-7 membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring; R6选自下组:C1-C6的烷基、NH2、N(C1-C6的烷基)2、烯丙基、苄基、C1-C6的硅烷基;R6 is selected from the group consisting of C1-C6 alkyl, NH2, N(C1-C6 alkyl)2, allyl, benzyl, C1-C6 silyl; R7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;R7 is selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl or C3-C8 cycloalkyl; 其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(=O)、P或O;Wherein, the skeleton of the heteroaryl group has 1-3 heteroatoms selected from the group consisting of N, S(=O), P or O; 所述的“取代”是指被选自下组的一个或多个取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。The "substituted" refers to being substituted by one or more substituents selected from the following group: halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy.
7.如权利要求6所述的方法,其特征在于,所述的R选自下组:甲基、乙基、丙基、丁基、烯丙基、苄基,或NMe2。7. The method according to claim 6, wherein said R is selected from the group consisting of methyl, ethyl, propyl, butyl, allyl, benzyl, or NMe2. 8.如权利要求6所述的方法,其特征在于,所述的R选自下组:甲基、乙基、丙基、丁基、NH2、N(C1-C6的烷基)2、烯丙基、苄基,或C1-C6的硅烷基。8. The method according to claim 6, wherein said R is selected from the group consisting of methyl, ethyl, propyl, butyl, NH2, N(C1-C6 alkyl)2, alkenyl Propyl, benzyl, or C1-C6 silyl. 9.如权利要求6所述的方法,其特征在于,所述的方法包括:9. The method of claim 6, wherein the method comprises: (a) 惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯化镁的C1-C10的醇的混合液中进行接触,在60-120 ℃下反应形成均一溶液,加入纳米硅胶进行制备复合载体,然后降温至-30 ℃以下得到前体浆液P-I;上述反应中,以无水氯化镁的用量作为1当量;(a) Under inert gas protection conditions, add anhydrous magnesium chloride to a mixture of an inert hydrocarbon solvent and a C1-C10 alcohol greater than or equal to 2 equivalents of magnesium chloride for contact, react at 60-120 °C to form a uniform solution, and add nano Silica gel is used to prepare the composite carrier, and then the temperature is lowered to below -30°C to obtain the precursor slurry P-I; in the above reaction, the amount of anhydrous magnesium chloride is used as 1 equivalent; (b) 步骤(a)得到的前体浆液P-I在低于-30 ℃的条件下与烷基铝接触至少1 h,随后升温至60-120 ℃保持2-6 h得到前体浆液P-II;(b) The precursor slurry P-I obtained in step (a) is contacted with alkylaluminum for at least 1 h at a temperature lower than -30 °C, and then heated to 60-120 °C for 2-6 h to obtain the precursor slurry P-II ; (c) 将步骤(b)得到的前体浆液P-II降温至-30 ℃以下,与钛化合物的惰性烃类溶液接触0.5-3 h后,升温至60-120 ℃保持2-6 h,得到催化剂浆液C-III;(c) Cooling the precursor slurry P-II obtained in step (b) to below -30°C, contacting the titanium compound inert hydrocarbon solution for 0.5-3 h, then raising the temperature to 60-120°C for 2-6 h, Obtain catalyst slurry C-III; (d) 将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。(d) filter the catalyst slurry C-III obtained in step (c) to obtain a catalyst. 10.如权利要求9所述的方法,其特征在于,所述的步骤(a)中,所述的降温速度为1-10℃/min。10. The method according to claim 9, characterized in that, in the step (a), the cooling rate is 1-10° C./min. 11.如权利要求9所述的方法,其特征在于,所述的步骤(a)中,所述的降温速度为1-5℃/min。11. The method according to claim 9, characterized in that, in the step (a), the cooling rate is 1-5° C./min. 12.如权利要求9所述的方法,其特征在于,所述的步骤(a)中,所述的C1-C10的醇投料量为2-6当量。12. The method according to claim 9, characterized in that, in the step (a), the amount of the C1-C10 alcohol charged is 2-6 equivalents. 13.如权利要求9所述的方法,其特征在于,所述的步骤(b)中,所述的升温速度为1-10℃/min。13. The method according to claim 9, characterized in that, in the step (b), the heating rate is 1-10°C/min. 14.如权利要求9所述的方法,其特征在于,所述的步骤(c)中,所述的其中所述的降温速度为1-10 ℃/min,且所述的升温速度为1-10 ℃/min。14. The method according to claim 9, characterized in that, in the step (c), the cooling rate is 1-10 °C/min, and the heating rate is 1-10 °C/min. 10°C/min. 15.如权利要求7所述的方法,其特征在于,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。15. The method according to claim 7, characterized in that, the preparation method of the catalyst further comprises the step of: (e) drying the catalyst obtained in step (d) to obtain catalyst powder. 16.如权利要求7所述的方法,其特征在于,所述的催化剂制备中,步骤(a)所述的C1-C10的醇选自下组:甲醇、乙醇、正丙醇、正丁醇、正戊醇、正己醇、2-乙基己醇、正辛醇,或其组合;和/或16. The method according to claim 7, characterized in that, in the preparation of the catalyst, the C1-C10 alcohol described in step (a) is selected from the group consisting of methanol, ethanol, n-propanol, n-butanol , n-pentanol, n-hexanol, 2-ethylhexanol, n-octanol, or combinations thereof; and/or 所述的催化剂制备中,步骤(b)中的烷基铝选自下组:二氯乙基铝、二乙基氯化铝、三乙基铝、三异丁基铝、倍半氯化乙基铝、或倍半氯化丁基铝;和/或In the preparation of the catalyst, the alkylaluminum in the step (b) is selected from the group consisting of ethylaluminum dichloride, diethylaluminum chloride, triethylaluminum, triisobutylaluminum, ethyl sesquichloride butylaluminum, or butylaluminum sesquichloride; and/or 所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比为0.3-0.8:1。In the catalyst preparation, the molar ratio of titanium compound to magnesium chloride in step (c) is 0.3-0.8:1. 17.如权利要求7所述的方法,其特征在于,所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比为0.4-0.6:1。17. The method according to claim 7, characterized in that, in the preparation of the catalyst, the molar ratio of the titanium compound to the magnesium chloride in step (c) is 0.4-0.6:1. 18.一种微孔过滤制品,其特征在于,所述的制品是用如权利要求1-6任一所述的超高分子量聚乙烯微粒制备的。18. A microporous filtration product, characterized in that said product is prepared from ultra-high molecular weight polyethylene particles according to any one of claims 1-6. 19.如权利要求18所述的制品的制备方法,其特征在于,包括步骤:19. The preparation method of product as claimed in claim 18, is characterized in that, comprises the step: (i)用聚乙烯蜡和硬脂酸钙作为复合添加剂,与权利要求1-6所述的超高分子量聚乙烯微粒混合均匀,得到混合物料;(i) using polyethylene wax and calcium stearate as composite additives, and mixing them uniformly with the ultra-high molecular weight polyethylene particles described in claims 1-6 to obtain a mixed material; (ii)将所述的装入模具进行无压烧结;(ii) putting the said into a mold for pressureless sintering; (iii)冷却降温,得到超高分子量聚乙烯微孔过滤制品。(iii) cooling down to obtain ultra-high molecular weight polyethylene microporous filter products.
CN202011019681.8A 2020-09-24 2020-09-24 Low bulk density ultra-high molecular weight polyethylene micro-powder Active CN114249851B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011019681.8A CN114249851B (en) 2020-09-24 2020-09-24 Low bulk density ultra-high molecular weight polyethylene micro-powder
PCT/CN2021/118059 WO2022062944A1 (en) 2020-09-24 2021-09-13 Low-bulk-density ultra-high-molecular-weight polyethylene micropowder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011019681.8A CN114249851B (en) 2020-09-24 2020-09-24 Low bulk density ultra-high molecular weight polyethylene micro-powder

Publications (2)

Publication Number Publication Date
CN114249851A CN114249851A (en) 2022-03-29
CN114249851B true CN114249851B (en) 2023-03-14

Family

ID=80790181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011019681.8A Active CN114249851B (en) 2020-09-24 2020-09-24 Low bulk density ultra-high molecular weight polyethylene micro-powder

Country Status (2)

Country Link
CN (1) CN114249851B (en)
WO (1) WO2022062944A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462787A (en) * 2023-05-26 2023-07-21 中国科学院上海有机化学研究所 A kind of medical surgical implant grade ultra-high molecular weight polyethylene powder and its preparation method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068578A (en) * 1991-07-12 1993-02-03 Ecp埃尼化学有限公司 Be used for ethene and alpha-olefin (being total to) polymeric catalyst solid constituent
WO2009127410A1 (en) * 2008-04-17 2009-10-22 Saudi Basic Industries Corporation Process for the production of ultra high molecular weight polyethylene
CN102030844A (en) * 2010-09-14 2011-04-27 中国科学院上海有机化学研究所 Olefin polymerization catalyst and polyethylene with ultralow branching coefficient and ultrahigh molecular weight
CN102341447A (en) * 2009-01-09 2012-02-01 帝人芳纶有限公司 Ultra-high molecular weight polyethylene comprising refractory particles
JP2012229417A (en) * 2011-04-14 2012-11-22 Asahi Kasei Chemicals Corp Method for producing ultra high molecular weight polyethylene particle and molded product using the ultra high molecular weight polyethylene particle
CN102952222A (en) * 2011-08-30 2013-03-06 中国石油化工股份有限公司 Ultra-high molecular weight polyethylene resin and preparation method thereof
WO2013087185A2 (en) * 2011-12-12 2013-06-20 Saudi Basic Industries Corporation (Sabic) A catalyst system for the production of ultra-high molecular weight polyethylene
WO2014063425A1 (en) * 2012-10-22 2014-05-01 中国石油化工股份有限公司 Ultra-high molecular weight polyethylene resin and its application
JP2015081335A (en) * 2013-10-24 2015-04-27 東ソー株式会社 Ultra high molecular weight polyethylene particles and molded articles comprising the same
CN105482016A (en) * 2014-09-16 2016-04-13 中国科学院上海有机化学研究所 Polyethylene powder, composition, cross-linked polyethylene pipe and preparation methods of polyethylene powder and cross-linked polyethylene pipe
CN106317273A (en) * 2016-08-19 2017-01-11 中国科学院化学研究所 Ultrahigh molecular weight superfine polyethylene powder and preparation method thereof
WO2018032744A1 (en) * 2016-08-19 2018-02-22 中国科学院化学研究所 Ultra-high molecular weight, ultra-fine particle size polyethylene, preparation method therefor and use thereof
CN113227164A (en) * 2019-02-20 2021-08-06 旭化成株式会社 Polyethylene powder

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717709B2 (en) * 1987-11-13 1995-03-01 日本石油株式会社 Method for producing ultra high molecular weight polyethylene
IT1251796B (en) * 1991-07-15 1995-05-26 Himont Inc COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF ETHYLENE
CN1179984C (en) * 2002-09-03 2004-12-15 中国石油化工股份有限公司 Component for olefinic polymerization loaded on nano carrier as well as its preparing method and application
CN101654492B (en) * 2008-08-21 2012-06-20 中国石化扬子石油化工有限公司 Super-high molecular polyethylene and preparation method and application thereof
JP5541948B2 (en) * 2009-03-06 2014-07-09 旭化成ケミカルズ株式会社 Ultra high molecular weight polyethylene powder and method for producing the same
WO2012122022A1 (en) * 2011-03-10 2012-09-13 3M Innovative Properties Company Filtration media
US20130012375A1 (en) * 2011-07-04 2013-01-10 Liuzhong Li Ultra high molecular weight polyethylene catalysts and processes for the preparation thereof
US10221262B2 (en) * 2013-10-25 2019-03-05 Dsm Ip Assets B.V. Preparation of ultra high molecular weight ethylene copolymer
JP6710993B2 (en) * 2016-02-08 2020-06-17 東ソー株式会社 Ultra high molecular weight polyethylene particles and method for producing the same
CN107383247B (en) * 2016-05-16 2020-01-03 中国石油天然气股份有限公司 Ultrahigh molecular weight polyethylene catalyst and preparation method thereof
US10731011B2 (en) * 2017-12-07 2020-08-04 Asahi Kasei Kabushiki Kaisha Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene fiber
WO2019207991A1 (en) * 2018-04-24 2019-10-31 旭化成株式会社 Polyethylene powder, molded body and microporous membrane
CN109306029B (en) * 2018-09-21 2021-05-11 上海化工研究院有限公司 Single-active-site catalyst for preparing ultrahigh molecular weight polyethylene high-end resin, preparation method and application thereof
CN111499777B (en) * 2020-04-29 2023-02-17 江苏扬农化工集团有限公司 Ultrahigh molecular weight polyethylene catalyst, and preparation method and application thereof
CN111333755A (en) * 2020-04-29 2020-06-26 江苏扬农化工集团有限公司 Catalyst for preparing ultra-high molecular weight polyethylene and preparation method and application thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068578A (en) * 1991-07-12 1993-02-03 Ecp埃尼化学有限公司 Be used for ethene and alpha-olefin (being total to) polymeric catalyst solid constituent
WO2009127410A1 (en) * 2008-04-17 2009-10-22 Saudi Basic Industries Corporation Process for the production of ultra high molecular weight polyethylene
CN102341447A (en) * 2009-01-09 2012-02-01 帝人芳纶有限公司 Ultra-high molecular weight polyethylene comprising refractory particles
CN102030844A (en) * 2010-09-14 2011-04-27 中国科学院上海有机化学研究所 Olefin polymerization catalyst and polyethylene with ultralow branching coefficient and ultrahigh molecular weight
CN102219870A (en) * 2010-09-14 2011-10-19 中国科学院上海有机化学研究所 Olefin polymerization catalysts and ultrahigh molecular weight polyethylene with ultralow branching degree
JP2012229417A (en) * 2011-04-14 2012-11-22 Asahi Kasei Chemicals Corp Method for producing ultra high molecular weight polyethylene particle and molded product using the ultra high molecular weight polyethylene particle
CN102952222A (en) * 2011-08-30 2013-03-06 中国石油化工股份有限公司 Ultra-high molecular weight polyethylene resin and preparation method thereof
WO2013087185A2 (en) * 2011-12-12 2013-06-20 Saudi Basic Industries Corporation (Sabic) A catalyst system for the production of ultra-high molecular weight polyethylene
WO2014063425A1 (en) * 2012-10-22 2014-05-01 中国石油化工股份有限公司 Ultra-high molecular weight polyethylene resin and its application
JP2015081335A (en) * 2013-10-24 2015-04-27 東ソー株式会社 Ultra high molecular weight polyethylene particles and molded articles comprising the same
CN105482016A (en) * 2014-09-16 2016-04-13 中国科学院上海有机化学研究所 Polyethylene powder, composition, cross-linked polyethylene pipe and preparation methods of polyethylene powder and cross-linked polyethylene pipe
CN106317273A (en) * 2016-08-19 2017-01-11 中国科学院化学研究所 Ultrahigh molecular weight superfine polyethylene powder and preparation method thereof
WO2018032744A1 (en) * 2016-08-19 2018-02-22 中国科学院化学研究所 Ultra-high molecular weight, ultra-fine particle size polyethylene, preparation method therefor and use thereof
CN113227164A (en) * 2019-02-20 2021-08-06 旭化成株式会社 Polyethylene powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纤维级超高分子量聚乙烯的制备及性能研究;李晓庆;《合成纤维工业》;20121231;第35卷(第4期);第30-33页 *

Also Published As

Publication number Publication date
WO2022062944A1 (en) 2022-03-31
CN114249851A (en) 2022-03-29

Similar Documents

Publication Publication Date Title
CN113831436B (en) A class of catalysts for the manufacture of ultra-high to ultra-high molecular weight polyethylene
CN102219869B (en) Olefin polymerization catalyst and ultrahigh molecular weight polyethylene with ultralow branching degree
JP2889205B2 (en) Solid catalyst for olefin polymerization and method for producing olefin polymer using the same
JPS63264606A (en) Solid catalyst for olefin polymerization and its manufacturing method
CA2606411A1 (en) Molding composition comprising polyethylene for preparing films and process for preparing the molding composition in the presence of a mixed catalyst
JP2003511493A (en) Modified supported catalyst for olefin polymerization
CN114249851B (en) Low bulk density ultra-high molecular weight polyethylene micro-powder
CN113912758B (en) Ultra-high molecular weight polyethylene and preparation thereof
CN113912759B (en) Ultrahigh molecular weight polyethylene and preparation thereof
CN113845613B (en) High-purity ultrahigh molecular weight polyethylene resin and production process thereof
US7867939B2 (en) Catalyst for ethylene polymerization, preparation thereof, and method for controlling the polymerization kinetic behavior of said catalyst
CN116535551A (en) A class of ultra-high molecular weight polyethylene micropowder with fine particle size and low bulk density
CN113024701B (en) Process for preparing catalyst for ethylene polymerization
JP2019070117A (en) Polyethylenic polymer powder and lithium ion secondary battery separator
CN114591456A (en) Preparation method of Ziegler-Natta catalyst
JP2002527584A (en) Highly active supported Ziegler-Natta catalyst system for olefin polymerization, process for its preparation and use thereof
CN116082543B (en) A heterogeneous catalyst and its preparation method and application in olefin polymerization
CN113817083B (en) Temperature-sensitive ultrahigh molecular weight polyethylene catalyst, preparation method and application thereof
US12071502B2 (en) Method of making an ethylene-propylene copolymer
JP6108894B2 (en) Olefin polymerization catalyst and method for producing olefin polymer using the same
WO2017054398A1 (en) Spherical supported transition metal catalyst
CN114853964B (en) Cycloolefin block copolymer and process for producing the same
CN116462787A (en) A kind of medical surgical implant grade ultra-high molecular weight polyethylene powder and its preparation method
KR100466502B1 (en) Polymerization catalyst for production of polyethylene with broad molecular weight distribution and its preparation method
CN118290620A (en) Supported late transition metal catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant